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(alá́ırás)
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Kivonat

Algoritmus és struktúra:

Halmazpart́ıciók lokális feltételekkel

A gráfsźınezés a gráfelmélet egyik alapvető fontosságú ága, amelyhez számtalan
modern műszaki és tudományos alkalmazás kapcsolódik. Ezen gyakorlati problémák
tették szükségessé egy sor új t́ıpusú sźınezési feltétel megjelenését is.

A jelen disszertáció első része a Voloshin által 1993-ban bevezetett ,,vegyes hipergrá-
fok”-ra vonatkozó új eredményeket tárgyalja. A szerző bebizonýıtja azt az 1995 óta
fennálló sejtést, amely a C-perfekt C-hiperfák pontos jellemzését adja; továbbá több
év óta nyitott kérdéseket old meg az uniform vegyes hipergráfokra vonatkozóan. A
dolgozatban bizonýıtást nyer még néhány meglepő komplexitási eredmény is.

A második részben egy új hipergráf-sźınezési modell kerül bevezetésre ,,stab-hiper-
gráfok” elnevezéssel. A sźınezési feltételek négy sźınkorlát-függvény által adhatók
meg, amelyek élenként alsó és felső korlátot ı́rnak elő az ott előforduló sźınek számára
és a legnagyobb egysźınű részhalmaz méretére vonatkozóan. Ebben a modellben
speciális esetként benne foglaltatik a klasszikus gráf- és hipergráf-sźınezés, valamint
a vegyes hipergráfok sźınezése is. Továbbá, ahogyan ezt a tézis eredményei több
szempontból is alátámasztják, az előzőeknél erősebb modellt kapunk, amely egységes
keretet nyújt a part́ıciós feltételek nem-klasszikus változatainak léırásához is. Stab-
hipergráfok seǵıtségével természetes és átlátható modell adható az informatikához és
más területekhez tartozó problémák széles körére, amint ez a ,,frekvencia-kiosztási
probléma” különböző változataira részletesen is kifejtésre kerül.

A négy sźınkorlát-függvény közül csak néhányat tekintve, újabb struktúraosztályok
nyerhetők. Ezek részletes összehasonĺıtását és hierarchikus viszonyát is tartalmazza
a disszertáció, nagy hangsúlyt helyezve a lehetséges kromatikus polinomok hal-
mazának és bizonyos problémák komplexitási helyzetének változásaira. Szintén bi-
zonýıtást nyer a hiperfák központi szerepe a kromatikus polinomokra és a part́ıciós
osztályok lehetséges számára vonatkozóan.
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Abstract

Algorithms and structure:

Set partitions under local constraints

Graph coloring is a highly developed subject with many modern applications from
several fields of science and engineering. These applications have required also the
introduction of various non-classical coloring constraints.

The first part of this Thesis contains contributions to the theory of mixed hyper-
graphs introduced by Voloshin in 1993. The author proves a ten-year-old conjecture
concerning the characterization of C-perfect C-hypertrees, and solves long-standing
open problems in connection with uniform mixed hypergraphs. Unexpected com-
plexity results are presented, too.

In the second part the new hypergraph coloring model of ‘stably bounded’ hyper-
graphs is introduced. The local constraints are expressed by four color-bound func-
tions prescribing lower and upper bounds for the cardinality of largest polychromatic
and monochromatic subsets of each hyperedge. This model includes, as particular
cases, the vertex colorings of graphs and hypergraphs in the classical sense and the
class of mixed hypergraphs. Moreover, as it is pointed out, a much stronger model is
obtained, which provides a common frame expressing also non-classical variations of
partition constraints. It can be applied for modeling problems of science and engi-
neering in a natural way, as it is demonstrated on several versions of the ‘frequency
assignment problem’.

The subsets of the introduced four color-bound functions, yield a hierarchy of struc-
ture classes. A detailed comparison of these classes is carried out, concentrating
mainly on the chromatic polynomials and on the complexity status of certain prob-
lems. It is also pointed out that hypertrees play central role regarding chromatic
polynomials and the possible number of partition classes.
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Zusammenfassung

Algorithmen und Strukturen:

Partition von Mengen unter lokalen Beschränkungen

Färbung ist ein hoch entwickeltes Feld der Graphentheorie mit verschiedenen Anwen-
dungen in zahlreichen technischen und wissenschaftlichen Bereichen. Diese Anwen-
dungen brachten auch eine Reihe von neuartigen Beschränkungen für das Färbungs-
problem mit sich.

In dem ersten Teil dieser Dissertation werden neue Resultate zu den von Voloshin
in 1993 eingeführten gemischten Hypergraphen vorgestellt. Der Autor beweist die
seit 1995 bestehende Vermutung über die Charakterisierung von C-perfekten C-
Hyperbäumen und gibt Lösungen für einige seit Jahren bestehende Probleme der
uniformen gemischten Hypergraphen. In der Abhandlung werden auch einige über-
raschende Komplexitäts-Resultate vorgestellt.

Im zweiten Teil wird ein neues Modell, ,,STAB-Hypergraphen” genannt, für Färbung
von Hypergraphen eingeführt. Die lokalen Beschränkungen können durch vier Far-
benbeschränkungs-Funktionen beschrieben werden, die für jede Hyperkante die un-
tere und obere Grenze der Mächtigkeit der größten einfarbigen und mehrfarbigen
Teilmengen angeben. Das vorgestellte Modell beinhaltet die klassische Eckenfärbung
von Graphen und Hypergraphen sowie von gemischten Hypergraphen als Spezialfälle.
Darüberhinaus ergibt sich ein viel stärkeres Modell, das auch die Betrachtung von
nicht-klassischen Varianten der Partitionsbeschränkungen im einheitlichen Rahmen
ermöglicht. Die Anwendung der ,,STAB-Hypergraphen” bietet ein naheliegendes
und transparentes Modell für die Analyse einer Vielfalt von Problemen in der In-
formatik und in anderen wissentschaftlichen Bereichen, was anhand verschiedener
Versionen des ,,Frequenz-Zuordnungsproblems” dargestellt wird.

Die Teilmengen der vorgestellten vier Farbenbeschränkungs-Funktionen ergeben weit-
ere Strukturklassen. Weiterhin wird ein detallierter Vergleich dieser Klassen in
der Dissertation durchgeführt, wobei die chromatischen Polynome und die Kom-
plexität bestimmter Probleme im Mittelpunkt stehen. Ferner wird gezeigt, dass
Hyperbäume eine zentrale Rolle bei der Bestimmung der chromatischen Polynome
und der möglichen Anzahl der Partitionsklassen spielen.
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1 Introduction

In this Thesis we introduce a new model for partitions of set systems, prove many of
its fundamental properties, solve some older problems on a more restricted model,
and indicate how those structure classes provide a unified description for various
problems in mobile communication and other questions in computer science.

The fast development in informatics raises many new types of problems in com-
puter science and leads to new directions in the study of discrete mathematical
models. The most obvious natural example is the structure of communication net-
works, for which the theory of graphs provides an adequate framework. It is beyond
the scope of this Thesis to give an extensive account on the various applications
of graph theory; but some of them will be mentioned in the sequel, and some will
be described in detail in Chapter 9. It should be noted already at this early point,
however, that hypergraphs (set systems) provide a more general model for treating
many problems in a unified manner.

One of the many ways leading to the concept of hypergraph is to generalize that
of graph. Whilst in a graph every edge has two endpoints, in a hypergraph a vertex
subset of any cardinality can be viewed as a hyperedge. Formally, hypergraph means
a set system on an underlying set called vertex set, and this definition alone does
not assume the knowledge of graphs. But viewing a set system as a hypergraph
has the advantage that various concepts of graph theory can be adopted for a wider
class of structures.

Although the roots of hypergraph theory date back at least to the middle of
the nineteenth century (Rev. Kirkman’s work on triple systems, 1847), only Berge’s
research monograph [15] was the first one that devoted a separate part to discussing
hypergraphs. It had been clear, however, that hypergraphs are not merely general-
izations of graphs but they really capture a higher level of abstraction and lead to
solutions of problems that cannot be attacked by graph-theoretic methods alone.

Starting from the end of the nineteenth century, vertex coloring has been one of
the most widely studied and applied areas of graph theory. In the classical sense, a
proper vertex coloring of a graph is a function assigning colors to the vertices in such
a way that any two adjacent vertices have different colors (traditionally denoted with
natural numbers). An equivalent definition from a different viewpoint is to partition
the vertex set into subsets in which each pair of vertices is nonadjacent. Concerning
what is known and what is not known on the theoretical side, the reader can find
a wealth of information in Jensen and Toft’s book [28]; and many applications are
mentioned in the papers by Roberts [48, 49].

The classical vertex coloring of a hypergraph was introduced in 1966 by Erdős
and Hajnal [22]. Analogously to graph coloring, a vertex coloring of a hypergraph
is considered proper if each hyperedge contains at least two vertices with distinct
colors. Equivalently, one looks for a vertex partition into subsets that contain no
hyperedges. In this way, a global partition is required to satisfy local constraints
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described in terms of hyperedges.
In the middle of the 1990’s, Voloshin extended the concept by introducing the

idea of mixed hypergraphs [57, 58]. This novel type of hypergraph coloring — that
imposes a further kind of local constraints — turned out to be a fruitful generaliza-
tion of classical coloring. In the last decade the theory grew rapidly, more than 150
papers related to this area have been published. Due to page limitation, here we
cannot summarize much of the theory; only the most important issues in connection
with our new results will be mentioned in the text. A large amount of results can
be found in Voloshin’s research monograph [59], in the recent survey by Tuza and
Voloshin [53], and on the regularly updated web site [60].

The first part of the Thesis is based on the papers [2, 3, 7, 8] and contains con-
tributions to the theory of Voloshin’s mixed hypergraphs. We present polynomial-
time algorithms, settle the time complexity of several algorithmic problems, give the
answer to a fundamental extremal question, and prove characterization theorems.
Among the latter, the most notable one is the necessary and sufficient condition
for a C-hypertree to be C-perfect, that was conjectured by Voloshin in 1995 and is
proved here.

In the second part of the Thesis we introduce new models of hypergraph coloring,
based on a series of papers [1, 4, 5, 6]. Those color-bounded and stably bounded
hypergraphs admit more flexibility in the local constraints that can be imposed on
the vertex partitions allowed, and so they generalize previous concepts: mixed hy-
pergraphs and a coloring problem studied recently by Drgas-Burchardt and  Lazuka
[19]. We discuss the similarities and differences between our general models and
the more particular earlier ones. Important issues are chromatic polynomials, the
role of hypertrees, and problems having different algorithmic complexities in various
kinds of models. Beside the study of structural properties, we put much emphasis
on designing polynomial-time algorithms when the problem in question admits an
efficient solution.

Before surveying the theory of mixed, color-bounded and stably bounded hyper-
graphs and describing our new results, unfortunately it is unavoidable to begin with
definitions that will be used throughout this work.

1.1 Basic definitions

• A mixed hypergraph is a triple, H = (X, C,D), where X is the vertex set, and
C and D are families of subsets of X. It is assumed that X is finite1 and
|H| ≥ 2 holds for all H ∈ C ∪ D.

1As usual, the cardinality of X will be denoted by n throughout this work.

2



• The members of C and D are called C-edges and D-edges , respectively. A set
H ∈ C ∩ D is called a bi-edge.

• A mixed hypergraph H = (X, C,D) is a C-hypergraph if D = ∅, whilst in
the case when C = ∅ we obtain a D-hypergraph2. A bi-hypergraph is a mixed
hypergraph with C = D.

The distinction between C-edges and D-edges becomes substantial when colorings
are considered.

• A proper vertex coloring — or for short, a coloring — of H = (X, C,D) is
a mapping ϕ from the vertex set X into a set of colors, where each C-edge
has at least two vertices with a common color and each D-edge has at least
two vertices with distinct colors. Without loss of generality, the colors will be
denoted by the positive integers 1, 2, . . . , k.

• Each coloring ϕ of a mixed hypergraph H induces a color partition X1 ∪
· · · ∪ Xk = X, where the partition classes are the inclusion-wise maximal
monochromatic subsets of X under ϕ.

• We shall use the term k-coloring for a coloring with precisely k nonempty color
classes. Note that in [59] these are called strict k-colorings, but in the present
context we do not need such a distinction.

• For k = 1, 2, . . . , n the number of color partitions of X with precisely k
nonempty classes will be denoted by rk. (Here we disregard the renumber-
ings of colors.) The n-tuple (r1, r2, . . . , rn) is termed the chromatic spectrum
of H. We consider two chromatic spectra (p1, p2, . . . , pj) and (r1, r2, . . . , rk) to
be equal if one is a prefix of the other, and all the remaining entries of the
other sequence are zeros. That is, assuming j ≤ k, we require pi = ri for all
1 ≤ i ≤ j and ri = 0 for all j < i ≤ k. Adopting this point of view, we usually
write chromatic spectrum in the form omitting all zeros from the end. If two
hypergraphs have equal chromatic spectra, they are said to be chromatically
equivalent.

• The cromatic polynomial P (H, λ) of a mixed hypergraph H is, by definition,
the polynomial whose value at each positive integer k is equal to the number of
proper colorings of H with at most k distinguished colors; that is, the number
of mappings ϕ : X → {1, . . . , k} whose color partition ( ϕ−1(1), . . . , ϕ−1(k) )
induced on X is proper for H. (Here some of the sets ϕ−1(i) are allowed to be
empty.)

Let us emphasize some substantial differences between rk and the value of P (H, λ)
at λ = k. The former does not count permutations of colors to be distinct, while the

2Vertex coloring of D-hypergraphs will correspond to hypergraph coloring in the classical sense.
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latter does; moreover, the former only takes into consideration the colorings with
precisely k colors.

• The feasible set of H, denoted by Φ(H), is the set of possible numbers of colors
in a coloring: Φ(H) = {k | rk 6= 0}.

In classical hypergraph coloring every hypergraph has a proper coloring with n = |X|
colors. Similarly, every C-hypergraph can be properly colored using only one color.
But there exist mixed hypergraphs which have no proper colorings at all.3

• A mixed hypergraph H is colorable if Φ(H) 6= ∅; and otherwise it is called
uncolorable.

• A mixed hypergraph H is uniquely colorable — UC-graph or UC, for short —
if it has precisely one proper coloring disregarding the renumberings of colors.

• A mixed hypergraph H = (X, C,D) is UC-orderable if there exists a vertex-
order x1, x2, . . . , xn on the vertex set X with the following property : for each
1 ≤ i ≤ n, the subhypergraph Hi induced by {x1, . . . , xi} is uniquely colorable.
Such a vertex-order on X will be termed a UC-order .

• A UC-graph is called uniquely UC-orderable — UUC-graph, or UUC, for short
— if it has just one UC-order apart from the transposition of the first two
vertices.4

• Assuming that H is colorable, the largest and smallest possible numbers of
colors in a proper coloring are termed the upper chromatic number and lower
chromatic number of H, respectively. In notation, χ(H) = max Φ(H) and
χ(H) = min Φ(H). If H is uncolorable, for technical reasons it is convenient
to define these values to be χ(H) = χ(H) = 0.

It is quite natural to ask whether a colorable hypergraph has k-colorings for all
integers k between its lower and upper chromatic number. The answer is trivially
positive for classical (D-) and C-hypergraphs, but it does not hold for mixed hy-
pergraphs in general, as it was proved by Jiang et al. in [29]. This fact made it
necessary to introduce the following term.

• A gap in the chromatic spectrum of H (or a gap in Φ(H)), is an integer
k /∈ Φ(H) such that min Φ(H) < k < max Φ(H). If Φ(H) has no gaps, then
the spectrum or feasible set is termed continuous or gap-free. More generally,
a gap of size ℓ in Φ(H) means ℓ consecutive integers that are all missing from
Φ(H), larger than χ(H) and smaller than χ(H).

3The simplest example is the mixed hypergraph which consists of a 2-element C-edge and a
2-element D-edge on the same vertex pair.

4The smallest UC-orderable non-UUC-graph consists of three vertices mutually joined by 2-
element D-edges, that is the simple graph K3.
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Let us continue with some structural conditions.

• For a hypergraph H, a host graph is a graph G on the same vertex set as H,
and such that every hyperedge induces a connected subgraph in G. Depending
on the type of G, particular terminology is used for H:

– If G is a path, then H is called an interval hypergraph.

– If G is a tree, then H is called a hypertree.

– If G is a cycle, then H is called a circular hypergraph.

• A hypergraph is called r-uniform if all of its hyperedges have exactly r vertices,
and d-regular if each vertex is incident with precisely d hyperedges.

• The dual of a hypergraph H = (X, E) is obtained when we represent each
edge Ei ∈ E by a new vertex x∗

i and each vertex xj ∈ X by a new edge E∗
j ,

while keeping the structure of incidences unchanged; i.e., x∗
i ∈ E∗

j if and only
if xj ∈ Ei.

• A hypergraph is linear if any two of its edges have at most one vertex in
common.

• A subhypergraph of H = (X, C,D) means a vertex set Y ⊆ X together with
some hyperedges H of H for which H ⊆ Y holds.

• An induced subhypergraph of H = (X, C,D) means a vertex set Y ⊆ X together
with all hyperedges H of H such that H ⊆ Y .

• The C-stability number αC(H) is the largest cardinality of a vertex subset in
H not containing any C-edges.

If we consider a χ-coloring of H and choose exactly one vertex from each color class,
we obtain a χ(H)-element vertex subset not containing any C-edges. Consequently,
the inequality αC(H) ≥ χ(H) holds for every mixed hypergraph.

• A mixed hypergraph H is C-perfect if the condition αC(H′) = χ(H′) is satisfied
by each induced subhypergraph H′ of H.

• A monostar is a mixed hypergraph in which the intersection of C-edges is
precisely one vertex.

• A polystar is a mixed hypergraph with at least two C-edges, in which the
intersection Y of the C-edges is nonempty, and every vertex pair in Y forms a
D-edge. (The particular case of |Y | = 1 means a monostar.)

• A bistar is a mixed hypergraph in which the intersection of C-edges contains
a pair of vertices, say x, y, such that {x, y} is not a D-edge.
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• A cycloid , denoted by Cr
n, is an r-uniform C-hypergraph with n > r vertices

x1, . . . , xn and n C-edges of the form {xi, xi+1, . . . , xi+r−1}, where subscript
addition is taken modulo n and i = 1, . . . , n.

1.2 Results on mixed hypergraphs

Next, we describe our new results on mixed hypergraphs, and their background in
the literature. In the title of each part below, we indicate the paper in which the
corresponding theorems are published.

Feasible sets of r-uniform mixed hypergraphs [3]. It is clear that a finite set
S of positive integers is a feasible set of some C-hypergraph if and only if S contains
the number 1 and it is gap-free; i.e., it is of the form {1, 2, . . . , k} for some natural
number k. In [29] the possible feasible sets of mixed hypergraphs were completely
characterized. The result is quite surprising: for every set S of positive integers not
containing 1, there exists a mixed hypergraph whose feasible set is S.

Later it was also proved by Král’ [32] that arbitrarily prescribing a sequence of
nonnegative integers r2, r3, . . . , rk, there exists a non-1-colorable mixed hypergraph
whose chromatic spectrum is (r1 = 0, r2, r3, . . . , rk).

For restricted classes of mixed hypergraphs, too, the possible feasible sets were
investigated and characterized. Particularly, it was shown for interval mixed hyper-
graphs (Jiang et al. [29]), for mixed hypertrees (Král’ et al. [34]), for circular mixed
hypergraphs (Král’, Kratochv́ıl and Voss [35]) and for mixed hypergraphs with max-
imum vertex degree two (Král’, Kratochv́ıl and Voss [36]) that there is no gap in
their feasible sets. However, for bi-hypergraphs in general and for r-uniform mixed
hypergraphs the characterization of possible feasible sets was an open problem.

In Chapter 2, we solve both problems for all values of r in a constructive way.
It is easy to see that the following two conditions must hold if the r-uniform

hypergraph has at least one hyperedge:

• If the r-uniform mixed hypergraph is 1-colorable (i.e. C-hypergraph), then the
feasible set is gap-free.

• If the r-uniform hypergraph has an ℓ-coloring for some ℓ < r − 1, then it is
also colorable with precisely k colors for every ℓ < k ≤ r − 1.

Our Theorem 1 states that these two conditions are sufficient, too. In Chapter 2
an appropriate r-uniform mixed hypergraph is constructed for each feasible set S
satisfying the two conditions above. Moreover, the possible feasible sets of r-uniform
bi-hypergraphs (containing at least one hyperedge) are completely characterized
by the second condition and by the trivial restriction 1 /∈ S (Chapter 2). As a
consequence, we obtain that S is a feasible set of some bi-hypergraph with at least
one hyperedge if and only if 1 /∈ S.
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Uniform C-hypergraphs admitting only ‘under-size’ colorings [8]. Impor-
tant extremal problems arise when the minimum number of hyperedges is considered,
for which there exists some mixed hypergraph having n vertices and a prescribed
feasible set. These questions seem to be quite hard and in many cases they are
connected to Turán-type problems.5

Voloshin asked (Problem 11 of [58] and Problem 2 on page 43 of [59]) for the
minimum number of hyperedges in an r-uniform C-hypergraph H of order n for
which χ(H) < k.

Considering an r-uniform C-hypergraph on an n-element vertex set (n ≥ r),
every coloring with at most r − 1 colors (we can say, every ‘under-size’ coloring)
is trivially proper, since multicolored edges cannot arise. The minimum number of
r-element C-edges in a C-hypergraph of order n, not admitting colorings in addition
to trivial ones, is denoted by f(n, r). For this minimum number, a lower bound was
known. This gives the exact value if r = 3 as it was shown recently by a recursive
construction. For the 4-uniform case the previously known best upper bound was
asymptotically n3

8
, whilst the lower bound is only n3

12
. For greater values of r there

were not known any non-trivial upper bounds.
We prove in Chapter 3 that for each r > 3, there exist infinitely many values

of n for which the lower bound is not tight. This makes it interesting to find
asymptotically tight upper bounds. We note further that f(n, n − 2) =

(

n−2
2

)

−
ex(n, {C3, C4}) holds, where the last term is the Turán number for graphs of girth
five.6 This fact indicates that the exact determination of f(n, r) is far beyond reach
to our present knowledge.

Our new result, described in Chapter 3, is an upper bound for this extremal value
f(n, r). Answering a ten-year-old problem of Voloshin, it yields asymptotically tight
solution for each fixed r and, beyond that, for all r = o( 3

√
n) as n → ∞.

Although we do not discuss it in detail in this Thesis, let us mention that we study
this extremal problem in the following more general setting in another manuscript
[9]. We say that a subset (hyperedge) H crosses a k-partition X1 ∪ X2 ∪ · · · ∪ Xk

of X if it intersects precisely min(|H|, k) of the k partition classes. We consider the
smallest possible number of r-element subsets of an n-element set X, such that each
k-partition of X is crossed by at least one of the selected subsets, and denote this
minimum number by f(n, k, r). If k = r, the value f(n, r) defined above is obtained.
If k > r, the value f(n, k, r) is equal to the minimum number of C-edges in an r-
uniform C-hypergraph H of order n, for which χ(H) < k. In the third case, when
k < r, the value f(n, k, r) can be interpreted analogously in terms of color-bounded
hypergraphs.

5In a Turán-type extremal problem, ‘forbidden’ graphs G1, G2, . . . , Gk are given, and we want
to determine the maximum number of edges in a graph of order n, which contains no subgraph
isomorphic to any of G1, G2, . . . , Gk. This maximum value is denoted by ex(n, {G1, G2 . . . , Gk}).
The definition can be extended to uniform hypergraphs, too, in a natural way.

6That is, the maximum number of edges in a graph on n vertices that contains no subgraph
isomorphic to the 3-cycle and the 4-cycle.
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Interestingly enough, the investigation of this extremal function leads us to inten-
sively studied areas of combinatorics, such as Balanced Incomplete Block Designs7

and Turán-type extremal problems on graphs and hypergraphs.

C-perfectness [7]. A beautiful part of graph coloring theory deals with the class
of perfect graphs. It is immediate by definition that the chromatic number χ(G) of
any graph G is at least as large as the maximum clique size ω(G). The graph G is
called perfect if the equality χ(G′) = ω(G′) holds for each induced subgraph G′ of
G. The class of perfect graphs contains many interesting and important subclasses,
and on the other hand it admits polynomial-time optimization algorithms for some
central problems that are NP-hard in general.

The analogous notion of C-perfectness for mixed hypergraphs was introduced by
Voloshin in [58]. Similarly to graphs, it is expected that many hard algorithmic
problems become efficiently solvable when the input is restricted to the class of
C-perfect mixed hypergraphs.

Since C-perfectness is a hereditary property (i.e., if a hypergraph is C-perfect,
then so is each of its induced subhypergraphs), the main goal is to determine the
inclusion-wise minimal C-imperfect hypergraphs.

It was stated by Voloshin in [58] that in the class of C-hypertrees all the minimal
C-imperfect hypergraphs are monostars. Taking into account that every monostar
is imperfect, this is equivalent to the following characterization: a C-hypertree is
C-perfect if and only if it contains no monostar as an induced subhypergraph. But
later it was discovered (cf. [59, Section 5]) that the original proof of sufficiency does
not work.

This ten-year-old problem is solved here in Chapter 4. Our main result concern-
ing C-hypertrees is an algorithmic proof, which implies that the characterization
of C-perfect C-hypertrees, as proposed in [58], is valid indeed. Furthermore, this
characterization is extended under certain conditions for mixed hypertrees, too.

From the other side, there was a strong expectation that C-perfect mixed hyper-
trees can be recognized and χ-colored in polynomial time. The former expectation
is refuted in the Thesis, showing that the recognition problem of C-perfect ones
is co-NP-complete already for C-hypertrees. As regards the latter expectation, we
present a polynomial-time χ-coloring algorithm, which can be applied for C-perfect
C-hypertrees, and also for a wider subclass of C-perfect mixed hypertrees.

Orderings of uniquely colorable hypergraphs [2]. Every graph is colorable,
and those having only one proper color partition — complete graphs — play a central

7A Balanced Incomplete Block Design (BIBD), also called a Steiner system of order v and
index λ — often denoted by Sλ(t, k, v), where λ ≥ 1 and 2 ≤ t < k ≤ v — consists of a set X of v

elements and a collection of k-element subsets of X , called blocks, such that each t-element subset
of X appears in exactly λ blocks. For λ = 1, one usually writes S(t, k, v).
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role in graph theory. In classical hypergraph coloring there appear no other types of
uniquely colorable hypergraphs. But in the class of mixed hypergraphs there exists
a wide range of uniquely colorable systems. Their structure is so unrestricted that
every colorable mixed hypergraph can be embedded into some uniquely colorable one
as an induced subhypergraph (Tuza, Voloshin and Zhou [56]). In accordance with
this, the recognition problem of uniquely colorable mixed hypergraphs is intractable,
and its time complexity is co-NP-complete, if the input is restricted to colorable
mixed hypergraphs with a proper coloring given in the input.

It had been expected for several years, however, that the more restricted UC-
orderable hypergraphs could be recognized efficiently. Our Theorem 7 disproves
this expectation, stating that the recognition problem of UC-orderable hypergraphs
remains NP-complete even if it is restricted to uniquely colorable ones and the proper
coloring is given in the input.

By another result of Chapter 5, the possible color sequences of uniquely UC-
orderable mixed hypergraphs are characterized, and our method also yields a linear-
time test for the recognition of their possible color sequences. Moreover, we construct
a uniquely UC-orderable mixed hypergraph with minimum number of hyperedges
and having several further extremal properties, for each possible color sequence.

1.3 New models: Color-bounded and stably bounded

hypergraphs

Color-bounded hypergraphs. In Chapters 6 and 7 we introduce and study a
new model of hypergraph coloring, termed color-bounded hypergraphs. The heart
of the matter is that each hyperedge Ei is associated with a lower color bound si and
an upper color bound ti. A vertex coloring is considered proper if each hyperedge
Ei gets at least si and at most ti different colors.

Our model has been inspired, on the one hand, by the recent work of Drgas-
Burchardt and  Lazuka [19], who considered the case of arbitrarily specified lower
bounds si but without upper bounds (what is equivalent to writing ti = |Ei| for all
i ≤ m); and, on the other hand, by the area of mixed hypergraphs. In the latter,
the C-edges and D-edges can be characterized as (si, ti) = (1, |Ei| − 1) and (si, ti) =
(2, |Ei|), respectively. The bi-edges are then those with (si, ti) = (2, |Ei|−1); hence,
these notions have a natural and unified description in our model. The traditional
concept of ‘proper vertex coloring’ in the usual hypergraph-theoretic sense can be
described with (si, ti) = (2, |Ei|) for all edges.

Now, we introduce the concept of color-bounded hypergraph more formally.

• A color-bounded hypergraph is a four-tuple H = {X, E , s, t} where (X, E) is a
hypergraph (set system) with vertex set X and edge set E , and s : E → N and
t : E → N are integer-valued functions. We assume throughout that

X = {x1, . . . , xn}, E = {E1, . . . , Em}
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and that
1 ≤ s(Ei) ≤ t(Ei) ≤ |Ei| for all 1 ≤ i ≤ m.

To simplify notation, we write

si := s(Ei), ti := t(Ei), s := max
Ei∈E

si.

• A (proper) vertex coloring of a color-bounded hypergraph H = {X, E , s, t} is
a mapping ϕ : X → N such that the number of colors occurring in Ei satisfies

si ≤ |ϕ(Ei)| ≤ ti for all 1 ≤ i ≤ m.

• The concepts of color-partition, k-coloring, chromatic spectrum, chromatic
polynomial, feasible set, unique coloring, lower and upper chromatic num-
ber, gap, induced and non-induced subhypergraph have already been defined
for mixed hypergraphs, and we shall use them analogously for color-bounded
hypergraphs without rewriting the definitions.

Results on color-bounded hypergraphs [4, 5]. It turns out that color-bounded
hypergraphs provide not just a common generalization of the earlier coloring con-
cepts, but in fact a much stronger model is obtained. This is demonstrated in the
results of Section 6.3 on the possible numbers of colors in a proper coloring if the
cardinality of X is fixed, and of Section 6.4 on unique (n−1)-colorability; and partly
of Section 6.5, too, concerning 2-regular hypergraphs.

Significant differences between color-bounded and mixed hypertrees are explored
further in Chapter 7. For a colorable mixed hypertree T , the lower chromatic number
is at most two and the feasible set is always gap-free. We shall prove that in the
case of color-bounded hypertrees not only the lower chromatic number, but also
the difference χ − s can be arbitrarily large and there can occur a gap of any size.
Furthermore, as it is stated in our Theorem 16, hypertrees represent nearly all color-
bounded hypergraphs with respect to possible feasible sets.

Another striking difference appears when the question of colorability is consid-
ered. Whilst for mixed hypertrees the decision problem of colorability can be solved
in linear time, the analogous problem is intractable already for 3-uniform color-
bounded hypertrees (Theorem 18).

On the other hand, we identify some subclasses of hypertrees whose feasible
sets contain no gaps (Theorems 15 and 17). In particular, the chromatic spectrum
of interval hypergraphs is gap-free (Theorem 14). In Section 7.6 we also prove
that the chromatic spectrum of circular hypergraphs is fairly restricted, though this
wider class behaves differently from interval hypergraphs with respect to the lower
chromatic number.

As regards methodology, an essential tool called Recoloring Lemma is presented
in Section 7.1. It is then applied in several algorithmic proofs of later sections.
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Stably bounded hypergraphs [6]. In Chapter 8 we introduce and study a more
general structure class that we call stably bounded hypergraphs. In this model, every
hyperedge is associated with four bounds. The bounds si and ti are responsible for
the minimum and maximum cardinality of the largest polychromatic subset of the
edge, whilst the two other bounds prescribe that the largest number of vertices
having the same color inside the edge is at least ai and at most bi. The phrase
‘stably bounded’ hypergraph may be viewed as an alternative rewritten form of
‘(s, t,a, b)-ly bounded’.

Next, the main concepts are defined more formally.

• A stably bounded hypergraph is a six-tuple H = (X, E , s, t,a, b), where

s, t,a, b : E → N

are given integer-valued functions on the edge set. To simplify notation, we
define

si := s(Ei), ti := t(Ei), ai := a(Ei), bi := b(Ei)

and assume throughout that the inequalities

1 ≤ si ≤ ti ≤ |Ei|, 1 ≤ ai ≤ bi ≤ |Ei|

are valid for all edges Ei. We shall refer to s, t,a, b as color-bound functions,
and to si, ti, ai, bi as color-bounds on edge Ei.

• Given a coloring function ϕ : X → N, a set Y ⊆ X is monochromatic if
ϕ(y) = ϕ(y′) for all y, y′ ∈ Y ; and Y is said to be polychromatic (multicolored)
if ϕ(y) 6= ϕ(y′) for any two distinct y, y′ ∈ Y . The largest cardinality of a
monochromatic and polychromatic subset of Y will be denoted by µ(Y ) and
by π(Y ), respectively.

• A (proper) coloring of H = (X, E , s, t,a, b) is a mapping ϕ : X → N such that

si ≤ π(Ei) ≤ ti and ai ≤ µ(Ei) ≤ bi for all Ei ∈ E .

• The terms color-partition, k-coloring, chromatic spectrum, chromatic polyno-
mial, feasible set, unique coloring, lower and upper chromatic number, gap,
induced and non-induced subhypergraph will be used for stably bounded hy-
pergraphs analogously to mixed and color-bounded ones.

In Chapter 8 we give a detailed analysis of the relations among the four color-
bound functions. The subsets of {s, t,a, b}, as combinations of nontrivial conditions
on colorability, form a hierarchy with respect to the strength of models concerning
vertex coloring. In a way, the pair (s,a) is universal; but, interestingly enough,
the partial order among the classes is not always the same, as it may depend on
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the aspect of comparing the allowed colorings. Our results indicate that concerning
the possible numbers of colors on a given number of vertices, the more restrictive
function is the monochromatic upper bound b (cf. Theorems 20 and 21), while with
respect to the number of color partitions in general the stronger restriction is the
polychromatic upper bound t (see Section 8.4).

Although the decision problem whether a hypergraph admits any proper coloring
is NP-complete for all nontrivial combinations of the conditions, nevertheless some
algorithmic questions exhibit further substantial differences among the color-bound
types. This fact is demonstrated concerning unique colorability in Section 8.5. On
the other hand, there are subclasses of stably bounded hypergraphs that admit
efficient coloring algorithms.

Chromatic polynomials [4]. The characterization of chromatic polynomials for
non-1-colorable hypergraphs is discussed in Section 6.2. This is a new result even
for mixed hypergraphs, and it is proved to be valid for color-bounded and stably
bounded hypergraphs, too. Furthermore, this characterization can be extended
to the more general model of pattern hypergraphs without any restrictions (see
definition in Section 6.2); i.e., non-1-colorability is not assumed in that case.

1.4 Applications for problems in informatics

The new structure classes studied in the Thesis provide a general framework for
modeling problems from real life. In Chapter 9, concentrating on the field of infor-
matics, we discuss several possible applications in detail.

By definition, in a stably bounded hypergraph we can prescribe the number of
colors occurring inside each hyperedge and we can take bounds for the cardinality
of the largest monochromatic subset of each edge. But in many applications we
have restrictions concerning the number of occurrences of fixed types ; that is, of
fixed colors. It is shown that a stably bounded hypergraph can be supplemented
with new vertices (corresponding to the colors) and edges such that the obtained
hypergraph expresses the above type of constraints, too.

• The resource allocation problem appears in informatics in several forms. This
means a mapping of tasks or processing. The requirements on the (in)compatibility
and the number of occurrences can be efficiently expressed using stably bounded
hypergraphs.

• Problems in connection with dependability and fault tolerance of IT systems
can also be modeled by stably bounded hypergraphs. Here the typical con-
straints concern the least number of identical resources (replicas) to assure a
given level of fault tolerance, whilst an upper bound expresses a cost limit.
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• In general sense, the frequency assignment problem means assigning frequen-
cies to the transmitters so that excessive interference is avoided. This problem
appears in different forms when concerns mobile telephone networks, radio
and television broadcasting, or satellite communication. These different forms
yield different constraints for frequency assignment and hence, they inspired
different non-classical versions of graph coloring such as distance-labeling, T-
coloring, and their more general versions. We will point out that all these
varieties can be described in a unified and natural way, using stably bounded
hypergraphs.

• Furthermore, we give examples of possible applications regarding the fields of
service-oriented architecture, scheduling of file transfers, and data access in
parallel memory.

It is worth noting that in the monograph [59] some applications of mixed hyper-
graphs are discussed from the fields of molecular biology and genetics of populations.
Concerning the application of S-hypergraphs there can be found economical exam-
ples in the paper [19].
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2 Feasible sets of uniform mixed hypergraphs

Concerning graph and hypergraph coloring in the classical sense, we have only one
type of constraints. Namely, no edge can have its endpoints with a common color
and no hyperedge can have all its vertices with the same color. These requirements
can easily be satisfied, since we trivially obtain a proper coloring if every vertex is
labeled with a dedicated color. On the other hand, if we have a proper coloring with
fewer than n = |X| colors, then any color class containing more than one vertex
can be split into two non-empty parts and the coloring conditions remain fulfilled.
Thus, for any k between the (lower) chromatic number and n there exists some
coloring using precisely k colors. This results in a transparent structure of possible
feasible sets. For any positive integers 2 ≤ a ≤ b, we can easily construct graphs or
hypergraphs which have k-colorings if and only if a ≤ k ≤ b. This situation does not
change essentially even if it is prescribed that every hyperedge is of the same size r.
(More precisely, the only additional condition is a ≤ ⌊ n

r−1
⌋ = ⌊ b

r−1
⌋.) But the above

simple structure of traditional colorings can become disadvantageous when we have
to model a problem with a more complex system of constraints.

The notion of mixed hypergraph allows the usage of two opposite conditions:
we can require for some fixed groups (C-edges) that each of them should contain
two elements labeled identically, while the traditional coloring constraint concerns
the D-edges; that is, the latter have to contain two elements labeled differently.
By the simultaneous presence of C- and D-edges, a more complex structure with
surprising features is obtained. A mixed hypergraph can be uncolorable; or, if it is
colorable, the possible numbers of used colors may not form a ‘continuous’ interval
at all (i.e., in their feasible sets there can occur an unrestricted number of ‘gaps’
with unrestricted sizes). On the one hand, these properties indicate the fact that
mixed hypergraphs are applicable for modeling a wide range of practical problems.
On the other hand, it is important to study in subclasses of mixed hypergraphs,
whether these ‘irregular’ properties can occur on their members. These results can
help in the selection of an appropriate model for a given practical problem. Here we
will characterize the possible feasible sets of r-uniform mixed and bi-hypergraphs,
answering two open questions of this field.

2.1 Characterization theorem

It is readily seen that if 1 ∈ Φ(H), then H cannot have any D-edges, therefore in
this case the feasible set Φ(H) necessarily is gap-free; and vice versa, any gap-free
‘interval’ {1, . . . , k} is a feasible set of some mixed (C-) hypergraph. On the other
hand, for the case 1 /∈ Φ(H), Jiang et al. proved in [29] that for any finite set
S of integers greater than 1 there exists a mixed hypergraph H with Φ(H) = S.
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But the corresponding problem for bi-hypergraphs in general and r-uniform mixed
hypergraphs was open for several years.

In this chapter we consider r-uniform mixed hypergraphs, i.e. those with |C| =
|D| = r for all C ∈ C and all D ∈ D, with a fixed integer r ≥ 3. Our main result
regarding possible feasible sets is the following characterization:

Theorem 1. Let r ≥ 3 be an integer, and S a finite set of natural numbers. There
exists a colorable r-uniform mixed hypergraph H with Φ(H) = S and |C| + |D| ≥ 1
if and only if

(i) min(S) ≥ r, or

(ii) 2 ≤ min(S) ≤ r − 1 and S contains all integers between min(S) and r − 1, or

(iii) min(S) = 1 and S = {1, . . . , χ̄} for some natural number χ̄ ≥ r − 1.

Moreover, S is the feasible set of some r-uniform bi-hypergraph with C = D 6= ∅ if
and only if it is of type (i) or (ii).

If r = 3, then (i) and (ii) together allow any set not containing the element 1.
Hence, a characterization for bi-hypergraphs can be concluded.

Corollary 1. A finite set S of positive integers is the feasible set of some bi-
hypergraph with at least one bi-edge if and only if 1 /∈ S.

Moreover, we obtain

Corollary 2. For every mixed hypergraph H with χ̄(H) > 1 there exists a 3-
uniform mixed hypergraph H3 such that Φ(H) = Φ(H3) ; and if 1 /∈ Φ(H), then H3

can be chosen as a bi-hypergraph.

Remark 1. Deleting the condition |C| + |D| ≥ 1 from Theorem 1 (i.e. admitting
mixed hypergraphs and bi-hypergraphs without hyperedges), we obtain that S is a
feasible set of an r-uniform mixed hypergraph if and only if S satisfies

(i) or (ii) or

(iii)′ min(S) = 1 and S = {1, . . . , χ̄} for some natural number χ̄.

The same is true for feasible sets of r-uniform bi-hypergraphs.

We begin with some easy observations, on fewer than r colors, in Section 2.2. The
essential part of the proof of Theorem 1 is split into three sections. In Section 2.3
we construct bi-hypergraphs whose feasible sets contain just one element larger than
r − 1. Then in Section 2.4 we show how to combine them in order to generate a
feasible set with an unrestricted number of prescribed elements larger than r − 1,
but still admitting an (r− 1)-coloring. The feasible sets having no elements smaller
than r are treated in Section 2.5.
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2.2 Necessity and few colors

In this short section we prove some simple facts, implying that no other types of
feasible sets can exist for any r ≥ 3 than the ones listed in Theorem 1, and that the
‘intervals’ with largest element r−1 always are feasible. The former assertion follows
directly from the next observation, taking into account that every Φ(H) containing
1 must be an interval, and such an H cannot be a bi-hypergraph containing at least
one bi-edge.

Lemma 1. Let H be an r-uniform mixed hypergraph with at least one hyperedge,
and k ≤ r − 2 a natural number. If H has a k-coloring, then it also has a (k + 1)-
coloring.

Proof Since H is not edgeless, it has at least r vertices. Thus, in any coloring with
the colors 1, . . . , k, two vertices get the same color. Assigning color k + 1 to one of
them, every D-edge remains properly colored. Moreover, k + 1 ≤ r−1 still holds by
assumption, hence no multicolored C-edge can arise either. Thus, a (k + 1)-coloring
of H is obtained. �

The existence of feasible sets without elements larger than r − 1 is now settled
by the following claim.

Lemma 2. Let r ≥ 3 and k ≥ 2 be integers, k < r. Assume that (k−1)(r−1)+1 ≤
|X| ≤ k(r − 1), and let both C and D consist of all the r-element subsets of X.
Then the bi-hypergraph H = (X, C,D) has a k-coloring, but it does not have any
colorings with at most k − 1 or at least r colors.

Proof By the pigeon-hole principle, fewer than k colors would yield that some
color class has at least r vertices, hence a ‘forbidden’ monochromatic D-edge would
occur. Whilst assuming a coloring with at least r colors, there would exist an r-
element multicolored C-edge. On the other hand, the upper bound on |X| implies
that X admits a partition into k classes, each of which has cardinality at most r−1.
In this way no monochromatic D-edge occurs, moreover no multicolored C-edge is
created either, because k < r. �

Since (k−1)(r−1)+1 < k(r−1) holds whenever r > 2, there is enough room to
choose |X| for any r and k. Then the bi-hypergraph constructed admits a coloring
with any number of colors between k and r − 1.

From now on, in this chapter a bi-hypergraph H will be denoted simply by
H = (X, E) instead of H = (X, E , E).
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2.3 Basic blocks for many colors

Let us introduce the following notation: S ′ = {i ∈ N | ℓ ≤ i ≤ r − 1}, where ℓ ≥ 2
and r ≥ 3 are fixed integers. That is, S ′ is the ‘interval’ {ℓ, ℓ + 1, . . . , r − 1} or just
{r − 1} or the empty set. The set S ′′ = {k1, k2, . . . , km} contains integers satisfying
min(S ′′) ≥ r. It was stated in the parts (i) and (ii) of our main theorem that, for
every S ′ and S ′′ (assuming S ′ ∪S ′′ 6= ∅), there exists an r-uniform bi-hypergraph H
complying with Φ(H) = S ′ ∪ S ′′.

We have shown in Section 2.2 that the assertion is valid whenever |S ′| ≥ 1 and
|S ′′| = 0. Now we prove it for the case of |S ′| ≥ 1 and |S ′′| = 1.

Lemma 3. For all integers r ≥ 3, k ≥ r, and 2 ≤ ℓ < r, there exists an r-uniform
bi-hypergraph H whose feasible set is {i | ℓ ≤ i ≤ r − 1} ∪ {k}. Moreover, this H
has precisely one k-coloring, apart from the renumbering of colors.

Proof We construct a bi-hypergraph H = (X, E) with the claimed property as
follows. Let the vertex set X be the union of k sets, each of them containing r − 1
consecutive vertices:

Bj = {x(j−1)(r−1)+1, . . . , xj(r−1)} for all 1 ≤ j ≤ k ; X =

k
⋃

j=1

Bj

In the sequel, we shall refer to those Bj as branches, and their last elements xj(r−1)

as end-vertices. Furthermore, let the distance of two vertices in the same branch
be introduced as the difference of their indices. We emphasize that this term is not
defined and applied in the case when the vertices belong to different branches. Two
vertices will be termed consecutive if their distance is exactly 1.

An r-element subset of X is chosen to be a bi-edge of H if it contains two vertices
having distance at most ℓ− 1. (Consequently, these two vertices are from the same
branch.) Formally:

E =
{

E | E ∈
(

X
r

)

∧ ∃j, k s.t.
(

xj , xk ∈ E ∧ |j − k| < ℓ ∧
⌈

j
r−1

⌉

=
⌈

k
r−1

⌉)}

Observe now the possible colorings c of the bi-hypergraph H = (X, E).

(⋆) If there exists a non-monochromatic branch in the coloring c of H, then H
has at most r − 1 colors in c.

Assume a coloring c with at least r colors and a non-monochromatic branch.
There surely exist two consecutive vertices, say a and b, with different colors
in the non-monochromatic branch. Since at least r colors are used in c, one
can choose r − 2 vertices besides a and b to produce a totally multicolored r-
element vertex set. But because of having a and b within distance ℓ− 1, these
r vertices would form a multicolored bi-edge in H. This is a contradiction,
therefore the number of colors is smaller than r in c.
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(⋆⋆) If there exists a color occurring twice within distance ℓ− 1 in coloring c, then
H is colored with more than ℓ colors.

A color or a color class will be termed close-repeated if it has two vertices
in distance at most ℓ − 1. Assume for a moment that a close-repeated color
class has at least r elements. In this case one could choose two vertices within
distance ℓ− 1 and further r− 2 vertices, all of them belonging to this class. It
would yield a forbidden monochromatic bi-edge, consequently a close-repeated
color class has at most r − 1 elements.

Let us write r − 1 in the form r − 1 = aℓ + b, where a ≥ 1 and 0 ≤ b <
ℓ are integers. Now, consider a coloring c having some number s ≥ 1 of
close-repeated color classes, and altogether at most ℓ colors. By the above
observation, the union of close-repeated color classes can have at most s(r−1)
elements. Consider the other at most ℓ− s remaining color classes. Since each
of these colors appears at most once on any ℓ consecutive vertices, each branch
has at most a(ℓ−s)+b vertices with those remaining colors. Regarding all the
k branches we obtain that the union of those color classes contains at most
k[a(ℓ − s) + b] vertices. Consequently, for the assumed coloring c of H the
following inequality should hold:

s(r − 1) + k[a(ℓ − s) + b] ≥ k(r − 1) = k(aℓ + b)

But this would yield the inequality s(r − 1) ≥ kas, what contradicts the
condition s ≥ 1 and the fact 0 < r − 1 < k ≤ ak derived from the definition
of H. Hence, if the bi-hypergraph H contains a monochromatic vertex pair
within distance ℓ − 1 in c, then it necessarily has more than ℓ colors.

(1) H has no coloring with fewer than ℓ colors.

In the case of coloring H with at most ℓ − 1 colors we would surely have a
color repeated within distance ℓ − 1, but according to (⋆⋆) it is impossible.

(2) H is ℓ-colorable, and an ℓ-coloring is proper for H if and only if every ℓ
consecutive vertices from the same branch have mutually different colors; that
is, each branch has a periodic ℓ-coloring.

On the one hand, by (⋆⋆) there cannot appear close-repeated colors in an
ℓ-coloring of H. On the other hand, if any two vertices within distance ℓ −
1 have different colors, each bi-edge surely has non-monochromatic vertices.
Moreover, because ℓ < r holds, there obviously exist some vertices with the
same color. Therefore all the ℓ-colorings of the described type are appropriate
for H.

(3) H is j-colorable for all ℓ < j ≤ r − 1.

This follows immediately from Lemma 1 and the assertion (2) above.
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(4) The only coloring of H with more than r − 1 colors is the k-coloring where
each branch is monochromatic.

According to (⋆), using more than r− 1 colors each branch is monochromatic.
For any two branches there exist bi-edges contained in their union. Con-
sequently, in order to avoid the appearance of monochromatic bi-edges, the
branches have to get mutually different colors. This particular k-coloring with
monochromatic branches is appropriate for all the bi-edges. Since every color
class (branch) has fewer than r elements, any r-element edge surely has some
vertices with different colors. Moreover, each edge has some vertices belonging
to the same branch, that is, from the same color class, so it cannot be totally
multicolored. Therefore H is k-colorable, but this is the only coloring with
more than r − 1 colors.

According to the assertions (1)–(4) above, the constructed bi-hypergraph has the
prescribed feasible set {i | ℓ ≤ i ≤ r − 1} ∪ {k}. �

(The terminology introduced here will be used throughout this chapter.)

2.4 Joining the components

In this section we prove Theorem 1 for |S ′| ≥ 1 and |S ′′| ≥ 2.

Lemma 4. For all integers r ≥ 3, m ≥ 2, 2 ≤ ℓ < r and r ≤ k1 < k2 <
. . . < km, there exists an r-uniform bi-hypergraph H whose feasible set is Φ(H) =
S ′ ∪ {k1, k2, . . . , km}, where S ′ = {i | ℓ ≤ i ≤ r − 1}.

Proof To construct a bi-hypergraph H with the prescribed feasible set, we will
join m mutually vertex-disjoint bi-hypergraphs H1,H2, . . . ,Hm constructed by the
procedure of Lemma 3 and having the following properties:

Hi = (Xi, Ei) , Φ(Hi) = S ′ ∪ {ki} for i = 1, 2, . . . , m

To distinguish the vertices of different components from each other, upper indices
will be used; e.g., xi

j denotes the j-th vertex of the component Hi. The bi-hypergraph
H will arise by joining the components Hi with four new types of bi-edges:

H = (X, E) , X =

m
⋃

i=1

Xi , E = Eα ∪ Eβ ∪ Eγ ∪ Eδ ∪
m
⋃

i=1

Ei

First, we describe the construction informally. The cases when there exists a com-
ponent colored with more than ℓ but fewer than r colors, will be set apart from
other ones. The bi-edges in Eα force that in this case the whole H is colored with
at most r − 1 colors, that is |c(H)| ∈ S ′. If there appear only ℓ- and ki-colored
components, the β-type edges force that an ℓ-colored component can be followed
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only by ℓ-colored ones and the number of colors in their union is smaller than r. In
particular, if there is no component with more than ℓ colors, the number of colors
cannot exceed r−1 in H. The γ- and δ-type bi-edges will ensure that for a ki-colored
component Hi every preceding component Hx (x < i) has a kx-coloring such that
c(Hx) ⊂ c(Hi), moreover if a later component Hy (i < y) has an ℓ-coloring, then
c(Hy) ⊂ c(Hi) holds.

We now define the α, β, γ, δ-type bi-edges and observe their coloring properties.

• The next α-type bi-edges appear in the r-uniform H only if min(S ′) = ℓ < r−1
holds.

(α) The set Eα contains all the r-element vertex subsets E with the following
properties:
— E meets at least two components,
— There exists a component H∗ from which E contains at least ℓ + 1 vertices,
two of them having distance at most ℓ − 1, and E intersects at least two
branches of H∗.

For a particular E, we let n denote the number of vertices of E in H∗ ; hence,
this n ranges from ℓ + 1 to r − 1 over the Eα-edges. (If ℓ + 1 ≤ r/2, then n
may be multiply defined for some of the edges E ∈ Eα.)

(a) If there exists a component Hi colored with more than ℓ but fewer than r
colors, then the whole H has at most r − 1 colors.

Consider a coloring c of H, in which a component Hi has an n-coloring where
ℓ + 1 ≤ n ≤ r − 1. There exist at least ki − (n − 2) ≥ 3 non-monochromatic
branches in Hi. Choosing one of them, say Bj, there are two consecutive
vertices, say a and b, with different colors. In the remaining ki − 1 branches,
we try to find a vertex y with a color different from c(a) and c(b). If there is no
such vertex y, then all the n ≥ 3 colors have to appear on Bj. Hence, starting
with another non-monochromatic branch B

′

j and its two consecutive vertices
a′ and b′ with different colors, we can supplement them with an appropriate
vertex y′ from the branch Bj . In either case we obtain three vertices from
exactly two branches, two of them being within distance ℓ − 1. If n > 3,
they can be supplemented with one vertex from each of the remaining n − 3
color classes of Hi. So we have an n-element multicolored vertex set, what
can be expanded to an α-bi-edge with any r−n vertices of other components.
Consequently, it is not possible to use r − n colors in H, each of them being
different from the n colors of Hi.

From now on we can restrict our attention to colorings where each component
is either ℓ- or ki-colored.
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• The β-type bi-edges are defined as follows:

(β) An r-element vertex set E is contained in Eβ if and only if there exists an
index i (1 ≤ i < m) such that
— E ∩ Xi = {xi

p | r(r − 1) − ℓ < p ≤ r(r − 1)}, that is E contains precisely ℓ
vertices from Hi : the last ℓ vertices of the r-th branch,
— E ∩ Xj = ∅ for all j < i,
— E does not meet the r-th branch of Hj, if j > i.

(b) If there exists an ℓ-colored component Hi, then all the later components Hj

( j > i) have at most r − 1 colors, moreover their union
⋃m

p=i Xp has also
got at most r − 1 colors. In particular, if H1 has an ℓ-coloring in c, then
ℓ ≤ |c(H)| ≤ r − 1 holds.

Since Hi has a periodic ℓ-coloring, the last ℓ vertices from the r-th branch are
totally multicolored. Assuming for a contradiction that a component Hj is
kj-colored (i < j), it would have kj − 1 colors outside the r-th branch. Since
r ≤ ki < kj holds, we obtain r ≤ kj − 1. Therefore one can choose r − ℓ
branches (without the r-th branch) having colors not used in Hi. But in this
case the end-vertices of these branches and the fixed ℓ vertices of Hi would
form a forbidden multicolored bi-edge in H.

If each of the components after Hi is periodically ℓ-colored, all of their colors
appear on the first branches. Consequently, if at least r colors are used on
the union

⋃m
p=i Xp, we could choose the fixed ℓ vertices from the r-th branch

of Hi, and r − ℓ vertices from the first branches of the later components such
that they have mutually different colors. This would yield to a multicolored
bi-edge, hence there are at most r − 1 colors used after the component Hi−1.

• To define the γ- and δ-type bi-edges we shall use the notation Y i
d for the set

containing the end-vertices of the 1st, 2nd,. . . , d-th branches of a component
Hi (where d ≤ ki) :

Y i
d = {xi

p(r−1) | 1 ≤ p ≤ d}

(γ) The γ-bi-edges are the r-element vertex sets containing the end-vertices from
the first r−1 branches of a component Hi, and one more vertex from the first
ℓ vertices of the first branch of any later component Hj (1 ≤ i < j ≤ m).
Formally:

Eγ = {E | ∃ i, j, p s.t.
(

E = Y i
r−1 ∪ {xj

p} ∧ 1 ≤ i < j ≤ m ∧ 1 ≤ p ≤ ℓ
)

}

(c) If the component Hi is ki-colored and one of the later components Hj (i < j)
is ℓ-colored, then there is no color appearing in Hj but not in Hi; that is,
c(Hj) ⊂ c(Hi) holds.

Considering a ki-colored Hi, the end-vertices in Y i
r−1 are totally multicolored.

If the component Hj (i < j) is ℓ-colored, because of the periodicity, all the
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ℓ colors occur on its first ℓ vertices. The appearance of a multicolored bi-
edge is avoidable only if all the colors of Hj occur also on Y i

r−1, and therefore
c(Hj) ⊂ c(Hi).

Let us note that this case, combined with the observations (a) and (b), implies

that Hp is ℓ-colored for all p ≥ j, and c
(

⋃m
p=j Xp

)

⊂ c(Hi) holds.

• Each of the δ-type bi-edges intersects two consecutive components. We intro-
duce them to deal with the cases when both Hi and Hi+1 have more than r−1
colors.

(δ) Each bi-edge from Eδ contains the first r − 2 end-vertices of a component Hi,
and this set is supplemented for all r − 1 ≤ j ≤ ki with the end-vertices of
the j-th branches from both the Hi and Hi+1 components. For 1 ≤ j ≤ r − 2
we get the δ-type edges similarly, but in this case the vertex xi

j(r−1) is already

contained in Y i
r−2, so we take the vertex xi

(r−1)(r−1). Hence the edge set Eδ

contains the edges of following forms for 1 ≤ i < m :

Y i
r−2 ∪ {xi

j(r−1), x
i+1
j(r−1)} for r − 1 ≤ j ≤ ki

Y i
r−2 ∪ {xi

(r−1)(r−1), x
i+1
j(r−1)} for 1 ≤ j ≤ r − 2.

(d) If Hi is ki-colored and Hi+1 is ki+1-colored, then all the colors of Hi are
repeated on the component Hi+1, that is c(Hi) ⊂ c(Hi+1).

Since the end-vertices of a ki-colored component Hi surely have different colors,
the first ki end-vertices from the succeeding component can get no other color.
Therefore, if a component Hi+1 is ki+1-colored (ki < ki+1), and consequently
has end-vertices with mutually different colors, then all the ki colors of the
component Hi must be repeated.

According to the above assertions (a), (b), (c), and (d), only the following types
of colorings can exist for H :

• Every component has an ℓ-coloring and according to the assertion (b), ℓ ≤
|c(H)| ≤ r − 1 holds.

• There exists a component colored with at least ℓ + 1 but at most r − 1 colors.
Applying (a) we get that ℓ + 1 ≤ |c(H)| ≤ r − 1 holds.

• There exist some components colored with more than r − 1 colors. Consider
such a component with the maximum index i. According to (b), for every
1 ≤ x ≤ i, Hx is kx-colored, and by (d) the relation c(Hx) ⊂ c(Hi) holds. By
the maximality of the index i, for every i < y the component Hy is ℓ-colored
and applying (c) we get that c(Hy) ⊂ c(Hi) holds. These imply |c(H)| = ki.
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We have shown that Φ(H) ⊆ S ′∪S ′′. It remains to prove that there are examples
of proper j-colorings for every j ∈ S ′ ∪ S ′′.

Let two types of colorings be fixed in the following two examples. Let every
ℓ-colored component be colored periodically with colors 1, 2, . . . , ℓ such that the
end-vertex from the first branch has the color 2 and other end-vertices are colored
with 1. In the ki-colored components the vertices in the j-th branch all have the
color j, for all 1 ≤ j ≤ ki.

(ℓ) Let all the components have the above ℓ-coloring. The α- and β-bi-edges
contain two vertices within distance ℓ− 1, hence with different colors. The γ-
and δ-bi-edges contain r− 1 ≥ 2 end-vertices from a component. One of these
end-vertices is the first one with color 2, and there is another one with color
1. Obviously, every r-element bi-edge has some monochromatic vertices too,
since ℓ < r holds. Therefore, the edges intersecting more than one component
are properly colored and, clearly, the edges contained in one of the components
have proper colorings, too. Consequently, the bi-hypergraph H is ℓ-colorable.

(ki) Let the H1,H2, . . . ,Hi components have the prescribed k1, k2, . . . , ki-colorings,
and all the remaining components be ℓ-colored (their union be referred as the
ℓ-colored part of H).

For an α-type bi-edge E there is a component H∗ from which E contains
vertices belonging to the same branch (say a and b) as well as vertices belonging
to different branches (say a and d), whilst |E ∩H∗| ≥ ℓ + 1 holds.
- If H∗ has at least r colors: c(a) = c(b) 6= c(d).
- If H∗ has ℓ colors: c(a) 6= c(b), and because E has at least ℓ + 1 common
vertices with the ℓ-colored H∗, there must appear monochromatic vertices,
too.

A β-type bi-edge E contains ℓ ≥ 2 consecutive vertices from the r-th branch
of a component Hj and has no more vertex from the r-th branch of any other
component.
- If this component is ℓ-colored (i < j), then the vertices in E ∩ Hj have
different colors, whilst E is contained in the ℓ-colored part of H, implying
that there are monochromatic vertices in E, too.
- If Hj is kj-colored, then all the ℓ vertices from the r-th branch have the same
color r. But there cannot be other vertices with color r in E, since this color
can appear only on the r-th branches.

A γ-type bi-edge E has the first r − 1 ≥ 2 end-vertices from a component Hj

and one more vertex from the first branch of a later component.
- If Hj is ℓ-colored, the first and second end-vertices have different colors, and
because E is contained in the ℓ-colored part of H, there also exist vertices with
the same color.
- If Hj is kj-colored, the first r−1 end-vertices have colors 1, 2, . . . , r−1 (ensur-
ing the different colors), and the remaining vertex is from the first branch Bp

1 ,
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which is either monochromatic with color 1 or contains the colors 1, 2, . . . , ℓ.
In both cases, a repeated color appears.

A δ-type bi-edge E contains r−1 end-vertices from a component Hj , including
the first end-vertex. The first and any other end-vertices surely have different
colors.
- If Hj is ℓ-colored, the edge E is contained in the ℓ-colored part of Hj , therefore
there exist monochromatic vertices in it.
- If both Hj and Hj+1 are colored with at least r colors, then consider the
end-vertex from Hj+1 which is contained in E. By the construction there is an
end-vertex with corresponding index from Hj in E, and they have the same
color.
- If j = i, that is Hj is kj-colored and Hj+1 is ℓ-colored, we distinguish between
two cases. Assuming that E contains the first end-vertex from Hj+1, it has
the color 2, the same as the color of the second end-vertex of Hj , which is also
contained in E. In the other case E contains the x-th (x > 1) end-vertex from
Hj+1 whose color is 1, like the color of the first end-vertex from Hj .

Consequently, the described ki-coloring is proper for H, that is ki ∈ Φ(H).

(n) It follows immediately from Lemma 1 and the example (ℓ) above that H has
an n-coloring for all ℓ + 1 ≤ n ≤ r − 1.

Therefore the constructed r-uniform bi-hypergraph H complies with Φ(H) =
S ′ ∪ S ′′. �

2.5 No colorings with few colors

To complete the proof of Theorem 1, we deal with the case where the bi-hypergraph
has no coloring with fewer than r colors; that is, |S ′| = 0. First, consider the case
when S ′′ contains at least two integers.

Lemma 5. For every integer r ≥ 3 and for every set S ′′ = {k1, k2, . . . , km} of
integers, where m ≥ 2 and r ≤ k1 < k2 < . . . < km, there exists an r-uniform
bi-hypergraph with feasible set S ′′.

Proof Let us take the r-uniform bi-hypergraph H∗ constructed according to
Lemma 4 with feasible set {r − 1} ∪ S ′′, as our starting-point. The components
of H∗ are denoted by H1,H2, . . . ,Hm. The bi-hypergraph H complying with the
conditions of this lemma will be obtained by supplementing H∗ with some bi-edges.
The new bi-edges meet only the components H1 and H2 as follows: Each of them
contains precisely one vertex from each of the 1st, 2nd, . . . , and (r − 1)-st branches
from H1, moreover contains the end-vertex of the first branch of H2 (namely the
vertex x2

r−1). Assuming that H1 and consequently all the components are (r − 1)-
colored, the branches are totally multicolored with the same r−1 colors. Hence one
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can choose a vertex with the same color as x2
r−1 from each of the 1st, 2nd, . . . , and

(r− 1)st branches of H1. But in this case we would get a forbidden monochromatic
bi-edge, therefore neither H1 nor H can be (r − 1)-colored. It is readily seen that
the examples of ki-colorings of H∗, described in Section 2.4, remain appropriate for
H. �

Lemma 6. For all integers r and k, where 3 ≤ r ≤ k, there exists an r-uniform
bi-hypergraph with feasible set {k}.

Proof Consider the r-uniform bi-hypergraph H′ with feasible set {k, k + 1}, con-
structed from two components according to the proof of Lemma 5. We supplement
it only with the bi-edge containing the first r end-vertices of the second component:

E ′ = {x2
j(r−1) | 1 ≤ j ≤ r}

There exists just one (k + 1)-coloring for H2, and E ′ would be multicolored in it.
Consequently, the r-uniform bi-hypergraph H, obtained by supplementing H′ with
the bi-edge E ′, is not (k + 1)-colorable. But the k-coloring described in Lemma 5 is
still appropriate for H. Hence Φ(H) = {k} holds. �

The lemmas of Sections 2.2 through 2.5 cover all possible cases, hence completing
the proof of Theorem 1. ���

It is worth noting that in the constructions above, we might have deleted some
bi-edges and still have the same feasible set. The reason for not doing so was that
we wanted to keep the proof relatively simple.
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3 Uniform C-hypergraphs with few colorings

If a mixed hypergraph contains only C-edges (i.e., it is a C-hypergraph) and ev-
ery edge contains r vertices, then all colorings using 1, 2, . . . , r − 1 colors trivially
are proper, since polychromatic edges of size r cannot occur. Hence, in this case
the question of colorability can be replaced by the one whether the r-uniform C-
hypergraph has a coloring with more than r− 1 colors. The answer can be negative
only if the hypergraph contains sufficiently many hyperedges. For instance, the up-
per chromatic number of an r-uniform C-hypergraph of order n surely equals r−1 if
all the

(

n
r

)

vertex subsets of size r are chosen as hyperedges. But we can easily give a
smaller example containing only

(

n
r−1

)

edges, by considering only the r-element sub-
sets incident to a fixed vertex x. Moreover, we will see that using a more inventive
structure, the number of edges can be decreased substantially.

The asymptotically tight estimate, given in this chapter, solves an open problem
raised in [58] and recalled in the monograph [59]. This result can also have a practical
connection, since there occur many problems where the partition constraints concern
groups of the same size r. In these cases, if the number of hyperedges is smaller than
the lower bound in question, then we can be sure that the hypergraph is colorable
using precisely r colors.

3.1 About the earlier results and their tightness

The main purpose of this chapter is to solve Problem 2 from Section 2.6 (page 43)
of [59] — raised already in Problem 11 of [58] in implicit form — for the most
important case when we ask for the minimum number of hyperedges in an r-uniform
C-hypergraph H of order n with χ(H) < r. This minimum value is denoted by
f(n, r).

Despite that the determination of f(n, r) looks quite a fundamental question, we
have been able to find only very few related results, as listed below.

• For the two-variable extremal function f(n, r) the lower bound

f(n, r) ≥ 2

n − r + 2

(

n

r

)

(1)

was proved.

• For r = 2, one can immediately see that f(n, 2) = n− 1 for all n ≥ 2, because
it is the minimum number of edges in a connected graph on n vertices.

• For r = 3 and all n ≥ 3, f(n, 3) = ⌈n(n − 2)/3⌉.

• For r = 4 and n ≥ 3, f(n, 4) ≤ n3/8 + O(n2).
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But for r = 4, the above estimate is neither tight, nor asymptotically tight and
for r > 4 there were known non-trivial estimates at all.

In fact, as it is stated in our Proposition 1, for each r > 3, there exist infinitely
many values of n, for which the lower bound (1) is not tight. Actually, the difference
goes to infinity as n → ∞ if r ≥ 4. But we will prove in Theorem 2 that the lower
bound (1) is asymptotically tight for every fixed r, and also if r = o( 3

√
n).

Proposition 1. If n ≡ r + 1 (mod 3) then

f(n, r) ≥ 2

n − r + 2

(

n

r

)

+
1

3

(

n
r−3

)

(

r
r−3

) .

The proof will appear in the journal version of this work (under review).

3.2 Asymptotically tight estimate

Here we state our main theorem that asymptotically solves the problem for all fixed
values of r, moreover this gives asymptotically tight estimates for all r = o(n1/3) as
n → ∞. As usual, the family of all r-element subsets of a set X will be denoted by
(

X
r

)

.

Theorem 2. For the minimum number f(n, r) of hyperedges in an r-uniform C-
hypergraph with upper chromatic number r − 1 the following estimates hold for all
integers n > r > 2:

(i) f(n, r) ≤ 2
n−1

(

n−1
r

)

+ n−1
r−1

((

n−2
r−2

)

−
(

n−r−1
r−2

))

for all n and r.

(ii) f(n, r) = (1 + o(1)) 2
r

(

n−2
r−1

)

for all r = o(n1/3) as n → ∞.

The proof will appear in the journal version of this work (under review).

In [9] we consider this problem in a more general setting and estimate the min-
imum number of C-edges in an r-uniform C-hypergraph H of order n, for which
χ(H) < k. The case of k = r, discussed in this chapter, plays central role there,
since our construction can be modified to obtain upper bounds on minimum numbers
for cases when k > r.
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4 C-perfect hypertrees

Perfect graphs8 play a central role in the theory of graph coloring. Theoretically,
this concept has been one of the driving forces for research in graph theory from
the early 1960’s. From an algorithmic point of view, although perfect graphs form
a quite wide subclass of graphs and contains many important types, they admit
efficient algorithms for many problems that are NP-complete in general.

For mixed hypergraphs, Voloshin [58] introduced the concept of C-perfectness
that can be viewed as dual of graph perfectness. Although it has not been proved
for the whole class of C-perfect mixed hypergraphs yet, there is an expectation that
they admit efficient coloring algorithms, contrary to mixed hypergraphs in general.

The characterization of C-perfect hypergraphs is still an open problem, even for
some interesting particular cases. In this chapter we study a subclass of both the-
oretical and algorithmic importance, called C-perfect hypertrees, with emphasis on
those with C-edges only. The notion is very simple and looks promising in connection
with applications, too. Starting with a tree graph, some of its subtrees can be taken
as C-edges (in the more general case, D-edges of this type may also occur). Already
from the early years of mixed hypergraph theory, there has been a conjecture for the
characterization of the C-perfect members in the class of C-hypertrees. The solution
of this ten-year-old problem — strongly related to a polynomial-time algorithm, too
— is one of the main results in this chapter. Moreover, we obtain some complexity
results refuting previous expectations.

4.1 History of the problem and new results

The main result of this chapter is the proof of a conjecture raised by Voloshin in
1995. In [58], the concept of C-perfectness was introduced and a characterization for
C-perfect C-hypertrees was proposed. We observe that the corresponding character-
ization does not hold in general for mixed hypertrees, but it holds for hypertrees
under some not too restrictive conditions. In particular, the structural property
conjectured for C-hypertrees is valid. The proof is constructive and leads to a fast
coloring algorithm, too.

On the other hand, a quite unexpected complexity result is given here. In spite
of the concise description of the class of C-perfect C-hypertrees, the corresponding
recognition problem is co-NP-complete.

8A graph G is called perfect if, for every induced subgraph G′ ⊆ G, the chromatic number
χ(G′) is equal to the clique number ω(G′), that is the number of vertices in the largest complete
subgraph of G′.
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Examples. Voloshin [58] considered the following basic examples with respect to
C-perfectness.

• Monostars are not C-perfect (see Figure 1).

• Bistars are C-perfect.

• Polystars are not C-perfect.

• The cycloid Cr
n is C-perfect if n ≤ 2r − 2, it is inclusion-wise minimally C-

imperfect if n = 2r − 1 (see Figure 1), and it contains a monostar on 2r − 1
vertices if n ≥ 2r and so in this case it is not C-perfect and not minimally
C-imperfect either.

C-perfect uniform hypergraphs. It was conjectured for some time [58] that an
r-uniform C-hypergraph is C-perfect if and only if it contains no monostar and no
cycloid Cr

2r−1 as an induced subhypergraph. This has been disproved by Král’ [31]
who constructed one further minimally C-imperfect C-hypergraph for each r ≥ 3,
on 2r vertices. Recently, the present author has found a larger family of examples
for r ≥ 4, namely an increasing number of minimally C-imperfect r-uniform C-
hypergraphs as r gets large. There is some hope to characterize C-perfect r-uniform
C-hypergraphs; but the general characterization problem of C-perfect (or that of
minimally C-imperfect) mixed hypergraphs appears to be rather hard; Proposi-
tion 3 will be an indication in this direction. In particular, it remains an open
problem whether or not there are more than six 3-uniform minimally C-imperfect
C-hypergraphs. (Four of the known examples are monostars, and the two others are
the cycloid C3

5 and Král’s construction on six vertices [31].)

C-perfect hypertrees. Let us give a brief summary of what has been published
on the C-perfectness of mixed hypertrees.

• In [58, Theorem 4.29], it was stated that a C-hypertree is C-perfect if and
only if it contains no monostars as induced subhypergraphs. The ‘ only if ’ part
follows from the fact that monostars are not C-perfect. On the other hand, it
turned out later that the original argument in [58] for the ‘ if ’ part does not
work.

• In [59, Theorem 5.17] it was proved that if a mixed hypertree does not contain
any polystar as a subhypergraph — i.e., not only the induced polystars are
excluded — then it is C-perfect. In particular, if a C-hypertree does not contain
any monostar as a subhypergraph, then it is C-perfect.

• Bulgaru and Voloshin [16] proved that a mixed interval hypergraph is perfect if
and only if it has no induced polystars. This means the exclusion of monostars
and 2-polystars.
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Figure 1: A 3-uniform monostar and the cycloid C3
5 colored with maximum number

of colors. For the monostar χ̄ = 3 < αC = 4, for the cycloid χ̄ = 2 < αC = 3 holds.
Both are minimally C-imperfect.

New results. Our main positive result is a sufficient condition for C-perfectness.
In order to formulate it, we need to introduce the following notation. For a mixed
hypertree H = (X, C,D) over a host tree T , we denote

D2 = {D ∈ D : |D| = 2}

that can be viewed as a subforest of T (possibly edgeless).

Theorem 3. Let H = (X, C,D) be a colorable mixed hypertree such that all but
at most one vertex has degree 0 or 1 in D2. If H contains no induced polystar,
then it is C-perfect, and a proper coloring of H with χ̄(H) colors can be found in
polynomial time.

From the negative side, our main result is a rather unexpected one. In fact, a
strong expectation is suggested in [59, p. 85] that C-perfect mixed hypertrees can
be recognized and χ̄-colored efficiently. While the latter may be true (as we prove
it for the subclass described in Theorem 3), the former is refuted by the next result.

Theorem 4. The recognition problem of C-perfect C-hypertrees is co-NP-complete.

We observe further that the non-hereditary version, too, of the defining property
χ̄ = αC of C-perfectness is hard to test. This fact is inherent in the paper [34]; it
may be read out from the proofs there, but was not formulated explicitly. In paper
[7] we give an independent self-contained proof.

Theorem 5. The problem of deciding whether αC(H) = χ̄(H) is NP-complete over
the class of C-hypertrees.

Returning to the positive side, in spite of the preceding results, the following
constructive approach can be applied.
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Theorem 6. Over the class of colorable mixed hypertrees H = (X, C,D) such
that all but at most one vertex has degree 0 or 1 in D2, there exists a polynomial-
time algorithm whose output is either an induced polystar subhypergraph or a proper
coloring of H with αC(H) = χ̄(H) colors.

Theorem 3 has some interesting consequences. First of all, it implies that the
characterization of C-perfect C-hypertrees, as proposed in [58], is valid indeed.

Corollary 3. A C-hypertree is C-perfect if and only if it contains no monostar
as an induced subhypergraph. Moreover, C-perfect C-hypertrees can be χ̄-colored in
polynomial time.

Also, the exclusion of 2-element D-edges leads to a characterization.

Corollary 4. A mixed hypertree H = (X, C,D) with D2 = ∅ is C-perfect if and
only if it contains no monostar as an induced subhypergraph. Those C-perfect mixed
hypertrees with D2 = ∅ can be χ̄-colored in polynomial time.

Remark 2. It follows immediately by Corollary 4 that an r-uniform mixed hyper-
tree with r ≥ 3 is C-perfect if and only if it contains no monostar as an induced
subhypergraph. We observe that if the trivially uncolorable 2-element edges in C ∩D
are excluded, then the same characterization is valid for r = 2 (i.e., mixed graphs),
because of the following reasons:

(i) the upper chromatic number is equal to the number of connected components
of the C-graph; and

(ii) the following sequence of equivalences is valid: this C-graph is not a matching
plus isolated vertices ⇐⇒ it contains a star — necessarily induced — with more
than one edge ⇐⇒ its C-stability number is larger than the number of its connected
components. �

Remark 3. The algorithm referred to in Theorems 3, 6 and in Corollaries 3, 4
has running time O(nm) in the worst case, where n and m denote the number of
vertices and hyperedges, respectively.

It is important to note that only induced polystars are necessary to exclude for
C-perfectness, as it is shown by the following assertion.

Proposition 2. There exists a C-perfect C-hypertree containing C-monostars as
(non-induced) subhypergraphs.

Moreover, we prove that Bulgaru and Voloshin’s characterization of C-perfectness
for mixed interval hypergraphs does not extend to mixed hypertrees. Our counterex-
ample also shows that the condition on high-degree vertices of D2 in Theorem 3 is
best possible.

Proposition 3. There exists a mixed hypertree that is not C-perfect although it
contains no induced polystars and has only two vertices of degree higher than 1
in D2.

The proofs will appear in the journal version of this work (under review).
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5 Orderings of uniquely colorable mixed hyper-

graphs

A subgraph admitting only one proper color partition can serve as a natural and
very useful starting point when we color a graph or a hypergraph. In the class
of graphs, only the complete graphs — where any two vertices are adjacent by an
edge — have this nice property. Although it is not always easy to find a complete
subgraph of maximum cardinality, we may be satisfied with a smaller one; and to
check whether a given subgraph is complete (i.e., uniquely colorable) can be done
efficiently. Moreover, in classical hypergraph coloring there occur no new types of
uniquely colorable hypergraphs, hence the situation does not change fundamentally.

But in the class of mixed hypergraphs there exists a wide range of systems having
only one proper color partition. The corresponding recognition problem is NP-hard
[56]; and a further indication for high complexity is the fact that every colorable
mixed hypergraph can appear as an induced subhypergraph of some uniquely col-
orable one. Consequently, such type of starting point is quite hard to find for a
coloring algorithm.

In this chapter we study two subclasses of uniquely colorable mixed hypergraphs.
The first of them is the class of so-called UC-orderable hypergraphs. It had been
expected for several years that they could be recognized efficiently. Such a result
would yield better coloring algorithms for several subclasses of mixed hypergraphs.
But our theorem refutes this expectation, stating that the recognition problem of
UC-orderable mixed hypergraphs is NP-complete.

After this negative result we study a more restricted subclass, namely the class
of uniquely UC-orderable hypergraphs. We discuss some basic properties of them,
and it is expected that they may be applicable in the design of coloring algorithms.
But the time complexity of the corresponding recognition problem remains open.

5.1 Uniquely colorable mixed hypergraphs

Recall that a mixed hypergraph is termed uniquely colorable — UC-graph, or UC,
for short — if all of its proper colorings induce the same partition into color-classes.
Such hypergraphs are on the boundary between colorable and uncolorable systems.
It was shown in [56] that UC-graphs have a rather unrestricted structure, and the
algorithmic intractability of deciding whether a given mixed hypergraph is UC was
proved, too.

Here we study two subclasses of UC-graphs. UC-orderable mixed hypergraphs —
equivalently to our previous definition — have the following property: there exists
an order x1, x2, . . . , xn of the vertices, such that if we color the vertices in this order
one by one, considering only the subhypergraph induced by {x1, . . . , xi}, we have
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just one possible color for xi in each step (apart from the actual choice of a new
color that does not appear on {xi, . . . , xi−1}).

Niculitsa and Voloshin proved that unique colorability and UC-orderability on
mixed hypertrees mean the same [44] ; but in general the two properties are not
equivalent. The smallest example demonstrating their difference consists of two
disjoint 2-element C-edges and a D-edge containing all the four vertices. This mixed
hypergraph admits the unique color partition into two classes, but it has no UC-
order.

Trivially, every UC-orderable mixed hypergraph is UC (apply the original defini-
tion to i = n). One might expect that the converse is simple, too : UC-orderability
seems to be such a special property that it might be easy to decide whether a UC-
graph has it or not. This intuition, however, is far from being correct ; one of our
main results, Theorem 7, states that this problem is NP-complete. Along the way,
an auxiliary result — may be of interest in itself, too — is proved (Corollary 5),
namely that it is NP-complete to decide whether a 3-uniform hypergraph contains
a vertex subset that meets every edge in precisely one vertex.

We consider a more restricted class of UC-graphs, too. Note first that if x1, x2, x3,
. . . , xn is a UC-order, then so is x2, x1, x3, . . . , xn as well, obtained by the trans-
position of x1 and x2. The mixed hypergraphs with no more UC-orders, termed
uniquely UC-orderable or UUC-graphs, were introduced in [56] (cf. also Problem 3
in [59, p. 76]). The smallest UC-orderable non-UUC-graph consists of three vertices
mutually joined by 2-element D-edges, that is the simple graph K3.

We study the color-orders belonging to the (unique) UC-orders of UUC-graphs,
and completely characterize them in Theorem 8. This result shows some analogy
with the paper of Bacsó, Tuza and Voloshin [13] where the size distributions of color
partitions are characterized for the uniform UC-graphs with C = D. Both in [13] and
in our theorem, the structure of mixed hypergraphs themselves is not well-described,
but necessary and sufficient conditions are given for their characteristics on a higher
level.

We close this section with a brief summary of complexity results on mixed hy-
pergraphs.

Complexity of some mixed hypergraph coloring problems

• It is NP-complete to decide whether a given mixed hypergraph is colorable
([56]).

• Given H together with a proper coloring, it is co-NP-complete to decide
whether H is UC ([56]). (Equivalently, deciding whether H admits at least
one further proper coloring is NP-complete.)

• Given a UC-graph H, it is NP-complete to decide whether H is UC-orderable
(our Theorem 7).
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• It can be decided in linear time whether a given vertex-order of H is a UC-order
(our Proposition 4).

• Given an integer r ≥ 3 and a sequence n1 ≥ n2 ≥ . . . ≥ nk ≥ 1, it can
be decided in linear time whether there exists an r-uniform UC-graph H =
(X, C,D) such that C = D and in the unique coloring of H the color classes
have respective cardinalities n1, . . . , nk (from the characterization in [13]).

• Given a color-order c1, c2, . . . , cn, it can be decided in linear time whether there
exists a UUC-graph whose unique UC-order generates the given color-order
(from our characterization Theorem 8).

5.2 NP-completeness of UC-orderability

The main goal of this section is to prove the following result :

Theorem 7. Given a uniquely colorable mixed hypergraph H with its coloring as
an input, it is NP-complete to decide whether H has a UC-ordering.

Before the details of the proof, let us verify first the membership of UC-orderabil-
ity in NP. As a matter of fact, a polynomial-time (more precisely, quadratic) test
for any fixed vertex-order can be read out from the combination of ideas presented
in [54] and [56]. Here we prove a stronger (best possible) time bound, as follows.

Proposition 4. For any H = (X, C,D), it is decidable in linear time whether a
given vertex-order x1, . . . , xn on X is a UC-order.

Proof Let us note first that the expression

|X| +
∑

C∈C

|C| +
∑

D∈D

|D|

is a lower bound on the input size. We are going to present an algorithm whose
running time is proportional to this sum.

Let Xi := {x1, . . . , xi}, for i = 1, 2, . . . , n. Assuming that Xi−1 has been colored,
the possible colors for xi are determined by precisely those edges of H that are
induced by Xi, contain xi and, moreover, are of one of the following two kinds :

• C ∈ C, and all colors in C ∩ Xi−1 are distinct.

• D ∈ D, and all colors in D ∩ Xi−1 are the same.
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Such edges are called influencing C-edges and influencing D-edges for xi, respec-
tively. Denoting in general by ϕ(Y ) the set of colors occurring on the vertices in a
set Y ⊆ X, the forcing set

FS(i) =
⋂

{ϕ(C \ {xi}) : C is an influencing C-edge for xi}

lists the colors from which xi has to get one, while the veto set

VS(i) =
⋃

{ϕ(D \ {xi}) : D is an influencing D-edge for xi}

contains the colors excluded from xi. It is readily seen that xi is a uniquely colorable
vertex if and only if either |FS(i) \ VS(i)| = 1 or there is no influencing C-edge for
xi and VS(i) = ϕ(Xi−1) (depending on whether the uniquely determined color of xi

has appeared already in Xi−1 or not). Hence, the heart of the matter is to generate
the sets FS(i), VS(i) in linear time.

The algorithm runs in two phases. First, in reverse order xn, xn−1, . . . , x1 it
determines the collections Ci,Di of those edges whose vertex of largest subscript is
xi. Having them at hand for all i, the second phase scans X in the original order
x1, . . . , xn and constructs a partial coloring on X1, X2, . . . as long as it is unique.
We shall also store |ϕ(Xi−1)|, that equals the number of vertices xj (1 ≤ j ≤ i)
without influencing C-edges. In each step i > 1, first the influencing edges are
selected from Ci and Di for xi, and then it is tested whether |FS(i) \ VS(i)| = 1, or
|VS(i)| = |ϕ(Xi−1)| and there is no influencing C-edge for xi. If none of these holds
for some i ≤ n, then the algorithm terminates with concluding that x1, . . . , xn is not
a UC-order.

One way to proceed with this in linear time — assuming adjacency list repre-
sentation, that is easily constructed from another input format if necessary — is
to duplicate C and D as C′ and D′, the set systems that will consist of the edges
actually available. While at xi, it is checked for each edge in the list of xi whether
the edge still occurs in C′ or D′. If so, then the edge in question is moved from there
into Ci or Di. This phase is obviously fast.

For the second phase, it is convenient to create ‘dual lists’, i.e. listing for each edge
the vertices contained in it. It will then take just O(|H|) steps for any H ∈ Ci ∪ Di

to test whether H is influencing for xi ; and if so, then the corresponding colors will
be inserted into FS(i) or VS(i). After that, the color of xi is easily determined,
always taking for new color the smallest positive integer still available. (The colors
assigned are conveniently stored in a block of size n.) �

5.2.1 Structure of the NP-hardness proof

We now turn to the substantial part of Theorem 7, that is the hardness of deciding
whether an input mixed hypergraph admits a UC-order. The complexity of this
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problem will be traced back to the classical problem of hypergraph 2-coloring , more
precisely to the 2-colorability of 3-uniform hypergraphs. For the latter, the input is
a hypergraph (i.e., D-hypergraph in the terminology of mixed hypergraphs) in which
each hyperedge contains precisely 3 vertices, and the question is whether there exists
a vertex partition into two classes, none of them containing any hyperedge. This
problem is well-known to be NP-complete (Lovász [38]).

The reduction will be carried out in two steps. First we make a reduction from
hypergraph colorability to a new type of hypergraph covering problem (still no C-
edges are involved), and then go on to UC-orderings. The proof of the latter will be
postponed to the next subsection. We begin with introducing the following concept.

Definition. Let F be a set system over an underlying set X. A set B ⊂ X is a
strong blocking set (SBS, for short) if it contains precisely one element from each
member of F ; that is, |B ∩ F | = 1 holds for all F ∈ F . (This term is borrowed
from design theory, where ‘blocking set’ means a set B that meets all the F ∈ F
but does not contain any of them.)

We shall prove the following lemmas. The technical conditions included in the
first one will play a role in the proof of the main result later.

Lemma 7. For any given 3-uniform hypergraph E , a 3-uniform hypergraph F can
be constructed in polynomial time, with the following properties : E is colorable with
two colors if and only if F has a strong blocking set, moreover

(i) F has no blocking vertex (that is,
⋂

F∈F F = ∅),

(ii) F contains two vertices not belonging to a common hyperedge.

Lemma 8. Let F be any hypergraph with at least two vertices not belonging to a
common hyperedge. Then a uniquely colorable mixed hypergraph H (whose coloring
is known) can be constructed in polynomial time, such that H has a UC-order if and
only if F has a strong blocking set with more than one element.

¿From these two assertions, the main result of the section can easily be deduced.

Proof of Theorem 1 A 1-element strong blocking set in a hypergraph F would be
a blocking vertex of F . Therefore, combining Lemmas 1 and 2, we obtain that for
each 3-uniform hypergraph E , a uniquely colorable mixed hypergraph H (with its
known coloring) can be constructed in polynomial time, such that E is 2-colorable
if and only if H has a uniquely colorable ordering. Since the former property is
NP-complete to decide [38], it follows that the latter is intractable, too. �

Stopping at half way, from Lemma 1 we obtain :

Corollary 5. It is NP-complete to decide whether a 3-uniform hypergraph has a
strong blocking set. �
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Figure 2: Each edge E = {x, y, z} of E is replaced by a twelve-vertex ‘gadget’ in F ,
constructed as shown in this figure.

Proof of Lemma 7 Let E be a 3-uniform hypergraph. To construct F , we keep the
(‘old’) vertices of E and supplement them with nine new vertices for each edge. If
E = {x, y, z} is an edge of E and the new E-vertices in F are f1, f2, . . . , f9, then the
edges of F are the triples {x, f1, f2}, {y, f3, f4}, {z, f5, f6}, {f2, f4, f6}, {f1, f3, f7},
{f3, f5, f8}, {f1, f5, f9} (see Figure 2 for illustration). Note that the ‘old’ edge E is
not included anymore. Then, F is constructed from such gadgets that meet only at
the ‘old’ vertices and are mutually vertex-disjoint outside.

First, we assume that E has a proper coloring with two colors. Let us consider
the (old) vertices of the first color in E . If the edge E ∈ E has two vertices with
this color, say x and y, then, in F we put the vertices x, y, f6, f7, f8, f9 into the SBS
to be constructed. If E has only one vertex with this color, say x, we can choose
x, f3, f6, f9 from this gadget into the SBS. We apply this method for all the edges
of E and finally obtain a SBS containing exactly one vertex from each edge of F .

Second, we prove that there exists a 2-coloring of E whenever F has a SBS
(denoted B). For any gadget in F , it is impossible that all the three of its ‘old’
vertices x, y, z belong to B at the same time. Indeed, otherwise none of the connected
f2, f4, f6 could belong to B, and it would be in contradiction to the assumption that
B meets the edge {f2, f4, f6}. Similarly, it cannot be the case that B does not
contain any of the ‘old’ vertices of the gadget. Therefore we can find just one or
two ‘old’ vertices belonging to B in each gadget. Let these vertices be colored in E
with the first color, and the other vertices with the second color. This is a proper
2-coloring since every E-edge has two vertices with distinct colors.

Clearly, the construction can be carried out in linear time and F complies with
the restrictions (i) and (ii). �

Remark 4. If the hypergraph F constructed in the proof has some strong blocking
set T , then |T | ≥ 3|E|, because in each gadget, the four edges disjoint from {x, y, z}
cannot be covered with fewer than three vertices. (A more careful analysis yields the
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lower bound 3|E| + τ(E), where τ(E) is the smallest number of vertices in a set that
meets all edges of E . Later on we shall only use the fact that τ(F) > 1.)

5.2.2 Strong blocking sets vs. UC-orders

Here we prove Lemma 8 . We shall need the following definition.

Definition. For a hypergraph H with vertex set X and with edges H1, H2, . . . , Hk,
an edge-crossing set is a subset B ⊂ X such that |B ∩Hi| ≤ 1 for each i, 1 ≤ i ≤ k.
By definition, a set is a SBS if and only if it is edge-crossing and also meets all edges.

Construction of H for Lemma 8 Let the vertex-set of H be the disjoint union
of the following sets :

• X = {x1, . . . , xm} : it has m = |F| elements, one for each edge Fi ∈ F ;

• Y = {y1, . . . , yn} and Y ∗ = {y∗
1, . . . , y

∗
n} : these are two copies of the vertex

set {v1, . . . , vn} of F ;

• {w; w∗} : two further vertices.

All the D-edges of H will have just two vertices. Vaguely speaking, their induced
subgraph on X ∪Y ∪{w} will be nearly complete (but if vi and vj are contained in a
common edge in F then the D-edge {yi, yj} is missing in H), and complete-bipartite
minus a perfect matching between Y and Y ∗. Formally,

D(H) = {{xi, xj} | 1 ≤ i < j ≤ m}
⋃

{{xi, yj} | xi ∈ X ∧ yj ∈ Y }
⋃

{{w, z} | z ∈ X ∪ Y }
⋃

{{yi, yj} | yi, yj ∈ Y ∧ 6 ∃Fk ∈ F : ({vi, vj} ⊂ Fk)}
⋃

{{w∗, y∗
i } | y∗

i ∈ Y ∗}
⋃

{{yi, y
∗
j} | yi ∈ Y ∧ y∗

j ∈ Y ∗ ∧ i 6= j}

The C-edges of H are of two types :

• C-Type-1 edges : C1
i = {w∗, yi, y

∗
i }, for every 1 ≤ i ≤ n.

• C-Type-2 edges : C2
i = {w, w∗, yi}

⋃ {xj ∈ X | vi /∈ Fj} for every 1 ≤ i ≤ n,
where xj corresponds to the edge Fj of F and yi is the copy of the vertex vi

of F . So, yi and xj belong to a common C-edge in H if and only if the i-th
vertex is not an element of the j-th edge in F .

C(H) = {C1
i , C2

i | 1 ≤ i ≤ n}
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It is clear that the construction of H from F can be carried out in polynomial time.

Unique coloring First, let us observe that the mixed hypergraph H is col-
orable. Obviously, the partition where {y1, y

∗
1},. . . ,{yn, y∗

n}, and {w, w∗} are 2-
element classes and all the other classes are singletons, is a proper coloring of H. It
will be shown that for any F satisfying the condition of Lemma 2, the mixed hyper-
graph H constructed from F in the way described above, this is the only suitable
coloring of H ; that is, H is UC in any case. Moreover, we shall prove that H is
UC-orderable if and only if F has a SBS.

Let us consider an edge-crossing set B in F , which contains at least two vertices.
(Due to the assumptions of Lemma 2, such an edge-crossing set exists.) Passing on
to the hypergraph H, let B′ be the subset of Y with the elements corresponding to
the vertices of B. Since B is edge-crossing, no edge of F can contain more than one
vertex of B ; hence, any two elements of B′ are surely joined by a D-edge in H.

First, we prove that H is uniquely colorable in any construction, and then search
for a UC-ordering of H if the above B is a SBS.

Step 1 : X ∪ {w} ∪ B′ is complete in D-edges, so its vertices all have different
colors. Their coloring is unique in any order.

Step 2 : To color w∗, let us consider all the C-Type-2 edges C2
i belonging to the

members of B′. All elements of their union, except w∗, have been colored in Step 1
with mutually distinct colors. Therefore, these C-edges can be colored properly only
if w∗ gets the color of some common vertex. This cannot be from Y because there
are at least two elements in B′, and hence none of the corresponding vertices of Y
belong to the intersection of their C-Type-2 edges. Suppose that w∗ gets the color
of some xk ∈ ⋂

yi∈B′ C2
i . Choosing a vertex vℓ ∈ Fk, we have xk /∈ C2

ℓ , thus all

vertices of C2
ℓ would have different colors, what is forbidden. Thereby in every H

constructed from any F , the color of w and w∗ must be the same.

Step 3 : Let B∗ be the subset of Y ∗ corresponding to the elements of B. For
every y∗

i ∈ B∗ we have edges
C-Type-1 : C1

i = {yi, y
∗
i , w

∗}
D-edge : {y∗

i , w
∗}

Since w∗ has got a color different from yi in Step 2, the only chance to color properly
the edge C1

i is that y∗
i gets a common color with yi.

Step 4 : In this step we color the vertices of Y \B′ and Y ∗ \B∗. First, we take
a yl ∈ Y \ B′. It has to be colored differently from w, from the elements of X, and
from the colored elements of Y ∗ (which are colored like the corresponding elements
of Y ). Therefore, we can assign only a totally new color to yl. Then, looking at the
influencing edge C1

l , the vertex y∗
l must be colored like yl. Thus, taking the pairs

yl, y
∗
l one by one, each of them turns out to be monochromatic in a color different

from all preceding colors.
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UC-order from SBS Suppose that B is a SBS in F with at least two elements ;
say, B = {v1, v2, . . . , vk}. Then we can construct the following UC-order of H :

x1, . . . , xm ; y1, . . . , yk ; w, w∗ ; y∗
1, . . . , y

∗
k ; yk+1, y

∗
k+1, . . . , yn, y

∗
n .

Until w, we obtain a heterochromatic color-order, by Step 1. The crucial point is
that now Step 2 applies to w∗, even if we disregard the later vertices of H, because B
meets all edges of F — implying that the intersection of the corresponding C-edges
is empty inside X — and therefore w∗ cannot get any color from X. Thus, w and w∗

must have a common color, and after that the vertex-order remains UC, by Steps 3
and 4.

This argument already indicates the substantial difference between an edge-
crossing set and a strong blocking set with respect to UC-orders. At the moment
when both w and w∗ are present in the subsequence (whichever comes later), it
should be verified that they must get a common color. For this purpose, an edge-
crossing set is insufficient if it fails to be a SBS.

SBS from UC-order We have already seen that every H obtained by the F → H
construction is uniquely colorable, with well-defined monochromatic pairs of vertices.
Suppose that H is not only UC but also admits a UC-order. We concentrate on the
subsequence where the very first monochromatic pair appears. By what has been
said, only the following possibilities may occur :

1. w repeats the color of w∗

2. some yi repeats the color of y∗
i

3. some y∗
i repeats the color of yi

4. w∗ repeats the color of w

We are going to prove that the first three of these cannot be the case in a UC-
order ; and if the fourth one does, then it also results in a SBS of F . Note that any
UC-order (if it exists) has to satisfy the following requirement :

(⋆) The vertices preceding the occurrence of the first repeated color must induce
a complete D-graph. In particular, up to that point there are no colored pairs
(yi, y

∗
i ), and at most one y∗

i may occur.

1. If the first repeated color is at w, then w∗ has been colored before coloring w.
Since all D-edges incident with w∗ have their other endpoint in Y ∗, (⋆) implies that
w is preceded either by w∗ alone or by w∗ and just one y∗

i . Hence, the subsequence
ending with w does not induce any C-edges, therefore nothing can force w to get a
common color with w∗.

2. The unique coloring of yi with the first repeated color requires some C-edge
containing yi. Since every C-edge involves w∗, this case can occur only if w∗ and
y∗

i have been colored before yi. But with the presence of w∗ we obtain the same
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situation as in Case 1 : Only y∗
i and w∗ are colored before yi, so yi may have a

common color with w∗ instead of y∗
i .

3. Assuming, that the first color repetition is at y∗
i , the vertices yi and w∗ of

the influencing C-edge must be previously colored. But this is in contradiction to
the requirement (⋆) since yi and w∗ are not joined by a D-edge.

4. This is the only possible case : we have the first repeated color at w∗. Then
w already appeared, and (⋆) implies that the vertices colored before w∗ induce a
complete D-subgraph inside X ∪ Y ∪ {w}.

Let B′ be the set of elements in Y that were colored before w∗. As they are
joined by D-edges in H, no Fi ∈ F contains more than one of them ; that is,
the corresponding B in F is an edge-crossing set. Furthermore, the color of w∗

is uniquely determined only if |B′| ≥ 2 and the C-Type-2 edges belonging to the
yj ∈ B′ do not contain any common element xi ∈ X. (Otherwise at this point of
the sequence w∗ could get the color of w or xi as well.) So, under the assumption
that we have a UC-order, for every xi there exists a yj ∈ B′ such that xi does not
belong to the C-Type-2 edge of yj. Passing over to the hypergraph F , for every edge
Fi there is a vertex vj ∈ B, which is contained in Fi. Thus, the edge-crossing set B
meets all edges of F , so that it is a SBS. �

5.3 Uniquely UC-orderable hypergraphs

In this section we will investigate the structure of mixed hypergraphs that have
exactly one UC-order, disregarding the transposition of the first two vertices. It
may be noted in general that if an edge is a subset of another edge of the same
type (both are C-edges or both are D-edges), then the larger edge is redundant
with respect to coloring, because it does not impose any new condition : any proper
coloring for the smaller edge properly colors the larger one, too.

If the number n of vertices is at most 2, then the properties UC, UC-orderable,
and UUC are equivalent. Hence, in order to avoid the few trivial exceptions, we
shall assume n ≥ 3 throughout this section. The first assertion is immediate by
definition.

Proposition 5. If x1, x2, . . . , xn is the UC-order of a UUC-graph H, then the
subhypergraph of H induced by {xj : 1 ≤ j ≤ i} is UUC for every i ≤ n. �

Proposition 6. If H is a UUC-graph with UC-order x1, . . . , xn on n ≥ 3 vertices,
then {x1, x2} is a C-edge and {x1, x2, x3} is a D-edge. So, the subhypergraph induced
by the first three vertices of the UC-order is the same in every UUC-graph without
redundant edges.

Proof By definition, x1, x2, x3 is a UC-order if and only if the subhypergraphs in-
duced by {x1, x2} and by {x1, x2, x3} are uniquely colorable. Because of the unique-
ness of this UC-order neither {x1, x3} nor {x2, x3} can be UC. Consequently, there
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exists an edge {x1, x2}, but no other 2-element edge inside {x1, x2, x3}. To color
x3, we need an influencing edge for it. If {x1, x2} ∈ D, the influencing edge could
be {x1, x2, x3} ∈ C, but this — without a 2-element D-edge containing x3 — does
not determine the color of x3 uniquely. In the other case : If {x1, x2} ∈ C, the
influencing edge for x3 surely is the D-edge {x1, x2, x3}. This is the only structure
without redundant edges that yields a UUC subhypergraph. Note, that permitting
the presence of redundant edges, this hypergraph can be supplemented with the
C-edge containing all the three vertices. �

We distinguish three types of vertices in a UC-order, depending on their colors :

• xi has a continuing color if it is the same as the color of the preceding vertex
xi−1.

• xi has a returning color if it is not continuing but this color has already oc-
curred at some xj (j < i − 1).

• xi has a new color if this color has not occurred up to this point, at any xj

with j < i.

Accordingly, a vertex will be called continuing / returning / new if so is its color.

Proposition 7. If n ≥ 3, then there are no two consecutive new vertices in a
UUC-order.

Proof Due to Proposition 6, x2 is a continuing vertex, so that the assertion is
valid within {x1, x2, x3}. Assuming that both xi and xi+1 have new colors, for some
i ≥ 3, their positions could be switched, because of the following facts. There are
D-edges guaranteeing that the color of xi+1 is different from each color used up to
xi−1. These influencing edges cannot contain xi. Consequently, xi+1 can be uniquely
colored right after xi−1, and then {x1, . . . , xi−1, xi+1, xi} also determines a UC-order
of the induced subhypergraph. This cannot occur if H is a UUC-graph. �

For a given UUC-graph H, we consider its unique UC-order x1, x2, . . . , xn. The
coloring of H is the function c that assigns a positive integer to each xi : c(xi) = ci.
In order to associate precisely one sequence c1, . . . , cn of colors with the coloring
c, we shall assume that the new colors 1, 2, . . . appear in increasing order, without
skipping any intermediate values. This c1, c2, . . . , cn will be called the color-order
of H. If H is UUC, then it has one well-defined color-order determined by its unique
(vertex) UC-order.

Let us summarize the necessary conditions obtained for the color-orders of UUC-
graphs on n ≥ 3 vertices.

C0 : (By assumption) The natural numbers appear in increasing order and
without gaps ; i.e., c1 = 1, and 1 ≤ ci ≤ max

k<i
{ck} + 1 holds for each 2 ≤ i ≤ n.

C1 : (According to Proposition 6) c1 = c2 = 1 and c3 = 2.
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xi xi+1

3 3

Figure 3: The only new edge when we insert the vertex xi+1 with the continuing
color 3.

C2 : (According to Proposition 7) If ci 6= ci+1, then at least one of them has
occurred in the subsequence c1, c2, . . . , ci−1.

The main result of this section claims that these conditions are sufficient, too.
At the end of this section, we shall compare the construction given in the proof
with all UUC-graphs of the same color sequence, and prove that it is minimal from
several aspects. (The hypergraph H constructed here will be denoted by H∗ in the
last section.)

Theorem 8. A sequence c1, c2, . . . , cn of positive integers with property C0 is the
color-order of some UUC-graph on n ≥ 3 vertices if and only if it satisfies the
requirements C1, and C2.

Proof Necessity has already been shown. To prove sufficiency, we construct a
suitable mixed hypergraph H for any given color sequence satisfying C0, C1, C2.

For a mixed hypergraph H and the fixed vertex-order x1, . . . , xn, we shall denote
by Hi its subhypergraph induced by {xj : 1 ≤ j ≤ i} (i = 1, 2, . . . , n). Whenever H
is UUC, the colors and the edges in its H3 have been determined above :

Colors : c(x1) = c(x2) = 1 ; c(x3) = 2
Edges : {x1, x2} ∈ C ; {x1, x2, x3} ∈ D

For each i ≥ 3 we extend Hi with the vertex xi+1 and with the following new edges :

• If ci+1 is a continuing color, the only new edge is : {xi, xi+1} ∈ C. (See Fig. 3.)

• If ci+1 is a returning color and xj is the last vertex before xi+1 with the same
color as xi+1 (i.e., ci+1 = cj, j < i, and ck 6= ci+1 holds for every j < k < i+1),
the new edges are : {xj , xi, xi+1} ∈ C and {xi, xi+1} ∈ D. (See Fig. 4.)

• If ci+1 is a new color, we need D-edges to distinguish the color of xi+1 from the
previously used colors. For every color d (d < ci+1) let xd/i+1 denote the latest
vertex colored with d before xi+1. The new edges are : {xd/i+1, xi+1} ∈ D, for
d = 1, . . . , ci+1 − 1. (See Fig. 5.)

It is clear that x1, . . . , xn is a UC-order of H with the given color-order c1, . . . , cn,
because the newly inserted edges and condition C0 force xi+1 to get color ci+1 in
each step.
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Figure 4: The new edges when we insert the vertex xi+1 with the returning color 3.

q q q s s s s s s s1 3 2 3 2 2 4

xi+1

D

D
D

Figure 5: New edges when we insert the vertex xi+1 with the new color 4.
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It remains to be proved that the constructed H has this unique UC-order only.
We prove by induction on i that every subhypergraph Hi (induced by {x1, x2, . . . , xi})
is UUC.

It was shown that H3 is UUC. Suppose that Hi is UUC, with x1, x2, . . . , xi as its
only UC-order. The proof that the same holds true for Hi+1 consists of two parts.

1. Deleting xi+1 from any UC-order of Hi+1, the (unique) UC-order of Hi is
obtained.

2. If the deletion of xi+1 from an UC-order of Hi+1 results in the vertex-order
x1, . . . , xi of Hi, then xi+1 must be in the last position in the UC-order of Hi+1.

The combination of these two assertions completes the proof of the theorem by
induction.

Remark 5. A vertex-order y1, y2, . . . , yn is non-UC if and only if there exist two
vertices yk, yj (k < j), such that the subhypergraph induced by {y1, y2, . . . , yj} has
two proper colorings c′, c′′ with c′(yj) = c′(yk) and c′′(yj) 6= c′′(yk).

Proof of 1 Assume that the original vertex-order x1, x2, . . . , xi of Hi is mixed
and we have a different sequence, say y1, y2, . . . , yi. It is not a UC-order, so there
is a smallest j (1 < j ≤ i), for which the subhypergraph H′

j induced by Yj =
{y1, y2, . . . yj} is not uniquely colorable. Thus, there exists yk (k < j) and a further
possible coloring c∗ of H′

j beside the one determined by c, such that yk and yj have
the same color in one of c and c∗, and different colors in the other.

Suppose for a contradiction that the deletion of xi+1 from a UC-order of Hi+1

yields the above sequence y1, y2, . . . , yi. Then H′

j with vertices y1, y2, . . . , yj is not
UC, so it cannot be the starting sequence of the UC-order. Therefore, xi+1 would
have to appear earlier than yj. We investigate H′

j ∪ {xi+1} and prove that it cannot
be UC, either.

Case 1 : The color of xi+1 is a continuing one in the original sequence.
If xi ∈ Yj, then let c(xi+1) = c(xi), c∗(xi+1) = c∗(xi). These are suitable color-

ings, and the coloring of xi+1 has no influence on the colors of y1, y2, . . . , yi. Thus,
we have two different colorings, so H′

j ∪ {xi+1} is not UC. On the other hand, if
xi /∈ Yj, there is no edge containing xi+1 in the subhypergraph so we can choose
c(xi+1) and c∗(xi+1) as a totally new color. Therefore the extended c and c∗ remain
different colorings and H′

j ∪ {xi+1} is not UC.

Case 2 : The color of xi+1 is originally new.
We can assign a totally new color to xi+1 in c∗, too. It makes no influence on the

coloring of y1, y2, . . . , yj ; thus, we have got two different colorings for H′

j ∪ {xi+1}.
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Case 3 : xi+1 has a returning color in the original ordering.
There are at most two influencing edges for xi+1, namely {xl, xi, xi+1} ∈ C and

{xi, xi+1} ∈ D. By the construction, the colors of xl and xi are different in the
original coloring c. If xl /∈ Yj or xi /∈ Yj, then the C-edge is not effective, so we
let xi+1 have a totally new color, and then yj still can have two different colors.
Consequently, H′

j ∪ {xi+1} is not UC.
If xl and xi both are in Yj and their colors are different not only by c but also by

c∗, then xi+1 can get the same color as xl, and the subhypergraph does not become
UC.

The only nontrivial case is when xl and xi have different colors in c and the
same color in c∗. In the former, xi+1 still can get c(xl), while in the latter it can get
a totally new color. In this way we have two different proper colorings, therefore
H′

j ∪ {xi+1} cannot be UC.

Proof of 2 We assume, from now on, that Hi is in its original order, x1, . . . , xi,
and xi+1 is inserted in a way that the sequence remains a UC-order. We need to
prove that xi+1 is the last one.

Case 1 : xi+1 has a continuing color.
The only influencing edge for xi+1 is {xi, xi+1} ∈ C. If xi+1 occurs in the sequence

earlier than xi, then in Hi+1 −xi nothing prevents xi+1 from getting the color c(x1),
or a color different from c(x1). Thus, the vertex-order is not UC unless xi+1 is set
at the end. As it follows, Hi+1 has only one uc-ordering, that means it is a UUC.

Case 2 : xi+1 has a returning color.
Each edge containing xi+1 also contains xi. Similarly to the previous case, it will

be a UC-order only if xi+1 is set at the end of the sequence.

Case 3 : xi+1 has a new color.
There is an edge {xi; xi+1} ∈ D, but we have no other D-edge containing xi+1

and a vertex colored with c(xi). Let Xi denote the set of vertices xj with color c(xi)
but smaller subscript, j < i. According to condition C2, c(xi) is not new, so that
Xi 6= ∅. Since there is no edge containing both xi+1 and any element of Xi, it is
our free choice to put xi+1 into the color class of Xi or assign it a distinct color, in
the subhypergraph Hi+1 −xi. Thus, the vertex-order is UC only if xi+1 is set at the
end, after xi. �

In the proof only one UUC-graph was constructed for each feasible color-order.
But in fact there are a lot of UUC-graphs with different structures. Now, we list
some types of measure for comparison, under which the construction of the previous
proof is minimal. They show that this construction results in the simplest structure
for UUC in several aspects. Assuming that the hypergraph H has the unique UC-
order x1, x2, . . . , xn, we introduce the following concepts :

• The number of edges : N(H) = |H| = |C| + |D| =
∑

H∈H

1.
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• Edge-size sum : S(H) =
∑

H∈H

|H| .

• Edge-diameter sum : D(H) =
∑

H∈H

max {j − k | xj , xk ∈ H} .

That is, diameter of an edge H is the difference j − k where j is the largest
and k is the smallest index occurring at the vertices of H .

• Total edge-distance sum : Td(H) =
∑

H∈H

∑

xl∈H

(max {j | xj ∈ H} − l).

In each edge H the distances between the last vertex and the other ones are
summed.

• Reverse-index sum : R(H) =
∑

H∈H

∑

xl∈H

(n + 1 − l).

This means that in the unique UC-order x1, x2, . . . , xn, new descending indices
from n to 1 are introduced. So, each vertex xl has reverse-index (n+1− l) and
every edge is represented by the sum of reverse-indices assigned to its vertices.

Let us note that if the vertices of a mixed hypergraph H are colored in the order
x1, x2, . . . , xn, then the reverse sequence (y1, . . . , yn) = (xn, . . . , x1) is termed the
elimination order of H (cf. [59]). That is, in R(H) each edge is measured by the
sum of the indices of its vertices in the elimination order of H.

If we study all the UUC-graphs belonging to a given color-order, it can be proved,
that the UUC-graph H∗ constructed in the previous proof is minimal under each of
the five measures.

Proposition 8. For any given color-order (according to conditions C0, C1, C2) the
constructed H∗ is a minimal UUC-graph concerning the measures N , S and D.
Moreover, H∗ is the only minimal UUC-graph under Td and R.

The proof can be found in paper [2].
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6 Color-bounded hypergraphs: General results

In the previous chapters we studied mixed hypergraphs where two types of coloring
constraints are used. In a proper coloring, the vertices of a D-edge have to get at
least two different colors, whilst inside a C-edge C, there can occur at most |C| − 1
different colors. These two opposite types of coloring conditions make it possible to
model many kinds of practical problems.

But there is also a wide range of problems where these two types of constraints
are not sufficiently strong for exact modeling. For instance, in many applications
there are prescribed at least three or at least four different types (colors) for certain
groups. A characteristic example is when we need multiple controls for security
reasons. From the other side, we may also have constraints on the maximum number
of used colors, for instance the number of allocatable resources is usually bounded
in a given field. In fact, this latter type of conditions can also be expressed by using
C-edges, but this formulation would increase the number of hyperedges drastically.
For a ten-element group Ei, the upper bound five on the number of used colors
would mean to consider all the 210 six-element subsets of Ei as C-edges. (Due to
the results of Chapter 3, this can be expressed using ‘only’ about 70 subsets, but
the structure would become very complicated.)

Consequently, the introduction of color-bounded hypergraphs is motivated not
only from theoretical but also from practical side. In this model we can prescribe
bounds si and ti on each edge Ei, which force that Ei receives at least si and at most
ti different colors in every proper coloring. It is clear that this model generalizes
the concept of mixed hypergraph, and we will see in Chapters 6 and 7 that a much
stronger model is obtained. We will see examples in Chapter 9 for applications of
this new model in informatics.

6.1 Preliminary results

In Chapter 1 we have already introduced our new hypergraph coloring model and
defined the notion of color-bounded hypergraph. In this introductory section of
the present chapter we make some simple observations. First, connections of color-
bounded hypergraphs with mixed hypergraphs are considered. After that, we de-
termine the condition of colorability, and the lower and upper chromatic number of
complete uniform hypergraphs with uniform color-bounds.

6.1.1 Simple reductions

There are particular situations where a color-bounded hypergraph can be reduced
to one with smaller edges, or even to a mixed hypergraph. Below we mention such
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cases, collected in one assertion of several parts. Throughout, C-edges and D-edges
are meant in the sense of mixed hypergraphs.

Remark 6. Let H be a color-bounded hypergraph. If no structural conditions are
imposed, then the following reductions can be applied.

(a) If si = ti = |Ei|, then one may replace Ei with all of its 2-element subsets
as D-edges, because every feasible coloring of Ei assigns mutually distinct colors to
its vertices.

(b) If si = 1 and ti < |Ei| − 1, then one may replace Ei with all of its (ti + 1)-
element subsets as C-edges, because the original Ei is colored in a feasible way if
and only if no ti + 1 of its vertices are totally multicolored.

(c) More generally, if ti < |Ei| − 1, then one may modify the bounds (si, ti) of
Ei to (si, |Ei|) and insert all the (ti + 1)-element subsets of Ei, with bounds (1, ti).

(d) In parts (b) and (c) it suffices to take all the (ti + 1)-subsets incident with
one arbitrarily chosen vertex of Ei, because in any coloring, each vertex of Ei can
be completed to a largest polychromatic subset of the edge.

There is a consequence of these reductions that we find worth mentioning sepa-
rately:

Corollary 6. If H does not have any edges such that |Ei| > 3 and si > 2 hold
simultaneously, then there exists a mixed hypergraph on the same vertex set, with
precisely the same proper colorings as H.

Proof If si = 1, then reduction (b) replaces Ei with C-edges of cardinality ti + 1.
The situation is similar if si = 2, except that Ei itself becomes a D-edge under
reduction (c) in this case. Finally, if si ≥ 3, then |Ei| ≤ 3 by assumption, and so the
condition si ≤ ti ≤ |Ei| implies si = ti = |Ei| = 3. Hence, the edge can be replaced
with three 2-element D-edges, applying reduction (a). �

It is important to note that the reductions listed in Remark 6 may lead out from
a particular class of hypergraphs. For example, as it will be shown in Chapter 7,
already the 3-uniform color-bounded hypertrees differ substantially from mixed hy-
pertrees.

Let us note further that the edges with 2 < si < |Ei| = ti usually cannot be
replaced with any combinations of D-edges. This is the reason of the fact (demon-
strated in Section 6.3) that assuming a fixed number of vertices, some chromatic
spectra are possible for color-bounded hypergraphs but cannot occur in mixed hy-
pergraphs.
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6.1.2 Complete uniform hypergraphs

Here we consider the following particular example.

Definition. Let n ≥ r ≥ t ≥ s ≥ 1 be integers. The complete uniform color-
bounded hypergraph Kn(r; s, t) is the 4-tuple (X, E , s, t) such that X consists of n
vertices, and the edge set E contains all the r-element subsets of X with associated
constant bounds si = s and ti = t.

Proposition 9. The hypergraph Kn(r; s, t) is colorable if and only if

(i) t = r, or

(ii) s = 1, or

(iii) n ≤ r − 1 +

⌊

r − 1

s − 1

⌋

(t − s + 1).

Proof For t = r, the hypergraph is evidently colorable with n colors; and if s = 1,
then all vertices can get the same color. This shows the sufficiency of the first two
cases.

Suppose next that Kn(r; s, t) is colorable and that t 6= r, s 6= 1 hold. Assuming
a coloring with at least t + 1 colors, this would yield some edges colored with more
than t colors (since t < r). This is forbidden, hence there appear at most t color
classes.

If there were s − 1 color classes whose union consists of at least r vertices, they
would determine an edge with fewer than s colors. Therefore, even the s− 1 largest
color classes can have at most r − 1 vertices in total. The remaining color classes
are of size at most

⌊

r−1
s−1

⌋

each, and their number is at most t − (s − 1). Summing
up, if Kn(r; s, t) is colorable, then

n ≤ r − 1 + (t − s + 1)

⌊

r − 1

s − 1

⌋

necessarily holds.
From now, we assume that t 6= r, s 6= 1, and n ≤ r − 1 + (t − s + 1)

⌊

r−1
s−1

⌋

. We
need to prove that the hypergraph is colorable. Let us write (r − 1) in the form
r − 1 = a(s − 1) + m, where a and m < s − 1 are nonnegative integers. Applying
that a =

⌊

r−1
s−1

⌋

and m = r − 1 − (s − 1)
⌊

r−1
s−1

⌋

, we get the assumption rewritten in
the form n ≤ at + m. Hence, for n′ = at + m vertices there exists a vertex partition
X = X1 ∪ · · · ∪Xt such that Xi has cardinality a + 1 for 1 ≤ i ≤ m, and cardinality
a for m + 1 ≤ i ≤ t. Moreover, a partition with t nonempty classes can be obtained
for n vertices, too, by removing n′ − n vertices in any way so that at most |Xi| − 1
are deleted from each Xi.

It remains to observe that this vertex partition colors Kn(r; s, t) properly. Indeed,
the union of the s − 1 largest classes has at most a(s − 1) + m = r − 1 elements,
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therefore every edge contains at least s colors. Moreover, there are just t colors, so
that the upper bound is respected, too. This completes the proof. �

Remark 7. Along the proof, we have also obtained that the upper chromatic number
of a colorable color-bounded hypergraph Kn(r; s, t) is

• t, if t < r, and

• n, if t = r.

More generally, one may consider the complete (p, q)-uniform (s, t)-hypergraphs
Kn(p, q; s, t), where all p-subsets of the underlying n-set have color-bounds (s, p) and
all the q-subsets have bounds (1, t). Here we assume q ≥ t ≥ s and p ≥ s. The case
q = t is already included above, because it means no real upper bound and hence it
is equivalent to p = q = t. On the other hand, if q > t, it is readily seen that every
q-element subset contains at most t colors if and only if so does every (t+1)-element
subset. Consequently, χ(Kn(p, q; s, t)) = χ(Kn(p, t + 1; s, t)) ≤ t holds, and these
two hypergraphs are chromatically equivalent. (In particular, both are colorable or
both are uncolorable.) For this reason, the value of q is irrelevant and, along the
lines of the proof above, we obtain

Proposition 10. The color-bounded hypergraph Kn(p, q; s, t) is colorable if and
only if

(i) t = q, or

(ii) s = 1, or

(iii) n ≤ p − 1 +

⌊

p − 1

s − 1

⌋

(t − s + 1). �

Putting s = 2 and t = q − 1, the following simple inequality (first observed in
[54]) occurs as a particular case.

Corollary 7. The complete mixed hypergraph on n vertices, with all p-element
subsets as D-edges and all q-element subsets as C-edges is colorable if and only if
n ≤ (p − 1)(q − 1).

Already this rather restricted structure indicates that color-bounded hypergraphs
are much more complex than mixed ones: while the latter would admit a one-line
proof, the former needs some work.
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We have already observed that the s − 1 largest color classes can have at most
r − 1 vertices. As regards the lower chromatic number, this leads — in the same
way as above — to

Proposition 11. For every r ≥ s ≥ 2 we have

χ(Kn(r; s, r)) = s − 1 +

⌈

n − r + 1
⌊

r−1
s−1

⌋

⌉

and, if t is not smaller than this lower bound and q > t, or t ≥ s and q = t, then

χ(Kn(r, q; s, t)) = s − 1 +

⌈

n − r + 1
⌊

r−1
s−1

⌋

⌉

. �

6.2 Chromatic polynomials

Most of the results proved in this section are valid in the general models of pattern
and stably bounded hypergraphs, therefore we do not restrict ourselves to color-
bounded ones here.

In pattern hypergraphs, each hyperedege is associated with a collection of proper
color partitions on its set of vertices, and a vertex coloring of the entire hypergraph
is proper if and only if so is the induced color partition on each edge. This concept
was studied by Dvořák et al. [20], their main result characterizes those pattern types
which admit gaps in the feasible set.

There is a natural way to assign values si, ti to the edges Ei of a pattern hyper-
graph, too. Namely, for each edge we can take the smallest and largest numbers of
nonempty classes, over the feasible color partitions of Ei. Similarly, the parameters
χ, χ, and the set Φ have their obvious meaning for every colorable pattern hyper-
graph. Having these definitions at hand, the main results of this section remain
valid for this most general model, too.

Here stably bounded hypergraphs can be viewed as particular pattern hyper-
graphs and the obtained values s′i and t′i may be different from the originally given

ones, e.g., si = 1 and bi = |Ei|
2

will mean that s′i = 2.
Let us extend the standard notion of chromatic polynomial P (H, λ) for these

widest classes of hypergraphs. By definition, the value of P (H, λ) for a positive
integer λ = k is the number of proper colorings with at most k colors where we
count permutations of colors to be distinct.

For convenience, we shall use some standard notation:

• For n ≥ k > 0 we denote by S(n, k) the Stirling number of the second kind,
which is the number of partitions of n elements into precisely k nonempty sets.
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• The denotation [λ]k := λ(λ − 1) · · · (λ − k + 1) stands for a ‘falling power’.

• Stirling numbers and falling powers are connected in the following fundamental
equation:

λn =

n
∑

k=1

S(n, k) · [λ]k (2)

It is clear that if H is uncolorable, then its chromatic polynomial is P (H, λ) ≡ 0,
the identically zero function. For this reason, we assume throughout this section
that H is colorable. (It does not mean that hypergraphs derived from H, too, will
be assumed to be colorable.) The chromatic polynomial will be written in the form

P (H, λ) =
∑

k≥0

akλ
k

After recalling some known facts from the literature, we shall first observe that this
is a legal notation, as the number of colorings with at most λ colors is indeed a
polynomial of λ. For an easier formulation of some assertions, we shall use the
notation

E (r) = {Ei ∈ E | |Ei| = r}
and mr = |E (r)|, for all r ≥ 2. In particular, E (2) is the graph formed by the
2-element edges of H.

Known facts

1. If si = 2 and ti = |Ei| for all i (that is, hypergraph coloring in the usual sense),
then

(a) P (H, λ) is a polynomial of order n = |X|,
(b) an = 1 and a0 = 0,

(c)
∑

k≥0 ak = 0, if there exists at least one edge,

(d) an−1 = −m2, where m2 = |E (2)| (Dohmen [18]).

(e) an−2 =
(

m2

2

)

− m3 − t2, where t2 is the number of triangles in the graph

E (2), provided that no Ei ∈ E (2) is a subset of any Ej ∈ E (3). This follows
from a general equation of [18], although is not stated there explicitly.

2. Facts (1a)–(1e) can be extended to hypergraphs such that

si ≥ 2 and ti = |Ei| ∀ 1 ≤ i ≤ m,

with some modifications in (1d) and (1e). In the present case, each edge Ei

of H having si = |Ei| is replaced with its 2-element subsets as edges, and E (r)

for r ≥ 2 is meant to be the collection of r-element edges after this operation.
Then an−1 is determined as in (1d), and the formula of (1e) for an−2 is proved
to be valid under the further condition si ≤ |Ei| − 2 for all Ei /∈ E (2), which
also implies that m3 = 0 holds (Drgas-Burchardt and  Lazuka [19]).
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3. If H is a mixed hypergraph, then P (H, λ) =
∑χ

k=χ rk[λ]k (Voloshin [58]).

Turning now to color-bounded, and, more generally, stably bounded and pattern
hypergraphs, we begin with the following very general observation.

Proposition 12. Let H = (X, E) be a hypergraph, and P a given set of partitions
of X, whose members are the allowed color partitions for E . For k = 1, . . . , |X|
denote by rk the number of those partitions in P which have precisely k nonempty
classes. Then the number P (H, λ) of allowed colorings of H with at most λ colors
is a polynomial of λ, and it can be written as P (H, λ) =

∑

k>0 rk[λ]k.

Proof A unique ordering can be assigned to the classes of each partition in P,
according to their vertex of smallest subscript in the order x1, . . . , xn. Enumerating
along this ordering, if P ∈ P has precisely k classes, then there are exactly [λ]k ways
to assign distinct colors to its classes. �

Corollary 8. For every H, P (H, λ) is a polynomial of order χ = χ(H) whose
leading coefficient equals rχ, that is the number of color partitions with the maximum
number of colors.

Corollary 9. Two hypergraphs are chromatically equivalent if and only if they have
the same chromatic polynomial.

The following fact has been proved in [19] for the hypergraphs where ti = |Ei|
holds for all edges.

Corollary 10. Every chromatic polynomial can be written as the sum of chromatic
polynomials of graphs, without any negative coefficients.

Proof It suffices to observe that [λ]k is the chromatic polynomial of the complete
graph on k vertices, and that none of the [λ]k can have a negative coefficient in
P (H, λ). �

Remark 8. By definition, all integers i with 1 ≤ i < χ(H) are roots of P (H, λ).

Corollary 11. If H is colorable and χ(H) = χ(H), then the set of roots of P (H, λ)
is

{i ∈ N ∪ {0} | i ≤ χ(H) − 1}
and each root has multiplicity one; and vice versa, if the roots of P (H, λ) are
0, 1, . . . , k − 1 and each of them has multiplicity one, then H is colorable and
χ(H) = χ(H).

Proof If χ(H) = χ(H) = k > 0, then P (H, λ) = rk · λ(λ − 1) · · · (λ − k + 1) by
Proposition 12. Conversely, the given set of roots (without multiple roots) implies
that P (H, λ) is of the form rk · λ(λ − 1) · · · (λ − k + 1), from which we obtain that
ri = 0 for every 1 ≤ i < k and also for i > k, so that k is the unique possible number
of colors. �
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For the explicit computation of P (H, λ), let us introduce the following notation:

• H + Ci,j — the hypergraph obtained from H by inserting the C-edge {xi, xj}
with s = t = 1

• H + Di,j — the hypergraph obtained from H by inserting the D-edge {xi, xj}
with s = t = 2

In order to compute P (H, λ), the following recursion may be useful.

Proposition 13. If {xi, xj} is neither a C-edge nor a D-edge, then

P (H, λ) = P (H + Ci,j, λ) + P (H + Di,j, λ).

Proof The first and second term on the right-hand side counts the number of
those colorings of H with at most λ colors in which xi and xj get the same color or
distinct colors, respectively. �

In the same way, one can also observe that

χ(H) = max (χ(H + Ci,j), χ(H + Di,j))

for every H. The analogous formula

χ(H) = min (χ(H + Ci,j), χ(H + Di,j))

is valid under the slight restriction that both hypergraphs H+Ci,j and H+Di,j on the
right-hand side are colorable; otherwise the uncolorable one has to be omitted and
the lower chromatic number is equal to that of the colorable modified hypergraph.

Remark 9. This recursion leads to an analogue of the ‘Splitting–Contraction Al-
gorithm’ developed by Voloshin for mixed hypergraphs [57].

Proposition 14. If max1≤i≤m si ≥ 2, then the sum of the coefficients of P (H, λ)
is equal to zero; and if s1 = ... = sm = 1, then the sum is equal to 1.

Proof The value P (H, 1) is equal to the sum of coefficients, and at the same time
it counts the number of allowed colorings with just one color. The latter obviously
is either 0 or 1. �

Proposition 15. The constant term in P (H, λ) is equal to zero.

Proof According to Proposition 12, each term in the formula for P (H, λ) is divisible
by λ. �

The following example shows that Facts (1d) and (1e) do not remain valid if
some edges have ti < |Ei|.
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Example 1. Let H have the only one edge, E1 = X, with s1 = 1 and t1 = n − 1.
Then

P (H, λ) = λn −
n−1
∏

i=0

(λ − i) = λn−1

n−1
∑

i=0

i − λn−2

n−1
∑

i=1

i−1
∑

j=0

ij + O(λn−3)

=

(

n

2

)

λn−1 −
(

1

2

(

n

2

)2

− 1

8

(

2n

3

)

)

λn−2 + O(λn−3)

because
∑

j<i≤n−1

ij =
∑

i≤n−1

i

(

i

2

)

=
1

2

∑

i≤n−1

i3 − 1

2

∑

i≤n−1

i2

=
1

8
n2(n − 1)2 − 1

12
n(n − 1)(2n − 1) . �

The following result completely characterizes the chromatic polynomials under
the assumption P (1) = 0.

Theorem 9. Let P (λ) =
∑ℓ

k=0 akλ
k 6≡ 0 be a polynomial such that P (1) = 0, i.e.

∑ℓ
k=0 ak = 0. The following properties are equivalent.

1. P (λ) is the chromatic polynomial of a color-bounded hypergraph.

2. P (λ) is the chromatic polynomial of a mixed hypergraph.

3. P (λ) is the chromatic polynomial of a stably bounded hypergraph.

4. P (λ) is the chromatic polynomial of a pattern hypergraph.

5. P (λ) satisfies all of the following conditions.

(i) All coefficients ak of P (λ) are integers.

(ii) The leading coefficient aℓ is positive.

(iii) The constant term a0 is zero.

(iv) For every positive integer j ≤ ℓ, the inequality

ℓ
∑

k=j

ak · S(k, j) ≥ 0

is valid.

Proof The condition P (1) = 0 means that if some hypergraph H has P (λ) as its
chromatic polynomial, then at least one edge Ei ∈ H has si ≥ 2. In particular, if
H is such a mixed hypergraph, then it contains at least one D-edge. Due to the
construction in [32], prescribing the numbers of k-colorings in an arbitrary way for
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k = 2, . . . , χ, there exists a mixed hypergraph with this given chromatic spectrum
(provided that r1 = 0, which is now the case). Since this already includes all possible
variations, the equivalence of properties 1, 2, 3, and 4 follows.

In order to prove the equivalence of property 5 with 1 through 4, let us introduce
the notation rj =

∑ℓ
k=j ak ·S(k, j) for j = 1, . . . , ℓ. On applying Eq. (2), we rewrite

P (λ) =

ℓ
∑

k=1

akλ
k =

ℓ
∑

k=1

ak

k
∑

j=1

S(k, j) · [λ]j

=

ℓ
∑

j=1

[λ]j

ℓ
∑

k=j

ak · S(k, j) =

ℓ
∑

j=1

rj · [λ]j (3)

It is clear that rℓ = aℓ. Moreover, all the ak are integers if and only if all the rk are
integers. Indeed, the largest subscript j for which rj is not an integer would yield
that aj is not an integer either; and vice versa.

Suppose now that P (λ) is equal to P (H, λ) for some mixed hypergraph H. By
Proposition 12, the meaning of rj is the number of color partitions into precisely
j nonempty vertex classes. Consequently, rj ≥ 0 must hold for all j, which im-
plies (iv). Also, the condition a0 = 0 follows by Proposition 15.

Conversely, suppose that the conditions 5(i)–5(iv) are valid for P (λ). Applying
Eq. (3) we obtain a sequence (rj)j>0 of nonnegative integers. We observe now that
r1 = 0 necessarily holds; this follows from the assumption P (1) = 0, because the
right-hand side of (3) yields P (1) = r1. Thus, due to [32], there exists a mixed
hypergraph H whose chromatic spectrum is (rj)j>0. This completes the proof of the
theorem. �

Corollary 12. For every color-bounded hypergraph H = (X, E , s, t) there exists a
mixed hypergraph with the same chromatic polynomial and with the same chromatic
spectrum.

Proof For the case max1≤i≤m si ≥ 2, this is just the equivalence of properties 1
and 2 above. In the other case, if s1 = . . . = sm = 1, we replace each Ei with all its
(ti + 1)-element subsets as C-edges, as described in reduction (b) of Remark 6. The
color partitions of this ‘mixed’ C-hypergraph are precisely those of H. �

We shall see later that this property does not remain valid anymore when the
hypergraph under consideration is assumed to be uniform. It is not valid either in
the class of stably bounded hypergraphs, as will be proved in Chapter 8.

Concerning pattern hypergraphs, 1-colorability does not imply that the chro-
matic spectrum is gap-free. This makes it possible to characterize the chromatic
polynomials completely.

Proposition 16. The polynomial P (λ) =
∑ℓ

i=0 akλ
k is the chromatic polynomial

of some pattern hypergraph if and only if all of the following conditions hold.
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(i) All coefficients ak of P (λ) are integers.

(ii) The leading coefficient aℓ is positive.

(iii) The constant term a0 is zero.

(iv) For every positive integer j ≤ ℓ, the inequality

ℓ
∑

k=j

ak · S(k, j) ≥ 0

is valid.

(v)
∑ℓ

i=0 ak = 0 or 1.

Proof The number of 1-colorings, that is the value P (1) =
∑ℓ

i=0 ak, is either 0 or
1, yielding the necessity of (v). For the case of P (1) = 0, the proof of Theorem 9
verifies the assertion for pattern hypergraphs as well. Moreover, the argument given
there also implies that the conditions (i)–(iv) are necessary for the case P (1) = 1,
too.

As regards P (1) = 1, the crucial point is that for the 1-colorable pattern hyper-
graphs (equivalently when r1 = 1), the other entries of the chromatic spectrum can
be arbitrarily prescribed nonnegative integers. To prove this, consider the nonnega-
tive integers r2, . . . , rℓ and let a sufficiently large n be chosen such that S(n, k) ≥ rk

holds for each k = 2, . . . , ℓ. Create a hypergraph H = (X, {X}) on n vertices. By the
choice of n, we can prescribe for the hyperedge X exactly rk feasible k-partitions for
every 1 ≤ k ≤ ℓ, what results in a pattern hypergraph H with chromatic spectrum
(r1 = 1, r2, . . . , rℓ).

From this point the proof can be completed as in the case of Theorem 9. �

6.3 Feasible sets

In this section we study the feasible sets of color-bounded hypergraphs. The main
results are the determination of largest gaps in hypergraphs with a given number of
vertices, and the characterization of feasible sets of uniform color-bounded hyper-
graphs (Theorem 11).

It was proved in [29] that any finite set of integers greater than 1 is the feasible
set of a mixed hypergraph, but the smallest number of vertices realizing a given set
is not known. For gaps of size k, however, a construction on 2k + 4 vertices was
given in [29]. This 2k + 4 is the smallest possible order, what follows from another
result of the same paper, although it was not stated explicitly until [6]. On the other
hand, for color-bounded hypergraphs the minimum is much smaller, as shown by
the following tight result.
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Theorem 10. If a color-bounded hypergraph has a gap of size k ≥ 1 in its chromatic
spectrum, then it has at least k + 5 vertices. Moreover, this bound is sharp; that is,
for every positive integer k there exists a hypergraph H = (X, E , s, t) with |X| = k+5
vertices whose chromatic spectrum has a gap of size k.

Proof The proof can be found in [4]. On the other hand, in Chapter 8 we will
prove Theorem 21 which immediately implies the validity of the present theorem
without vicious circles.

Remark 10. In pattern hypergraphs, the minimum order for a gap of size k is equal
to k + 2. This bound is attained by the hypergraph H = (X, {X}) with |X| = k + 2
and r1 = rk+2 = 1, r2 = . . . = rk+1 = 0 ; i.e., where the vertex set is required to be
either monochromatic or completely multicolored.

As it was shown in Section 6.2, the classes of mixed and color-bounded hyper-
graphs generate the same set of chromatic polynomials; moreover, the feasible sets
are the same in any case. In hypergraphs with restricted structures, however, there
appear substantial differences. We consider the following three types, the third one
being the main issue of this subsection.

• Hypertrees
The chromatic spectrum of mixed hypertrees is gap-free and their lower chro-
matic number is at most two [34]. Hence, their feasible sets determine precisely
the intervals of the form [1, . . . , k] or [2, . . . , ℓ], where k ≥ 1 and ℓ ≥ 2.

On the other hand, we shall prove in Chapter 7 that color-bounded hypertrees
can have arbitrary large gaps in the chromatic spectrum, and any positive
integer can occur as a lower chromatic number. Any set S of integers with
min S ≥ 3 can be obtained as the feasible set of some color-bounded hypertree;
if the lower chromatic number equals 1 or 2, however, then the chromatic
spectrum is necessarily gap-free.

• Interval hypergraphs
Mixed interval hypergraphs have a gap-free chromatic spectrum with lower
chromatic number 1 or 2 [29], whilst in the color-bounded case the spectrum
still remains gap-free but the lower chromatic number can be any positive
integer, according to our Theorem 14.

• r-uniform hypergraphs
The 2-uniform mixed and color-bounded hypergraphs are practically the same:
the (1, 2)-edges have no effect on coloring, and after their deletion we get a
2-uniform mixed hypergraph (i.e., a ‘mixed graph’).

The larger cases, where r ≥ 3, will be treated in this subsection and essential
differences will be demonstrated in comparison with mixed hypergraphs.
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We now consider the feasible sets belonging to r-uniform hypergraphs, for dif-
ferent values of r.

For the next observations the classes of possible feasible sets will be denoted by
Fm and Fc regarding mixed and color-bounded hypergraphs, respectively. When we
refer only to feasible sets of r-uniform hypergraphs, upper indices will be used: Fm

r

and Fc
r. Since mixed and color-bounded hypergraphs generate the same chromatic

polynomials, the sets Fm and Fc are equal.
For r-uniform mixed hypergraphs, the feasible sets have been characterized in

Chapter 2. This implies that the 3-uniform mixed hypergraphs generate all possible
feasible sets from Fm, except the set {1}. Increasing the value of r, for all integers
3 ≤ r1 < r2 the inclusion Fm

r1 % Fm
r2 holds. Thus, the classes Fm

r of possible feasible
sets determine a strictly decreasing infinite set-sequence: Fm

3 % Fm
4 % . . . % Fm

r %
. . . . For every feasible set S ∈ Fm, there are only finitely many values of r such
that an r-uniform mixed hypergraph can have S as its feasible set, since in this case
r ≤ 1 + max S necessarily holds. Consequently, there is no feasible set belonging to
every element of the above nested sequence.

Contrary to this, we are going to prove that in the case of color-bounded r-
uniform hypergraphs the classes Fc

r of possible feasible sets, for all r ≥ 3, are the
same.

Proposition 17. For every color-bounded hypergraph H1 having edges only of sizes
not larger than r, there exists a chromatically equivalent r-uniform color-bounded
hypergraph H2; that is, P (H1, λ) = P (H2, λ).

Proof Any given hypergraph H1 = (X1, E1, s1, t1) with edges not larger than r can
be extended to H2 in the following way. For each vertex xi ∈ X1, we take additional
r−1 copies, and join them with xi in an r-element (1, 1)-edge to ensure that in each
coloring they get the same color as xi. Then every edge Ej of H1 can be extended
to an r-element edge of H2 by adjoining r − |Ej| ‘copy vertices’ of some xi ∈ Ej to
it, whilst the color-bounds remain unchanged. Clearly, the feasible colorings of H1

and H2 are in one-to-one correspondence, thus the two hypergraphs have the same
chromatic polynomial. �

Proposition 18. For each integer r ≥ 3, the r-uniform color-bounded hypergraphs
generate all possible feasible sets from Fc.

Proof For r = 3, already the mixed hypergraphs generate all the feasible sets
from Fm except the set {1}. Obviously, the 3-uniform color-bounded hypergraphs
determine all these feasible sets and also the set {1}. A trivial example for the latter
has three vertices joined by a 3-element (1, 1)-edge. Due to Corollary 12, Fm = Fc

holds, hence we obtain that Fc = Fc
3. Applying Proposition 17, we obtain for any

r > 3 that every 3-uniform color-bounded hypergraph has some r-uniform chromatic

60



equivalent, therefore Fc
r ⊇ Fc

3. But Fc
3 contains all the possible feasible sets of

color-bounded hypergraphs, thus for every r ≥ 3 the equality Fc
r = Fc holds. �

The class of feasible sets occurring for mixed hypergraphs was characterized in
the paper [29]. Combining that result and the above proposition we obtain:

Theorem 11. For every integer r ≥ 3, a set S of positive integers is the feasible
set of an r-uniform color-bounded hypergraph if and only if

(i) min S ≥ 2, or

(ii) min S = 1 and S = {1, . . . , k} for some natural number k ≥ 1. �

Comparing the possible feasible sets of r-uniform mixed and color-bounded hy-
pergraphs, we can conclude that for r = 2 they are the same (classical graphs),
and for r = 3 there is only one feasible set — namely, {1} — appearing in the
color-bounded case and not belonging to any mixed hypergraphs. But increasing
the value of r the difference becomes more and more substantial.

Now, we take some observations concerning the chromatic spectra of (r-uniform)
color-bounded hypergraphs. It was proven for mixed hypergraphs in [32] that any
vector (r1, r2, . . . , rk) with r1 = 0 and r2, . . . , rk ∈ N ∪ {0} can be obtained as the
chromatic spectrum of some mixed hypergraph. In the construction of the proof
there occur only C-edges of size 3 and D-edges of size 2. This mixed hypergraph can
be considered color-bounded as well, and since it has edges of size not larger than
3, we can apply Proposition 17 to get, for each r ≥ 3, an r-uniform color-bounded
hypergraph with the above chromatic spectrum. As a consequence, we obtain:

Proposition 19. For every finite sequence r2, r3, . . . , rk of nonnegative integers
and for every r ≥ 3 there exists some r-uniform color-bounded hypergraph whose
chromatic spectrum is (r1 = 0, r2, . . . , rk). �

This means that under the assumption P (1) = 0, the characterization of chro-
matic polynomials in Theorem 9 is valid for r-uniform color-bounded hypergraphs,
too.

As it was proven in Section 6.2, the possible chromatic polynomials — and also
the chromatic spectra — are the same in the case of mixed and color-bounded hy-
pergraphs. Considering a fixed integer r ≥ 3, however, by our Theorems 1 and 11,
there exist feasible sets and hence chromatic spectra, too, occurring for r-uniform
color-bounded, but not occurring for r-uniform mixed hypergraphs. We are go-
ing to point out that, even assuming a fixed common feasible set and r-uniform
hypergraphs, the corresponding spectra can be different.

Let r = 4 and the feasible set {1, 2, 3} be considered.

For 4-uniform mixed hypergraphs, this means that there occur only C-edges of
size 4, hence any partition of the vertex set into 1, 2, or 3 color classes induces a
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feasible coloring. Therefore r1 = 1, r2 = S(n, 2), and r3 = S(n, 3) hold, where n
denotes the number of vertices. In particular, r1 = 1 and r2 = 15 together imply
that n = 5 and r3 = 25.

On the other hand, in 4-uniform color-bounded hypergraphs the 1-colorability
means that the lower bound si equals 1 for every edge Ei, and after the contraction
of (1, 1)-edges, any 2-partition of the n vertices yields a proper coloring. Thus r1 = 1
and r2 = S(n, 2). But if there exists an edge with bounds (1, 2), then not all of the
3-partitions are feasible, hence 0 < r3 < S(n, 3) can hold. Analysis shows that if
r1 = 1 and r2 = 15, then the first three entries in the chromatic spectrum belonging
to the feasible set {1, 2, 3} form one of the following triples:

• (1, 15, 25) — five vertices and four or five 4-element edges, all of them with
color-bounds (1, 3);

• (1, 15, 7) — five vertices with one (1, 2)-edge of size four;

• (1, 15, 1) — five vertices with two different (1, 2)-edges of size four.

As it has been observed, only the first one can belong to 4-uniform mixed hyper-
graphs.

6.4 Uniquely colorable hypergraphs

A hypergraph H is called uniquely colorable if χ(H) = χ(H) = k for some k ∈ N,
and rk = 1. General properties of uniquely colorable mixed hypergraphs have been
studied in [56] and [13]. Moreover, uniquely (n− 1)-colorable and uniquely (n− 2)-
colorable mixed hypergraphs are characterized by Niculitsa and Voss in [45]. Though
it is co-NP-complete to decide whether a mixed hypergraph (given together with one
of its colorings) is uniquely colorable [56], it may be the case that uniquely (n− c)-
colorable mixed hypergraphs admit a relatively simple structural description for any
constant c. In sharp contrast to this, for color-bounded hypergraphs we prove:

Theorem 12. It is co-NP-complete to decide whether a hypergraph H = (X, E , s, t)
on n vertices is uniquely (n − 1)-colorable.

Proof We are going to apply the following result of Phelps and Rödl [47] from the
algorithmic theory of balanced incomplete block designs:

It is NP-complete to decide whether a Steiner Triple System9, whose
blocks are viewed as the D-edges of a 3-uniform (mixed, or ‘usual’) hy-
pergraph, is colorable with 14 colors.

9A Steiner triple system (STS) of order v is a v-element set X together with a set B of 3-element
subsets of X (called blocks) with the property that each 2-element subset of X is contained in
exactly one block. With the notation of the footnote on page 8, it is S(2, 3, v), but most standard
notation is STS(v).
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Let now X = {x1, . . . , xn−2} be the vertex set of an ‘input’ Steiner Triple System
S = STS(n− 2) = (X,B) of order n − 2, whose k-colorability (as a D-hypergraph)
should be decided for a given integer k. Due to the result quoted above, in our case
k = 14 will be a suitable choice.

We construct a color-bounded hypergraph H on the vertex set X ∪ {z1, z2} —
i.e., with two new vertices z1, z2 — in which the hyperedges and color-bounds are
defined as follows:

• B′ = B ∪ {z1, z2} with s(B′) = 4 and t(B′) = 5, for all blocks B ∈ B;

• W ′ = W ∪ {z1, z2} with s(W ′) = 1 and t(W ′) = k + 2, for all (k + 1)-tuples
W ∈

(

X
k+1

)

;

• Ei,j = {xi, zj} with s(Ei,j) = t(Ei,j) = 2, for all 1 ≤ i ≤ n − 2 and j = 1, 2.

We analyze the colorings ϕ of H by considering the following two cases.

Case 1: ϕ(z1) = ϕ(z2)
Due to the presence of the D-edges Ei,j, the color-bound functions s, t reduce to

the conditions |ϕ(W )| ≤ k +1 for all W and |ϕ(B)| = 3 for all B. We may disregard
the former, as it does not yield any real restriction. On the other hand, since S
is a Steiner Triple System, the blocks B ∈ B cover all vertex pairs, and hence the
latter equation means that any two vertices in X must get distinct colors. Thus, X
is (n − 2)-colored and H is (n − 1)-colored.

This type of coloring is unique and it exists for any STS(n− 2) input S; and it
obviously colors the constructed H with a proper (n − 1)-coloring.

Case 2: ϕ(z1) 6= ϕ(z2)
Then the conditions reduce to |ϕ(W )| ≤ k for all W and |ϕ(B)| ≥ 2 for all B.

Hence, such a coloring exists if and only if the input Steiner system S admits a
coloring with at most k colors. By the theorem quoted above, this is NP-complete
to decide.

Given any input S, the color-bounded hypergraph H together with its (n − 1)-
coloring described in Case 1 can be constructed in polynomial time for any con-
stant k. This H is not uniquely (n − 1)-colorable if and only if S is k-colorable.

Finally, an n-element set has precisely
(

n
2

)

partitions into n − 1 nonempty sets,
and it can be checked efficiently for each of those partitions whether it is a feasible
coloring of H. Moreover, the problem of finding another coloring of H has its obvious
membership in NP. This completes the proof of the theorem. �

6.5 Regular hypergraphs and color-bounded edge colorings
of graphs

In the cases of classical and mixed hypergraphs, restricting the vertex degrees to at
most 2 or prescribing that any two edges share at most one vertex — that is, linear
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hypergraphs — sometimes makes problems algorithmically easier to handle. For
example, there can be given a well-characterized set of obstructions against the col-
orability of mixed hypergraphs with maximum degree two (Tuza and Voloshin [55]).
Efficient algorithms on this class have also been presented (Král’, Kratochv́ıl and
Voss [36]).

In contrast to this, we are going to prove that every color-bounded hypergraph
can be transformed to a chromatically equivalent 2-regular hypergraph. As a conse-
quence, restricting the vertex degrees to at most 2, the time complexity of colorabil-
ity problems does not change substantially. For comparison, let us mention that in
[36] the mixed hypergraphs were shown to admit chromatically equivalent represen-
tations with mixed hypergraphs of maximum degree 3. It follows from known results
on complexity that degree 3 cannot be reduced to degree 2, hence color-bounded
hypergraphs yield a stronger model in this respect, too.

Proposition 20. Every color-bounded hypergraph is chromatically equivalent to a
2-regular color-bounded linear hypergraph.

Proof Consider a hypergraph H = (X, E , s, t). If there are vertices with degree
0 or 1, we can create some new edges containing them, with non-restrictive bounds
s = 1 and t = |E|. Thus, we can assume that each vertex of H has degree at least 2.

To construct a 2-regular hypergraph H+, for each vertex xi of H we create d(xi)
copies and let them form a (1, 1)-edge. The edges of H can be transformed to edges
of H+ in such a way that every vertex is replaced with one of its copies, and every
‘copy vertex’ occurs in exactly one edge of this type. The color-bounds remain
unchanged, and the vertices of H do not belong to H+.

Obviously, the copies of a vertex xi have the same color in every feasible coloring
of H+, so they can be contracted and a feasible coloring of H is obtained; and
vice versa. Thereby, H and H+ are chromatically equivalent. Moreover, H+ is a
2-regular hypergraph, where any two edges either are disjoint or have intersection
of size 1, what completes the proof. �

It is important to note that this transformation generally does not preserve the
special structural properties (e.g., hypertree, circular hypergraph). On the other
hand, some properties can be ensured; for example, the 3-uniformity can be pre-
served by slightly modifying the construction.

According to the above proposition, it is enough to consider the 2-regular linear
color-bounded hypergraphs regarding the general coloring properties. Let us observe
that the dual of a 2-regular and linear hypergraph H is a simple graph. Coloring
the vertices of H according to the color-bounds corresponds to an edge-coloring
of the dual graph, where each vertex has the same color-bounds (si, ti), as the
corresponding edge in H.

Definition. Consider a graph G = (V, E) where each vertex xi is associated with
integer color-bounds: 1 ≤ si ≤ ti ≤ d(xi). A color-bounded edge-coloring of G is a
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mapping from E to N, such that for every vertex xi, the incident edges are colored
with at least si and at most ti distinct colors. In this model it is convenient to
assume that G has no isolated vertices.

Theorem 13. Regarding the color-bounded edge-coloring of graphs:

(i) A set S of positive integers can be obtained as feasible set if and only if
min S ≥ 2 or S = {1, . . . , k} for some k ≥ 1.

(ii) The class of possible chromatic polynomials corresponds to the class of chro-
matic polynomials occurring for vertex colorings of color-bounded hypergraphs.

(iii) These properties remain valid in the restricted class of bipartite graphs, too.

Proof According to Proposition 20, for every color-bounded hypergraph H, there
exists a chromatically equivalent 2-regular, linear color-bounded hypergraph H+.
The dual of H+ is a simple graph G. The vertex colorings of H+ are in one-to-
one correspondence with the color-bounded edge-colorings of G, provided that each
vertex of the latter has the same color-bounds as the corresponding edge in H+.

Conversely, every graph without isolated vertices has a dual hypergraph, and
if there are assigned corresponding color-bounds, the feasible edge-colorings of the
former and vertex colorings of the latter determine the same chromatic polynomial.
This proves the statement (ii).

Due to (ii), the possible chromatic spectra — and hence the feasible sets, too
— are the same for the two structure classes. Taking into consideration the charac-
terization of possible feasible sets of color-bounded hypergraphs, the statement (i)
follows.

To prove (iii), it suffices to observe that the dual graph of the constructed
hypergraph H+ is bipartite: the two vertex classes correspond to the ‘copy-edges’
and the original edges of H, respectively. �

Remark 11. The validity of Theorem 13 can be extended to color-bounded edge-
colorings of multigraphs, too. There can appear no additional feasible sets and
chromatic polynomials, since also the dual of a multigraph is a hypergraph (though
not necessarily linear).
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7 Color-bounded hypertrees and circular

hypergraphs

Tree graphs allow us to design much more efficient algorithms than those with
unrestricted structures. This is partly true also for mixed hypertrees. Hence, it
is an important issue to study the role of hypertrees in the class of color-bounded
hypergraphs.

On the one hand, we obtain quite a surprising result: the decision problem of
colorability is NP-complete already on 3-uniform color-bounded hypertrees. Thus,
we encounter difficulties which did not appear in previous cases. But on the other
hand, we point out that nearly all color-bounded hypergraphs can be represented
by some hypertree concerning the colorability properties. This also means that
color-bounded hypertrees can play a central role in applications, too.

We also consider hypertrees with more restricted structure and identify some
subclasses (e.g., interval hypergraphs, RDP-hypertrees) for which the feasible set
always is gap-free, and they admit polynomial-time ‘recoloring’ algorithms.

The Recoloring Lemma, proved here, is an essential tool throughout this chap-
ter. This offers a possibility for designing polynomial-time algorithms that result
in new colorings (preferably, using fewer colors) from a known one. It is surprising
and very useful that these algorithms can output a new coloring without having
explicit knowledge about the hyperedges. The input contains only a proper coloring
of the vertices and the largest value of the lower color-bounds prescribed for the
hyperedges. Beside the possible practical importance, it turns out to be very useful
also theoretically. We apply this tool to determine the possible feasible sets and the
lower chromatic number for hypergraphs of various structure classes.

Throughout this chapter, it will be convenient to apply the following simple
notation for paths. If the path from vertex a to vertex b is uniquely determined
in a graph, the vertex set of this path will be denoted by [a, b]. The ‘open’ and
‘half-open’ parts of this path are obtained from [a, b] by the omission of both or one
of its endpoints:

]a, b[ : = [a, b] \ {a, b}, ]a, b] : = [a, b] \ {a}, [a, b[ : = [a, b] \ {b}.

7.1 The Recoloring Lemma

This section is devoted to the Recoloring Lemma that will play a crucial role in
several algorithmic proofs regarding lower chromatic number and in proving that
the chromatic spectrum of certain types of hypergraphs is gap-free.
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Figure 6: Applying the Recoloring Lemma for an interval hypergraph twice. If we
assume that max si ≤ 4, new colorings can be obtained from a given one without
knowing the edges explicitly.

Recoloring Lemma Let a color-bounded hypergraph H = (X, E , s, t) and a proper
coloring ϕ of H be given. Consider two colors α, β ∈ ϕ(X), a partition of the vertex
set X into three parts (A, B, C), and the following set of conditions:

(1) α /∈ ϕ(B) and β /∈ ϕ(B).

(2) For every hyperedge Ei intersecting both A and C:

(a) α ∈ ϕ(Ei ∩ C);

(b) If α ∈ ϕ(Ei ∩ A), then β ∈ ϕ(Ei);

(c) |ϕ(Ei ∩ B)| ≥ si − 1.

If the conditions (1) and (2) hold, then a proper coloring ϕ′ is obtained from ϕ by
transposing colors α and β on the vertex set C.

Proof We prove that the recoloring ϕ′ is proper for every hyperedge of H, whenever
the above conditions are met.

• The coloring of hyperedges contained wholly in A∪B is unchanged, therefore
ϕ′ keeps them properly colored.

• By the condition (1), the set B did not contain any vertex colored with α or β.
Thus, one may view the recoloring as just switching the denotations of colors
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α and β in the entire set B∪C. Therefore, each hyperedge contained in B∪C
has got the same number of colors by ϕ′ as it had originally by ϕ.

• If a hyperedge Ei intersects both A and C, then, by the condition 2(a), color
α occurs in ϕ(Ei) and β occurs in ϕ′(Ei). Hence, | |ϕ(Ei)| − |ϕ′(Ei)| | ≤ 1,
and the only possibility for |ϕ′(Ei)| > |ϕ(Ei)| would be that β /∈ ϕ(Ei) whilst
α ∈ ϕ′(Ei). By condition 2(b), this cannot happen with α ∈ ϕ(Ei ∩ A).
Consequently, if there occurs α ∈ ϕ′(Ei), it has to originate from a vertex
colored with β by ϕ and contained in Ei ∩C. That is, if ϕ′(Ei) contains both
α and β, then already ϕ(Ei) contained both of them and |ϕ(Ei)| = |ϕ′(Ei)|
holds. Hence, the only possible change in the number of colors occurs when
|ϕ′(Ei)| = |ϕ(Ei)| − 1. In this case ϕ(Ei) contained α, β, and at least si − 1
additional colors from B (due to 2(c)); hence |ϕ(Ei)| ≥ si + 1, whilst ϕ′(Ei)
omits the color α and therefore |ϕ′(Ei)| ≥ si. Combining these facts, we
obtain that si ≤ |ϕ′(Ei)| ≤ |ϕ(Ei)| ≤ ti, consequently Ei is properly colored
by ϕ′.

The above cases cover all possibilities concerning the positions of hyperedges,
implying that ϕ′ is a proper coloring of H indeed. �

We note that some classes of hypergraphs admit a vertex partition (A, B, C)
even with the additional property α /∈ ϕ(Ei ∩ A), under which the condition 2(b)
automatically holds. Moreover, in our current applications, condition 2(c) is used
in the weaker form |ϕ(Ei ∩B)| ≥ s− 1. Nevertheless, we prefer the stronger version
to state and prove, with the intention to keep it more general and to allow further
potential applications.

7.2 Interval hypergraphs

Considering color-bounded hypergraphs with restricted structures, first we deal with
interval hypergraphs and point out some special coloring properties. Throughout
this section we assume a host path graph with vertex order x1, x2, . . . , xn. Since there
exists a unique path from xi to xj for every 1 ≤ i ≤ j ≤ n, we shall write [xi, xj ]
for the ‘closed interval’ and, analogously, the notation for the ‘open’ and ‘half-open’
intervals will be used, too, as introduced at the beginning of this chapter.

It was proved in [29] that no gaps can occur in the chromatic spectrum of any
mixed interval hypergraph. Our first theorem generalizes this result.

Theorem 14. Every colorable interval hypergraph I = (X, E , s, t) has a gap-free
chromatic spectrum, and its lower chromatic number is equal to s = maxEi∈E si.

Proof Trivially, if I is colorable, then its lower chromatic number is at least s.
Therefore, to prove both statements of the theorem, it is enough to show that any
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k-coloring of I can be transformed to a proper (k − 1)-coloring, whenever k > s
holds. (This recoloring process is illustrated by an example on Figure 6.)

Consider a k-coloring ϕ of I (k > s) and determine the following two vertices.
Let a be the vertex for which [x1, a] is the inclusion-wise minimal starting interval
containing all the k colors, that is |ϕ[x1, a]| = k and ϕ(a) /∈ ϕ[x1, a[. Then counting
the different colors backwards from a in the ordering, choose the vertex b for which
|ϕ[b, a]| = s + 1 and |ϕ]b, a[| = s − 1.

Next, we show that the conditions of the Recoloring Lemma are fulfilled by

A = [x1, b], B =]b, a[, C = [a, xn], α = ϕ(a) and β = ϕ(b).

• Since α /∈ ϕ[x1, a[ and β /∈ ϕ ]b, a[, the conditions (1) and 2(b) are satisfied.

• If a hyperedge Ei meets both A and C, then it surely contains the interval
[b, a]. Hence, for this edge |ϕ(Ei ∩ B)| = s − 1 and α ∈ ϕ(Ei ∩ C) hold,
complying with 2(c) and 2(a).

Consequently, the Recoloring Lemma can be applied, assuring that the transpo-
sition of colors α and β on the interval C yields a proper coloring ϕ′ of I. After this
recoloring the interval [x1, a] has only k − 1 colors, and either a (k − 1)-coloring is
obtained, or we still have a k-coloring for which a similar recoloring can be applied
again. In the latter case, however, the cardinality of the set C is smaller than it was
in the previous recoloring, hence the repeated application of this procedure yields a
(k − 1)-coloring of I in a finite number of steps.

Starting with k = χ̄(I), the number of colors can be decreased one by one, thus
a coloring is generated for all k ∈ {s, s + 1, . . . , χ̄(I)}. This completes the proof of
the theorem. �

Remark 12.

1. Having a k-coloring ( k > s) as input of the above algorithm, the number of
vertices in [x1, a[ increases by at least one in each recoloring, until the selected
color gets eliminated. Therefore it needs at most O(n) phases of recoloring
to generate a (k − 1)-coloring. Moreover, based on the previous proof, one
phase can be implemented in O(n) time. Hence, it takes O(n2) steps to get a
(k − 1)-coloring.

2. If our goal is to obtain a χ-coloring from a given k-coloring ( k > χ = s), the
above algorithm can be slightly modified. In this case in each recoloring phase
let a be the vertex for which [x1, a] is the inclusion-wise minimal starting
interval containing s + 1 different colors. In this way, we can directly obtain
a χ-coloring in O(n2) time.
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Evidently, every interval [s, t] of positive integers is a feasible set of some color-
bounded interval hypergraph. (E.g., consider a hypergraph with only one (s, t)-edge
containing all the at least t vertices.) Combining this with Theorem 14, the following
characterization is obtained:

Corollary 13. For a set S of positive integers there exists a color-bounded interval
hypergraph I whose feasible set is Φ(I) = S if and only if S is an interval of
integers.

There is an efficient algorithm for mixed interval hypergraphs to test their col-
orability, and also to compute their upper chromatic number [16]. But when the
colorings of color-bounded interval hypergraphs are considered in general, this seems
to be a more difficult problem. Nevertheless, there are some particular types of in-
terval hypergraphs for which we can design polynomial-time algorithms to decide
whether they are colorable.

Proposition 21. If I is an interval hypergraph satisfying the further condition

s = max
Ei∈E

si ≤ min
Ei∈E

ti = t

then I is colorable and χ̄(I) ≥ t.

Proof For any s ≤ k ≤ t, let the vertex xi get color i (mod k) for i = 1, 2, . . . , n.
This periodical coloring is proper for I, because each Ei gets precisely k colors, due
to the assumptions si ≤ s ≤ k ≤ t ≤ ti ≤ |Ei|. �

Let us note that mixed interval hypergraphs do belong to this class after the
contraction of C-edges of size 2, provided that no D-edge of size 1 arises (that is, the
original hypergraph does not contain an obvious obstruction against colorability).

Proposition 22. The colorability of interval hypergraphs without edges of more
than three vertices can be decided in linear time.

Proof First, we contract each (1, 1)-edge to one vertex, and then we check whether
every edge with si = j (j = 2, 3) contains at least j vertices. If this trivial necessary
condition holds, then the contracted (and hence also the original) hypergraph is
colorable. For example, one can get a proper coloring by the following procedure:

Let ϕ(x1) = 1 and ϕ(x2) = 2; and for i = 3, . . . , n let ϕ(xi) = ϕ(xi−2) unless xi

is the last vertex of a (3, 3)-edge. In the latter case, let xi get a third color, which is
different from both previous ones ϕ(xi−1) and ϕ(xi−2). Then every non-(3, 3)-edge
of the contracted hypergraph gets precisely two colors, hence the coloring is proper.
�

Here we only mention, without proof, that there is a greedy coloring algorithm
also for another type of color-bounded interval hypergraphs. The constraint is that
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any two hyperedges of I should be disjoint or one of them should contain the other.
It can be decided in polynomial time whether such a hypergraph is colorable, and
if it is, the algorithm computes the upper chromatic number χ(I), and produces a
χ(I)-coloring.

7.3 Hypergraphs of directed paths

In this section we consider two intermediate classes between unrestricted hypertrees
and the interval hypergraphs studied in the previous section.

Rooted Directed Path hypertrees (RDPs). Assume that a root vertex r
is fixed in the host tree T , and that each edge of T is oriented in the direction
away from the root (i.e., from parent to child). The hypertree T is termed a Rooted
Directed Path hypergraph (hypertree) if each hyperedge induces a directed path in
the rooted host tree. We shall use the shorthand RDP to refer to such structures.
It will be assumed throughout that T and T have the same vertex set, namely
X = {x1, . . . , xn}. An equivalent definition without orienting the edges would be to
assume that the vertices within each hyperedge Ei of the hypertree have mutually
distinct distances from the root.

Directed Path hypertrees (DPs). A less restricted type of hypertrees is
obtained when the host graph is a tree oriented in an arbitrary way, and each
hyperedge corresponds to a directed path on the host tree. These hypertrees are
termed Directed Path hypergraphs (hypertrees), sometimes abbreviated as DP.

Though RDPs and DPs may look fairly similar for the first sight, it will turn out
that the former share several special features with interval hypergraphs, while the
latter behave quite differently, e.g. regarding gaps and lower chromatic number.

Let us begin with the more restricted subclass of RDPs, which admits results
analogous to interval hypergraphs. Having the orientation away from the root fixed,
T (a) will denote the subtree rooted at vertex a ∈ X, that is the subtree induced by
the set of vertices reachable from a along directed paths.

The interval hypergraphs studied in the previous section are special RDP hy-
pertrees with a path as their host tree, with root r = x1, and with the natural
orientation x1 → . . . → xn. As it was stated in Theorem 14, their chromatic spec-
trum is gap-free and their lower chromatic number is equal to max si.

As shown next, concerning feasible sets and lower chromatic number, RDPs have
the same properties.

Theorem 15. Every colorable RDP has a gap-free chromatic spectrum and its lower
chromatic number is equal to s = maxEi∈E si. Moreover, each interval of positive
integers can be obtained as a feasible set of some RDP.
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Proof The second part of the theorem is an immediate consequence of Corollary 13.
For the first part, let T = (X, E , s, t) be an RDP hypertree. To prove the equation
χ(T ) = s and that there are no gaps in the chromatic spectrum of T , we apply an
algorithm based on the Recoloring Lemma.

Consider a k-coloring ϕ of T , where k > s and the rooted directed host tree is
T with root x1. First, fix a color α from ϕ(T ), which is different from the color of
the root.

(1) Determine a vertex a of the color class α having smallest distance from the
root in T . So, the path [x1, a[ is devoid of color α.

(2) If there exists a color γ not used on the path [x1, a], then let the colors α and
γ be switched on the subtree T (a). If a hyperedge Ei intersects the recolored
subtree T (a), it can have ‘outside’ vertices only from the path [x1, a[, which is
devoid of both colors α and γ. Therefore, the colors α and γ were everywhere
switched in Ei and the number of colors is unchanged. Hence, the obtained
coloring ϕ′ is evidently proper for T and we can continue with step (4) below.

(3) In the other case when all the k colors (k ≥ s + 1) are used on the path [x1, a],
determine the vertex b from this path, complying with |ϕ[b, a]| = s + 1 and
|ϕ ]b, a[| = s − 1.

To apply the Recoloring Lemma, consider the following sets A, B, C and colors
α, β :

C = V (T (a)), B =]b, a[, A = X \ (B ∪ C), α = ϕ(a), β = ϕ(b).

• Since α /∈ ϕ[x1, a[ and β /∈ ϕ ]b, a[, the condition (1) holds.

• The maximal directed path leading to a is unique, hence if a hyperedge
Ei meets both A and C, it contains the interval [b, a]. Therefore, Ei has
exactly s−1 colors from B, and has the color α on the vertex a ∈ Ei∩C,
complying with 2(c) and 2(a). Moreover, since the path [x1, a[ is devoid
of color α, the condition 2(b) automatically holds.

Since all the conditions are satisfied, due to the Recoloring Lemma, the trans-
position of colors α and β on the set C yields a coloring ϕ′ proper for the
hypertree T .

(4) If there is no vertex colored with α by the new coloring ϕ′, then we have
a proper (k − 1)-coloring. In the other case let ϕ := ϕ′ and continue the
procedure with step (1).

After a finite number of recolorings, the minimum distance between the root and
the vertices with color α increases. Thus, eventually we obtain a proper (k − 1)-
coloring.
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Figure 7: The structure of the DP-hypertree T 1
k in Example 2.

Therefore, if an RDP has a k-coloring for an integer k > s, then it also has a
(k − 1)-coloring. Taking into account further that χ(T ) ≥ s, these facts imply both
the equation χ(T ) = s and the assertion that the chromatic spectrum has no gaps.
�

Remark 13. Due to the above proof, there exists an algorithm for color-bounded
RDP hypertrees, which runs in O(n2) time (where n denotes the number of vertices)
and generates a χ-coloring from any given k-coloring ( k > χ = s).

In the remaining part of this section we show that there is a substantial difference
between the behavior of RDP and DP hypertrees concerning lower chromatic number
and feasible sets.

Proposition 23. For every positive integer d there exists a 3-uniform color-bounded
DP hypertree such that its lower chromatic number exceeds the value s by exactly d.

Example 2. We construct the hypergraph T 1
k = (X, E , s, t) (where k ≥ 3), satis-

fying the conditions of the proposition with d = k − 2, as follows. (The structure of
this hypertree is illustrated on Figure 7.) The vertex set consists of 2k + 1 vertices,
X = {v, x1, x2, . . . , xk, y1, y2, . . . , yk}, and there are two types of edges, E = E1 ∪ E2 :

• E1 : edges of the form {yi, v, xj}, with bounds (3, 3) for every 1 ≤ i ≤ k and
1 ≤ j ≤ k with i 6= j.

• E2 : edges of the form {yi, v, xi}, with bounds (2, 2) for every 1 ≤ i ≤ k.

We consider the directed host star with central vertex v, where each edge {yi, v}
is oriented towards v and each edge {v, xi} is oriented away from v. Since every
hyperedge is a directed path in this star, T 1

k is a DP hypertree.

73



Investigating the possible colorings of T 1
k :

(1) For every xi there exist (3, 3)-edges in E1, implying that xi has a different color
from v; and, similarly, each yi has a different color from v. Consequently, the
{yi, v, xi} edges from E2 can be colored with exactly two colors only if for each
1 ≤ i ≤ k the vertices xi and yi have the same color.

(2) Because of the (3, 3)-edges, for all pairs of indices i 6= j, vertices yi and xj have
different colors. Taking into consideration also (1), we get that the colors of
vertices v, x1, x2, . . . , xk are mutually different.

This means that in any coloring of T 1
k , at least k + 1 colors are used; that

is, χ(T 1
k ) ≥ (k + 1). To show that T 1

k is indeed (k + 1)-colorable, consider the
color classes {v}, {x1, y1}, {x2, y2}, . . . , {xk, yk}. As one can check, this determines
a proper coloring for T 1

k . (In fact this is the only one.)

For the 3-uniform DP hypertree T 1
k , we have s = 3 and χ(T 1

k ) = k + 1, thus the
considered difference χ − s is equal to k − 2 = d for every k ≥ 3. �

Note that, in order to increase the difference χ − s in DP hypertrees, we do not
need an increasing value of s : it can be arbitrarily large under any fixed s ≥ 3.

Concerning gaps in the chromatic spectrum, we prove:

Proposition 24. For every positive integer g, there exists a color-bounded DP
hypertree whose chromatic spectrum has a gap of size g.

Example 3. We prove this proposition by an extended version of Example 2 as it
can be seen on Figure 8. Let

T 2
k = (X, E , s, t), X = {x1, x2, . . . , xk, v, y1, y2, . . . , yk, z1, z2, . . . , zk}

and E = E1 ∪ E2 ∪ E3, where E1, E2 and their assigned values (si, ti) are the same
as in Example 2, whilst E3 contains the new edges {z1, z2, . . . , zk, v, xi} with bounds
(si, ti) = (k + 1, k + 1) for every 1 ≤ i ≤ k.

Obviously, this T 2
k is a DP hypertree and the effect of edges from E1 ∪ E2 is the

same as it was in the case of T 1
k . Therefore, the properties (1) and (2) of T 1

k are
valid for T 2

k , too.
Considering a coloring ϕ of T 2

k , there are two possibilities:

• If the vertices z1, z2, . . . , zk, v have mutually different colors, then because of
the (k + 1, k + 1)-edges from E3, each of x1, x2, . . . , xk must have a common
color with one of z1, z2 . . . , zk, v. According to (1), no new color can appear
on the vertices y1, y2, . . . , yk. As a consequence, ϕ has to be a coloring with
exactly k + 1 colors. To prove that a (k + 1)-coloring exists indeed, consider
the color classes {x1, y1, z1}, {x2, y2, z2}, . . . , {xk, yk, zk}, {v}. This is clearly a
proper coloring of T 2

k .
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Figure 8: The structure of the DP-hypertree T 2
k in Example 3.

• If there are two vertices with a common color among z1, z2, . . . , zk, v, then ac-
cording to the (k + 1, k + 1)-edges, each of the vertices x1, x2, . . . , xk has a
color different from the k colors of z1, z2, . . . , zk, v. Taking (2) into consider-
ation, those are k different colors on the vertices x1, x2, . . . , xk. According to
(1), no more new colors can appear on y1, y2, . . . , yk, hence precisely 2k colors
occur on the whole T 2

k . One of the possible 2k-colorings has the following
color classes: the singletons {z1}, {z2}, . . . , {zk−1}, the pair {zk, v}, moreover
{xi, yi} for every 1 ≤ i ≤ k.

Obviously, there is no more possibility for the coloring ϕ, thus the feasible set is
Φ(T 2

k ) = {k + 1, 2k} where the size of gap is k − 2 = g for every k ≥ 3. �

Note that in Examples 2 and 3 there are some redundant edges and a redundant
vertex, too. For instance, the vertex yk and the edges containing it may be canceled
without changing the coloring properties. We have kept them, however, because in
this way the description (and the argument, too) is simpler.

7.4 Hypertrees with unrestricted host trees

In this section we focus on color-bounded hypertrees in general. Despite still forming
a quite restricted class of hypergraphs, it will turn out that they represent nearly
all feasible sets belonging to color-bounded hypergraphs. Moreover, we prove that
every feasible set of hypertrees occurs already in the class of 4-uniform hypertrees.
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Theorem 16. Let S be a finite set of positive integers. There exists a color-bounded
hypertree T with feasible set Φ(T ) = S if and only if

(i) min (S) = 1 or min (S) = 2, and S contains all integers between min (S) and
max (S), or

(ii) min (S) ≥ 3.

Moreover, S is the feasible set of some r-uniform color-bounded hypertree, for an
arbitrarily prescribed r ≥ 4, if and only if it satisfies (i) or (ii).

This result will be proved at the end of this section. We first deal with the
special case of 2-colorable hypertrees. We are going to prove that their chromatic
spectrum is necessarily gap-free, in sharp contrast to the entire class of color-bounded
hypergraphs where every spectrum with r1 = 0, r2 > 0, and ri ≥ 0 (i ≥ 3, with any
finite number of nonzero values ri) appears.

Theorem 17. If a color-bounded hypertree is 2-colorable, then it has a gap-free
chromatic spectrum.

Proof If a hypertree T ∗ is 2-colorable, then s ≤ 2. To prove the theorem, it is
enough to show that from any k-coloring (k ≥ 4) of the 2-colorable T ∗, a proper
(k − 1)-coloring can be created, too.

First, fix a host tree, and let two adjacent vertices of this host tree be contracted
to one if they have the same color in the given k-coloring. After all such contractions
we have a host tree T and a k-coloring ϕ of the contracted hypertree T . Evidently,
every proper coloring of T can be extended to a proper coloring of T ∗. Because of
the contraction, ϕ colors any two neighboring vertices of T with different colors.

For a proper 2-coloring of a rooted tree (in the standard graph-theoretic sense)
we shall use the term alternate coloring , or call the tree alternately colored . In this
case the colors assigned to the root and to the neighbors of the root will be called
the first and the second color, respectively. At this point we fix an arbitrary root
vertex r in T and create an upper-root vertex r∗ colored differently from r, but
correspondingly to another vertex of T . We shall use also the terms grandparent
and grandchild for ‘parent of parent’ and for the converse relation, respectively.

Now, we give a procedure that transforms the k-coloring ϕ to a (k− 1)-coloring.
Since there are at least 4 colors in the coloring ϕ, there exists a vertex colored
differently from its grandparent. Choose a vertex with this property having the
largest distance from the root of T , and let it be denoted by x1, whilst the parent
and grandparent of x1 are denoted by y and z, respectively. Then determine all
the children of y colored with ϕ(x1) and denote them by x1, x2, . . . , xj . Due to the
extremal choice of x1, the subtrees T (x1), T (x2), . . . , T (xj) are alternately colored,
and their second color is ϕ(y).

To apply the Recoloring Lemma, we consider

C =

j
⋃

i=1

V (T (xi)), B = {y}, A = X\(B∪C), α = ϕ(x1) = . . . = ϕ(xj), β = ϕ(z).
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• Since α 6= ϕ(y) 6= β, the condition (1) holds.

• If a hyperedge Ei meets both A and C, it surely contains at least one of the
vertices x1, . . . , xj, hence α ∈ ϕ(Ei ∩ C) complying with 2(a). In this case Ei

also involves the vertex y, thus |ϕ(Ei ∩ B)| = 1 ≥ s − 1; that is, 2(c) holds.

Moreover, every child of y has an alternately colored subtree with second color
ϕ(y) 6= α, hence α occurs in T (y) only in the subtrees T (x1), T (x2), . . . , T (xj).
Consequently, the color α cannot occur in T (y)−C. Hence, if α ∈ ϕ(Ei ∩A),
then the hyperedge contains a vertex not belonging to T (y), therefore z ∈ Ei

and β ∈ ϕ(Ei) hold, ensuring 2(b).

Due to the Recoloring Lemma, a proper coloring is obtained by replacing the
color α with β on the set C (since β /∈ ϕ(C) ), and the number of vertices having
common color with their grandparent has increased. If it is a (k − 1)-coloring
(omitting the color α), then the procedure ends. Otherwise, the recoloring can be
repeated, and the increasing number of vertices having common color with their
grandparent assures that after a finite number of recolorings a (k − 1)-coloring is
obtained. This completes the proof. �

To investigate the feasible set and chromatic spectrum of hypertrees having no
colorings with fewer than 3 colors, first we give a construction by which a connection
is established between chromatic spectra of hypertrees and general hypergraphs.

Lemma 9. For every color-bounded hypergraph H with chromatic spectrum (r1, r2,
. . . , rn), there exists a color-bounded hypertree T whose chromatic spectrum is (p1,
p2, . . . , pn+1), where

p1 = 0 and pk+1 = rk for all 1 ≤ k ≤ n.

Proof Consider a color-bounded hypergraph H = (X, E , s, t) and transform it to
a hypertree T involving a new central vertex v, in the following way:

T = (X ′, E ′, s′, t′), X ′ = X ∪ {v}, E ′ = E1 ∪ E2,

E1 = {{x, v} | x ∈ X} and each of these edges has color-bounds (2,2),

E2 = {Ei∪{v} | Ei ∈ E} where every edge Ei ∪ {v} has bounds (si + 1, ti + 1).

Forced by the edges from E1, the central vertex v determines a singleton color
class in every proper coloring of T . Removing this singleton from any color partition
of T , every hyperedge Ei has colors fewer by one as Ei ∪ {v} had, hence a proper
color partition of H is obtained. Conversely, any proper color partition of H can be
supplemented by the singleton {v}, yielding a proper partition for T . Therefore, the
proper k-partitions of H are in one-to-one correspondence with the proper (k + 1)-
partitions of T ; that is, rk = pk+1. Clearly, p1 = 0 holds and there is a host star
graph of T with central vertex v, consequently T satisfies the properties as required.
�
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The following theorem concerning the possible chromatic spectra of mixed hy-
pergraphs has been proved in [32]:

(∗) Let (r1, r2, . . . , rℓ) be any vector of non-negative integers such that r1 = 0.
Then there exists a mixed hypergraph whose chromatic spectrum is equal to
(r1, r2, . . . , rℓ).

Combining this result with Lemma 9 above, we obtain an immediate consequence
for color-bounded hypertrees:

Corollary 14. Every finite sequence (r1, r2, . . . , rℓ) of nonnegative integers with
r1 = r2 = 0 is the chromatic spectrum of some color-bounded hypertree.

In contrast to this, the possible chromatic spectra of color-bounded hypertrees
with r1 > 0, or r1 = 0 and r2 > 0 have not yet been characterized.

Now we are in a position to complete the proof of the characterization theorem
for feasible sets of color-bounded hypertrees.

Proof of Theorem 16 The necessity of conditions (i) and (ii) follows directly
from Theorem 17 and from the fact that the chromatic spectrum of 1-colorable
color-bounded hypergraphs is gap-free.

The sufficiency of (i) has been shown in Corollary 13, and one can find similar
examples of 4-uniform interval hypergraphs, too. To verify the sufficiency of (ii), we
take into consideration that every set S of positive integers omitting 1 is the feasible
set of some (mixed) color-bounded hypergraph [29]. Then applying Lemma 9 it
is proved that every S omitting 1 and 2 is a feasible set of some color-bounded
hypertree.

In [32], for an arbitrarily given set S of integers at least 2, there was constructed
a mixed hypergraph with feasible set S and with edges of sizes 2 and 3 only. To
obtain a 4-uniform color-bounded hypertree from it, we first apply the construction
from Lemma 9, and then supplement the constructed hypertree T with vertices
v1, v2, v3 and with a new edge {v, v1, v2, v3} having color-bounds (1, 1). The edges
containing only 2 or 3 vertices can be extended by some vertices of {v1, v2, v3}, to
contain exactly 4 vertices. Since this modification has no effect on the coloring
properties of T , every set S satisfying min(S) ≥ 3 can be obtained as a feasible set
of some 4-uniform color-bounded hypertree.

A similar transformation — whose details are left to the reader — extends
4-uniform hypergraphs to r-uniform ones, for any r ≥ 5 as well. This completes
the proof of Theorem 16. �
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7.5 Time complexity of the colorability of hypertrees

It was shown in Section 7.2 that 3-uniform color-bounded interval hypergraphs ad-
mit efficient coloring algorithm. On the other hand, since it is NP-complete to decide
whether a 3-uniform mixed hypergraph is colorable [56], the constructive proof of
Lemma 9 implies the same complexity for 4-uniform color-bounded hypertrees (eas-
ily extendable to r-uniform ones with any r ≥ 4).

In this section we prove that the hypertree colorability problem is hard already
in the 3-uniform case.

Theorem 18. The decision problem of colorability is NP-complete on 3-uniform
color-bounded hypertrees.

Proof We are going to apply a reduction from the classical problem of Hyper-

graph 2-Coloring restricted to 3-uniform hypergraphs, which is a well-known
NP-complete problem [39].

First, we introduce the concepts of A-type and B-type subtrees for a given or-
dered 3-tuple (u, v, w) of vertices.

• The A-type subtree for (u, v, w) consists of the vertex set {y, e, u, v, w, f} and
of the following six edges:

– {y, e, f}, with color-bounds (3, 3),

– {y, e, u}, {y, u, v}, {y, v, w}, {y, w, f}, each of them with bounds (2, 2),

– {y, u, w}, with bounds (2, 3).

Vertex y will be the fixed central vertex of the color-bounded hypertree to be
constructed later; let us denote its color by 1.

Consider a proper coloring ϕ of the above subtree. Due to the edge with bounds
(3, 3), the colors 1, ϕ(e), and ϕ(f) are mutually different. There must exist
a vertex among u, v, w with color 1, otherwise the (2, 2) edges would force
that ϕ(e) = ϕ(u) = ϕ(v) = ϕ(w) = ϕ(f), what contradicts the constraint
ϕ(e) 6= ϕ(f). On the other hand, two vertices from {u, v, w} with color 1
would yield a monochromatic edge with y, but this is forbidden by the lower
color-bound si = 2. Hence, there is exactly one vertex of u, v, w with color 1.
Having chosen this vertex of color 1, the colors of the other two vertices are
determined by the (2,2) edges. Namely, there are three possible proper color
partitions for the A-type subtree of (u, v, w), determined by the position of
ϕ(y) = 1 in {u, v, w} :

– {y, u}, {e}, {v, w, f},

– {y, v}, {e, u}, {w, f},

– {y, w}, {e, u, v}, {f}.
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The corresponding colorings will be termed A-colorings of (u, v, w).

• The B-type subtree for the 3-tuple (u, v, w) is determined by the three edges
{y, u, v}, {y, v, w}, {y, w, u}, each of them assigned with the color-bounds
(2, 3). (In this case the ordering of (u, v, w) is irrelevant.)

These triples specify that there exists at most one vertex among u, v, w having
color ϕ(y) = 1. The corresponding colorings of the 3-tuple (u, v, w) will be
called B-colorings.

Now, for every 3-uniform hypergraph H = (X, E), we construct a 3-uniform
color-bounded hypertree T such that T is colorable if and only if H is 2-colorable.

Construction of T from H :
Fix a new vertex y as the central vertex of T , and then for every edge Ei = {a, b, c} of
H take 14 distinct new vertices ai, a

′
i, bi, b

′
i, ci, c

′
i, e1

i , e
2
i , e

3
i , e

4
i , f 1

i , f 2
i , f 3

i , f 4
i . In order

to force the A-coloring of the 3-tuples (a, ai, a
′
i), (b, bi, b

′
i), (c, ci, c

′
i) and (ai, bi, ci),

construct the A-type subtrees corresponding to them. (The last eight vertices ej
i , f

j
i

are used in these A-type subtrees, each vertex appearing in precisely one subtree.)
Finally, let the hypertree be supplemented with edges corresponding to the B-type
subtrees of the form (a′

i, b
′
i, c

′
i).

The 3-uniform hypergraph T obtained is a hypertree indeed, since the central
vertex y is contained in each edge; i.e., the host tree can be chosen as a star. The
vertices of H can belong to several H-edges and to the same number of A-type
subtrees of T accordingly, but the new vertices introduced at different H-edges are
all distinct.

If H is 2-colorable, then T is colorable:
For every fixed 2-coloring of an H-edge Ei = {a, b, c}, we give an appropriate coloring
of the respective A- and B-subtrees. We give the colors of vertices in tables according
to the arrangement





a b c
ai bi ci

a′
i b′i c′i



 (⋆)

Assume a coloring of H with colors 1 and 2. We assign the color 1 to y. If the colors
of (a, b, c) are (1, 1, 2), (1, 2, 1), (1, 2, 2), or (2, 1, 2), then one possible combination
of colors for the nine vertices is shown in the following tables:





1 1 2
2 2 1
2 2 3



 ,





1 2 1
2 1 3
2 3 3



 ,





1 2 2
3 1 2
3 3 1



 ,





2 1 2
1 2 2
3 2 1



 .

The cases where the colors of (a, b, c) are (2, 1, 1) or (2, 2, 1), can be traced back by
symmetry to the cases (1, 1, 2) and (1, 2, 2), respectively. (Because of the ordering,
this reduction does not apply to (1, 2, 1) and (2, 1, 2).)
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Having the coloring patterns on these triples, the colors for the vertices ej
i and

f j
i can be chosen appropriately.

Consequently, any 2-coloring of H — assuming colors 1 and 2 — can be trans-
formed to a 3-coloring of T , where the color of y is 1, the vertices from H keep their
original colors, and the new vertices are colored as shown in the tables above.

If T is colorable, then H is 2-colorable:
Assume a feasible coloring ϕ of T , where the color of y is denoted by 1. For a subtree
belonging to an edge Ei of H, consider the table (⋆). Every column corresponds a
3-tuple A-colored by ϕ, hence there occurs exactly one vertex with color 1 in each
column. Color 1 appears precisely once in the second row (A-coloring) and at most
once in the third row (B-coloring). Thus, the first row (a, b, c) has one or two vertices
with color 1. This holds for every Ei, therefore each edge of H has vertices from
both types: colored with 1 and with another color by ϕ. Consequently, a feasible
2-coloring of H is obtained if we keep the color class 1 and replace all the other
colors with color 2.

Since Hypergraph 2-Coloring is NP-complete, the two-way correspondence
between the colorings of H and T described above implies that the colorability
problem of 3-uniform color-bounded hypertrees is NP-complete, too. �

Remark 14.
By the construction above, we also obtain that the colorability problem of (3-

uniform) color-bounded hypertrees remains NP-complete even if the host tree is re-
stricted to stars.

7.6 Circular hypergraphs

In this section we investigate the coloring properties of circular color-bounded hy-
pergraphs, a slight extension of interval hypergraphs. A hypergraph H is called
circular if there exists a host cycle such that every hyperedge of H induces a con-
nected subgraph (path or the entire cycle), so-called arc, on the host cycle. In the
theory of mixed hypergraphs, this class has been studied e.g. in (Voloshin, Voss
[61, 62]).

We assume a fixed positive direction around the cycle, and then the arc [x, y]
denotes the vertex set of the uniquely determined path leading from x to y in
positive direction on the host cycle. We shall use the notation ]x, y], [x, y[, and ]x, y[
for (half-) open paths analogously.

As it was proved in Section 7.2, for any colorable interval hypergraph I the lower
chromatic number χ(I) is equal to s = max si, and there is a polynomial-time algo-
rithm to get a proper χ(I)-coloring from an arbitrarily given proper coloring of I.
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We are going to show that the former property is not valid for circular hypergraphs;
in fact, the difference χ− s can be arbitrarily large. But, on the other hand, assum-
ing a fixed value of s, a sharp upper bound will be given for the lower chromatic
number χ. We shall prove further that the feasible sets of circular hypergraphs are
more restricted than it was in the case of hypertrees.

Proposition 25. For every positive integer k, there exists a uniform circular color-
bounded hypergraph H such that the difference χ(H) − maxEi∈E si is equal to k.

Proof Given k ∈ N, consider the circular hypergraph H on n = 2k + 1 vertices
where the edge set contains all the arcs consisting of k + 1 consecutive vertices from
the host cycle. We prescribe si = ti = k + 1 colors on each hyperedge.

Since n = 2k + 1, any two vertices belong to a common |Ei| = si edge and,
consequently, they must get different colors. Thus, H is uniquely colorable with
2k + 1 = χ(H) colors, and the difference is χ(H) − max si = k, as claimed. �

Theorem 19. If the circular color-bounded hypergraph H with maxEi∈E si = s is
colorable, then the lower chromatic number χ(H) is at most 2s−1; and if the upper
chromatic number is χ̄(H) ≥ 2s− 1, then there is no gap in the chromatic spectrum
from 2s − 1 to χ̄(H).

Proof The theorem is clearly valid for hypergraphs H such that χ̄(H) < 2s or
s = 1. To prove it for χ̄(H) ≥ 2s and s ≥ 2, it will suffice to show that any k-
coloring (k ≥ 2s) of H can be transformed to a (k−1)-coloring. Then, starting from
a χ̄(H)-coloring, one can apply this transformation χ̄(H) − 2s + 1 times and reach
a (2s − 1)-coloring via creating colorings one by one for each intermediate number
of colors.

To reduce the number of colors from k ≥ 2s to k − 1, we present the following
procedure.

Given a k-coloring ϕ of the hypergraph H, let us choose two vertices a and b such
that the arc ]a, b[ is the longest one containing exactly k − 1 colors. Consequently,
a and b have the same color α, which is the color omitted in ϕ ]a, b[. If there exists
only one vertex colored with α, we take a = b; in this case a recoloring without color
α will be obtained.

Then we fix intervals ]a, a∗] and [b∗, b[, such that each of them contains precisely
s− 1 colors. Since their union has at most 2s− 2 < k− 1 colors, there exists a color
β in ϕ ]a, b[ that does not occur in ϕ(]a, a∗] ∪ [b∗, b[).

We are going to apply the Recoloring Lemma with

A =]a∗, b∗[, B =]a, a∗] ∪ [b∗, b[, C = [b, a], α = ϕ(a) = ϕ(b) and β.

• Since ϕ(B) is devoid of colors α and β, the condition (1) is satisfied.

• If a hyperedge E meets both A and C, it wholly involves at least one of
the intervals [a, a∗] and [b∗, b], thus α ∈ ϕ(E ∩ C) and |ϕ(E ∩ B)| ≥ s − 1
hold, complying with 2(a) and 2(c). Since α /∈ ϕ(A), the condition 2(b)
automatically holds.
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By the Recoloring Lemma, the transposition of colors α and β on the arc C yields
a proper coloring ϕ′. If ϕ′ is a (k − 1)-coloring, the algorithm stops, otherwise, the
arc ]a, b[ can be extended by at least two vertices such that it still has precisely
k − 1 different colors and the recoloring procedure can be repeated. In this way
the longest arc of the host cycle with exactly k − 1 colors gets extended in every
recoloring. Hence, the algorithm yields a proper (k − 1)-coloring of H after a finite
number of steps. This completes the proof of the theorem. �

Note that the upper bound 2s − 1 is tight for the lower chromatic number of
circular color-bounded hypergraphs, for any s, as shown by Proposition 25.

For s ≤ 2, we get the following corollary:

Corollary 15. If a circular color-bounded hypergraph is colorable and s ≤ 2 holds,
then the chromatic spectrum is gap-free and the lower chromatic number is at most 3.

Proof We apply Theorem 19. If s = 1, then 2s − 1 = 1 = χ(H), and obviously
no gaps can occur. In the other case, s = 2 implies that χ(H) = 2 or χ(H) = 3,
and that there cannot be a gap at any integer k ≥ 2s − 1 = 3. Thus, the whole
chromatic spectrum is gap-free. �

The condition s ≤ 2 is valid for all circular mixed hypergraphs, therefore the
previous corollary already implies

Corollary 16. ([35]) Every colorable circular mixed hypergraph H has a gap-free
chromatic spectrum, and the lower chromatic number is at most 3.

Remark 15. ¿From an algorithmic point of view, the above proof has the following
consequence. For a generic input color-bounded circular hypergraph with a given
k-coloring ( k > χ), a (k − 1)-coloring can be determined in O(n2) time (where n
denotes the number of vertices).
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8 Stably bounded hypergraphs:

model comparison

The main goal of this chapter is to describe a unified framework for various concepts
in the coloring theory of hypergraphs, and to study how some of its naturally arising
subclasses are interrelated. The model presented here [6] includes, as particular
cases, the proper (vertex) colorings in the classical sense, moreover the class of mixed
hypergraphs, and also the color-bounded hypergraphs that have been introduced in
Chapters 6 and 7.

While revising the manuscript of [6], we have learned that a subclass of stably
bounded hypergraphs — prescribing only the upper monochromatic bound b —
was studied previously in [50], [39] and [11], especially concerning approximation
algorithms for the minimum number of colors in a proper coloring.

Although more general than all those, our present model with its four color-
bound functions is still a subclass of the ‘pattern hypergraphs’ introduced by Dvořák
et al. in [20], since in the latter the collection of feasible coloring patterns may be
specified for each edge separately. Compared to that, however, our more restrictive
conditions allow us to prove stronger results.

The essence of this model is that we can prescribe local constraints not only for
the cardinality of the largest polychromatic subset, but also for that of the largest
monochromatic one. That is, every hyperedge Ei is associated with four color-
bounds si, ti, ai, and bi. They prescribe that in a proper coloring the edge Ei has
to get at least si and at most ti different colors; and, on the other hand, there must
exist a color occurring at least ai times inside the edge, while there exists no color
occurring more than bi times.

This extension of the notion of color-bounded hypergraphs is reasonable from a
theoretical point of view, since the new functions ai and bi are the monochromatic
analogies to the earlier polychromatic bounds si and ti. Furthermore, the extension
has a strong practical motivation, too. Assigning types (colors) to the elements of a
complex system (i.e., to the vertices), it is a quite frequent case that the constraints
concern the number of occurrences of fixed types inside the hyperedges. For instance,
we may have a condition that in a 12-element group Ei there should exist at least four
elements labeled with type A, three or four elements should be labeled with type B,
and the remaining vertices should be from types C and D. Although the basic
definition of stably bounded hypergraphs contains no direct condition regarding the
number of fixed types, we will see in Chapter 9 that the bounds ai and bi offer a
possibility for a concise description. Consequently, stably bounded hypergraphs can
be applied also for modeling these frequently appearing problems.

Conditions of the types si = 1, ti = |Ei|, ai = 1, and bi = |Ei| have no effect on
the colorability properties of H, because they are trivially satisfied in every coloring.
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For this reason, we may restrict our attention to the subset of {s, t,a, b} that really
means some conditions on at least one edge. We shall use Capital letters to indicate
them. For instance, by an (S, T )-hypergraph we mean one where ai = 1 and bi = |Ei|
hold for all edges. In such hypergraphs it is usually the case — though not required
by definition — that there is at least one edge Ei′ with si′ > 1 and at least one edge
Ei′′ with ti′′ < |Ei′′ |. Otherwise, e.g. if si = 1 also holds for all i, we may simply call
it a T -hypergraph.

8.1 Small values and reductions

Here we point out some simple relations among the color-bound functions s, t,a, b.
It will turn out that on 3-uniform hypergraphs without further restrictions, four
different models are equivalent. On the other hand, for hypergraphs with arbitrary
edge sizes, one of them is universal.

Proposition 26. Let Ei be an edge in a hypergraph H = (X, E , s, t,a, b). If
|Ei| ≤ 3, then for the largest cardinalities of polychromatic and monochromatic
subsets of Ei, π(Ei) + µ(Ei) = |Ei| + 1 holds.

Proof It suffices to observe that any Ei has a unique partition into 1 or |Ei| classes,
verifying π(Ei) + µ(Ei) = |Ei| + 1 for such trivial partitions; moreover, if |Ei| = 3,
then the size distribution in precisely two nonempty partition classes is uniquely
determined as (2, 1), so that π(Ei) = µ(Ei) = 2 in this case. �

Corollary 17. Let Ei ∈ E be an edge with at most three vertices.

1. If |Ei| = 1, then si = ti = ai = bi = 1 necessarily holds, and the edge may be
deleted without changing the coloring properties of H.

2. If |Ei| = 2, then between the local conditions the following equivalences are
valid for k = 1, 2.

(i) si = k ⇐⇒ bi = 3 − k,

(ii) ai = k ⇐⇒ ti = 3 − k.

3. If |Ei| = 3, then between the local conditions the following equivalences are
valid for k = 1, 2, 3.

(i) si = k ⇐⇒ bi = 4 − k,

(ii) ai = k ⇐⇒ ti = 4 − k.

An important consequence is that, in the restricted class of 3-uniform hyper-
graphs, each pair in (s, b) × (t,a) represents any nontrivial combination of s, t,a, b
in full generality:
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Corollary 18. If each edge of H = (X, E , s, t,a, b) has at most three vertices, then
H has an equivalent description as an

• (S, T )-hypergraph,

• (S, A)-hypergraph,

• (T, B)-hypergraph,

• (A, B)-hypergraph.

Proof Based on Corollary 17, every s-condition and a-condition can be transcribed
to an equivalent b-condition and t-condition, respectively; and vice versa. �

The coincidences of conditions above do not carry over for edges with |Ei| > 3.
Indeed, a 4-element set admits 2-partitions of both types 2 + 2 and 3 + 1 (and the
situation is even worse for larger edges), hence there is no strict relation between
π(Ei) and µ(Ei) in either direction. Nevertheless, the following implications remain
valid for edges of any size, by the pigeon-hole principle.

Proposition 27. Let Ei be any edge in a hypergraph H = (X, E , s, t,a, b). Then,
between the conditions the following equivalences are valid.

(i) si = 2 ⇐⇒ bi = |Ei| − 1,

(ii) ai = 2 ⇐⇒ ti = |Ei| − 1. �

In particular, for mixed hypergraphs we obtain

Corollary 19. Every mixed hypergraph is a member of all the four classes of
(S, T )-, (S, A)-, (T, B)-, and (A, B)-hypergraphs at the same time.

Proof Every C-edge Ei can be interpreted as (si, ai) = (1, 2), a D-edge Ei cor-
responds to the bounds (si, ai) = (2, 1), whereas a bi-edge Ei is equivalent to the
bounds (si, ai) = (2, 2). This yields membership in (S, A). Transcription to the
other three models can be done via Proposition 27. �

Remark 16. Contrary to mixed hypergraphs, in the general model the edges Ei

of cardinality 2 with ti = 1 or ai = 2 usually cannot be contracted, despite their
two vertices must get the same color in every proper coloring. The reason is that in
(a, b) the multiplicities of colors are of essence. To keep track of them, one would
need to introduce weighted vertices and interpret (a, b) as weighted conditions. We
do not study weighted hypergraphs here.
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8.2 Class reductions and colorability

Some combinations between color-bound conditions can be done; moreover, some
of their combinations always admit a proper coloring. We summarize these facts as
follows.

Table 1

1. Colorable pairs:

• (S, B)-hypergraphs allow every edge to be polychromatic, therefore the
upper chromatic number equals the number of vertices.

• (T, A)-hypergraphs allow every edge to be monochromatic, therefore the
lower chromatic number equals 1.

2. Combinations admitting uncolorability:

These are the sets of color-bound functions intersecting both (S, B) and (T, A);
i.e., the minimal such sets are the pairs (S, T ), (S, A), (A, B), and (T, B). The
following operations show that all of them can be reduced to (S, A).

• bi < |Ei| : insert all (bi + 1)-subsets of Ei with lower color-bound s = 2,
and omit the condition bi from Ei. This eliminates the function b.

• ti < |Ei| : insert all (ti + 1)-subsets of Ei with lower color-bound a = 2,
and omit the condition ti from Ei. This eliminates the function t.

3. Universal classes for colorability problems:

• S-hypergraphs [19] are universal models for n-colorable stably bounded
structures where the question is to determine χ.

• A-hypergraphs are universal models for 1-colorable stably bounded struc-
tures where the question is to determine χ.

• (S, A)-hypergraphs are universal models for stably bounded structures
where both χ and χ are of interest.

Concerning feasible sets, the following assertions are valid.

Proposition 28. If a hypergraph H = (X, E , s, t,a, b) has χ(H) = 1 or χ(H) =
|X|, then its chromatic spectrum is gap-free. Moreover, every interval of positive
integers can be realized as the feasible set of hypergraphs with just one edge in each
of the four types (S, T ), (S, A), (T, B), and (A, B); and such a realization is possible
even with an S-hypergraph and with a B-hypergraph.
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Proof If χ(H) = 1, then we have non-restrictive bounds si = 1 and bi = |Ei| for all
edges Ei. Let ϕ be a k-coloring of H with k > 1. Taking the union of two arbitrarily
chosen color classes of ϕ as just one new color class, no edge Ei will have smaller
µ(Ei) or larger π(Ei), hence a proper (k − 1)-coloring is constructed. Starting from
k = χ(H), we obtain that all numbers of colors between 1 and χ admit a proper
coloring.

Similarly, for χ(H) = |X| we have ti = |Ei| and ai = 1 for all Ei. If ϕ is a
k-coloring of H with k < |X|, then some color class has more than one vertex, and
splitting it into two nonempty classes in an arbitrary way we cannot violate the
conditions si and bi, so that a proper (k + 1)-coloring is obtained. Starting from
k = χ(H), all numbers of colors between χ and |X| admit a proper coloring.

In order to construct a hypergraph H = (X, E) with feasible set Φ(H) = {ℓ |
p ≤ ℓ ≤ q} for any given q ≥ p ≥ 1, we let |X| = q that will ensure χ = q
for both S- and B-hypergraphs. To satisfy the equation χ = p, we may simply
assign s = p to an edge whose cardinality is between p and q. In type B, this edge
should have cardinality exactly p, assigned with the color-bound b = 1 that makes
it polychromatic. �

Remark 17. Conditions involving S are more flexible than those with B. Namely,
for the types (S, T ) and (S, A) we may take s(X) = p with any number n of vertices,
because either of the conditions t(X) = q and a(X) = n − q + 1 yields then χ = q,
as the total number of colors cannot be larger than n−a(X)+1. On the other hand,
concerning the hypergraph H = (X, {X}) the only possible choice for b(X) is ⌈n/p⌉,
which guarantees χ = p if and only if (p − 1)⌈n/p⌉ ≤ n − 1. Thus, for (T, B) and
(A, B) the set of feasible orders n is precisely

⋃

b≥1 {n ∈ N | pb − b + 1 ≤ n ≤ pb}.

Proposition 29. For every finite sequence (r2, . . . , rk) of nonnegative integers with
rk > 0, there exist (S, T )-, (S, A)-, (A, B)-, and (T, B)-hypergraphs whose upper
chromatic number is k and chromatic spectrum is (r1 = 0, r2, . . . , rk).

Proof As proved by Král’ in [32], every spectrum (r2, . . . , rk) occurs in non-1-
colorable (i.e., with r1 = 0) mixed hypergraphs. Since every mixed hypergraph
belongs to all of the four types by Corollary 19, the assertion follows. �

Hence, in hypergraphs H belonging to class types other than the trivially col-
orable ones which are subsets of {S, B} and {T, A}, it remains a substantial question
to determine the feasible set Φ(H). On the other hand, chromatic spectra and chro-
matic polynomials are of interest for trivially colorable classes, too.

8.3 Large gaps in the chromatic spectrum

Jiang et al. constructed in [29] a mixed hypergraph on 2k+4 vertices and with a gap
of size k in the chromatic spectrum, for all k ≥ 1. This 2k+4 is the smallest possible
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order, what follows from another result of the same paper (though this consequence
is not formulated there explicitly).

In this section we extend this result by pointing out that the minimality of 2k+4
for a gap of size k remains valid in the more general class of (T, A, B)-hypergraphs,
too. In contrast to this, the exact minimum for (S, A)- and (S, T )-hypergraphs will
be shown to be k + 5. First, we prove an assertion that we shall use as a lemma but
it can be of interest in itself, too. It contains, as subcases, all the types of (T, B)-,
(A, B)-, and mixed hypergraphs.

Proposition 30. If a (T, A, B)-hypergraph on n vertices has a gap at g, then its
lower chromatic number χ is at least 2g − n + 2.

Proof By definition, there exists an integer j ≥ g + 1 such that the hypergraph
has a coloring ϕ with exactly j colors but there is no proper (j − 1)-coloring.

Suppose first that 2j − 2 ≥ n. Then there occur at least 2j − n ≥ 2 singleton
color classes in ϕ. Considering two of them, say {x} and {y}, their union yields a
non-feasible (j − 1)-coloring. After the identification of ϕ(x) and ϕ(y), however, all
the bounds ti and ai remain fulfilled. Consequently, the obtained (j − 1)-coloring
can be non-feasible only because of an edge Ei containing both vertices x and y and
having bound bi = 1. Thus, x and y must have different colors in every feasible
coloring. For the same reason, any two vertices from the at least 2j − n singletons
are differently colored in any χ-coloring, too. This implies χ ≥ 2j − n. Due to the
condition j ≥ g + 1, the inequality χ ≥ 2g − n + 2 follows.

On the other hand, if 2j − 2 < n, considering the gap at g ≤ j − 1 we obtain
the upper bound 2g − n + 2 ≤ 2j − n ≤ 1, thus the inequality χ ≥ 2g − n + 2
automatically holds. �

We mention the following consequence that was proved for mixed hypergraphs
in [29]. Tightness follows from a construction of the same paper.

Corollary 20. If a (T, A, B)-hypergraph is ℓ-colorable and has a gap at g, then it
has at least 2g + 2 − ℓ vertices.

Theorem 20. If a (T, A, B)-hypergraph has a gap of size k ≥ 1 in its chromatic
spectrum, then it has at least 2k + 4 vertices. Moreover, this bound is sharp; that
is, for every positive integer k there exist mixed, (T, B)- and (A, B)-hypergraphs on
|X| = 2k + 4 vertices, whose chromatic spectrum has a gap of size k.

Proof Suppose that a (T, A, B)-hypergraph has an ℓ-coloring and an (ℓ + k + 1)-
coloring, but all integers in between are gaps. Then we can apply Proposition 30
with g = ℓ + k, so that 2ℓ + 2k − n + 2 ≤ χ ≤ ℓ is obtained. Moreover, every
1-colorable hypergraph has continuous chromatic spectrum, hence ℓ ≥ 2 holds and
the above facts imply that the lower bound n ≥ ℓ + 2k + 2 ≥ 2k + 4 is valid.

To show that the bound is sharp, we consider the construction from [29]. The hy-
pergraph H2,k+3 is defined on the (2k+4)-element vertex set {x1, x2, a1, a2, . . . , ak+1,
b1, b2, . . . , bk+1}, with the following edges:
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• Triples of the form {xi, aj, bj} for i = 1, 2 and for all 1 ≤ j ≤ k+1. They are bi-
edges in the mixed hypergraph and have bounds (t, b) = (2, 2) or (a, b) = (2, 2)
in the other models.

• Quadruples of the form {ai, aj, bi, bj} for all 1 ≤ i < j ≤ k + 1, as D-edges,
with bounds (t, b) = (4, 3) or (a, b) = (1, 3).

• Triples of the form {ai, aj , bi} and {ai, bi, bj} for any two distinct indices i, j ∈
{1, 2, . . . , k + 1}. They are C-edges or equivalently have bounds (t, b) = (2, 3)
and (a, b) = (2, 3), respectively.

• The pair {x1, x2} as a D-edge, with bounds (t, b) = (2, 1) or (a, b) = (1, 1).

The feasible set of this hypergraph is {2, k + 3}, as it was proved in [29]. This fact
remains valid in all of the three models considered, thus the assertion follows. �

In [4] we proved that (S, T )-hypergraphs can have a gap of size k only if the
number of vertices is at least k + 5, and this bound is tight. Now, we extend the
lower bound of this result to all stably bounded hypergraphs, and show that it is
tight already for (S, A)-hypergraphs.

Theorem 21. If a stably bounded hypergraph has a gap of size k ≥ 1 in its chro-
matic spectrum, then it has at least k + 5 vertices. Moreover, this estimate is sharp,
already for the types (S, A) and (S, T ); that is, for every positive integer k there exist
(S, A)- and (S, T )-hypergraphs on |X| = k + 5 vertices, whose chromatic spectrum
has a gap of size k.

Proof We have proved in Proposition 28 that if a stably bounded hypergraph has
a 1-coloring or a totally polychromatic n-coloring, then its chromatic spectrum is
gap-free. Hence, the only possibility for having a gap of size k ≥ 1 on fewer than
k + 5 vertices would be with n = k + 4 and with the feasible set {2, k + 3}.

Assume for a contradiction that this is the case. Because of 2-colorability, the
inequality si ≤ 2 is valid for every edge Ei. Let now ϕ be a coloring with precisely
k + 3 = n − 1 colors. Then k + 2 of the color classes (i.e., all but one) in ϕ are
singletons. Taking the union of two arbitrarily chosen 1-element classes, say {x}
and {y}, we get a non-feasible color partition. This change can never decrease the
size of monochromatic subsets or increase the number of distinct colors occurring
inside any edge, therefore all of the bounds ai and ti are kept satisfied.

Hence, there exists an edge Ei for which either the bound si (what is at most
two) gets violated, or its monochromatic subset becomes larger than bi. The former
means, however, that Ei becomes monochromatic. That is, we have si = 2 and
Ei = {x, y}, hence x and y are colored differently in every feasible coloring. On the
other hand, since ϕ(x) 6= ϕ(y), in the modified coloring the color of {x, y} does not
occur on any other vertex. Hence, if bi gets violated, then bi = 1 must hold, and
again we can conclude that x and y are colored differently in every feasible coloring.
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This property is valid for any two of the k + 2 ≥ 3 singletons, what contradicts the
assumption that the hypergraph is 2-colorable. Hence, there cannot exist any stably
bounded hypergraphs with a gap of size k on fewer than k + 5 vertices.

To show that a gap of size k is realizable on k+5 vertices, we present a hypergraph
with feasible set {3, k + 4} on k + 5 vertices, for every positive integer k. This
hypergraph can be interpreted as (S, T )- and (S, A)-hypergraph as well.

Example 4. Consider the hypergraph Hk with vertex set X = {x1, x2, y1, y2, . . . ,
yk+3} and with edge set E = {{x1, x2, yi, yj} | 1 ≤ i < j ≤ k + 3}, where each of
the edges has bounds (s, t) = (3, 3) and (s, a) = (3, 2) in models (S, T ) and (S, A),
respectively. Since each hyperedge contains four vertices, the above bounds force
that every hyperedge has to have exactly three different colors.

If a proper coloring ϕ assigns different colors to x1 and x2, there appears exactly
one more color on the vertices y1, y2, . . . , yk+3. It is clearly realizable with color
classes {x1}, {x2}, and {y1, y2, . . . , yk+3}, hence H can be colored only with precisely
three colors in this case.

On the other hand, if ϕ assigns the same color to x1 and x2, the (3, 3)-edges
are properly colored if and only if any two distinct vertices yi and yj have colors
different from each other and from ϕ(x1), too. Thus, in this case we obtain a proper
(k + 4)-coloring.

Since there are no other cases, the feasible set is {3, k + 4}; that is, for every
k ≥ 1 the hypergraph Hk has a gap of size k on k + 5 vertices. �

Theorems 20 and 21 together characterize the minimum order of a hypergraph
of any nontrivial type for a gap of size k : the minimum is k + 5 if and only if the
type contains (S, T ) or (S, A), and it is 2k + 4 if and only if it does not contain S
but contains B and at least one of T and A. In any other case, the spectrum is
gap-free.

8.4 Comparison of the sets of chromatic polynomials

We have already seen that any type of nontrivial combinations of s, t,a, b can be
expressed with (s,a) on applying part 2 of Table 1, if no structural conditions are
imposed; and, furthermore, for 3-uniform hypergraphs each pair in (s, b) × (t,a)
would work equally nicely. Here we prove that this latter equivalence is not valid in
general.

To formulate observations providing a more detailed information, let us denote
by PX,Y and PX the sets of chromatic polynomials belonging to the classes of hy-
pergraphs of type (X, Y ) and of type X, respectively, for any X, Y ∈ {S, T, A, B}.
Similarly, the set of chromatic polynomials appearing in the case of mixed hyper-
graphs will be denoted by Pm.
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Theorem 22. For the sets of chromatic polynomials belonging to (S, A)-, (A, B)-,
(S, T )-, (T, B)-, and mixed hypergraphs, the relations PS,A = PA,B % PS,T = PT,B =
Pm hold.

Proof

1. According to Corollary 19, each mixed hypergraph has a chromatic equivalent
in each of those four stably bounded subclasses. Thus, the set Pm is contained
in each of PS,A, PA,B, PS,T , and PT,B.

2. On the other hand, as it has been shown, the bound bi < |Ei| can be replaced
by some (bi +1)-element D-edges, whilst the elimination of the bound ti < |Ei|
can be done by inserting some (ti + 1)-element C-edges. Therefore, every
(T, B)-hypergraph has a chromatically equivalent mixed hypergraph (on the
same vertex set). Taking into consideration the observation 1, the equality of
PT,B and Pm is obtained.

3. By Corollary 12 the sets PS,T and Pm are equal. It worth noting that there
exists an (S, T )-hypergraph with no chromatic equivalent mixed hypergraph
on the same number of vertices. For instance, due to Theorem 21, there exists
an (S, T )-hypergraph with a gap of size 2 on seven vertices, whilst in the case
of mixed hypergraphs it needs at least eight vertices, by a result of [29].

4. By the elimination of t, the (S, T )-hypergraphs can be modeled in (S, A), hence
PS,A ⊇ PS,T . We are going to show that the sets of chromatic spectra, and con-
sequently also the chromatic polynomials, of (S, A)- and (S, T )-hypergraphs
are not equal.

Let Hs,a have four vertices and just one 4-element edge with bounds a = 3
and s = 1. Obviously, r1 = 1 and r2 = 4. On the other hand, it was proved in
Section 6.3 that in 1-colorable (S, T )-hypergraphs the value of r2 always is of
the form 2n−1 − 1. Since this property is not valid for Hs,a, it cannot have a
chromatically equivalent (S, T )-hypergraph.

5. Since any chromatic spectrum with r1 = 0 belongs to some mixed hypergraphs,
the same holds for (S, A)- and (A, B)-hypergraphs, too. Thus, a difference be-
tween PS,A and PA,B might occur only on hypergraphs with r1 = 1. The
assumption of 1-colorability in an (S, A)-hypergraph implies that every edge
Ei has bounds (si, ai) = (1, ai), whereas in an (A, B)-hypergraph it implies
(ai, bi) = (ai, |Ei|) for every edge. These two color-bound conditions clearly
are equivalent on each edge. Hence, the possible chromatic spectra and con-
sequently the chromatic polynomials are the same: PS,A = PA,B.

Nevertheless, there exist some (S, A)-hypergraphs not having chromatic equiv-
alent (A, B)-hypergraphs on the same number of vertices. Similarly to the ex-
ample in step 4 of the proof, one can see that there exists an (S, A)-hypergraph
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Figure 9: Hasse-diagram of possible chromatic polynomials belonging to different
structure classes

on seven vertices with feasible set {3, 6}, but to generate this feasible set in
(A, B)-hypergraphs needs at least eight (in fact, at least nine) vertices. �

As regards modeling with the same number of vertices, the previous proof yields
the following observation.

Remark 18. Every mixed hypergraph has a chromatically equivalent (T, B)-hyper-
graph such that their vertex sets are of the same cardinality, and vice versa. This
stronger condition does not hold for any other pairs of the models listed above.

We close this subsection with supplements of Theorem 22 regarding other types
of stably bounded hypergraphs.

Proposition 31. Concerning the possible chromatic polynomials of S-, T -, A-, B-,
C- (‘mixed’, without D-edges) and D- (classical) hypergraphs the following relations
hold:

1. Pm % PS = PS,B % PD = PB,

2. PS,A % PA = PA,T % PC = PT ,

3. Pm and PA are incomparable.
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Proof

1. Every D-edge Ei can be interpreted equivalently with bound bi = |Ei| − 1,
whilst a bound bi < |Ei| can be replaced by some (bi + 1)-element D-edges,
therefore PD = PB holds.

Every D-edge evidently means an edge with bound s = 2, hence PD ⊆ PS is
clear. On the other hand, let us consider the S-hypergraph H = (X, {X}, s)
with |X| = 5 vertices and with color-bound s(X) = 3. Its chromatic spectrum
is (0, 0, 25, 10, 1). Assuming a D-hypergraph with this spectrum, it should
have five vertices and each of its 3-partitions should yield a proper coloring.
In particular, for any three vertices there should exist a coloring where they
get the same color, implying that there can occur D-edges only of sizes 4
and 5. Consequently, the 2-partitions with color classes of size 2 and 3 are
not forbidden, what contradicts r2 = 0. Therefore, this S-hypergraph has no
equivalent D-hypergraph, implying PS % PD.

By the elimination of b, we can transform the structures of type (S, B) to
type S, hence PS = PS,B. It is also clear that PS ⊆ PS,T = Pm, and that
mixed hypergraphs having gaps in their chromatic spectra cannot be modeled
in S-hypergraphs. That is, PS $ Pm is obtained.

2. Any C-edge Ei can be considered as an edge with bound ti = |Ei| − 1, whilst
any bound ti < |Ei| can be expressed by C-edges, hence PC = PT .

By eliminating t, every (A, T )-hypergraph can be rewritten only with the
bound a, thus PA = PA,T . Moreover PS,A ⊇ PA trivially holds.

To show that there exist A-hypergraphs having no chromatically equivalent
C-hypergraphs, we recall the example from step 4 in the proof of Theorem 22.
This (S, A)-hypergraph can be considered as just an A-hypergraph, and since
it has no equivalent of type (S, T ), the same is true for mixed- and C-hyper-
graphs, too. Consequently, PA % PC, and because of the 1-colorability of every
A-hypergraph, PS,A 6= PA is valid as well.

3. By the previous example there exist A-hypergraphs that have no equivalent
mixed hypergraphs whereas mixed hypergraphs admitting no 1-coloring cannot
be equivalent to any A-hypergraphs. �

Proposition 32. Concerning the possible chromatic polynomials of stably bounded
hypergraphs involving at least three types of conditions, the following equations hold:

1. PS,T,A,B = PS,A,B = PS,A,T = PS,A,

2. PA,B,T = PA,B = PS,A,

3. PS,T,B = PS,T .
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Proof The reductions described in part 2 of Table 1 yield:

• The color-bound function t can be expressed by the function a. Consequently,
if a type contains T and A together, then omitting T the set of possible
chromatic polynomials does not change.

• Similarly, the function b can be reduced to s, therefore in the presence of S
the cancelation of B cannot make a change in the set of possible chromatic
polynomials.

These observations immediately imply the statements listed above, except for the
last equation in part 2, what has been proved in Theorem 22. �

8.5 Complexity of testing colorability

In this section we investigate the time complexity of the following two algorithmic
problems.

Colorability

Instance: A hypergraph H of a given type.

Question: Is H colorable?

Unique k-Colorability

Instance: A hypergraph H of a given type, together with a proper k-coloring ϕ.

Question: Does H admit any proper coloring other than ϕ ?

For the former, we simply extend the NP-hardness result of Chapter ?? from
(S, T )-hypergraphs to all nontrivial combinations of the color-bound functions. On
the other hand, the situation with the latter problem is more interesting. We choose
the value k = n − 1 and prove that two of the non-trivial pairs, namely those
containing S, lead to intractability; but the other two, containing B, admit a good
characterization and polynomial-time algorithms.

In general, it should be noted that Colorability clearly belongs to NP, whereas
Unique k-Colorability is in co-NP. Moreover, since a hypergraph on n vertices
cannot have more than

(

n
2

)

proper (n − 1)-colorings, we can see that for k = n − 1
(and also if k is as large as n minus a constant) it does not change the complexity
status of the problem if a k-coloring is not given in the input.
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8.5.1 Colorability of 3-uniform hypergraphs

It was first observed in [56] that the recognition problem of colorable mixed hy-
pergraphs is NP-complete in general, and also when restricted to 3-uniform mixed
hypergraphs. There are some important classes with a nice structure, however, that
admit efficient algorithms. In [54] a simple necessary and sufficient condition was
given for the colorability of mixed hypertrees, from which an efficient algorithm is
obtained, too.

On the other hand, we have shown in Section 7.5 that the colorability of 3-
uniform (S, T )-hypertrees is NP-complete. We have also seen in Corollary 18 that
every 3-uniform stably bounded hypergraph has equivalent representations with all
the types of (S, T )-, (S, A)-, (T, B)-, and (A, B)-hypergraphs, and those can be
constructed in linear time. In this way, an input of any of these types can efficiently
be transformed to an (S, T )-hypergraph. Consequently, the result of Theorem 18
can be extended as follows.

Theorem 23. The Colorability problem is NP-complete on each of the following
classes of hypergraphs:

• 3-uniform (S, T )-hypertrees,

• 3-uniform (S, A)-hypertrees,

• 3-uniform (T, B)-hypertrees,

• 3-uniform (A, B)-hypertrees.

It is worth comparing Theorem 23 with the following results: there are linear-
time algorithms for deciding whether a mixed hypertree is colorable, and also for
finding a proper coloring if there exists one [54], whereas determining the upper
chromatic number of a mixed hypertree without edges larger than three is NP-
complete [34].

Let us note further that NP-completeness remains valid if we assume that the host
tree is a star. On the other hand, it can be proved that 3-uniform stably bounded
interval hypergraphs admit a linear-time colorability test and a linear-time coloring
algorithm, too.

8.5.2 Uniquely (n − 1)-colorable (S, T )- and (S, A)-hypergraphs

Although it is hard to test whether an unrestricted mixed hypergraph is uniquely
colorable [56], this is not the case if χ is very large. For the latter case, Niculitsa
and Voss [45] described a characterization of uniquely (n− 1)-colorable, and also of
uniquely (n − 2)-colorable mixed hypergraphs.
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In sharp contrast to this, our Theorem 12 states that the recognition of uniquely
(n − 1)-colorable (S, T )-hypergraphs is hard. Here we show how the construction
can be extended to (S, A)-hypergraphs.

Theorem 24. The Unique (n−1)-Colorability problem is co-NP-complete on
(S, A)-hypergraphs.

Proof As we have already mentioned, membership in co-NP is clear. To prove hard-
ness, let us recall from the proof of Theorem 12 the reduction for (S, T )-hypergraphs,
from the problem of determining the chromatic number of Steiner triple systems10

Phelps and Rödl proved in [47] that it is NP-complete to decide whether a Steiner
triple system — viewed as a 3-uniform D- (classical) hypergraph — is colorable with
14 colors. Given an input Steiner triple system S = STS(n − 2) = (X,B) of order
n − 2 with vertex set X = {x1, . . . , xn−2} and edge set B, an (S, T )-hypergraph
H = (X ′, E , s, t) is constructed as follows. We set X ′ = X ∪ {z1, z2}, where z1, z2

are two new vertices, and consider the following edges with respective color-bounds:

• B′ = B ∪ {z1, z2} with s(B′) = 4 and t(B′) = 5, for all blocks B ∈ B;

• W ′ = W ∪ {z1, z2} with s(W ′) = 1 and t(W ′) = 16, for all 15-element subsets
of X;

• Ei,j = {xi, zj} with s(Ei,j) = t(Ei,j) = 2, for all 1 ≤ i ≤ n − 2 and j = 1, 2.

In this (S, T )-hypergraph, every ti is either |Ei| or |Ei|−1. Hence, it is easy to elimi-
nate t along the lines of Proposition 27 and obtain an equivalent (S, A)-hypergraph:
we simply define

a(B′) = 1, a(W ′) = 2, a(Ei,j) = 1

for all edges B′, W ′, Ei,j ∈ E . From the argument in Section 6.4 it follows that H is
not uniquely (n−1)-colorable if and only if S has a proper coloring with at most 14
colors; and certainly the same holds for the derived (S, A)-hypergraph, too. Thus,
co-NP-hardness follows. �

8.5.3 Uniquely (n − 1)-colorable (T, B)- and (A, B)-hypergraphs

In this subsection we characterize the uniquely (n−1)-colorable (T, B)- and (A, B)-
hypergraphs. In the models (S, A) and (S, T ) studied in the previous subsection, the
decision problem of unique (n − 1)-colorability was proved to be co-NP-complete.
In contrast to this, the characterization presented below yields polynomial-time
algorithms for (T, B)- and (A, B)-hypergraphs.

10Let us recall the definition: a Steiner triple system (STS) of order n is an n-element set
X together with a set B of 3-element subsets of X (called blocks) with the property that each
2-element subset of X is contained in exactly one block.
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Before the characterization, let some terminology be introduced:

• {x, y} is called B1-edge if x and y are contained in a common hyperedge Ei

having bound bi = 1. (This corresponds to a graph-edge in the usual sense.)

• Ei is called B2-edge if bi = 2.

• Ei is called C-edge if ti = |Ei| − 1.

Concerning a given (T, B)-hypergraph, the set of C-, B1- and B2-edges will be
denoted by C, B1 and B2, respectively. As a side-product of the characterization
theorem, it will turn out that if an edge has bound bi ≥ 3, then the exact value of
bi has no influence on unique (n − 1)-colorability.

Theorem 25. A (T, B)-hypergraph H = (X, E , t, b) on |X| = n vertices is uniquely
(n − 1)-colorable if and only if the following conditions hold:

(α) maxEi∈E(|Ei| − ti) = 1.

(β) The set C∗ :=
⋂

C∈C C contains at least two vertices and induces a complete
B1-graph minus one B1-edge.

Moreover, denoting by y1 and y2 the vertices of the missing B1-edge,

(γ) X \ {y1, y2} is a complete B1-graph.

(δ) For each vertex x ∈ X \C∗, at least one of the relations {x, y1} ∈ B1, {x, y2} ∈
B1 and {x, y1, y2} ⊆ Ei ∈ B2 holds.

(ǫ) For each pair of vertices xj , xk ∈ X \ C∗, if {xj , xk} intersects every C-edge,
then either there exist B1-edges {z, xj} and {z, xk} for a z ∈ {y1, y2}, or there
exist B1-edges {z, y1} and {z, y2} for a z ∈ {xj, xk}.

Proof Consider a uniquely (n − 1)-colorable (T, B)-hypergraph H = (X, E , t, b).
Since it admits an (n−1)-coloring, where each edge has at least |Ei|−1 colors, ti ≥
|Ei| − 1 holds. On the other hand, since the n-coloring is not feasible, there is some
hyperedge with bound ti = |Ei| − 1. Consequently, we have maxEi∈E(|Ei| − ti) = 1,
according to (α).

Let ϕ be a proper (n−1)-coloring, and assume without loss of generality that its
color classes are {x1}, {x2}, . . . , {xn−2}, and {y1, y2}. Every C-edge has to involve
vertices with a common color by ϕ, moreover the color class {y1, y2} cannot be a
B1-edge, therefore:

(β1) {y1, y2} ⊆ C∗ and {y1, y2} /∈ B1.

Taking the union of any two color classes from ϕ, the obtained (n − 2)-coloring
is not feasible, what can be caused only by breaking some bound bi. We are going
to analyze the various vertex partitions with n − 2 classes.
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• The contraction of any two singletons {xj} and {xk} is forbidden, hence there
exists an edge Ei ⊇ {xj , xk} with bound bi = 1. That is, {xj , xk} ∈ B1 for
every 1 ≤ j < k ≤ n − 2, so that (γ) holds.

• The contraction of any singleton {xj} and {y1, y2} is also forbidden by some
bound bi, consequently at least one of the alternatives from (δ) holds.

• Any (n − 2)-partition containing the two non-singleton color classes {xj, y1}
and {xk, y2} is non-feasible, hence either a C-edge omits both xj and xk (since
it includes both y1 and y2), or there occur B1 edges in both sets {{xj, y1},
{xk, y2}} and {{xj , y2}, {xk, y1}}. This means, the implication of (ǫ) is valid.

By assumption, ϕ is the unique coloring of H; thus, the coloring with singletons
and the only two-element color-class {xj, yk} is non-feasible for all 1 ≤ j ≤ n − 2
and 1 ≤ k ≤ 2. If xj belongs to each C-edge, the bounds ti are fulfilled, hence in
this case there surely occurs {xj , yk} as a B1-edge:

(β2) If xj ∈ C∗, then {xj, y1} ∈ B1 and {xj , y2} ∈ B1 hold.

The properties (β1), (β2) and (γ) together ensure the existence of a complete
B1-graph minus one B1-edge on the intersection of C-edges, implying that (β) is
fulfilled, too.

Now, assume a hypergraph H satisfying the conditions (α)− (ǫ) of the theorem.
Unique (n − 1)-colorability is verified as follows:

• By the requirement (α), the hypergraph admits no n-coloring.

• Consider the (n− 1)-coloring ϕ, where the only monochromatic vertex pair is
{y1, y2}. According to (β), both y1 and y2 are contained in each C-edge, and
hence, due to (α) all the bounds from t are satisfied. Since {y1, y2} /∈ B1, every
hyperedge Ei containing both y1 and y2, has bound bi ≥ 2, whilst each of the
remaining hyperedges involves no monochromatic vertex pair. Therefore, all
bounds from b are fulfilled, the color partition {x1}, {x2}, . . . , {xn−2}, {y1, y2}
is feasible.

• According to (γ):

(⋆) There is no feasible partition with a color class containing both xj and
xk (for all 1 ≤ j < k ≤ n − 2).

Thus, the only possibility for a second (n − 1)-coloring would be a partition
with 2-element color class {xj , yk} (for some 1 ≤ j ≤ n − 2 and 1 ≤ k ≤ 2).
But if xj ∈ C∗, there is contained a forbidden B1-edge due to (β), whilst if xj /∈
C∗, then some forbidden polychromatic C-edge would arise. Consequently, no
(n − 1)-coloring different from ϕ can be feasible.
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• To prove that no (n − 2)-colorings exist:

(⋆⋆) There is no feasible partition containing {xj , y1, y2} as a color class.

If xj ∈ C∗, the class contains two forbidden B1-edges, due to (β). And
if xj /∈ C∗, the property (δ) ensures that there occurs either a forbidden
B1-edge in the 3-element color class, or this class is involved in a B2-edge.
All these cases are impossible.

(⋆ ⋆ ⋆) The pairs {xj, y1} and {xk, y2} cannot be color classes simultaneously.

Such a coloring is trivially non-feasible if there exists a C-edge contain-
ing neither xj nor xk. Also, if at least one of the vertices xj and xk is
contained in C∗, the partition is forbidden by a B1-edge according to (β).
In the third case, when all C-edges meet {xj , xk} but their intersection
doesn’t, the conditions of (ǫ) are satisfied, hence its conclusion excludes
the feasibility of this partition.

The claims (⋆), (⋆⋆) and (⋆ ⋆ ⋆) together imply that the hypergraph H admits
no (n − 2)-coloring.

• Because of (⋆), the vertices x1, x2, . . . , xn−2 have mutually distinct colors in
every feasible coloring, therefore H admits no coloring with fewer than n − 2
colors.

Thereupon, the hypergraph is uniquely (n−1)-colorable, and this completes the
proof. �

There is no restriction for the exact value of bounds bi ≥ 3 in the characterization,
therefore we immediately get the following corollary:

Corollary 21. Let H and H′ be (T, B)-hypergraphs on n vertices, and suppose
that H′ can be obtained from H by replacing each bound bi ≥ 3 with some bound
3 ≤ b′i ≤ |Ei|. Then H is uniquely (n − 1)-colorable if and only if so is H′. In
particular, concerning unique (n−1)-colorability, H can be reduced to a T -hypergraph
supplemented with some B1- edges and 3-element B2-edges, that is, with a classical
(D-) hypergraph of rank at most three.

Except for the first property (α), the above characterization gives conditions
only for the color-bound function b and for the edges having bound ti = |Ei| − 1.
Since the restriction maxEi∈E (|Ei| − ti) = 1 can be equivalently expressed with
the bound a, we get an analogous characterization for uniquely (n − 1)-colorable
(A, B)-hypergraphs, too. The terms B1 and B2 are used as above; C-edge means a
hyperedge Ei with bound ai = 2.
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Theorem 26. An (A, B)-hypergraph H = (X, E ,a, b) with |X| = n vertices is
uniquely (n − 1)-colorable if and only if the following conditions hold:

(α′) maxEi∈E ai = 2.

(β) The set C∗ :=
⋂

C∈C C contains at least two vertices and induces a complete
B1-graph minus one B1-edge.

Moreover, denoting by y1 and y2 the vertices of the omitted B1-edge,

(γ) X \ {y1, y2} is a complete B1-graph.

(δ) For each vertex x ∈ X \C∗, at least one of the relations {x, y1} ∈ B1, {x, y2} ∈
B1 and {x, y1, y2} ⊆ Ei ∈ B2 holds.

(ǫ) For each pair of vertices xj , xk ∈ X \ C∗, if {xj , xk} intersects every C-edge,
then either there exist B1-edges {z, xj} and {z, xk} for some z ∈ {y1, y2}, or
there exist B1-edges {z, y1} and {z, y2} for some z ∈ {xj , xk}.

Proof If the condition (α′) is valid for a given (A, B)-hypergraph, we can replace
each bound ai = 2 by ti = |Ei|−1, whilst the non-restricting ai = 1 can be rewritten
as ti = |Ei|, and we get a chromatically equivalent (T, B)-hypergraph on the same
vertex set. The obtained (T, B)-hypergraph is uniquely (n − 1)-colorable if and
only if so is the original (A, B)-hypergraph. Also, the B1-, B2- and C-edges are the
same, hence in this case the conditions (α′)–(ǫ) give an exact characterization for
the (A, B)-hypergraph.

On the other hand, if the condition (α′) does not hold, then either χ < n − 1 or
χ = n or the hypergraph is uncolorable, so it is not uniquely (n − 1)-colorable in
either case. Hence, (α′) is indeed necessary for unique (n − 1)-colorability. �

As it was our purpose, the characterization theorems make it possible to design
polynomial-time algorithms for testing unique (n − 1)-colorability in (T, B)- and
(A, B)-hypergraphs.

Remark 19. The decision problem wether a given (T, B)- or (A, B)-hypergraph is
uniquely (n− 1)-colorable can be solved in time O(n2m), where n and m denote the
number of vertices and hyperedges, respectively.

As a matter of fact, on the one hand it is obvious that the condition ai ≤ 2 is
necessary for unique (n−1)-colorability in every stably bounded hypergraph; while,
on the other hand, the proof of Theorem 26 shows that if this condition holds, then
the color-bound function a can completely be replaced with a suitably chosen t.
Thus, the following more general result is obtained.

Theorem 27. The decision problem Unique (n−1)-Colorability can be solved
in polynomial time for (T, A, B)-hypergraphs.
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9 Applications

The results of this Thesis concern mixed, color-bounded and stably bounded hy-
pergraphs. We are going to show that the coloring constraints discussed here can
be applied efficiently for modeling problems arising in informatics. In Section 9.1
we give a detailed description of possible applications for the frequency assignment
problem. It will be shown that different forms of this problem, which have various
kinds of non-classical graph coloring models, can be formulated in a unified and
natural way in terms of color- and stably bounded hypergraphs. In Section 9.2 we
study the possible applications for dependability problems of complex IT systems,
and finally, we discuss shortly some further types of practical problems.

Generally, the main examples concern resource allocation, which is one of the
core problems in IT design. This process maps tasks, processes etc. to be carried
out onto their physical or logical execution platform. The formalism of mixed and
stably bounded hypergraphs fits well to the core notions in resource allocation.

• Coloring is an effective means for denoting resources and/or resource types.

• C-type edges are able to express requirements on resource (or resource type)
compatibility, i.e. that two or more tasks have to use identical resources (or
resource types).

• D-type edges can be used for the formulation of incompatibilities between
tasks.

• Color-bounds introduced into the new notion of stably bounded hypergraph
provide an effective way to integrate quantitative requirements.

9.1 Frequency assignment problem

One of the characteristic applications of graph coloring theory is the ‘frequency
(channel) assignment problem’ (FAP) which arises in planning television and radio
broadcasting, mobile telephone networks, and satellite communication. FAP arises
in these different forms with specific characteristics, hence also the mathematical
models involve different constraints. We shall show that color-bounded and stably
bounded hypergraphs provide a natural and common frame for modeling each of
these variants.

The frequency assignment problem first appeared in the 1960’s. Metzger was
the first who pointed out that it can be successfully treated using graph coloring
and mathematical optimization models [43]. The exceptionally fast development
of wireless communication has placed FAP in the center of interest, as it is indi-
cated by the large amount of results surveyed e.g. in the papers [48, 41, 21, 10].
Presently, transition from the current analog technology to the digital one provides
new challenging frequency assignment problems.
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The basic problem involves assigning frequencies to a given collection of wireless
communication connections (transmitters), under constraints which ensure that the
interference stays at an acceptably small level. The frequencies assigned to trans-
mitters xi and xj incur interference, resulting in quality loss of the signal, if xi and
xj are geographically close11 to each other, and the frequencies assigned to them
are close (or harmonics) on the electromagnetic band. The problem arises in every
case when a new transmitter is settled, and the solution requires the application of
combinatorial optimization techniques.

For every form of the problem we describe the corresponding non-classical graph
coloring constraint and then give an equivalent model using color- and stably bounded
hypergraphs.

In each variant, the transmitters {x1, x2, . . . , xn} are taken to be the vertices
of a graph, and an edge {xi, xj} means that the corresponding transmitters can
interfere. The colors (i.e., frequencies or channels) assigned to the vertices have
to be chosen from a given range {1, 2, . . . , K}, and the obtained assignment f is
considered feasible if prescribed coloring constraints are fulfilled, what means that
excessive interference is avoided.

In the simplest model the only condition is that any two adjacent vertices have
to receive different colors. This results in vertex coloring of the graph in classical
sense. But in most of the cases this version seems to be oversimplified as it neglects
interference and hence, needs various extensions.

9.1.1 Mobile telephone networks: Distance-labeling

In a more accurate model, we distinguish between ‘close’ and ‘very close’ trans-
mitters, and different constraints can be prescribed for these two cases. The cor-
responding non-classical graph coloring is called ‘L(d, 1)-labeling’ (d ≥ 1). The
coloring constraint is that any two adjacent (‘very close’) vertices xi and xj should
receive frequencies with at least d apart: |f(xi)−f(xj)| ≥ d, whilst any two vertices
having a common neighbor (at distance two in the graph) should get different colors.

‘Distance-labeling’ is a generalized version of this model, in which we can give
conditions not only for the first and second neighborhoods, but also for the third,
fourth, . . . , k-th ones with thresholds d1 ≥ d2 ≥ . . . ≥ dk. That is, if the vertices
xi and xj are at distance ℓ ≤ k apart in the graph12, then for the received colors
(frequencies) |f(xi) − f(xj)| ≥ dℓ must be fulfilled [26].

11More precisely, this property is determined not only by the distance of xi and xj but it is
also influenced by the directions of the transmissions, the relief of the environment and weather
conditions.

12The distance of two vertices in a graph is defined as the number of edges in a shortest path
connecting them.
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Figure 10: Three sites A, B, C with two antennae on the first one, and the corre-
sponding graph with channel separation constraints on the edges

From the practical side, this approach is motivated by planning mobile telephone
networks. In these systems an antenna transmits signals in a certain sector (cell),
with a certain number of transmitters depending on the density of cells. Under low-
traffic conditions the number is small (e.g., 3) but in metropolitan areas it may well
be above 10. In order to avoid channel interference, separation constraints are put.
The usual requirements are: separation at least 3 or 2 depending on whether the
two transmitters in question belong to the same antenna, or to different antennae
of the same site, respectively. Moreover, if two transmitters of different sites have
cells with nonempty overlap, their frequencies must differ by at least 1. A simplified
illustrative example is shown in Figure 10.

9.1.2 Mobile telephone networks: Constraint matrix

The most precise model concerning frequency assignment in mobile telephone net-
works is a generalization of the previous ones. Introducing the notion of ‘constraint
matrix’, the required minimum difference of frequencies can be independently speci-
fied for each edge. If the transmitters xi and xj together may cause interference, the
edge {xi, xj} is associated with a threshold ℓi,j, which means the minimum channel
separation to avoid interference. That is, the inequality |f(xi) − f(xj)| ≥ ℓi,j must
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be satisfied [41, 42]. Here we can take into account different (e.g., geographical)
conditions which can restrict pairs of overlapping cells in different ways.

This version — and correspondingly, also the more particular previous ones —
can be expressed in terms of color-bounded hypergraphs. Let the vertex set be the
union of the set X = {x1, x2, . . . , xn} of transmitters and the set C = {c1, c2, . . . , cK}
of available frequencies. To distinguish frequencies from each other, we take the set
C as a hyperedge with bounds (s(C), t(C)) = (K, K) and then, assuring that there
will be assigned frequencies only corresponding to the elements of C, we take the
hyperedge X ∪ C also with bounds (K, K). For every pair {xi, xj} of transmitters
which can cause interference, we consider the (ℓi,j + 2)-element hyperedge {xi, xj}∪
{cm, cm+1, . . . , cm+ℓi,j−1} with bounds (ℓi,j +1, ℓi,j +2) for every 1 ≤ m ≤ K−ℓi,j +1.
The lower color-bound ℓi,j +1 forces that at most one of the vertices xi, xj can receive
its color (i.e., frequency) from the considered ℓi,j consecutive elements of C. That is,
in a proper coloring, the colors assigned to any pair {xi, xj} of adjacent transmitters
fulfill the inequality |f(xi) − f(xj)| ≥ ℓi,j. Consequently, the proper colorings of
this color-bounded hypergraph are in one-to-one correspondence with the frequency
assignments satisfying the conditions given in the constraint matrix.

9.1.3 Television and radio broadcasting

When the frequency assignment problem concerns television and radio broadcasting,
the constraints partially differ from the previous case. The cause lies mainly in
the used frequency band itself, which includes higher harmonics of the frequencies.
Because of the presence of harmonics, it is more appropriate to prescribe the set T
of forbidden differences between frequencies than imposing thresholds on them. For
example, the information has been revealed that for UHF TV broadcasting the set
of disallowed differences is T = {0, 1, 2, 5, 14}.

In the corresponding graph coloring model any two adjacent vertices xi and xj

must receive channels whose separation is not in the set T ; that is, |f(xi)−f(xj)| /∈
T . Moreover, in generalized T-coloring the sets Ti,j of forbidden separations can be
specified for each edge {xi, xj}. A coloring f is considered proper if, for every
edge {xi, xj}, the difference between the frequencies assigned to its vertices is not
forbidden [27, 48, 49, 17].

Modeling this problem with color-bounded hypergraphs, consider the vertex set
{x1, x2, . . . , xn} ∪ {c1, c2, . . . , cK} where the vertices xi and cℓ correspond to the
transmitters and frequencies, respectively, as in the previous description. Similarly,
we create hyperedges C and X ∪ C with bounds (K, K). For every pair xi, xj of
transmitters which can cause interference, we take the edge {xi, xj} with bounds
(2, 2), moreover consider every forbidden color-pair (p, q) for which |p − q| ∈ Ti,j,
and create the hyperedge {xi, xj , cp, cq} with bounds (3, 4). The lower color-bound
3 forces that there can occur no two transmitters with forbidden frequency-pairs.
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9.1.4 When only a subset of frequencies is available

In many cases, for an individual transmitter only a specifically restricted subset of
frequencies is available. For example, if a transmitter of a mobile telephone network
is close to the border of a country, division rules often lead to a substantial reduction
in channel availability. This situation can be expressed by the list-coloring versions
of the above colorings [52, 37].

List coloring means an input graph G = (X, E) with a set Li of allowed colors for
each vertex xi ∈ X; the question is whether the lists admit a proper coloring, that
is a vertex coloring f such that f(xi) ∈ Li for all vertices xi ∈ X and f(xi) 6= f(xj)
for all edges {xi, xj} ∈ E.

It was first proved in [37] that the list coloring problem on graphs can be ex-
pressed in terms of the colorability problem of a suitably constructed mixed hyper-
graph. The reduction has a fairly transparent structure: the vertex set of the mixed
hypergraph is X ∪

(
⋃

xi∈X Li

)

, the D-edges are the edges of G and the pairs inside
⋃

xi∈X Li, and the C-edges are the sets {xi}∪Li. This mixed hypergraph is colorable
if and only if the original graph G admits a list coloring.

This theoretical result exactly shows the way how we can extend the above
hypergraph models of frequency assignment problems to their list coloring versions.

9.1.5 Multiple interference

Finally, we mention a variant of interference which is ignored in the standard ap-
proach. There can occur more than two transmitters using close frequencies, and
these multiple signals may disturb the quality of communication, even if the pairwise
combinations of frequencies are not forbidden. There exist only very few models tak-
ing into consideration this multiple interference [10]. Clearly, using hypergraphs we
can model not only binary relations; hence, in our new model also those cases can be
treated efficiently where combinations of frequencies for more than two transmitters
are forbidden.

9.2 Resource allocation and dependability

Dependability in IT is the cover notion of techniques assuring that the user can rely
on the services.

The typical means of fault-tolerance aiming at a proper (fault-free) operation
even in the case of the presence of faults is the introduction of some form of redun-
dancy. If a resource fails, all the functionalities supported by it are taken over by
some backup resource after failover [14].

• C-type conditions can easily express the demand for identical resources (as in
modular replication), in which case the primary and all of the backup resources
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are of the same type. A typical example is database replication creating mul-
tiple copies of an important database. If any of them becomes corrupted,
another one can be used by the application.

The lower bound in coloring expresses here the minimum number of replicas
needed for the assurance of a given level of dependability (obviously, the higher
number of replicas, the more dependable is the system), while the upper bound
may refer to the cost limit allowed.

• D-type conditions express diversity. In the context of dependability, diversity
is the main means protecting systems against so-called common-mode faults,
i.e. single faults corrupting multiple instances.

For example, while database replication protects the application against un-
correlated faults (e.g. a disk fails), all of the replicas may simultaneously fail
if the database software used in all the replicas has a bug.

Design or deployment for diversity is the principle for the avoidance of multiple
correlated failures originating in a single fault as root cause. Typical example
is n-version programming in which the same application is implemented by
different teams using different languages, operating systems and development
technologies.

The bounds here can be used once again for expressing the required level of
diversity (and correspondingly, dependability), while majorizing costs.

For instance, Information Technology has become a mission-critical component in
the operation of businesses, as more and more business services and business support
services depend on it. Therefore, finding faulty components in the infrastructure and
bounding their impact on the services provided have high priority.

As mentioned before, mixed and stably bounded hypergraphs can be used as
models for the allocation of services to resources. We can specify this problem
regarding the field of service-oriented architecture (SOA) and security [46]. An
optimal service configuration is synthesized using constraints which represent non-
functional requirements. For instance, services which must be deployed into the
same authorization and communication domain for security reasons or must belong
to the same trust circle will form a C-edge. As an example, a typical requirement in
e-commerce SOA process is that payment-related subservices have to be executed
strictly inside the bank accomplishing it.

Groups with the need for multiple authorities / trust domains will be considered
as D-edges. Authentication (that is, the check of the user’s identity) is a typical
problem in e-Business processes. Here the usual role is that requester and checker
components have to be different (no self-identification allowed) in order to avoid
fake authentication after the corruption of an application system.

The above constraints can be supplemented with conditions on dependability and
fault-tolerance. In many cases there are requirements on the number of available
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service instances; that is, multiple instances of services have to be deployed on
machines (or functionalities/responsibilities assigned to services). These constraints
can be expressed efficiently using the technique that will be described in the next
section for cases where the number of fixed types is prescribed.

9.3 Some further applications

9.3.1 Scheduling of file transfers

Consider a given set of file transfers, where each transfer needs the simultaneous
work of two prescribed processors, and assume that every task takes one unit of
time. Moreover, every processor pi has an upper bound bi which means that it can
participate in at most bi transfers at the same time. The goal is to find a scheduling
which respects the bounds bi and requires minimum time. The problem can naturally
be modeled as an edge coloring problem [40], where the vertices correspond to the
processors, an edge means a prescribed file transfer, and the color assigned to the
edge stands for the time slot when the transfer will be done. The bound bi is
interpreted in the coloring such that there can be at most bi edges of the same
color which are incident to vertex pi. Hence, the original problem has a concise and
natural modeling with stably bounded edge coloring of a graph, which corresponds
(as it is discussed in Chapter 6) to a vertex coloring of a stably bounded hypergraph.

9.3.2 Data access in parallel memory

Hypergraph strong coloring [15] means that each hyperedge has to be colored in
polychromatic way; i.e., any two vertices in the same hyperedge have to get different
colors, and the minimum possible number of colors is of interest. This problem
arises, for example, when we require conflict-free access of data in parallel memory
modules. This can also be modeled in terms of color-bounded hypergraphs. Data
elements are considered as vertices, whilst every hyperedge contains data elements
which should be stored in different memory modules to be processed in parallel.
Clearly, if each hyperedge Ei is associated with bounds si = ti = |Ei| then the color-
bounded hypergraph obtained models exactly the described problem. This simple
case can be expressed in terms of classical graph coloring, too, but the hypergraph
representation uses fewer constraints and hence is more economical.

The more general problem originates from applications where the numbers of
available colors (i.e., memory modules) are usually bounded by a fixed number
k, which can be smaller than the maximum edge size in the hypergraph. In this
situation the strong coloring constraint has to be relaxed, but we can prescribe that
inside each hyperedge the k colors have to be spread nearly equally. The main
goal is to minimize the cardinality of largest monochromatic subset inside each
hyperedge [30]. The theory of stably bounded hypergraphs offers an adequate frame
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to describe this problem. Every hyperedge Ei has to be associated with bounds

si = ti = min(|Ei|, k) and ai = bi =
⌈

|Ei|
k

⌉

, moreover we create a hyperedge F ,

containing all the vertices, with bounds s(F ) = t(F ) = k. A proper coloring clearly
yields minimum value for the maximum cardinality of monochromatic subsets inside
the edges, and that exactly k colors are used.

Moreover, if we want to require further that inside each hyperedge Ei, every color

should appear either
⌈

|Ei|
k

⌉

or
⌊

|Ei|
k

⌋

times, this can be done by creating disjoint sets

E ′
i of

⌈

|Ei|
k

⌉

k−|Ei| new vertices each, and by supplementing the Ei with them. Each

new vertex will be contained in precisely three hyperedges: in a supplemented Ei∪E ′
i

with unchanged bounds ai = bi =
⌈

|Ei|
k

⌉

, in a big new edge F ′ =
⋃

Ei∈E
(Ei ∪ E ′

i)

of all vertices with bounds s(F ′) = t(F ′) = k, and in the new edge E ′
i containing

only the new vertices created for Ei with bounds a(E ′
i) = b(E ′

i) = 1. A proper
coloring of this stably bounded hypergraph means that the k colors occur equally in
any edge, and this yields the possible most equitable spread of the k colors on the
original edges, too. That is, the conflict minimization problem can be modeled by
colorings of the stably bounded hypergraph obtained.

9.3.3 Prescribing the number of occurrences for fixed types

A vertex coloring means a partition of the vertex set satisfying given rules. In
some practical cases the distinguished types (colors) are given in advance, and it is
prescribed for a group that precisely mi elements of it should belong to type i. (A
more precise notation is mi,j , where j means the index of the group considered.) We
can equivalently formulate this restriction using stably bounded hypergraphs.

Let ℓ denote the maximum cardinality of the groups on which the mi,j condi-
tions have been described. We consider the types (colors) C = {1, 2, . . . , K} given
beforehand as additional vertices of the hypergraph. To assure that the above colors
are pairwise distinct, we create the hyperedge C with bounds s(C) = t(C) = K.
Then we create ℓ copies for each color i, join them with vertex i by an edge Ci, and
assure their monochromaticity with bound t(Ci) = 1. After these arrangements the
essential constraint can be expressed easily: If a vertex subset Ej should contain
precisely mi,j vertices of type i, then we take Ej and the ℓ copies of color i, and
join them with a hyperedge E ′

i,j having bounds a(E ′
i,j) = b(E ′

i,j) = ℓ + mi,j. Since
|Ej| ≤ ℓ holds by the choice of ℓ, each new hyperedge E ′

i,j will impose a condition
exactly on type i. We note that for one group we can take more restrictions con-
cerning occurrences of different types, and the conditions can also be given in forms
‘at least (or at most) mi,j vertices should be assigned to type i’.

These constraints appear in designing fault-tolerant complex systems, when some
prescribed critical components have to be duplicated or triplicated. The above model
is useful when these conditions have to be satisfied together with further partition
constraints on groups of components.

109



9.3.4 Applications from the earlier literature

Chapter 12 of the monograph [59] is devoted to some applications of mixed hyper-
graphs, describing examples from the fields of informatics, molecular biology and
genetics of populations. Also in [33] several practical and theoretical applications
of mixed hypergraphs are discussed. Concerning the application of S-hypergraphs
there can be found examples from economy in the paper [19].

Due to its strength, our new model will probably lead to further theoretical and
practical applications.
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10 Summary

In this work we discussed set partitions under several types of constraints. The
first part was devoted to our new results on mixed hypergraph coloring. In this
model two types of local conditions are used, and this complex structure makes it
possible to handle extremal and existence problems arising in different fields. They
can serve as models for a large variety of applied problems, e.g. in molecular biology,
in sociology, in informatics, and especially in mobile communication for frequency
assignment problems.

We proved here a ten-year-old conjecture concerning the characterization of C-
perfect C-hypertrees. Due to the constructive method of proof, also a polynomial-
time algorithm that finds a coloring with maximum number of colors has been
obtained.

Another long-standing open problem was to determine the minimum number
of hyperedges in an r-uniform C-hypergraph that has only trivial colorings; i.e., it
cannot be colored with more than r − 1 colors. We have proved an asymptotically
tight estimate for this minimum number. Generalization of this problem leads to
many new exciting questions and establishes connections among several intensively
studied classical parts of discrete mathematics.

The study of possible numbers of colors in the colorings of r-uniform mixed
hypergraphs indicates that coloring properties do not change considerably if we fix
the cardinality of hyperedges.

A previous expectation, regarding efficient recognizability of mixed hypergraphs
having ‘uniquely colorable’ vertex order, has been refuted. We have proved that
this problem is NP-complete, even if the input is restricted to uniquely colorable
hypergraphs.

Color-bounded and stably bounded hypergraphs had not been considered before,
they were introduced in our publications. If we put lower and upper bounds on the
maximum cardinality of polychromatic and monochromatic subsets of hyperedges,
on the one hand many problems can be modeled with simpler structure and in a
more natural way than in the case of mixed hypergraphs, and on the other hand
there are problems that cannot be described in the earlier model.

In the new structure classes we have studied basic properties; e.g., time com-
plexity of testing colorability, feasible sets of interval hypergraphs and hypertrees,
moreover hypergraphs with other restricted structures have also been considered.
For some particular types, polynomial-time algorithms have been designed.

We would like to highlight two results obtained in this second part. It is quite
a surprise, how central role the color-bounded hypertrees play in this theory. In
contrast to their strongly restricted structure, they can model a wide range of col-
orability problems. They represent nearly all color-bounded hypergraphs, regarding
not only feasible sets but also chromatic polynomials. Another interesting result
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concerns the comparison of different subclasses derived from stably bounded hyper-
graphs. The model (S, A) is universal, but the hierarchy of (S, T ) and (A, B) is
not stable, it depends on the type of question considered. It looks a challenging
‘meta-problem’ to determine the characteristics of problems that can be interpreted
more appropriately in one model than in the other.

Finally, we emphasize the results on chromatic polynomials. Our characteriza-
tion for polynomials of non-1-colorable structures is valid for mixed, color-bounded,
stably bounded and pattern hypergraphs as well. Furthermore, the hierarchy of the
sets of possible chromatic polynomials is established among subclasses of mixed and
stably bounded models.

We expect that continuing the study of mixed, color-bounded and stably bounded
hypergraphs, further important results can be obtained, including the development
of new efficient algorithms.

In research, not only solving earlier problems but also asking new questions is
important. We can anticipate, this area — set partitions under local constraints —
and its practical applications will offer many interesting new questions and directions
in the future.
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List of contributions

1.1. (Corollary 3) A C-hypertree is C-perfect if and only if it contains no monostar
as an induced subhypergraph. Moreover, C-perfect C-hypertrees can be χ̄-colored in
polynomial time.

1.2. (Theorems 4 and 5) The following decision problems are NP-complete on the
class of C-hypertrees:

• Does the hypertree T contain an induced monostar?

• Is the hypertree T colorable with αC(T ) colors?

1.3. (Theorem 6) Over the class of C-hypertrees there exists a polynomial-time
algorithm whose output is either an induced monostar subhypergraph or a proper
coloring of T with αC(T ) = χ̄(T ) colors.

1.4. (Theorem 7) Given a uniquely colorable mixed hypergraph H with its coloring
as input, it is NP-complete to decide whether H has a UC-ordering.

2.1. (Theorem 1) Let r ≥ 3 be an integer, and S a non-empty finite set of positive
integers. There exists an r-uniform mixed hypergraph H with at least one hyperedge
and having feasible set Φ(H) = S if and only if

(i) min(S) ≥ 2 and S contains all integers between min(S) and r−1 (this means
restriction only in the case of min(S) < r − 1), or

(ii) min(S) = 1 and S is of the form of S = {1, . . . , χ̄} for some natural number
χ̄ ≥ r − 1.

Moreover, S is the feasible set of some r-uniform bi-hypergraph with C = D 6= ∅ if
and only if it is of type (i).

2.2. (Theorem 2) For the minimum number f(n, r) of hyperedges in an r-uniform
C-hypergraph with upper chromatic number r−1 the following estimates hold for all
integers n > r > 2:

(i) f(n, r) ≤ 2
n−1

(

n−1
r

)

+ n−1
r−1

((

n−2
r−2

)

−
(

n−r−1
r−2

))

for all n and r.

(ii) f(n, r) = (1 + o(1)) 2
r

(

n−2
r−1

)

for all r = o(n1/3) as n → ∞.
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3.1. (Theorems 14 and 15) Every colorable color-bounded interval hypergraph and
Rooted Directed Path hypergraph has a gap-free chromatic spectrum, and its lower
chromatic number is equal to s.

3.2. (Theorems 16 and 17) Let S be a finite set of positive integers. There exists a
color-bounded hypertree T with feasible set Φ(T ) = S if and only if

(i) min (S) = 1 or min (S) = 2, and S contains all integers between min (S) and
max (S), or

(ii) min (S) ≥ 3.

4.1. (Theorems 10, 20 and 21)

• If a (T, A, B)-, (T, B)- or (A, B)-hypergraph has a gap of size k ≥ 1 in its
feasible set, then it has at least 2k + 4 vertices.

• If an (S, A)-, (S, T )-, or stably bounded hypergraph has a gap of size k ≥ 1 in
its feasible set, then it has at least k + 5 vertices.

Moreover, all the above bounds are sharp.

4.2. (Theorems 18 and 23) The decision problem of colorability is NP-complete on
each of the following classes of hypergraphs:

• 3-uniform (S, T )-hypertrees,

• 3-uniform (S, A)-hypertrees,

• 3-uniform (T, B)-hypertrees,

• 3-uniform (A, B)-hypertrees.

4.3. (Theorems 12, 24 and 25)

• The decision problem of unique (n − 1)-colorability is co-NP-complete for
(S,A)-, (S,T)-, and stably bounded hypergraphs.

• The decision problem of unique (n−1)-colorability can be solved in polynomial
time for (T,A,B)-, (T,B)- and (A,B)-hypergraphs.
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5. (Theorem 9) Let P (λ) =
∑ℓ

k=0 akλ
k 6≡ 0 be a polynomial such that P (1) = 0,

i.e.
∑ℓ

k=0 ak = 0. The following properties are equivalent.

1. P (λ) is the chromatic polynomial of a stably bounded hypergraph.

2. P (λ) is the chromatic polynomial of a color-bounded hypergraph.

3. P (λ) is the chromatic polynomial of a mixed hypergraph.

4. P (λ) satisfies all of the following conditions.

(i) All coefficients ak of P (λ) are integers.

(ii) The leading coefficient aℓ is positive.

(iii) The constant term a0 is zero.

(iv) For every positive integer j ≤ ℓ, the inequality

ℓ
∑

k=j

ak · S(k, j) ≥ 0

is valid.
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[22] P. Erdős and A. Hajnal: On chromatic number of graphs and set systems. Acta
Mathematica Academiae Scientiarum Hungaricae 17 (1966), 61–99.

[23] T. Gallai, unpublished. (Early 1950’s.)

[24] A. Gamst and W. Rave: On frequency assignment in mobile automatic tele-
phone systems. Proceedings of GLOBECOM’82, IEEE, (1982), 309–315.

[25] M. C. Golumbic: Algorithmic Graph Theory and Perfect Graphs. Academic
Press, New York, 1980.

[26] J. R. Griggs and R. K. Yeh: Labeling graphs with a condition at distance two.
SIAM Journal on Discrete Mathematics 5 (1992), 586–595.

[27] W. K. Hale: Frequency assignment: Theory and applications. Proceedings of
the IEEE 68 (1980), 1497–1514.

[28] T. R. Jensen and B. Toft: Graph Coloring Problems. John Wiley & Sons, Inc.,
New York, 1995.

117



[29] T. Jiang, D. Mubayi, V. Voloshin, Zs. Tuza and D. West: The chromatic spec-
trum of mixed hypergraphs. Graphs and Combinatorics 18 (2002), 309–318.

[30] D. Kaznachey, A. Jagota and S. Das: Neural network-based heuristic algo-
rithms for hypergraph coloring problems with applications. Journal of Parallel
Distributed Computing 63 (2003), 786–800.

[31] D. Král’: A counter-example to Voloshin’s hypergraph co-perfectness conjec-
ture. Australasian Journal of Combinatorics 27 (2003), 25–41.

[32] D. Král’: On feasible sets of mixed hypergraphs. The Electronic Journal of
Combinatorics 11 (2004), R19.

[33] D. Král’: Mixed hypergraphs and other coloring problems. Discrete Mathemat-
ics 307 (7–8) (2007), 923–938.

[34] D. Král’, J. Kratochv́ıl, A. Proskurowski and H.-J. Voss: Coloring mixed hy-
pertrees. Proceedings of the 26th Workshop on Graph-Theoretic Concepts in
Computer Science, Lecture Notes in Computer Science 1928, Springer-Verlag,
2000, 279–289.

[35] D. Král’, J. Kratochv́ıl and H.-J. Voss: Mixed hypercacti. Discrete Mathematics
286 (2004), 99–113.

[36] D. Král’, J. Kratochv́ıl and H.-J. Voss: Mixed hypergraphs with bounded de-
gree: edge-coloring of mixed multigraphs. Theoretical Computer Science 295
(2003), 263–278.

[37] J. Kratochv́ıl, Zs. Tuza and M. Voigt: New trends in the theory of graph col-
orings: Choosability and list coloring. In: Contemporary Trends in Discrete
Mathematics (R. L. Graham et al., eds.), DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science 49, AMS, 1999, 183–197.

[38] L. Lovász: Coverings and colorings of hypergraphs. Congressus Numerantium
8 (1973), 3–12.

[39] C.-J. Lu: Deterministic hypergraph coloring and its applications. Proceedings

of the 2nd International Workshop on Randomization and Approximation Tech-

niques in Computer Science, 1998, 35–46.

[40] D. Marx, Thesis. Budapest University of Technology and Economics, 2004.

[41] C. McDiarmid: Frequency-distance constraints with large distances. Discrete
Mathematics 223 (2000), 227–251.

[42] C. McDiarmid and B. Reed: Channel asignment on graphs of bounded
treewidth. Discrete Mathematics 273 (2003), 183–192.

118



[43] B. H. Metzger: Spectrum management technique. Presentation at 38th National

ORSA meeting, Detroit, MI, 1970.

[44] A. Niculitsa and V. Voloshin: About uniquely colorable mixed hypertrees. Dis-
cussiones Mathematicae Graph Theory 20 (2000), 81–91.

[45] A. Niculitsa and H.-J. Voss: A characterization of uniquely colorable mixed
hypergraphs of order n with upper chromatic numbers n − 1 and n − 2. Aus-
tralasian Journal of Combinatorics 21 (2000), 167–177.
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