INTEGRATED ENERGY MANAGEMENT FRAMEWORK
IN WASTE TO ENERGY, INTEGRATION OF OTHER
RENEWABLES

PhD Thesis

Zsófia FODOR

Supervisor:
Prof. Dr. Jiří J. Klemeš
Co-supervisor:
Dr. Petar S. Varbanov

Doctoral School of Information Science and Technology
University of Pannonia

Veszprém
2013
The PhD publication is categorized according to the PhD school credit system (Accomplished over the 3 year PhD School), altogether 35 Citations, 2 Journal papers and 13 International conference papers:

International Journals with impact factor:

 Independent Citations No.: 6
 Impact Factor: 1.05

 Independent Citations No.: 10
 Impact Factor: 3.858

International Conference Papers / Presentation:

 Citations No.: 15

 Citations No.: 2

Citations No.: 2

1. **Introduction**

The thesis deals with topics, which has strong influence on the energy saving methodologies and technologies. It provides an overall framework and analyses of the energy systems for different processes and further improving the traditional Pinch methodology to be more realistic and also extending the system with connections to other energy sources besides the fuel based like renewables and waste (Figure 1). Locally Integrated Energy Systems (LIES) is a representation for Total Site at constant demand and supply rates in the different energy consumption sectors. Total Site targeting was put forward as a means of integrating heating and cooling requirements between individual units in a total processing plant. The method also forms the basis for a target-based design sequence for the overall site utility system that is required to meet heating and cooling demands through the steam-based system and power requirements. The Total Site targeting method allows waste heat from processes to be used as a source of heat in other processes. The waste heat sources are converted to hot water, steam, sometimes hot oil and then passed to processes that are in heat deficit through utility system.

The thesis structure follows the main sections - as it is highlighted in the Error! Reference source not found.1- such as:

1. Review of the various waste classification according to the latest waste management regulation and treatment technologies,
2. Integration of the renewable energy sources into other energy systems,
3. Using different optimization for the different energy consumption units (LIES),
4. Develop in-house software for the quick and better graphical representation for the unit integration results,
5. Results from the collaboration with industries based on the improved unit integrations.
2. **Research Objectives**

Effects of the utilization of fossil fuels, such as global climate change, world energy conflicts and energy source shortages, have increasingly threatened the world stability. The need for a novel approach for better energy saving technologies that complements also environmental and financial considerations is essential. The thesis clearly addresses different energy optimisation techniques with the introduction of further developed new concepts:

2.1 Evaluation of the economic and environmental implications of using waste as an energy source through Waste-to-Energy (WtE) technologies. It focuses on the world general energy management, the environmental aspects of waste management part and the opportunities for integrating the WtE processes. It discusses how WtE and recycling are compatible as different waste treatment options.
2.2 Review of the novel extensions of Total Sites to Locally Integrated Energy Sectors (LIES). Further it examines the implementation of the renewable energy sources into the Total site Profiles. The work proposes tools for handle the variability of the renewables with suggesting Time Slice model, as these energy sources availability is changing by year, month and even over the day.

2.3 Improvement of the Total Site targeting procedure for allowing individual minimum temperature differences between the heat source / sink profiles on the one hand and the utility generation / use profiles on the other. The new methodology deals with an extension of traditional Total Site Integration. Process Heat Integration (based on traditional Pinch Analysis) aims to minimise the amount of energy mostly used in industrial processes. It is still an open question how to solve the Total Site targeting problem when different values for the minimum allowed temperature differences (ΔT_{min}) are specified for each process on the site. A single uniform ΔT_{min} for all processes integrated in a Total Site, as practiced to date, cannot be generally optimal. Such an assumption may be too simplifying and leads to inadequate results due to imprecise estimation of the overall Total Site heat recovery targets. The modified Total Site targeting procedure, called Process Specific targeting, proposed in this paper, allows obtaining more realistic heat recovery targets for Total Sites. It is illustrated with a case study for Locally Integrated Energy Sectors, also providing a comparison with the traditional targeting procedure and the advantages offered by the modified one.

2.4 The further extension of the Process Specific Total Site Integration methodology to produce more meaningful utility and heat recovery targets for the process design called Stream Specific targeting methodology. The previous extension was on the introduction of using an individual minimum temperature difference (ΔT_{min}) for different processes so that the ΔT_{min} is more representative of the specific process. Further the new extension deals with stream specific ΔT_{min} inside each process by setting different ΔT contribution (ΔT_{cont}) and also using different ΔT_{cont} between the process streams and the utility systems. The paper describes the further extended methodology called Stream Specific targeting methodology. A case study applying data from a real diary factory is used to show the differences between the traditional, process specific and stream specific total site targeting methodologies. The extended methodology gives more meaningful results at the end of the targeting with this avoiding the over or under estimated heat exchanger areas in the process design.
2.5 Creation of an in-house computational tool incorporating the improved procedure. Several proprietary and open source software exist to address the optimisation subjects, however these implementations lack the capability to calculate with separate ΔT_{min} values per process and per utility at the Total Site level. This results inaccurate profiles. In order to get closer to real-life values, software was written that resolves these shortcomings. The software is able to handle virtually unlimited streams and processes. It updates all result charts in real-time. The chosen language for this task was C#, with MSVS2010 environment. It has been shown that with the novel calculation method, both Process Specific and Stream Specific, the results are more accurate.

3. **Thesis – Original Contributions**

Based on the novel approaches and scientific contributions presented and illustrated by comprehensive case studies in the previous chapters are representing the basic discoveries. These accomplishments and the main results achievements are summarised in this paragraph.

3.1 **Review and comparison of the different Waste to Energy technologies**

Managing waste properly is minimising generation and maximising the reuse, recycling and recovery of materials followed by utilisation of the waste energy value treatment and safe disposal. According to the waste characteristics there are different waste classifications defined by different countries legislations. The thesis highlights the importance to unify these directives worldwide between the different governments, allowing high efficiency WTE installations to benefit from a status of “recovery” rather than “disposal”. The comprehensive study also shows the importance of the technologies defined by the actual regulations and fitted on the updated waste management policy. The thesis makes an attempt to contribute the assessment of the selected technologies pros and cons approaches considering effective waste management program like economy/societal acceptance and environmental consequences. Making the treatment classifications more transparent by using a so called matrix diagram [1, 5], showing how the specific technologies apply to municipal (MSW) [5], industrial (ISW), biodegradable and hazardous waste treatment, provides general assistance. The presented new and emerging technologies are more efficient and consequently reduced the landfilling. Further shows the importance to combine these new waste treatment technologies with up-to-date software tools are also part for both waste management and plant design.
Although the WTE field shows huge progress, the public acceptance of these technologies is relatively low. The everyday people still has preconception primarily due to dioxins emission from old incinerators and/ or pollution by heavy metals in hazardous waste landfills. These negative images can be reduced with professional communication between the public and the authorities, enlightening them about the importance of the waste selection and involve the local people to the final constriction decision, as clearly showing them all the advantages and disadvantages of the WTE technologies.

3.2 Total Site Integration including Renewables using Time Slices model for handling the variability

The main issue is reducing the fuel based energy demand, by promoting renewables energy efficiency both within the energy sector itself and at the end-use and also an actual challenge the integration of these energy sources. Optimising the energy conversion systems using renewable resources is a very complex procedure. This work presents the integration barrier due to the supply/demand and time and location variability of the renewables [9, 10] and suggests optimisation tools, [7] to handling the variability. The improved basic integration methodology allowing the combination of fuel based sources and the renewable energy sources also with varying availability [3]. In the presented case study the results show two types of trends – hourly variations during each day and seasonal variations during the year for residential energy consumption for heating, electricity and hot water. The case study illustrates the heat saving potential of integrating various users and also using heat storage. Revisiting previously developed PI tools and developing them further enables solving this extended problem. The advanced tools based on the suggested methodology allow integrating the energy sources of the renewable into other energy consumption system with this supplement those resources.

Over a short-term horizon there is a good trend of heat storage built-up although the capacity of the heat storage cannot be directly targeted. Express the time intervals for long term horizon, the study shows several ways to be resolved this problem, but in the future needs more application on the real site to prove the accuracy of the methodology.
3.3 Extended Pinch Methodology - Total Site targeting with process-specific Minimum Temperature Difference

The main goal of this work is to provide a methodology for maximising the efficiency of energy systems in the process industry as well as in other sectors, accounting for the realistic heat recovery potentials [3, 4]. The traditional pinch methodology assumes the same values for ΔT_{min} also inside the process and between different sites through the utility system. Process streams with different heat transfer characteristics require different ΔT_{min} values for process to process heat exchange. The work is an extension of Total Site Integration to Locally Integrated Energy Sectors [2, 11] producing more realistic utility and heat recovery targets. The modified Total Site targeting procedure, called process specific calculation procedure, proposed contribution obtaining more realistic heat recovery targets for Total Sites [6, 12]. It is also illustrated with a case study for Locally Integrated Energy Sectors, with four different energy consumer sectors, providing also a comparison with the traditional targeting procedure and the advantages offered by the modified one [8]. The obtained results show that using real thermodynamic data for the heat transfer between the units is not just more accurate but also reduce the used additional utility sources. It offers a step toward providing more flexibility and obtaining site utility targets, which are more appropriate to the individual heat transfer properties of the various site processes. In this examined case study the cooling water was reduce with 30% and the used low pressure steam with 18% due to the avoided over and/or underestimated heat transfer areas. This also points to the significance of determining and using the correct ΔT_{min} specifications for the heat exchanges inside processes as well as between the processes and the utilities.

3.4 Extended Pinch Methodology - Total Site Targeting with Stream Specific Minimum Temperature Difference

The methodology is a further development of the previously extended traditional pinch methodology. The previous extension was on the introduction of using an individual minimum temperature difference (ΔT_{min}) for different processes so that the ΔT_{min} is more representative of the specific process [2, 8, 11]. Further, the newest methodology improvement deals with stream specific ΔT_{min} inside each process by setting different ΔT contribution (ΔT_{cont}) for each process streams and also using different ΔT_{cont} between the process streams and the utility systems streams. It describes the latest extended methodology so called stream specific targeting methodology [13]. The demonstrated dairy factory case study is using a stream specific ΔT_{cont} approach. The procedure provides the freedom to
distinguish between heat transfer among process streams inside the process, and among process streams and utilities. The study also makes comparison with the traditional targeting and with the recently developed extended methodology. The total hot utility requirement (with the stream specific calculation procedure) for the processes was dropped by ~30 %, the cold utility by ~59 % compared with the traditional calculation procedure and by ~24 % and ~44 % compared with the process specific calculation procedure. The real industrial case study calculation results show huge differences which leading to the point that we could realize more energy savings at very beginning of the retrofit and grassroots designs, too.

3.5 Software verification and implementation for the different Total Site targeting procedures

There are quite a lot of ranges of program on the market for energy optimisation with different features, although none of them can does the targets with process or stream specification when there is more than one unit operation at different energy levels. The developed in house software can handle these variables, the user can set different thermodynamic feasibility for each process and for each stream, too. Allowing these specifications the process design targets are more meaningful and closer to the reliability. The software gives clear graphical representation for the minimum utility requirements and quick overview between the different targeting procedures targets. Next to these several advanced visualisation features the next step would be offering different options for the user for further process improvements and the user can have the choice by clicking between these options.
1. Bevezetés

A doktori értekezés kutatás témája olyan technológiai eszközök feltérképezése, melyek az energia hatékonyabb felhasználásával kapcsolatosak. Egy átfogó képet ad a különböző energiájú rendszerek energetikai analíziséhez, valamint az un. hagyományos Total Site - Pinch számolási módszert fejleszti tovább, ezáltal a valóságban lezajló folyamatokat jobban tükrözi. A kutatás a különböző energiaigényű rendszerek egymással való viszonyát, esetleges közös rendszerről való importálását vizsgálja, valamint más energia források, mint a megújuló energia szélesebb felhasználását ezen rendszerekben. Az 1. ábra jól bemutatja a dolgozat témaköreinek egyes fejezeteit. A központban a különböző energia igényű és energia felhasználású létesítmények helyezkednek el, mint például hotelek, lakónegyedek és különböző ipari létesítmények. Ezen létesítmények teljes energiahálózatát (lehet az forró olaj, gőz, hideg víz stb.), a felhasznált és megmaradt energia források kapcsolódását az összekötő vonalak hálózatai reprezentálják, mindez együttesen nevezzük – LIES-nak. A dolgozat célja a rendszer optimalizálása, az energiafelhasználás leredukálása a különböző tradicionális technológiák tovább fejlesztésével. A hagyományos Total Site – Pinch számolási módszert alkalmazva lehetséges ezen rendszerek külső energiaforrásból származó támogatása, úgy mint megújuló és hulladékból származó energia újrafelhasználása. Az értekezés bemutatja a megújuló energia lehetséges integrálását a már meglévő, működő rendszerbe, ezáltal tovább csökkentve a rendszer egyéb, fosszilis energia igényét. Elemzi azon innovációs hulladékgazdálkodási technológiákat, melyeken keresztül felhasználható, értékes energiát tudunk előállítani. A doktori értekezés a következő pontokra tér ki részletesen:

1. Összefoglaló tanulmány a különböző hulladékezelési technológiákról, a hulladékoszályozás fontosságának bemutatás, a legújabban hulladék feldolgozási módszerek menedzselésének hatása a környezetre.
2. A megújuló energiaforrások felhasználásának lehetőségei különböző energiaigényű rendszerekben, ennek nehézségeinek bemutatása javasolt megoldással.
3. A különböző optimalizációs technológiák alkalmazása a különböző energiaigényű rendszerekben (LIES).
4. Egy program elkészítése, mely gyors, átfogó képet ad a rendszer/ek energiaigényére a tervezés korai szakaszában.
5. Hivatalos együttműködések eredményei különböző ipari területekről, melyek egyértelműen mutatják a továbbfejlesztett energia optimalizációs technikákat, illetve azok hasznosságát, összehasonítva a hagyományos számitási metódussal.
2. **Kutatási célok**

A Föld egyensúlyát egyre inkább veszélyeztetik a fosszilis tüzelőanyagok, mert csökkenő készletük energia válsághoz vezet és felhasználásuk jelentős hatással van a globális klímaváltozásra. Ennek tükrében rendkívül fontosak a hatékonnyabb energia felhasználására irányuló kutatások, amelyek a környezeti és gazdasági tényezőkre is tekintettel vannak. A dolgozatban egyértelműen bemutatásra kerülnek az energia optimalizáló eljárások, illetve azok továbbfejlesztett modelljei:

2.1 A dolgozat felméri a hulladék, mint energiaforrás felhasználásának (ezek az un. Waste-to-Energy technológiák) gazdasági és környezeti hatásait. Részletesen foglalkozik a világ energia politikájával, a hulladékgazdálkodás környezeti hatásaival és annak integrációs lehetőségeivel. Bemutatja, hogyan lehetnek kompatibilisek a különböző, újrafeldolgozásra vagy energiaként való felhasználásra kidolgozott, hulladék kezelési eljárások.

2.2 Kutatja és kiterjeszti a legújabb energia optimalizálási és hőintegrációs folyamatok lehetőségeit (Total Site – LIES). Továbbá vizsgálja a megújuló energiaforrások integrálását a már meglévő hőintegrációs rendszerekbe. A megújuló energiaforrások rendelkezésre állása az időben más és más, évente, havonta de akár egy nap lefogása alatt is változhat. A dolgozat eszközöket javasol a változások időbeli követésére és kezelésére az un. Time Slice modell bevezetésével.

2.3 Az új eljárás az un. hagyományos Total Site eljárás olyan továbbfejlesztése, ami lehetővé teszi a meleg / hideg áramot felhasználó rendszerek jobb optimalizálását különböző egyéni minimum hőmérséklet különbségek bevezetésével (ΔT_{min}). Az eljárás (Pinch methodology) célja hogy minimalizálja főleg az ipari területen felhasznált energiát. Jelenleg is kérdéses hogyan oldható meg az a hőcsere integrációs probléma, amikor a folyamatokban az áramok közötti termodinamikai hajtóerő különböz (\(\Delta T_{hajtóerő}\)). A jelenleg alkalmazott módszerrel a termodinamikai hajtóerő (\(\Delta T_{min}\)) egységesítése a folyamatokban nem ad optimális megoldást. Egy ilyen feltételezés túlzottan leegyszerűsíttet és hibás eredményhez vezet. A dolgozatban javasolt (Process Specific) számolási metódus lehetőséget ad a különböző folyamatokhoz tartozó termodinamikai adatokkal való számításra és ezzel jobban megközelíti a valóságot. A bemutatott esetosztályánban egyértelműen látszik a két optimalizálási eljárás közti különbség, illetve a Process Specific előnye.
2.4 A Process Specific eljárás tovább fejlesztésére (Stream Specific targeting) azért volt szükség hogy a rendszereken belül folyó áramokhoz is meghatározható legyen a különböző termodinamikai hajtőerő a hőcsere során. Ennek érdekében bevezetésre került az egyes áramokhoz tartozó hajtőerő fogalma - ΔT contribution (ΔT_{cont}). A dolgozat leírja a kiterjesztett eljárás lépéseit egy tejipari üzem példáján keresztül. A kapott eredmények sokkal jobban megközelítik a valós üzem működését. Ezzel a továbbfejlesztett módszerrel elkerülhető a hőcserélő rendszerek felületének túlzott alul illetve túlméretezése.

2.5 Kifejlesztettünk egy szoftvert, amely alkalmazza a javasolt változásokat. Létezik több más nyílt forráskódú program is, de ezek egyike sem képes a rendszerek / áramok termodinamikai megkülönböztetésére, így pontatlanok. Annak érdekében hogy a valósághűbb eredményeket kapjunk szoftverünk kiküszöbölte az előzőekben felvázolt hibákat. A program képes végigten számú rendszereket és áramokat kezelni és frissíteni valós időben. A program C# programnyelven fut MSVS2010 környezetben. Használata során bizonyítást nyert, hogy a mind a két módszerrel (Process Specific és Stream Specific) elvégzett számításai sokkal pontosabb eredményeket adnak.

3. Tézisek
Az előző fejezetekben bemutatott újszerű megközelítések és tudományos hozzájárulások alapján, melyek átfogó esettanulmányokkal lettek illusztrálva, a következő tézisek fogalmazhatóak meg, melyeket a következő alap felfedezésbe lehet összefoglalni:

3.1 A különböző hulladékfeldolgozó technológiák bemutatása és összehasonlítása
A bemutatott új fejlesztésekkel a hulladéklerakók terheltsége csökkenthető. Bemutatásra kerültek olyan innovációs technológiák, melyek a legújabb szoftveresen támogatott tervezéssel készültek.

Bár a hulladékezelő technológiák robbanásszerű fejlődést mutatnak, a közösség elfogadása ezen innovatív technológiák irányába még nagyon kicsi. A mindennapi ember előítéletes elősorban a régi égetőkből szálló bűz, a szennyező terjedő anyagok és a feldolgozásból visszamaradó veszélyes hulladékok miatt. Ezeket a negatív előítéleteket kellene a kormányoknak több kommunikációval, részletesebb tájékoztatással leredukálnia, illetve az új, innovatív technológiák hatékonyságát különböző közösségi fórumokon terjesztenie.

3.2 Megújuló erőforrások integrálása Time Slice modell alkalmazásával

A fő cél a kőolaj alapanyagú energia felhasználásának visszaszorítása, ezzel egyidejűleg a megújuló energiaforrások szélesebb felhasználása és ezek integrálása különböző szektorokba. Az integráció során a tézis egy optimalizációs eszközt javasol a megújuló erőforrások időbeni és földrajzi helyszín változásának követésére, valamint az állandóan változó kereslet/kínálat követésére [7, 9, 10]. A meglévő hagyományos integrációs eszköz továbbfejlesztése lehetővé teszi a kőolaj alapú és a megújuló energiaforrások egyesítését még változó kapacitás mellett is [3]. A dolgozatban bemutatott példában 2 trend volt megkülönböztetve – óránkénti változások minden egyes napon, illetve szezonális változások az év egyes szakaszaiban mindez a fűtés, az elektromos áram és a meleg víz felhasználást tekintve egy lakónegyedre kivetítve. A példa jól bemutatja a különböző integrációk során a rendszerben megtakarítható energiát valamint a lehetőséget ad energiatárolására is. Az értekezés a korábban kifejlesztett számítógépes integrációs technikákat kiegészítette, így a már meglévő hőcsereintegrációs számítási metódusba a megújuló energiaforrások is hozzátehetők, ezzel csökkentve a rendszer egészsének energiaszükségletét más külső forrásból. A hő energia tárolására többféle számítási módszer alkalmazható, különbözők rövid ill. hosszútávra, mindenesetre a jövőre nézve ezeknek számításoknak a pontosságán javítani kell.
3.3 Továbbfejlesztett Pinch metódus – Rendszer specifikus Total Site számítási metódus

A fő cél ennél a számítási metódusnál a különböző, egyedi rendszerek energiahatékonyságának maximalizálása volt, nemcsak üzemi/ipari területen, de más egyéb sektorokban is [3, 4]. A tradicionális Pinch számítás minden rendszerben ugyanazzal a minimális hőmérséklet különbséggel számlál (ΔT_{min}), mint hajtóerő a hőcserereintegráció során, a termodinamikai törvényeket követve. Azonban a valóságban a különböző folyamatokban más és más a minimális hajtóerő attól függően, hogy milyen folyamatról legyen szó, mint például vegyipari üzem és élelmiszer gyártó vagy akár lakóegyetem. Az értekezés ezen fejezete továbbfejlesztette a Total Site-ot hogy alkalmazható legyen különböző energiaigényű rendszerek LIÉS-ba való integrálására [2, 11]. Ezt az újfaja számítást Rendszer specifikus számításnak nevezi, mely a valóságot jobban megközelíti, azáltal hogy a rendszerekre jellemző minimális hőmérséklet különbséggel számlál a hőcserereintegráció során. Több számítási példán keresztül bemutatja [6, 12] az egyes lépések közti eltéréseket. Egy számítási példát kiemelve, melyben a LIÉS rendszerben 4 különböző energiaigényű „üzem” került integrálásra [2, 8], bemutatja az integrációk közti különbséget. A kapott adatok egyértelműen tükrözik a továbbfejlesztett változat pontosságát, ezzel természetesen csökkentve a külső forrásokból igénybe vett energiahordozók vásárlását. A példa során a felhasznált hűtővíz mennyisége 30 %-kal, a felhasznált közepes nyomású gőz 18 %-al csökkenthető, ezzel egyértelműen elkerülhető a hőcserézők felületének alul vagy túl méretezése.

3.4 Továbbfejlesztett Pinch metódus – Folyamat specifikus Total Site számítási metódus

Az előző fejezetben ismertetett számításhoz képest [2, 8, 11] a Folyamat specifikus még több lehetőséget biztosít az egyéni folyamatok közti integráció specifikációja. Magán a rendszerekben belül folyó, áramok közötti hőcsere során felmerülő, termodinamikailag meghatározott egyéni minimális hőmérséklet különbség adható meg. Arra is lehetőséget ad hogy a különböző fázisú áramok hőcseréjénél a valóságot tükröző hőmérséklet különbségek játszanak szerepet (ΔT_{cont}) [13]. A különböző üzemek különböző meleg-hideg áramai képesek egymással hőcserefolyamatokban részt venni, abban az esetben ha a hajtóerő termodinamikailag pontosan meghatározott. Tehát elméletben, a bevezetett ΔT_{cont} minden egyes áramra specifikusan meghatározza a hajtóerőt, így ezen különböző rendszerek is képesek egymással a hőcserére. A Folyamat specifikus számítást is természetesen példákkal igazolja, melyben a rendszer meleg áram (általában forró olaj, gőz) igénye 30 %-kal, a hideg
áram igénye 59%-al csökkenthető összehasonlítva a tradicionális számítási folyamatból származó adatokkal, illetve 24 %-al a meleg és 44 %-al a hideg áramok csökkenthetők ha a számítás Rendszer specifikussal van összehasonlitásban. A számok alapján elmondható, hogy nagyon nagy különbség van a tradicionális, de még az értekezés során kidolgozott Rendszer és Folyamat specifikus számítások között is. A tradicionális számolás során kezdetben túl sok a feltételezés ezáltal a hőcsarélék alul/túl méretezettek, a Rendszer specifikus már valamivel jobb képet ad a valóságról, de kétség kívül a Folyamat specifikus közelíti a legjobban a valóságot, hisz a rendszerekben lezajló folyamatok azon belül az áramok közti hőcsere specifikációját teszi lehetővé.

3.5 Program készítése a különböző integrációs technikák alkalmazására

Jó néhány program létezik a piacon, ami a tradicionális integrációs lépéseket követve tervez. A doktori munka során kidolgozott program az előzőekben bemutatott tradicionális hőcserereintegráció továbbfejlesztett változatainak lépéseit tartalmazza. A program felületén a felhasználó ki tudja választani a használni kívánt integrációs technikát és meg tudja adni az ahhoz tartozó specifikációkat. A program kezeli a különböző változókat, termodinamikailag helyes eredményt ad minden rendszerre és folyamatra. A gyors és jó ábrázolásnak köszönhetően a rendszer/ek minimális hőigénye azonnal leolvasható. Elméletben végiglen százú rendszer és folyamat megadható a felhasználóbarát felületen. A különböző integrációk közti különbségek már a tervezés korai szakaszában kiolvashatóak, valamint gyors átfogó képet biztosít a tervezés további szakaszaihoz.