
Analysis of Parallel Local Methods in Image Segmentation,
Image Compression, and Motion Analysis

Ph.D. Thesis of

Czúni László

Supervisor: Szirányi Tamás

MI 1 Ph.D. Program

University of Veszprém

2000





Párhuzamos, lokális módszerek vizsgálata a
képszegmentálásban, tömörítésben és optikai

mozgásanalízisben

(Analysis of Parallel Local Methods in Image Segmentation, Image Compression, and

Motion Analysis)

Értekezés doktori (Ph.D.) fokozat elnyerése érdekében

Írta: Czúni László

informatikus mérnök

�������	
	����
����	�������	� ��
��	������
���
	�������	
����
�	����	���	�	��� �

alprogramja keretében.

 ��
!���� "	#�$	%���&���	 
�&�

Elfogadásra javaslom: igen / nem .
……………………………

dátum, aláírás

A jelölt a doktori szigorlaton ……%-ot ért el.

Veszprém, 200…………………
……………………………...

a Szigorlati Bizottság elnöke

Az értekezést bírálóként elfogadásra javaslom: igen / nem .

Els  bíráló: …………………………………. igen / nem
……………………………

    aláírás

Második bíráló: …………………………………. igen / nem
……………………………

    aláírás

A jelölt az értekezés nyilvános vitáján ……%-ot ért el.

Veszprém, 200…………………

…………………………...

  a Bíráló Bizottság elnöke

'	�������	�()$#$�	����!��	��� �*����++++++$
…………………………...

        az EDT elnöke



Table of Contents

 TABLE OF CONTENTS

KIVONAT............................................................................................................................................... 1

ABSTRACT............................................................................................................................................ 2

ZUSAMMENFASSUNG........................................................................................................................ 3

RELATED PUBLICATIONS ............................................................................................................... 4

PREFACE: PARALLEL ARCHITECTURES AND CELLULAR ARRAYS.................................. 7

CHAPTER I

MARKOV RANDOM FIELD-BASED IMAGE SEGMENTATION ON ANALOG PROCESSOR
ARRAYS

1 IMAGE SEGMENTATION.......................................................................................................... 8

2 MRF IMAGE SEGMENTATION MODELS WITH MAXIMUM A POSTERIORI
OPTIMIZATION ................................................................................................................................. 10

2.1 BASIC DEFINITIONS ....................................................................................................................... 10
2.2 THE SEGMENTATION MODEL: BAYESIAN MODEL WITH MAXIMUM A POSTERIORI (MAP)
ESTIMATION ........................................................................................................................................ 12
2.3 THE ENERGY FUNCTION................................................................................................................ 13
2.4 OPTIMIZATION BY MODIFIED METROPOLIS DYNAMICS (MMD).................................................... 14

3 THE CNN-MRF SEGMENATION MODELS.......................................................................... 16

3.1 PARALLEL SOLUTION ON THE CNN............................................................................................... 16
3.2 A MONOGRID CNN-MRF MODEL BASED ON LOCAL STATISTICS................................................. 19
3.3 EXPERIMENTS WITH THE MONOGRID CNN-MRF MODEL.............................................................. 22
3.4 NONLINEAR DIFFUSION FOR DETAIL CONSERVATION.................................................................... 23
3.5 MULTIGRID MODELS..................................................................................................................... 24
3.6 THE CNN-MRF MULTISCALE MODEL.......................................................................................... 26
3.7 EXPERIMENTS WITH THE MULTIGRID CNN-MRF MODEL............................................................. 28
3.8 CHARACTERISTICS OF THE IMPLEMENTED MODELS: COMPARING MONOGRID AND MULTIGRID

CNN-MRF MODELS........................................................................................................................... 32
3.9 THE ROBUSTNESS OF THE CNN-MRF MODEL ON IMPRECISE ANALOG CIRCUITS......................... 32

4 CONCLUSIONS........................................................................................................................... 42



Table of Contents

CHAPTER II

IMAGE COMPRESSION WITH NOISY 2D PROCESSOR ARRAYS

1    INTRODUCTION..........................................................................................................................43

1.1 A PARALLEL IMAGE CODING MODEL IN THE CNN ENVIRONMENT...............................................44
1.2 THE BASIC CNN CHIP-SET............................................................................................................45
1.3 THE ARCHITECTURE OF THE ORTHOGONAL ANALYZER AND DECODER ........................................45
1.4 THE PROCESSING CYCLE...............................................................................................................48
1.5 COMPUTATION TIMES ...................................................................................................................51

2    CODING IN A NOISY COMPUTATION MODEL...................................................................54

2.1 THE EFFECT OF A/D CONVERSION AND THE ACCUMULATION OF COEFFICIENT INACCURACY ......56
2.2 THRESHOLDING COEFFICIENTS......................................................................................................59
2.3 PARAMETERS FOR THE COMPRESSION OF AN IMAGE BLOCK .........................................................63

3    OPTIMIZING THE COMPRESSION IN A DYNAMIC CODING ENVIRONMENT ..........64

3.1 DYNAMIC IMAGE CODING WITH LAGRANGE OPTIMIZATION..........................................................64
3.2 OPTIMAL IMAGE CODING WITH LAGRANGE OPTIMIZATION IN QUADTREE REPRESENTATION........65
3.3 ANALYSIS OF CODE EFFICIENCY ...................................................................................................68

4    CONCLUSIONS.............................................................................................................................75

CHAPTER III

SPATIO-TEMPORAL SEGMENTATION OF VIDEO SEQUENCES WITH 2D PROCESSOR
ARRAYS

1     INTRODUCTION......................................................................................................................... 80

1.1 GENERAL TASKS IN MOTION SEGMENTATION AND TRACKING...................................................... 80
1.2 BASIC FEATURES OF THE PROPOSED CNN-BASED MODEL............................................................ 81
1.3 ELEMENTARY FUNCTIONS OF THE CELL ARRAY ........................................................................... 83

2 ESTIMATION AND SEGMENTATION OF THE OPTICAL FLOW................................... 84

2.1 ESTIMATION OF THE MOTION DISPLACEMENT FIELD..................................................................... 84
2.2 MOTION ESTIMATION BY A PARALLEL CORRELATION TECHNIQUE................................................ 85
2.3 SEGMENTATION WITH AN MRF-BASED METHOD ........................................................................... 88
2.4 A GRADIENT-BASED METHOD: SIMULTANEOUS ESTIMATION AND SEGMENTATION OF THE OPTICAL

FLOW BY ENERGY MINIMIZATION ....................................................................................................... 91
2.4.1 Constraints for the Optical Flow from the Intensity Conservation ....................................... 92
2.4.2 Segmentation by Energy Minimization.................................................................................. 93
2.4.3 Related Motion Segmentation Models Based on Energy Minimization ................................ 95

3 EDGE OPTIMIZATION FOR SPATIO-TEMPORAL SEGMENTATION AND
TRACKING.......................................................................................................................................... 96

3.1 SUBROUTINES OF THE PROPOSED MODEL ..................................................................................... 96
3.1.1 Nonlinear Diffusion............................................................................................................... 96
3.1.2 Pixel Level Tracking: Motion History................................................................................... 97
3.1.3 Morphology Operators on Cell Arrays ................................................................................. 98



Table of Contents

3.1.4 Disocclusion Removal in Parallel......................................................................................... 98
3.2 THE BASIS OF THE SPATIO-TEMPORAL SEGMENTATION ALGORITHM............................................ 99
3.3 THE SEGMENTATION PROCESS.................................................................................................... 100

4 EXPERIMENTAL RESULTS .................................................................................................. 106

5     VLSI CHIP SPEED AND COMPLEXITY ESTIMATION .................................................... 110

6    CONCLUSION............................................................................................................................. 112

THESES ..............................................................................................................................................113

ACKNOWLEDGEMENTS...............................................................................................................116

REFERENCES...................................................................................................................................117



Abstracts

1

Kivonat

'	 �����	 �������	 ���������	 
	 ��
���������&�	 )&���	 ���,�-,� 	 �����������	 )&���

speciális részterületével foglalkozik:

• statisztikai képszegmentálás  - képanalízis,

• DCT (Diszkrét Koszinusz Transzformáció) alapú képtömörítés – képkódolás,

• ����&�	��������&�&�	�� � 	!�������� �,��	.	����&�	
�
�*���$

'	 ������
�-
�	 �&���
��	 
�������/���	 ����������	 
�

!�� ��	 
--
�	 ���,�-,���	 
�

irodalomban eddig található eljárásoktól, hogy ezek párhuzamos processzortömbökre

lettek kidolgozva. Míg az ilyen platformoknak nagyon jó az ár/teljesítmény mutatója,


����	 ��&�����! 	 
�	 
	 )&��&��/�0	 )���	 1�
�	 ���)
�&������	 �*
/�2	 ��	 ��&�2

� !��������	 ��
����0	 ����&������	 
	 ���&���	 ���3��&�	 ��&�
	 ��	 ���	 �2�	 �
��	 


számítási pontosságuk (~8bit).

'�	 ��� 	 �������-��	 ���	 �
���!	 �
�3��*� ����	 ��� ��	 ��
���!	 4
����	 5����	 �

MRF) alapuló szegmentálási eljárás a vizsgálat tárgya, tekintettel a többfelbontásos

megvalósításra. A fejezet külön kitér a számítási zaj hatására, ami – egy bizonyos

�����	
�
��	�	
	����1)
�����/�	�
���
���&�&��	�3��
�	�,��,�)�� ��	���	�����
0	)
���

javítja a szegmentálási teljesítményt.

A számítási zaj szintén fontos szerepet játszik a második fejezetben is, ahol egy

�������&���	 ��
�������&1�3�	 !��� 	 
�1)�����2�
	 
	 ��&�*�&���	 
�

�
$	 ���	 ���

optimalizáló kódolási stratégia biztosítja a hatékony tömörítést a zajos áramkörökön,

akár több transzformációs eljárás segítségével (Koszinusz és Hadamard

transzformációk).

����&��	 ��	 ����� -���	 ��������&�&��	 ���&�&����
�	 ����
������	 
	 )
��
���	 �������$	 '

mozgásvektor szegmentálási eljárások MRF alapú statisztikai módszerekkel

� �,����0	�*�	
	����� -���	���&�&�	
�6��	����� 	�,!�����0	���-���	��������&�������&1�3�

��	 
�	 �� � ���	 -�1����	 ����&���� �	 )
���&��
0	 
	 ����3	 ������0	 �-����/���	 ��--

szegmentálása érdekében.



Abstracts

2

Abstract

The Thesis deals with three topics of three main areas of image processing:

• statistical image segmentation (image analysis)

• DCT (Discrete Cosine Transformation) based image compression (image coding)

• motion segmentation (based on dense vector field) (motion analysis).

All the discussed methods differ from most of the preceding algorithms found in

literature by the fact that they are supposed to run on fully parallel processor arrays.

While these platforms, when realized in VLSI chips, have superior computational

speed at relatively low cost compared to other architectures, have the disadvantage of

restricted number and type of operations, number of memory and precision of

computations.

In Chapter I a Markov Random Field (MRF) based image segmentation method is

investigated also in view of multiscale implementation. Some important observations

of this chapter come from simulations of computation noise, which show that a certain

amount of noise even enhances the segmentation performance, thanks to the stochastic

optimization technique.

The effect of computation noise also plays important role in Chapter II, where

compression architecture, based on orthogonal decomposition, is described.

Furthermore a bit allocation strategy is proposed based on the competition of

Hadamard and Discrete Cosine Transformations.

Motion and spatio-temporal segmentation algorithms are discussed in Chapter III.

Motion vector segmentation methods are based on MRF statistical methods, while the

spatio-temporal segmentation algorithm uses a pixel-level tracking algorithm, the

spatial intensity information and the estimated motion field for a better segmentation

of moving blobs in an image sequence.



Abstracts

3

Zusammenfassung

Die Arbeit beschäftigt sich mit drei Teilgebieten der Bildvearbeitung:

• Statistische Bildsegmentierung (Bildanalyse)

• Einfluß der DKT (Diskret Kosinus Transformation) auf die Bildkompression –

Bildcodierung

• Bewegung-Segmentierung (basierend auf dichten Vektorfeldern) –

Bewegungsanalyse

Alle Algorithmen dieser Arbeit unterscheiden sich von den Algorithmen die in der

Literatur beschrieben wurden dadurch, dass diese Algorithmen für

Paralellmatrixrechner ausgearbeitet worden sind. Diese Hardwerbasis besitzt ein sehr

gutes Kosten/Rechenegeschwindigkeitverhältsnis, aber es hat auch mehrere Nachteile.

Das eine ist die eingeschränkte Zahl und Art von Operationen, das zweite ist die

begrenzte Zahl der Arbeitsspeicher und Rechengenauigkeit.

Im ersten Kapitel wird eine auf dem Markov Random Field beruhende

Segmentierungsmethode untersucht, es wird auch die multiscale Implementation

beabsichtig. Einige wichtige Beobachtungen dieses Kapitels kommen von der

Simulation des Rechnerrauschens.  Es wird gezeigt, dass ein gewisses Mass von

Rechnerrauschen sogar zur Erhöhung der Segmentationsgüte beiträgt. Dies ist der

stochastischen Optimierungstechnik zu danken.

Das Rechnenrauschen hat eine wichtige Rolle auch im zweiten Kapitel, wo eine

Kompressionsarchitektur beschrieben wird, die auf eine orthogonale Zerlegung

basiert. Hier wird auch eine Strategie der Bit-Zuordnung vorgeschlagen, die auf

Hadamard und Diskret Kosinus Transformation beruht.

Bewegungs- und RaumzeitSegmentierungsalgoritmen werden im dritten Kapitel

untersucht. Der Algoritmus der Bewegungsvektorsegmentierung basiert auf einen

MRF statistischen Algoritmus, während der Raumzeitalgoritmus das Nachführen des

Bildpunkt-Niveaus benutzt, es benutzt die Helltasten der Information in dem Raum

und dem Bewegungsfeld für bessere Segmentierung der Bewegung Flecken in einer

Bildsequenz.



Related Publications

4

Related Publications

While the Thesis has three main chapters dealing with different areas of image

processing, they are all common that they are related to image coding and use the

same architecture for computations. This platform can be described as a fully parallel

architecture consisting of cell elements generally organized in matrix form. These

elements are connected to each other, contain memory and processing units and

usually represent image pixels. One typical example for these platforms is the analog

Cellular Neural/Nonlinear Network (CNN) [14,77], while other digital devices also

exist such as the Mitshubishi’s artificial retina [99] or other smart pixel arrays [24].

Currently, according to its physical parameters and complexity [21,57] it seems that

CNN is capable of the most complex computations, however, it is also true that for

certain applications other (even 1D) architectures are also satisfactory [82].

Chapter I contains algorithms for image segmentation based on Markov Random

Fields (MRFs). General reviews of image segmentation can be found in [34,64],

however, the application of MRF techniques in image analysis and segmentation are

in [4,8,9,10, 20,30,32,35,47,49,50,51,104]. According to a large number of

publications in this field, algorithms described in the Thesis differ in the basic

interpretation of data of observations made at pixel locations [96]. This is necessary

for the localization of statistical features (expected value and variance are measured at

the pixel-level instead of using global classes) and makes the CNN adaptation

possible. Also none of the known literature deals with the realization of MRF related

statistical algorithms on noisy hardware. The described models of the Thesis also

seem to be good applications of the so-called Modified Metropolis Dynamics (MMD)

optimization method [50], what is a special type of Simulated Annealing [30,52],

while multiscale MRF segmentation methods have been tested according to [32].

Chapter II deals with the possible use of CNN in image compression. While

there are a lot of papers about the application of CNN in image processing and a lot of

papers in the area of general image coding, only a very few articles deal with image

coding/compression in the CNN environment. In [100,101] an architecture for DCT

(Discrete Cosine Transform) and subband-based compression are given, however, the

Thesis proposes a different architecture capable of simultaneous coding and decoding

of the image [94]. This feature is necessary to implement Shannon’s rate-distortion

theory [83], a framework that is used to choose an optimal bit allocation strategy. It is

also important to mention that while CNN seems to be quite robust in MRF-based

segmentation, it is a bigger problem in image coding where the effect of

computational noise can decrease image quality seriously. While [100,101] do not

deal with the effects of noise, it is discussed in the current paper in details. Many other



Related Publications

5

bit allocation strategies exist (e.g. [15,59]), the currently most used one (based on

DCT) is JPEG [105]. In the Thesis a different algorithm for optimal bit allocation is

proposed, it is similar to the Dynamic Video Coding (DVC) approach discussed in

[22,72]. [25] describes the algorithmic solution for converting constraint problems to

unconstrained problems, also used in the proposed optimization algorithm.

In Chapter III motion segmentation algorithms and a spatio-temporal

segmentation algorithm is proposed. These algorithms can serve as bases for second

generation image/video coding. [98] contains details about this approach considered

as a successor of today’s compression technology [43,44,46], while MPEG-4 [45] is

already one main application of this technique.

Several optical flow estimation and segmentation techniques have been investigated

from the aspects of parallel implementation. [6,7,55,58,88] serve as good starting

points for comparisons of computation complexity and performance of several

methods.

Correlation-based techniques are widely used in MPEG applications but their serial

implementation is very time consuming. In case of motion field optimization, iterative

or relaxation algorithms are used to obtain reliable results [40,65]. However, the

iterative reevaluation of the displaced frame difference increases time complexity and

may not fit our computation model based on local interactions. Generally, correlation

techniques seem to be rejected in the Simple Instruction Multiple Data (SIMD) model

we addressed, but now we show that if no motion model based optimization is needed

then our fully parallel architecture can compute vector estimates with the correlation

technique.

According to [6] gradient-based approaches have good accuracy, although, it is also

well-known that these methods are very sensitive to temporal aliasing and need large

temporal support. In [6] best results needed 15 image frames to be stored in memory

simultaneously for computations (see the next section). In [28] a recursive filter is

designed to avoid the need for large image memories and long delays, and they report

similar results to the original model in accuracy.

In [84] filter banks had been built for spatio-temporal filtering. Their method is well

suited for parallel implementation and has good accuracy as reported, but its

application could be limited due to the large number of filters needed for general

image flows.

[49] describes motion compensated vector classification in the MRF framework. The

proposed model in [49] applies 3D cliques to exploit inter-frame information, but this

method still leads to color classification instead of real spatio-temporal segmentation,

which is closer to the recognition of video objects.



Related Publications

6

Many probabilistic approaches use region labeling algorithms for spatio-temporal

segmentation, e.g. [11,31]. These models, however, can not be implemented in our

parallel framework, since the proposed region indexing and labeling methods are not

well suited to the pixel array with many similar local processing elements and

memories. That is why a different contour-based segmentation method is employed in

this work.

Besides this overview other observations and comparisons are present in the following

three Chapters.



Preface

7

PREFACE: PARALLEL ARCHITECTURES AND CELLULAR ARRAYS

While in the past a lot of effort has been made to design real-time hardware systems,

today many of those problems can be solved with high performance general-purpose

personal workstations at low cost. On the other hand there is an increasing demand for

a new generation of image analysis tasks, such as second-generation video coding

[62,98], virtual reality, etc. While up-to-date Complex Instruction Set Computers

(CISC), such as PCs based on the Pentium MMX family, speed up multimedia

applications tremendously, these tasks are still far from being in the range of the

computing power of conventional CISC machines in the close future [58,70].

One possible breakthrough is the use of cellular processor arrays (analog or digital)

which assign a simple processor to each pixel resulting in fully parallel operation

[14,77]. Contrary to the general CISC class of processors, which can also show some

parallel capabilities as well, cellular processor arrays can utilize only simple pixel

based functions defining a relatively narrow instruction set – although, at a very high

speed.

The typical example for the higher cell-complexity of cellular processor arrays is the

family of the Cellular Neural/Nonlinear Network (CNN) chips [21,57]. CNN can

process images locally on the pixel-level with small neighborhood connectivity. It can

perform convolution, nonlinear (sigmoid) dynamics, etc. in a feed-forward/feed-back

operation mode. CNN Universal Machine (CNN-UM) [77] is a programmable

computer based on the basic CNN architecture with many additional features like

those that conventional computers have: local and global memories, pixel-level

logical and arithmetic functions, digital memories etc., all in one single chip.

Investigating the success of general-purpose high performance processors in the

image processing area, it seems to be reasonable to develop new, low-level algorithms

for this new class of cellular processor arrays, since they can be considered as widely

usable real-time image processing architectures with superior speed, integrated into

VLSI. The crucial question is how to develop a successful cellular image processing

system for certain purposes containing local connections and reduced instruction set,

considering the limitations of the cell-complexity of VLSI implementation



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 8

CHAPTER  I

MARKOV RANDOM FIELD-BASED IMAGE SEGMENTATION ON ANALOG
PROCESSOR ARRAYS

1 IMAGE SEGMENTATION

Image segmentation can be considered as a special kind of image classification. In

dense pixel classification pixels are represented in the feature space and in many cases

the task is to find the most important feature vector elements that are required to

group the pixels into classes. A very important aspect in segmentation is that the

spatially neighboring pixels should belong to the same class with high probability.

Image segmentation is an operation very often used in image processing. Its output

can be directly useful to a large class of applications such as medical image

processing, agricultural applications, etc. High level applications, such as robot vision

and second generation image coding also use segmentation as an essential low-level

preprocessing step.

There are a large number of different image segmentation algorithms [34,64]. The

most important criteria for good segmentation are the following:

• The segmented image should contain connected and disjoint regions.

• All pixels should belong to one class.

• Regions should be homogenous with well-defined contours separating them.

However, it is always a question how to evaluate an image segmentation algorithm. In

most cases artificially generated images serve as ground truth. In cases of natural data

the image is usually segmented manually, based on auxiliary information, and the

result obtained is used for performance evaluation of the automatic segmentation

process.

Many of the segmentation methods, e.g. split and merge, region growing, etc.,

construct a graph (or similar high-level) representation of the image content.

Unfortunately, this kind of high-level representation is not possible in our framework

where images are represented densely on a lattice of elements. The most important

feature of the Markov Random Field (MRF)-based segmentation models discussed in

this chapter is that they are based on low level observations and operations. On the



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 9

other hand, a very important aspect of the development of the following algorithms

was to use simple operations that are realizable in analog VLSI circuits.

The proposed low-level processes can be used for the segmentation of grayscale, non-

textured images. Such kinds of images are common in medical image processing (e.g.

Computer Tomography (CT) and Magnetic Resonance Imaging (MRI) data) or in the

area of processing spot or air-born images.

A very important feature of the presented algorithms that they can be executed

parallel promising a fast VLSI implementation on cell array computers such as the

CNN-UM.



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 10

2 MRF IMAGE SEGMENTATION MODELS WITH MAXIMUM A POSTERIORI
OPTIMIZATION

Since the work of Geman and Geman [30] there are a lot of examples where

stochastic optimization and Bayesian approaches are used for solving image labeling

problems. However, the idea of parallel, low-level cooperating processes is much

older, many basic ideas were already reviewed in [20]. Examples for edge detection,

image segmentation, restoration, stereovision, motion segmentation, etc. can be found

in [4,8,9,10,30,32,35,50, 51,104].

For many of the early vision processes, where the image is represented on a lattice,

the problem is posed as a labeling problem. In our case, when our aim is to segment

the input image to a given number of classes, we will determine the possible classes

by the grayscale information of the input image, but usually MRF based methods can

be extended to the analysis of color images as well [47,49].

To find an optimal labeling, the minimization of a cost function - which is constructed

from the observed data, a priori information and constraints - is needed. The obtained

cost function is usually non-convex and several relaxation techniques have been

proposed to reach an optimum labeling. One class of methods deals with stochastic

relaxation and is based on Simulated Annealing (SA) [30,52]. These algorithms

converge asymptotically towards the global minimum but require a great deal of

computation. The second group of methods is related to deterministic relaxation.

These techniques are sub-optimal but require less computational time than the

previous ones. That is why so many deterministic (or pseudo stochastic) relaxation

algorithms have been recently investigated (Graduated Non Convexity (GNC) [9],

Iterated Conditional Mode (ICM) [8], Mean Field Annealing (MFA) [104], Modified

Metropolis Dynamics (MMD) [50]). In the proposed framework the MMD will be

implemented.

2.1 Basic Definitions

First, I give a brief introduction to the theory of MRF [3,74,96], and then a general

image model, used in the following sections, is described.



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 11

Let ),...,,( 321 Nssss=S  be a set of sites (or pixels). Two points is  and js  are

neighbors, if there is an edge connecting them. The set of points that are neighbors of

site s  is denoted sG . { }S∈= ssGG  is a neighborhood system for S  if:

1. ss G∉

2. sr rs GG ∈⇔∈ .

A subset S⊆C  is a clique if every pair of distinct sites in C is composed of two

neighbors. C denotes the set of all cliques. In image processing the most commonly

used neighborhood systems are the homogeneous systems. In this case, we consider S

as a lattice and define these neighborhoods as

{ }S∈= ),(:),( jin
ji

n GG ,

{ }njliklkn
ji ≤−+−∈= 22
),( )()(:),( SG .

Obviously, sites near the boundary have fewer neighbors than interior ones.

Furthermore, S≡0G  and for all 1:0 +⊂≥ nnn GG . Fig. 1 shows a first-order

neighborhood corresponding to n=1. The cliques are  {(i,j)}, {(i,j), (i,j+1)}, {(i,j),

(i+1,j)}.

Let { }S∈= sXX s  denote any family of random variables so that Λ∈∈∀ sXs :S ,

where { }L,.....,1=Λ  is a common state space. In our case they will mean the labels.

Furthermore, let { }Ni
iN sssss ≤≤Λ∈==Ω 1  ,:),...,,,(

321
ωωωωωω  be the set of all

possible configurations.

X is a MRF with respect to G if

1. 0)(: >=Ω∈∀ ωω XP ,

2. ),|(),|(:, srrssrrss rXXPsrXXPs G∈===≠==Ω∈∀∈∀ ωωωωωS .

A central site and its 4 neighbors Cliques

Figure 1.
First order neighborhood-system and cliques.



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 12

The functions in point 2 are called the local characteristics of the MRF, and the

probability distribution )( ω=XP  of any process, satisfying point 1, is uniquely

determined by these conditional probabilities. However, it is extremely difficult to

determine these characteristics in practice. Gibbs distribution and the Hammersley-

Clifford theorem provide us a simple way to solve this problem.

A Gibbs distribution, relative to the neighborhood system G , is a probability measure

π on Ω with the following representation:

( ),)(exp
1

)( ωωπ E
Z

−= (1)

where Z is the normalizing constant or partition function:

( )∑ −=
ω

ω)(exp EZ , (2)

and the energy function E  is of the form:

∑
∈

=
CC

CEE )()( ωω . (3)

Each CE  is a function defined on Ω depending only on those ωs elements of ω for

which s∈C. The restriction of ω to the sites of a given clique C is denoted by ωC.

Such a function is called a potential. A very important theorem is the Hammersley-

Clifford theorem, which points out the relation between the MRF and the Gibbs

distribution:

• X is a MRF with respect to the neighborhood system G  if and only if

)()( ωωπ == XP  is a Gibbs distribution with respect to G .

Using the above theorem the definition of the MRF is completed by the knowledge of

the clique potentials )( CCE ω  for every C in C and every ω in Ω.

2.2 The Segmentation Model: Bayesian Model with Maximum A

Posteriori (MAP) Estimation

During the labeling segmentation process we would like to choose the most probable

labels, i.e. our estimation should be based on the Bayesian estimation model. We can

start from the following probabilities:



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 13

)(

)()|(
)|(

FP

PFP
FP

ωωω = , (4)

where F is the observed grey-level image data, { } S∈= ssfF . Since the MAP

estimation techniques are quite effective in image processing, we can use this model

to define the Bayes risk. The cost function in MAP estimation is defined as:

)(1)’,( ’ ωωω ωΔ−=R , (5)

where )(’ ωωΔ is the Dirac mass at ’ωω = . The Bayes risk to be minimized is:

{ }))(,( FdRE ω , (6)

where d is a decision function based on our observations. Considering that F is

constant in our model and combining the above equations we get:

)()|(maxarg)|(maxarg)|()’,(minarg
’

ωωωωωωωω
ωωωω

PFPFPdFPROPT Ω∈Ω∈Ω∈Ω∈
=== ∫ .

(7)

Now, utilize the Hammersley-Clifford theorem to substitute )(ωP  probabilities with

energy potentials and write the above equation in the following form:

( )∏ −∏=
∈∈Ω∈ CS C

C
s

ssOPT EfP )(exp)|(maxarg ωωω
ω

. (8)

2.3 The Energy Function

Taking the logarithm of Eq. (8) and assuming that )|( ssfP ω  is Gaussian we can

formulate an energy function:

)(),(),( 21 ωωω EFEF +=E , (9)

where

∑
∈

−
+=

Ss

f

s

ss

s
FE

ω

ω
ω

σ

μ
σπω

22

2)(
)2ln(),(1 , (10)

∑=
∈CC

CEE )()(2 ωω , (11)

{ }
⎩
⎨
⎧

≠
=−

==
rs

rs
rsrsC if

if
EE

ωωβ
ωωβ

ωωω ),()( , , (12)



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 14

(This last one is a penalty function to encourage homogeneity of labels ωs and ωr in

cliques).

That is to find an optimum solution for the Bayesian estimation problem (Eq. (8)) we

can run an energy optimization algorithm during which we are to get the smallest

energy E  (Eq. (9)) over the lattice S.

A basic assumption in image segmentation is that the observed input image can be

well characterized by a finite number of classes. Within a Gaussian model each class

can be represented by its mean value μ and by its standard deviation σ. That is each

possible label should have its appropriate mean μλ and deviation σλ. The first energy

term (E1) is responsible to keep the labeling close to observations, while the second

energy term (E2) is to achieve fairly homogenous regions, which is an important

requirement in image segmentation. β is a positive model parameter controlling the

homogeneity of regions of the segmented image. Typically, small β retains little

image segments, while larger β causes the formation of larger regions. For more

details of more general image models the reader should refer to [50, 56].

2.4 Optimization by Modified Metropolis Dynamics (MMD)

During the relaxation process, new random labels (also called states) are generated in

each iteration and compared to the previous labels. Labels are compared on the basis

of the already defined energy function (Eq. (9)), however, the decision criteria can

vary according to the optimization algorithm.

Basically, the MMD algorithm [50] is a modified version of Metropolis Dynamics

[60] and it turns the original algorithm into a pseudo-stochastic relaxation process. In

our parallel computation framework the MMD algorithm proved to be a very effective

solution: while it is a fast algorithm with satisfactory optimization abilities [50] its

parallel implementation does not require high complexity.

The difference between the original Metropolis method and the MMD is the choice of

a threshold value ξ used in the dynamics to accept or reject a new candidate state. In

the original method ξ is chosen randomly at each iteration. In the MMD algorithm ξ is

a constant threshold, now denoted by α, chosen at the beginning of the algorithm.

This means that a jump to a new state η is allowed if this change does not increase the



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 15

energy ’’excessively’’. The threshold α controls the possible increase of energy that is

allowed for a transition to a new state. The algorithm can be run parallel to all sites [4]

and can be described as follows:

1. Pick randomly an initial configuration ω0, with k=0 and T=T0.

2. Using a uniform distribution, pick a global state η∈Ω \{ωk}. Compute the local

energy Es(ηs) with ],,,[
21

k
ss

k
s

k
s N

ωηωωη   ...,   ..., = .

3. Compute  ΔEs = Es(ηs) - Es(ωk). The new label ηs at site s is accepted according to

the following rule: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟
⎠
⎞⎜

⎝
⎛ Δ
−≤>Δ

≤Δ

=+

otherwise
T

andif

if

k
s

s
s

s

k
s

ω

αη

η

ω E
E

E

)ln(0

0

1 (13)

α is a constant threshold (α∈]0,1[) chosen at the beginning of the algorithm.

4. Decrease temperature T. If ∑Δ
s

sE  is greater than a given threshold (or the number

of changed sites is above a predefined limit), then go to Step 2, otherwise stop.

There is no explicit formula for the threshold α. In practice, in case of a noisy image

α is chosen nearly equal to zero, otherwise α is chosen nearly equal to one. If the

temperature is less than a certain threshold  (ΔEmin/(-ln α)) then only the jumps to

states of lower energy are allowed. While this algorithm converges to a local

minimum its performance is close to the Metropolis algorithm according to tests in

[50]. The typical rate to decrease temperature is given by Tk+1 = 0.95⋅Tk.

Since α is fixed, there is no need for updating its logarithmic value in every step,

moreover, more sites can be updated successfully in one step. This latter property is

not obvious, but according to [4] we know that the algorithm will converge as long as

less than 100% of the pixels are updated at the same iteration step. It is true in our

case except for events that occur with almost zero probability, and it enables fast

parallel implementations without the restriction on the number of simultaneously

changed sites. These features make the MMD method a simple algorithm that could

be easily implemented in parallel VLSI architectures.



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 16

3 THE CNN-MRF SEGMENATION MODELS

3.1 Parallel Solution on the CNN

MRF image segmentation methods are based on a large number of local (pixel-level)

calculations of potential functions. If we use a Complex Instruction Set Computer

(CISC) then all functions at arbitrary complexity level can be carried out. However, if

we want to use massively parallel architecture solutions, with thousand of processing

elements, we should keep low the necessary complexity for local computations of the

computation model. In this special case (in analog implementations at limited

accuracy) it is also important to take into consideration the precision of the hardware

architecture as detailed in Section 3.9 [96].

One example for parallel implementation is the Connection Machine (CM) [36,50,51].

The CM is a Single Instruction Multiple Data (SIMD) architecture, where each image

pixel is assigned to one virtual processor at high accuracy and complexity. It is a

partly parallel solution since several virtual processors are mapped to one physical

processor.

If we use fully parallel machines of smart but reduced complexity cells, such as CNN,

where global computations are more difficult to be carried out, we should redefine the

segmentation model [96].

Basically, functions used in the segmentation can be divided into two groups:

1. There are global processes, such as:

• Image grabbing from camera or file (G1).

• Checking the stopping conditions (G2).

• Image saving or image transfer (G3).

• Image statistics computation (histograms, estimation of labeling parameters)

(G4).

• Controlling Simulated Annealing (G5).

2. There are local processes operating in a limited neighborhood:

• Comparing labels of the neighborhood (L1).

• Calculation of energy functions (L2).

• Evaluating the decision function (L3).



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 17

An imaging cellular system, such as some CNN VLSI chips [21], can grab the image

using on-board photo sensors. Such a cellular sensor chip can operate at video rate,

and we do not need to deal with stopping conditions, since:

• The segmentation process should be convergent in time. Overtime is not a

problem.

• The process should be faster than the standard video frame-rate (for an analog

CNN chip the whole MRF process is approximately 0.1 msec as simulations with

physical VLSI parameters [21] show).

• We stop the iteration at a pre-defined but satisfactory number of steps.

The computation of image statistics and parameter estimation (such as determining μλ
and σλ.) is a sequential algorithm. However, it does not mean any limitations for the

parallel model, since these calculations are to be made only once during the whole

algorithm and in some cases can be done during image transfer. These statistical

parameters and the parameters of simulated annealing should be transmitted to every

cell simultaneously, meaning that the system needs parallel data loading and

controlling, which are basic functions of the CNN VLSI chips. However, as we show

later, parameter estimation for labeling may be based on pixel-level computations

using a parallel unsupervised estimation method.

Local calculations (L1-L3) can be made in parallel processes operating in the close

neighborhood of a pixel. On the other hand, the cellular parallel processing

architecture is not capable of all kinds of local computations. For example, if we used

the Gibbs Sampler [30] for combinatorial optimization we would have to compute

exponential functions to evaluate the decision functions. While it was available in the

CM, it is not in the CNN framework. Fortunately the MMD algorithm avoids this

problem.

According to the latest chip designs [21,73] only the following operations are

accessible in our framework: addition, multiplication [39], on-board photo sensors,

local and global memories, and logical functions. Besides these it was also suggested

to use simple stored functions (jigsaw, comparison) [96], which can be easily

implemented at the current technological level.



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 18

As for the generation of new random candidates in the MMD algorithm, random

number generation can be a pseudo random process. A serial process can compute the

random numbers of an initial random configuration, and then new random global

states can be generated by spatially constant offsets. Resulted values can be

transformed into the valid data range with the help of a jigsaw-like function.

Division is only done in pre-processing when the inverse of standard deviations of

classes is calculated (see Eq. (10)). Using the MMD algorithm [50] 7-8 memories by

cell are needed. The inverse of variance and mean of a possible class should be fed

into the cells by parallel lines. If these values are stored in local memories during the

whole segmentation algorithm, then a cell needs additional memories as much as

twice the number of the possible labels. Later it is shown that only 2 additional

memories are necessary if we use a simplified pixel-level parameter method.

For a detailed explanation of the implementation of the MRF model on the CNN-UM

the reader is referred to [96].



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 19

3.2 A Monogrid CNN-MRF Model Based on Local Statistics

The previous implementation of the MRF segmentation model on 2D processor arrays

requires a large amount of local memories for storing class statistics and for the

computation of the energy functions. However, the number of these pixel-based

memories is limited due to technological reasons. To reduce the need for local

memories a constant deviation model (the standard deviation of all classes was

substituted by one value) was introduced in [96].

In this section we discuss a different model that is based on local statistics and was

also first proposed in [96]. It does not require the estimation and store of global class

characteristics; instead, a local Bayesian model is used.

It is supposed that a rough estimation of the gray level of classes can be made by

finding the histogram peaks of the smoothed input image. Thus
s

ω
μ means the

estimated gray level of class ω at pixel s. It is also assumed that the different classes

can be very roughly approximated locally by the expected value and variance defined:

2
ss

s

sf +
=μ , (14)

and

2
ss

s

sf −
=σ , (15)

where ss is the average value around pixel s obtained by a smoothing operator. This

means that we expect the segmented image to be somewhere halfway between the

observed value and its smoothed version. Although it seems to be a strong

simplification, it fits the general segmentation model where the different classes are

approximated through a smoothing operator. Since this kind of local approximation

fits the CNN architecture very well, let us call this model the CNN-MRF model in this

work.

Now, the energy term defined in Eq. (10) is rewritten:

∑
∈

−
+=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Ss
)(FE

s

ss

s 22
2ln),(

1

2

σ

μμ
σπω

ω

. (16)



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 20

Since variances are constant at each position, the calculation of ΔEs = Es(η) - Es(ωk)

is greatly simplified compared to the original MRF model. The first part of Eq. (16)

can be simply neglected, while the numerator of the second part can be written with

the help of 3 addictions/subtractions and 1 multiplication:

( ) ( ) ( )( )sss k
s

k
s

k
s

k
s

k
s

k
s

μμμμμμμμμ ωωωωωω 2111

22 −+−=−−− +++
  . (17)

E2 is calculated using a simple equality detector for each neighbor of s for the current

state k
sω  and for the new candidate 1 +k

sω .

However, in some cases we might need to increase neighborhood connectivity to

achieve good segmentation results. Fig. 2 illustrates the third order neighborhood

system used in the CNN-MRF implementation.

Figure 2.
A central site and its 12 neighbors in the third order neighborhood-system.

According to the MMD algorithm temperature control can also be realized by simple

functions. After setting an initial temperature the current temperature should be

decreased in each iteration step. Since T is uniform over the whole image field it can

be represented and updated in a global memory, then the new value can be

downloaded to local memories. Logical operators, appropriate for the parallel array

model, can then execute the MMD decision rule given by Eq. (13).

Fig. 3 shows the flow chart of the initialization (dotted lines) and one cycle of the

segmentation process [96]. Local memories are denoted by M#, 8 of which is required

in the CNN-MRF architecture. Every step of the algorithm can be done parallel in the

CNN-UM except for the initial classification and the calculation of some global



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 21

parameters. Since the division operator is not available in the CNN VLSI

environment, the calculation of 
2

1

sσ
 is also a serial process and part of the

initialization. However, some restricted division can be implemented in VLSI using a

nonlinear function but at limited accuracy. Due to the nature of the σ calculus no high

precision is needed for the division.

Figure 3.
Architecture of the CNN-MRF model with 8 local memories and simple functions

appropriate for the CNN-UM [96].



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 22

3.3 Experiments with the Monogrid CNN-MRF model

The experiments have been carried out on a software simulator system using a fixed-

point hardware accelerator board installed in a PC [76]. The simulator has limited

accuracy, so values had to be normalized to avoid over- or under-flow problems. The

accumulated rounding error and the nonlinear saturation of the CNN simulator results

in a loss of precision. Since still satisfactory results could be achieved in this

environment, it predicts that an image processing system implemented in VLSI

circuits should be robust [90] either.

The CNN-MRF model was tested both on artificial and natural images. In the first

case the artificially generated pictures consisted of well-defined regions of given

number of classes. These original images were loaded with heavy noise and the

segmentation algorithm was expected to reconstruct the same homogenous regions as

the original image had. In this case comparing the noise-free and the segmented image

pixel by pixel we could measure the segmentation error. In case of natural born

images the evaluation of the segmentation results is much more difficult. Generally,

the comparison is based on hand-made segmentation, or results are evaluated by other

subjective means. Only a few cases allow reliable comparisons to ground truth data.

Fig. 4 shows the segmentation results using a noisy input test image (SNR=5dB).

Parameters in the segmentation process are: Tk+1=0.95⋅Tk, α=0.3, and β=10.0. The

misclassification error is 1.5%. Using the original MMD algorithm on a CM [36] the

error is 1.3 %, and it is 1.0% with the Metropolis algorithm [50,48].

We have checked the segmentation error with respect to the number of iteration steps

for different α values. We have found that the process is convergent and settles in

about 100 iteration steps. In Fig. 5, the unsupervised segmentation of a SPOT satellite

image is shown. Here 4 output classes were defined. Parameters are Tk+1 = 0.95⋅Tk,

α=0.3 and β=0.5.

It is important to mention that these segmentation results, and also other results

generated with a stochastic iterative process are not always absolutely stable and

exactly reproducible. Depending on the speed of convergence, initial temperature, etc.

there can be a few fractions of percentage differences in the outcome of the same

experiments.



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 23

Input noisy image (SNR=5dB) CNN-MRF Segmented Result

Figure 4.
Monogrid segmentation of an artificial test image.

Input  SPOT Image CNN-MRF Segmentation

Figure 5.
Satellite Image Segmentation, 4 classes.

3.4 Nonlinear Diffusion for Detail Conservation

In [93] it has been shown that the segmentation error of the CNN-MRF algorithm

significantly depends on the type of diffusion used to calculate the expected value and

the variance in each pixel position. Nonlinear (or anisotropic) diffusion methods are



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 24

much more satisfactory to generate ss, the average value around pixel s used in Eq.

(14) and Eq. (15), than linear smoothing operators.

While linear smoothing is defined by equation:

)(gradIdiv
dt

dI = , (18)

edge driven diffusion defined by Perona, Malik and Catté [12,67] is given by:

( ) ))(( gradIIGgradgdiv
dt

dI ∗= � , (19)

where G is a Gaussian pre-smoothing filter for noise suppression, and

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

n

K

id
g exp  , (20)

K>0, n>0, typically n=2. K can control the edge conservation property of the filter.

A simpler equation for nonlinear isotropic diffusion was proposed in [79]:

( ) )(gradIdivgradIg
dt

dI
�= . (21)

Since in case of both nonlinear solutions g is given by an exponential form the direct

implementation of these nonlinear models would require a physically hardly

realizable function at each cell. That is why the exponential function is replaced by a

linear term detailed in a following section.

3.5 Multigrid Models

Nowadays multiresolution, multiscale, hierarchical approaches are widely applied in

the field of image processing. Markov Random Fields are one typical area where the

advantages of such techniques seem to be tremendous. A review on this

widespreading area can be found in [32]. It is worthy to note that there is a certain

confusion in the terminology regarding techniques processing images on more than

one representation level. The words like multigrid, multiresolution, multiscale,

hierarchical are to be considered generally synonyms, while in some papers they are

addressed specially to some well-defined techniques. In this dissertation I usually call

the models simply monogrid or multiscale/multigrid depending on whether we apply

multiresolution processing or not.

Here are some reasons why multigrid models are usually preferable:



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 25

• In a general case many phenomena (e.g. fractal-like signals) have intrinsic

multiscale properties so it may have a natural meaning to apply similar operators

on different scales.

• In our case we face an optimization problem with possible local minima.

Multiscale optimization can avoid being trapped in local minima. It can also result

in faster convergence and become less sensitive to initial configurations.

Generally speaking, the common feature of all multiscale models is the representation

of images on several levels with decreasing resolution, while there can be significant

differences in the definition of cliques and energy functions in the different

approaches (see [32] for details).

The VLSI implementation of the CNN-MRF model with a third order neighborhood-

system can be technologically costly, on the other hand, as experienced, our simple

cell-array system with first order neighborhood connectivity and with unsupervised

pixel-level parameter estimation does not give satisfactory results. What it is expected

from multigrid implementations is to reduce the necessary neighborhood connectivity

of the monogrid CNN-MRF model at comparable segmentation results and acceptable

ratio of the number of operations per iteration.

Multiscale representation can be introduced into a parallel 2D cell-processing

framework in two different ways:

1. At lower scale representations rectangular groups of pixels are restricted to have

the same value. The size of the image array is constant; these restrictions are

responsible to achieve lower resolutions. In this case there is no need for moving

or reorganizing the pixel values when changing resolution. However, if we do not

want to exceed first order connectivity, only two level image pyramids are feasible

this way.

2. The size of the image arrays is changing with resolution. When increasing or

decreasing the resolution, pixels should be read out from the 2D array,

reorganized and downloaded in a serial process.

These two solutions are equivalent in segmentation, however, they need different

computational complexity and memory requirements when implemented in the

parallel 2D processor array.



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 26

3.6 The CNN-MRF Multiscale Model

Now, I introduce a multiscale structure for the CNN-MRF model [18]. While the

proposed multiscale model is similar to [35], I certainly had to take into consideration

the capabilities of the CNN-UM platform where it is supposed to be implemented. In

this model we have a top-down strategy from coarser representation of the image to

finer scales (in experiments 2x2 sites were used to build up a coarser block, i.e. the re-

scale ratio n equals 2). The optimization starts on the coarsest level and the obtained

equilibrium state serves as the initial state for the further optimization on the finer

layer below. During the optimization process there are no interactions between the

scales except for the initial data.

An important feature of this model is the calculation of clique potentials. At a given

scale the second part of the energy term (E2) is calculated through the cliques of the

finest scale. While at all levels the cliques of the finest representation are considered

for computation, there is a restriction that blocks of n2i sites must have the same value.

Here n is the re-scale ratio, i is the actual level of representation in the image pyramid.

Cliques, always defined on the finest scale, corresponding to a block at a certain level,

can be partitioned into two sets. The first set contains cliques that belong to sites all

inside the block, whereas the other set of cliques consists of the ones that connect sites

of two neighboring blocks. The energy contribution of the first set is given by pβ in

Eq. (22) while Eq. (24) gives the energy of the other set. Clique potentials at a given

scale are the sum of these energies measured on the finest resolution.

The following forms represent all energy components at level i similarly to Eq. (9)

with the modifications corresponding to the description given above:

β
σ
μμ

σπωω ω
pFEFE

i
is

s

ii

i

bs s

s

s
Ss

s

iii −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+== ∑∑

∈∈
2

2

11 2

)(
)2ln(),(),( (22)

and

)()(2
ii

C

ii

i

EE ωω ∑
∈

=
�

�

(23)

where

⎩
⎨
⎧

≠+
=−

== ∑
∈ sr

sr

Dsr
sr

ii

ifq

ifq
EE

iC
ωωβ
ωωβ

ωωω
),(

),()( . (24)

Explanations to the notations of the above equations:



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 27

• is
ω means the labeling of one block at scale i.

• i

sibs∈ means sites of the finest scale, which build up a block at scale i.

• Ci is one clique, while Ci is the set of all cliques at scale i.

• iC
D  is the set of those sites which build up clique Ci.

• The number of cliques included in one block at scale i is p=2ni(ni-1), while the

number of cliques between two neighboring blocks is inq = .

Note that these equations apply only for a first order neighborhood-system since our

purpose is to reduce the necessary neighborhood connectivity of the monogrid CNN-

MRF model.

Fig. 6 represents the two kinds of cliques mentioned, and Fig. 7 illustrates the main

steps in the optimization that are:

1. Energy optimization of a layer.

2. Initialization of the next layer from a coarser layer above.

Figure 6.
 Multiscale cliques.



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 28

Figure 7.
Main steps of multiscale segmentation.

3.7 Experiments with the Multigrid CNN-MRF Model

Besides the model described in the previous section I investigated other multigrid

models, e.g. a causal hierarchical model similar to [10]. Here I do not deal with other

multigrid algorithms, since the limited set of operations available in our parallel

framework did not lead to satisfactory segmentation results with these models.

We have found that two implementations of the CNN-MRF multiscale model could

work properly in the CNN-UM or in other similar structures. Both of these multiscale

implementations need more local memories per cell and functionality than the

monogrid version but use only first order neighborhood connectivity.

There are two possible algorithmic implementations of the proposed multiscale

model:

1. The first realizes the model just as given by Eq. (22) and Eq. (24).

We start the algorithm at the coarsest scale where the image size is naturally

smaller than the input image. Since we work on a chip of fixed size, other parts of

the array are not used except for the finest level. Local observations (Eq. (14) and



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 29

Eq. (15)) are smoothed then re-scaled and stored for all scales independently.

When the segmented image is stable, then all labels are read out and mapped to a

higher resolution by duplicating sites.

2. The second implementation realizes directly the idea that is behind the

formulae. In this case we have only the finest scale represented in the cell array

and instead of building a coarser (smaller) grid we restrict the values of sites so as

to be the same in every block defined on a higher scale. It means that there is no

need for the reconfiguration of sites when changing resolution. Initial

observations (expected value and variance) are downsampled for lower

resolutions and doubletons (Eq. (12)) are computed for all sites of the finest

resolution. The crucial point of this implementation is the summation of energy

terms over blocks of nixni pixels at scale i. Since we should not exceed first order

neighborhood connectivity only blocks of size 2x2 are appropriate, larger areas

are not adequate for collecting and summing up clique potentials. Thus only two

level pyramids are supported by this construction. The generation of random

labels is clear: since they are generated by offset of the first iteration, spatial

restrictions apply only in the first random step.

Since both techniques are based on the same theory, very similar segmentation results

are expected, however, they have different complexity and different computation

time. In our experiments both models were optimized with the MMD technique with

various ad hoc parameters.



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 30

(a) (b)

(c) (d)

Figure 8.

Segmentation results applying different smoothing methods in the pre-processing and

different CNN-MRF. (a) Monogrid model, first order neighborhood, 150 iteration

steps, nonuniform smoothing in the pre-processing, misclassification error: 3.7%. (b)

Monogrid model, third order neighborhood, 150 iteration steps, nonuniform

smoothing in the pre-processing, misclassification error: 1.6%. (c) Multiscale (2

scales) representation, first order neighborhood, 2*80 iterations, uniform smoothing

in the pre-processing, misclassification error: 3.5%, (d) Multiscale (2 scales)

representation, first order neighborhood, 2*80 iteration steps, nonuniform smoothing

in the pre-processing, misclassification error: 1.7%.



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 31

     

(a) (b)

(c)

Figure 9.
Multiscale MRF segmentation

(a) Air view of a scene with river, bridge, forest, green area and town (from left to
right) at Rio Grande, New Mexico. Image is segmented into (b) 3 classes, (c) 4

classes.

As Fig. 8 illustrates, there is a significant increase in segmentation quality compared

to the first order monogrid model, while best results of the first order multiscale

model are quite close to the results of the third order monogrid model.

In Fig. 9, we can see the segmentation of an air born image. The input image (a) is a

part of an image from Airborne Multisensor Pod System Data Access Catalogue



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 32

(http://info.amps.gov:2080/). Segmentation was done with a 2 level multiscale method

in 2*80 iteration steps.

3.8 Characteristics of the Implemented Models: Comparing Monogrid and

Multigrid CNN-MRF Models

Table 1 summarizes the most important properties of the monogrid and the two

implementations of the multiscale model. Multiscale models need more memory per

cell but need smaller neighborhood connectivity than the monogrid model to achieve

comparable results. To decide which one to use in a given parallel environment

depends on the available technological potential.

Monogrid Multigrid 1 Multigrid 2

Memories/Cell 8 15 10

Operations/Iteration 8 24+ / 8# 13

Array Size (input is of size N⋅N ) N⋅N (N/2)⋅(N/2)+; N⋅N# N⋅N

Table 1
Some characteristics of the models in case of two scales. # stands for the finest scale,

+ for the coarse scale.

3.9 The Robustness of the CNN-MRF Model on Imprecise Analog Circuits

In [90] it has been shown that the analog structure of the CNN is highly robust against

parameter noise, image noise, and the imperfect estimation of parameters in different

algorithms including feedback effects, such as the tasks of image deblurring and

texture segmentation.

Now the question is how robust the proposed segmentation model is to noise

originating from imperfect physical realization. To clarify this question different noise

models have been generated to simulate possible analog circuit noise. Table 2 lists

variations of the different noise levels (all have zero expected value). Absolute noise

was used in additions and relative noise in case of multiplications.



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 33

Noise
Model

Absolute Noise
(Variation)

Relative Noise
(Variation)

Noise0 0.0 0.0

Noise1 0.0017 0.0029

Noise2 0.0029 0.0058

Noise3 0.0046 0.0087

Noise4 0.0058 0.012

Noise5 0.0087 0.014

Noise6 0.012 0.017

Noise7 0.014 0.02

Noise8 0.02 0.026

Noise9 0.023 0.029

Noise10 0.035 0.04

Noise11 0.046 0.52

Table 2
Noise models of zero expected value and different variance.

There are some key points where the original model should be modified to fit a noisy

representation and computation model built of simple operations:

1. The exponential function g, given in Eq. (20) necessary for the nonlinear

diffusion, should be replaced by a linear approximation and this approximation

should be set to the noise level present during computations. First g should be

scaled from the range [0,1] to [0,10] otherwise it would be too much affected by

absolute noise. Then the proposed linear function is given by:

⎩
⎨
⎧ ≥≥

=
otherwise

xfandxifxf
xg

0

0)(0)(
)( (25)

where

10

10
ln

)10(
)(

2

+

⎟
⎠
⎞⎜

⎝
⎛−

−−=
Noise

K

xNoise
xf , (26)

where Noise is a parameter related to the maximal amount or the variation of noise.

Fig. 10 illustrates the original exponential function and its linear approximation.



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 34

0 200 400 600
0

2

4

6

8

10

x

g(x)

Original Function (multiplied by 10)

235.5

2.5

0 200 400 600
0

2

4

6

8

10

x

Linear approximation adjusted to noise level

2.5

235.5

g(x)

Figure 10.
Linear approximation of function g of exponential form, Noise=2.5, K=200.

2. Eq. (12) should also be modified, since the noisy representation of variables

makes it impossible to compare neighboring pixels without introducing a

threshold at comparisons. Then Eq. (12) becomes:

{ }
⎩
⎨
⎧

>−+
<−−

==
Noiseif

Noiseif
EE

rs

rs
rsrsC ωωβ

ωωβ
ωωω ),()( , (27)

(If the absolute function is not easily feasible in the CNN implementation, a

quadratic form can replace it.)

There are other important parts of the segmentation algorithm where noise can greatly

effect the outcome of the segmentation:

3. The calculation of expected value given in Eq. (14).

4. The evaluation of energy potentials in the MMD decision process defined in Eq.

(13).

5. Random numbers stored in local analog memories can also be affected by noise. If

these perturbations accumulate over hundreds of iteration steps, the convergence

of the segmentation process can be lost. Therefore, within a given number of

iterations (e.g., in our examples, in approximately every 40 iterations) the image

should be classified to the original label values, similarly to the method of initial

classification.



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 35

6. The contribution of β to the energy given in Eq. (12) is also affected by analog

circuit noise. This perturbation contributes to the uncertainty of the energy (Eq.

(9)), which at last, has a similar effect than a stochastic modification in the

temperature parameter of the MMD decision process.

Fig. 11 illustrates the segmentation error on a test image when the exponential

function was approximated with a piecewise linear form. The efficiency was

investigated at different noise levels and at different diffusion steps of the form given

by Eq. (19). As the graphs show segmentation error increases at higher noise levels,

nevertheless this loss of performance is not monotonic. It is also observable that the

number of diffusion steps can modify the outcome of the algorithm, but not

significantly.

���������	
���



��

��������
���

�

��

��

��

��

��

��

	�


�

� � � � � � � 	 
 � �� ��

�
	���������

�






�
��

�

�
�����

�
�����

�
�����

Figure 11. Segmentation error vs. computational noise at different number of
diffusion steps (NoDS) when g has exponential form. Input test image is in Fig. 15.

We also investigated the effects of noise in case of the proposed linear approximation

of function g (Eq. (25)). Fig. 12 shows the results of the same segmentation algorithm

as Fig. 11 but with the modified diffusion characteristics. (For images see Fig. 15 and

Fig. 17.) It is interesting to see that the segmentation error even decreases at moderate

noise levels. The form of nonlinear diffusion can extensively modify the performance

of the CNN-MRF models, and the proposed approximation of g (Eq. (25)) is much

more robust at the different noise levels, suitable to replace the original function in the

noisy environment.



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 36

���������	
���



��

��������
���

�

��

��

��

��

��

��

	�


�

� � � � � � � 	 
 � �� ��

�
	���������

�






�
��

�

�
�����

�
�����

�
�����

Figure 12. Segmentation error vs. computational noise for different number of
diffusion steps (NoDS) when g has linear form. For images see Fig. 15 and Fig. 17.

Now the question is what causes the increase of performance of noisy models. The

reason for this can be found in the application of the MMD optimization method.

MMD is a pseudo-stochastic relaxation process for energy minimization where energy

increase is also allowed above a certain temperature given by ΔEmin/(-ln α). Below

this threshold the algorithm becomes deterministic, only better configurations are

accepted with lower energy terms. However, in Simulated Annealing [52], the most

widely used stochastic optimization algorithm, a random number ξ is used in the

decision function instead of the fixed α, that is ⎟
⎠
⎞⎜

⎝
⎛ Δ
−≤

T
sEξ is applied instead of

⎟
⎠
⎞⎜

⎝
⎛ Δ−≤

T
sE

)ln(α  in Eq. (13) and stochastic relaxation methods are proved to be more

efficient in global optimization than deterministic ones.

In our model analog circuit noise can have effects on the CNN-MRF segmentation

algorithm in points 1-6 given above. In all cases they have influence on the

computation of local energy, that is the uncertainty of the MMD decision is increased.

In case of noise the MMD algorithm is no more a pseudo-stochastic process

consisting of a pseudo-stochastic and a deterministic phase, but becomes a truly

stochastic relaxation. It is justified if we plot the numbers of sites that are altered in

each iteration. As can be seen on Fig. 13 and Fig. 14 the number of altered pixels is

decreasing very fast in case of the noise free model (in the second example the

difference is less remarkable but still significant in the first 60 iterations).



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 37

Besides testing the algorithm on images loaded with Gaussian noise, one may ask

how the procedure reacts if the input image is translated/rotated and the segmentation

parameters are unchanged. Although in case of 1 order connectivity the smoothness

term does not supports homogeneity in the diagonal direction, no significant fall in

segmentation quality were observed in experiments (see Fig. 17 for example).

�����
�
������
����	�������
�	��
��	
���

��������
���

�

��

���

����

�����

� �� ��� ��� ��� ��� ��� ��� ���

���������	

�
�
�
�
�
��
�
	�


��
�
��


��
��
�
��

��	
��

��	
��

��	
��

��	
��

��	
��

��	
��

��	
��

��	
�


��	
��

��	
��

��	
���

��	
���

Figure 13. Number of altered sites per iteration for image ArtI1.

�����
�
������
����	�������
�	��
��	
���

��������
���

�

��

���

����

�����

������

� �� �� ��� ��� ��� ��� ��� ��� ��� ���

���������	

�
�
�
�
�

�

��
��
��

�
�
��
	�
��
�

�
����

�
����

�
����

�
����

�
����

�
����

�
����

Figure 14. Number of altered sites per iteration for image ArtI4.



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 38

(a) (b)

(c) (d)

(e) (f)

Figure 15. Test images: (a)“ArtI1” (b) “a” with noise PSNR1=21.36dB (c) “ArtI2”
(d) “c” with noise PSNR=18.84dB, (e)”c” rotated ”ArtI3” (f) “e” with noise

PSNR=18.9dB respectively.

                                                          

1 
MSE

PSNR
2

10

255
log10=  where ∑ ∑ −=

−

=

−

=

1

0

1

0

2
,, )(

1 M

j

N

i
jiji xx

NM
MSE in case of images x  and x of

size NxM.



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 39

(a) (b)

(c) (d)
Figure 16. Segmentation of “ArtI1” (a) Noise-free nonlinear diffusion (Noise0), (b)

nonlinear diffusion in model Noise3, (c) segmentation or “AritI1” model Noise0,
error= 4.7%, (d) segmentation in model Noise4, error=1.7%, NoDS=30 and Beta=18

for both cases.



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 40

(a) (b)

(c) (d)

 (e) (f)

Figure 17. Segmentation of “ArtI2” and “ArtI3”
(a) Noise-free nonlinear diffusion (Noise0), (b) nonlinear diffusion in model Noise4,
(c) segmentation result in Noise0, error= 5.74%, (d) segmentation result in Noise4,

error=3.29%, (e) segmentation result in Noise0, error= 5.67% (f) segmentation result
in Noise4, error=3.21%. NoDS=60 and Beta=15 for both cases.



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 41

(a) (b)

(c) (d)

(e) (f)

(g) (h) (i)

Figure 18.
Segmentation of “ArtI4” (a) Noise-free image ArtI4, (b) noisy input image

PSNR=14.83dB (c) segmented image in model Noise0, segmentation error=12.96%
(d) segmented image in model Noise1, segmentation error=8.78% (e) segmented

image in model Noise2, segmentation error=6.31%, (f) segmented image in model
Noise3, segmentation error=4.78%, (g) segmented image in model Noise4,

segmentation error=4.07%, (h) segmented image in model Noise5, segmentation
error=3.65%, (i) segmented image in model Noise5, segmentation error=4.35%

NoDS=30 and Beta=68 in all cases.



MRF-Based Image Segmentation on Analog Processor Arrays

Chapter I 42

4 CONCLUSIONS

In this chapter different MRF-based image segmentation models, implemented on

parallel cellular arrays by simple functions realizable in VLSI, were discussed. Using

an analog solution, like the CNN-UM architecture, the original MRF models had to be

modified to meet the requirements of analog VLSI implementations. These

modifications do not decrease the performance of the original methods significantly.

In the proposed models segmentation is based on an unsupervised labeling method

where local statistics are estimated for image pixels and energy functions to be

minimized are responsible to remain close to observations while achieving a

homogenous image.

Multiscale implementations have been investigated to reduce the necessary

neighborhood connectivity of the CNN-MRF model and to get similar segmentation

performance like models with higher connectivity achieve. In general, multiscale

models need more memory per cell but need smaller neighborhood connectivity than

the monogrid model to achieve comparable results.

Robustness of the analogue architectures is an important question. With slight

modifications to the monogrid CNN-MRF model it is shown that moderate noise can

even increase the segmentation abilities, a few percent higher segmentation accuracy

was achieved. This result comes from the behavior of the MMD relaxation method in

the noisy environment. Its original pseudo-stochastic feature turns to be a real

stochastic decision function due to computational noise.



Image Compression with Noisy 2D Processor Arrays

Chapter II 43

CHAPTER  II

Image Compression with Noisy 2D Processor Arrays

1 Introduction

The possible role of 2D processor arrays like CNN has already been showed for many

image processing purposes. Image coding is one of the most important areas of image

processing, while there are not many papers dealing with image compression and

coding in the CNN environment [100,101].

What would be the advantage of 2D arrays in image compression against other existing

hardware implementations? One would think that compression algorithms implemented

on analog circuits have less accuracy, and the speed of existing digital codecs is already

satisfactory to consumer needs. However, as Fig. 1 shows, there is always an

exponentially increasing demand for new multimedia applications. In effect, the main

advantage would be that the same hardware, one analog 2D array chip and some

accompanying hardware elements, could solve several different tasks at high speed,

such as capturing the image with its built-in sensor, filtering, analyzing and

compressing. The larger number of tasks is implemented in the same hardware the

cheaper can the architecture be on a large-scale market.

Figure 1.
Incidence and demands of some major multimedia applications [70].

����������	����
��
�	��
�	��������
���
�������	�
	�����	��
��

��

���

����

�����

���� ���� ���� ���� ���� 	��� 	���

�
�
�
�

FM synthesis

MPEG-1

3D graphics DVD

MPEG-1
videophone (30fps)

HDTV decoder

virtual reality

Pentium

Pentium Pro

DSPs



Image Compression with Noisy 2D Processor Arrays

Chapter II 44

In this chapter it is shown that there is an image coding model that is capable of coding

grayscale images with the help of the CNN and some accompanying hardware elements

(or generally speaking with 2D processor arrays) at an affordable performance.

Simulations show that the chip set built of analog hardware of 8-bit precision gives

satisfactory coding results at high speed also in the so-called Dynamic Coding

environment. The described model is based on the orthogonal decomposition of image

blocks and the simultaneous inverse operation for rate-distortion control.

First the coding model is given, then the necessary hardware components are listed and

the architecture of the orthogonal analyzer is explained. In the proceeding section the

processing cycle is outlined followed by a short analysis of computational complexity.

Since the analog feature of the chip-set may play a crucial role in the quality of the

encoding, some simulation results and the effect of imprecise calculations are given in

Section 2. In the last section of this chapter an algorithm for dynamic image coding is

described to achieve optimal rate-distortion characteristics.

1.1 A Parallel Image Coding Model in the CNN Environment

The well-known idea behind orthogonal decomposition coding and compression is to

represent (store, transmit) the image by its transform coefficients submitted to

thresholding, quantization and entropy coding. In [94] it has been shown how the

calculation of transform coefficients can be implemented in a system containing analog

CNN chip and some accessories. Besides Discrete Cosine Transformation (DCT) we

also use Hadamard Transformation (HT), which usually has worse compression results

than that of DCT, but HT can be implemented much more easily in VLSI and is more

robust against computational noise (if implemented in analog hardware). To get a more

optimal code there is a need for the real-time computation of error-rate and bit-rate for

all image blocks. As it was already mentioned the calculation of error-rate can be quite

complex since in many cases conventional error measures are not satisfactory compared

to the human visual perception. That is why the use of Human Visual System (HVS)

like filters is proposed, fortunately some also feasible in the CNN environment [16].

As it will be shown through the next sections the proposed CNN-based image coding

system has the following advantages:

• It processes pixels of an image block in parallel.

• Encoding and decoding are made simultaneously.



Image Compression with Noisy 2D Processor Arrays

Chapter II 45

• Error-rate and bit-rate are computed coefficient-by-coefficient.

• The generation of coefficients for an image block can be stopped if required image

quality is reached.

Since CNN can perform parallel pixel-level operations at high speed, we do not use the

Fast Fourier Transformation (FFT) for the computation of the DCT (or HT) coefficients.

Instead we obtain the coefficients by parallel multiplication and summation of image

blocks with the basis functions. The complexity of the proposed method is O(n)

contrary to the O(nlogn) complexity of FFT

.

1.2 The Basic CNN Chip-set

In [75] a chip-set capable of many image processing tasks has been defined, where the

analog input sensors, digital signal processors, and control units are coupled to the CNN

chip and analog memories. Main accessories of this set are as follows:

• CNN-UM chip (32∗32 or 64∗64).

• A-RAM (analog buffer memory).

• V-RAM (video memory).

• Digital microprocessors for control purposes.

• DSPs or special compression chips for data processing and entropy coding.

• Digital bus.

• Analog bus.

1.3 The Architecture of the Orthogonal Analyzer and Decoder

To accomplish the parallel encoding/decoding model the previous architecture should

be extended with some additional functions and the necessary hardware equipment. In

the new model the CNN chip itself represents an image block. Thus it should be capable

of loading data parallel to columns and rows and it should be able to support parallel

summation of the cell values for the calculation of coefficients.

In the coding architecture the CNN chip is to be surrounded with digital circuits for

controlling the operation and for the evaluation of data (like in [92]). To be more

specific, the chip and its accessories are specified in the following (see Fig. 2) according

to the available tools of [75].



Image Compression with Noisy 2D Processor Arrays

Chapter II 46

The proposed CNN chip contains:
1. Quick image loading line (active only once) (ILL).

2. Global data line for multiplication (ML).

3. Lines for loading data parallel to columns (DC). The same value is to be

transmitted to a column (binary value in case of the HT).

4. Lines for loading data parallel to rows (DR). The same value is to be

transmitted to a raw (binary value in case of the HT).

5. 5 local analog memories (LAMs) per cell  (M1-M5).

6. Circuit for multiplication per cell (mp).

7. Circuit for addition per cell (ad).

8. Circuits for the absolute subtraction operation (as).

9. Circuits for the exclusive OR operation (xor) (only in case of HT). It is a so-

called Local Logic Unit (LLU).

10. Circuit for the parallel summation of cell-outputs (POS).

11. Circuits for running a simple 3x3 CNN filter (template) (filt) for adopting the

Human Visual System (HVS) expectation.

12. Fast D/A converter for the input image.

 

 Further accessories required:

13. 2 analog memories for storing the row and column components of the basis

functions of the DCT. In case of a CNN chip of size 32x32 both analog

memories contain 32 lines each 32 wide. 2D basis functions are generated

from the values of these two memories.

14. 2 digital memories (both with 32 entries of 32 bit wide) for storing the row

and column components of the basis functions of the HT. 2D basis functions

are generated from the values of these two memories.

15. CNN chip controller.

16. Fast A/D converter for the coefficients (adcPOS).

17. Fast code table for digital coefficients ( ctPOS).

18. Entropy codec (arPOS).

19. Fast D/A converter for the generation of analog POS-code and transmission

unit to ML (anPOS). This part is necessary for decoding purposes.

20. CPU for the optimization of the Lagrangian cost function (LCF) considering

error-rate and bit-rate [72].



Image Compression with Noisy 2D Processor Arrays

Chapter II 47

Remarks:

1. Notations in the brackets are given for the easier matching of the chip

components and functions of the processing cycle described in the next

section.

2. The Lagrangian cost function mentioned in the above list is used to obtain an

optimal code for the whole image. It is a function of the error-rate (ER) and

the bit-rate (BR), which depend on the coding parameters (e.g. cut-off

frequency1, transformation method, etc.).

3. Digital code series (coming from ctPOS) contains redundant information.

For this reason an entropy coder compresses the data into the final code that

is transmitted to the receiver.

4. The HVS filter (filt) is an optional feature. It is analyzed in details in [16].

CNN
Chip

32∗32

A-RAM
Analog Buffer

Memory

32∗32

A-RAM
Analog Buffer

Memory

32∗32

⇐
DR
⇐

⇑ DC ⇑
POS

A/D - C

Switch

Code-Table &
Arithmetic Coder

Code - Series

BR

ER

DecoderD/A - CML

Figure 2.
The architecture for parallel transform encoding and decoding.

                                                          
1 Cut-off frequency: The frequency above which all coefficients are zeroed. It is given in
discrete frequency or in percentage of the full frequency bandwidth and is often denoted
with CF.



Image Compression with Noisy 2D Processor Arrays

Chapter II 48

1.4 The Processing Cycle

Using the above notations we give the series of basic steps of the proposed CNN

encoder/decoder. Before listing the individual operations the algorithm is summarized

as follows:

Regardless of generating DCT or HT, the transformation function is stored by the

transformation matrix in analog memory. Basis functions can be generated in the CNN

chip by the multiplication (DCT) or the XOR logical function (HT) of the lines of the

transformation matrix. Then these basis functions are multiplied with the input image

block pixel by pixel and the results are summed up. The obtained transformation

coefficient is digitized and can already be used for further coding, transmission or for

the reconstruction of the input image by simply multiplying it with the basis function

still in memory. This enables the system to continuously monitor the achieved error-rate

and to stop the encoding process if a pre-defined image quality criterion is already

reached. Fig. 3 illustrates the generation of coefficients and image reconstruction.

The individual steps of the algorithm according to previous notations are given:

1. Image block is loaded into the memory (LAM - M1) through the image loading

line (ILL).

2. Decoded image of the previous step is erased from M5.

3. Pre-processing, image analysis, motion detection [54,72,87,89] are optional

processes for the image in M1.

 Making basis functions and calculation of the coefficients:

4. Loading transform matrix elements into the DR.

5. Loading transform matrix elements into the DC.

6. Calculating and storing the 2D basis function for every cell in LAM M2 by

• multiplication (mp) for the DCT

• logical function (xor) for the HT

7. Multiplication (mp) of the image (M1) with the basis function (M2) into LAM

M3.

8. The coefficient is calculated by adding up (POS) the elements of M3.

 Coding the coefficient (CNN output):

9. Converting analog value to digital (adcPOS).

10. Possible look up table for efficient coding (ctPOS).

11. Entropy coding (arPOS).



Image Compression with Noisy 2D Processor Arrays

Chapter II 49

12. Calculation of bit-rate.

 Parallel decoding:

13. Analog coefficient (anPOS) is loaded to the global multiplicator line (ML).

14. Multiplication (mp) of coefficient (ML) with basis function (M2) into LAM M4

(weighted basis function).

15. Adding up (ad) of weighted basis function (M4) into M5 (continuously

upgraded decoded image).

16. Extraction (as) of M1 and M5 into LAM M4 (difference image).

17. POS sums analog error of M4.

18. Error-rate is obtained by A/D conversion of POS (ER = adcPOS).

19. The calculation of the Lagrangian cost function (LCF).

 Evaluation:

20. Evaluation of cost function (LCF)

• if required quality is reached then go to step 21

• if not, go to step 4 in the cycle for the next coefficient

21. Coding is terminated and the next image block is to be processed.

 

While usually more compact codes can be generated with the help of DCT than with

HT, in this coding model the HT is easier to be implemented in VLSI since only binary

data are driven through the DC and DR lines. Usually DR and DC are mounted on a

CNN chip as memory lines, only a general switch (common line) is needed to control

these lines to be a data not an address for a given cycle. Only 5 local memories are used

in our encoding process. Although in Figure 2 only the transmitter is shown, it is easy to

see that a very similar system can be used for receiving and decoding data in parallel as

well. Data transfer and the control of the receiver and transmitter functions should be

synchronized.



Image Compression with Noisy 2D Processor Arrays

Chapter II 50

Figure 3.
The main processing steps of the orthogonal codec.

The subsequent decoded image series using the summation of the weighted basis functions.

85% 41% 15% 8%

On-the-fly measurement of error as the difference of the input and the reconstructed image block.

Generation of a 2D Hadamard basis
function from the transformation matrix
rows and columns by logical operations.
Now, these operands are represented as
2D matrices but they can be stored as 1D
rows and columns in analogue memories.

Input image block.

Making the product of the basis functions

with the input image block. The

summation of the elements of the product

matrix gives the coefficient.



Image Compression with Noisy 2D Processor Arrays

Chapter II 51

1.5 Computation Times

In the above algorithm for an image of size N*N the number of parallel processing steps

for the orthogonal transformation is 5*N*N. In case of a conventional digital computer

running Fast DCT [69] the number of serial arithmetic steps is about 8*N2 * log2N. In

case of a special FDCT processor this number is approximately 2*N2 * log2N. If

N=8→64, the number of steps of the FDCT is in the same range as that of the CNN but

the processing speed of CNN is still much better because of the following reasons:

• In our solution local memory processes are used (LAMs and local logic memories

(LLMs)) instead of RAM and memory block transfers. For the parallel analog

arithmetic/logic processes the time constant is approximately 10nsec.

• Inverse transformation is executed at the same time with the 2D basis functions

retained in memory.

• In some cases it is not necessary to calculate all transformation coefficients. Since

the encoding and the computation of the coding error are simultaneous processes the

algorithm can stop the encoding process after the critical error-rate is achieved.

• Pre-processing methods may run in the same chip ensuring the local one-chip

execution of the whole encoding process.

Table 1 and Table 2 shows the timing data. In our calculations we considered the

following time constants (given for a recent CNN chip [21,57]):

• parallel loading of a line of analog values (LAM): 8nsec

• parallel read-out of a line of logic values (LLM): 10nsec

• serial readout of an analog pixel (LAM): 60nsec

• time constant for analog templates: 100nsec

• time constant for arithmetic steps: 10nsec

• LAM holding time: 1msec.

Timing results of Table 1 and Table 2 tell us that the encoding process can be executed

at satisfactory speed with the help of only one CNN-UM chip. Considering the standard

video-rate, a lot of pre-processing operations [16,54,75,89,90,92] and other different

encoding mechanisms (e.g. DVC [72]) can be incorporated into this system. Using more

CNN chips and sophisticated segmentation methods [54,87,89] the system can still

operate at high speed. Depending on technological facilities it is also possible that large



Image Compression with Noisy 2D Processor Arrays

Chapter II 52

chips (128*128 or larger) can measure the coefficients of several image blocks at the

same time.

Table 1
Computation times for orthogonal decomposition in a CNN chip of size 32*32.

No. Step

Global

Cycle

Single

Function Execution Time

Event/

Cycle

Time

1. G,S Image loading 32*8= 256 nsec 256nsec

2. G,S Clearing M5 1 nsec 1nsec

Coding process with orthogonal decomposition, calculation of bit-rate (BR)

4-5. G,C Loading Horizontal and Vertical basis

functions

16 nsec

6. C Calculating the 2D basis functions 10nsec

7. C Multiplication 10nsec

8. GC Read-out of  the sum of the cell-outputs:

Coefficient

10nsec 47nsec

(In case of row by row read-out) (320nsec)

Decoding from the coded coefficients using the same basis functions parallel with the

coding, calculation of error-rate (ER)

13. GC Loading single multiplicator 10nsec

14. C Multiplying the basis func. by the coefficient 10nsec

15. C Adding to the decoded image 10nsec

16. C Difference between the input and the decoded

image

10nsec

17. C HVS-sensitive filtering of error image

(e.g. halftoning)

150nsec

18. GC Read-out of  the sum of the cell-outputs: error-

rate

10nsec 200nsec

(without HVS filtering) (50nsec)

Total time/cycle 247nsec

without  HVS filtering (97nsec)



Image Compression with Noisy 2D Processor Arrays

Chapter II 53

Table 2
Total processing time for the decomposition/encoding process using a CNN-UM chip,

without pre-processing.

Image size Complexity Time

32*32 Total processing time for 16*16 coefficients: 256*247+257nsec 63μsec

32*32 without  HVS filter:256*97+257nsec 25μsec

32*32 Total processing time for 32*32 coefficients: 1024*247+257nsec 253μsec

without  HVS filter:1024*97+257nsec 100μsec

32*32 Total processing time for 24*24 coefficients, when decoding is

evaluated  rarely:  576*87+257nsec

50μsec

256*256 Processing  an image using 1 chip  with overlapping areas,

100 sub-images

256*256 Minimum 2.5msec

256*256 Optimum 5msec

256*256 Maximum 25msec



Image Compression with Noisy 2D Processor Arrays

Chapter II 54

2 Coding in a Noisy Computation Model

In this section I demonstrate that the presence of noise and structural inaccuracies of

VLSI CNN chips influence the efficiency of our computational model, so it is important

to take into consideration these parameters in the design of the algorithm.

In the proposed model we should consider that 1D components of 2D basis functions

are converted through D/A converters into the analog buffer-memory, then the 2D

functions are generated from the 1D components. In the decoding process the basis

functions, weighted by the coefficients, are added up to get the decoded image. The

large number of multiplication and addition of basis functions results in the

accumulation of noise.

Now, in our experiments we encode all coefficients in 8 bits. In the following we

simulated the CNN encoder architecture with two noise effects:

1. Absolute noise: the magnitude of additive noise is related to the maximal dynamic

range of signals.

2. Relative noise: noise is related to the amplitude of the actual signal value.

These are approximations for the simulated circuits, and while they might be not exact

models of VLSI circuits, they are only supposed to give the characteristics of the analog

behavior of the encoding/decoding process.

In the simulations I used standard images (“Lena 256”, “Lena 512”, “Crowd”,

“Peppers”, see Fig. 4)) and for the entropy coding of coefficients an easily available

well-known entropy encoder GZIP V1.2.4, 1997, which is based on the LZ77 algorithm

[33], was used.



Image Compression with Noisy 2D Processor Arrays

Chapter II 55

Figure 4.
Test images “Lena 512” ”Crowd”  and “Peppers”.



Image Compression with Noisy 2D Processor Arrays

Chapter II 56

2.1 The Effect of A/D Conversion and the Accumulation of Coefficient Inaccuracy

Since all operations are to run on analog circuits, the generation of DCT basis images is

also loaded with noise. Since 1D basis functions are stored in digital memories first they

should be converted to analog values then 2D matrices are generated by the outer

product of the 1D functions. The question is how the A/D conversion process effects

precision. It is also interesting whether errors originating from this A/D conversion

accumulate as more and more coefficients are added up in the image reconstruction

process. As Fig. 5 shows there is only a slight effect of A/D data conversion, the error

measured in the decoded images is approximately 0.1 dB at 7bits.

�����������
������
������
�


�


	


�


�


�

��

�	

� � � � �

�
��
������ 
���!

�
�
"
#
�$
�
%
&

�
�����

�
�����

�
�����

Figure 5.
PSNR between original and decoded image (blocks are of size 8∗8 of “Lena 512”) at

different cut-off frequency and at different A/D converter accuracy (AD).

In case of HT we should not deal with this kind of error, since the basis functions are

binary. Their analog values can be saturated and even in the calculation of coefficients

they are not being multiplied with image pixels, they are just used as binary masks for

image pixel read-out and summation in the POS (parallel output summation) unit.

Now, let us examine the effect of inaccurate coefficient computation. Fig. 6 illustrates

the DCT encoding/decoding error of “Lena 512” at different noise parameters and

different cut-off frequencies. Above the given discrete frequency all coefficients were

neglected. Noise models tested are given in the following table (Table 3).



Image Compression with Noisy 2D Processor Arrays

Chapter II 57

Noise Model Absolute Noise (Variation) Relative Noise (Variation)

Noise0 0.0 0.0

Noise1 0.0058 0.012

Noise2 0.0029 0.0058

Noise3 0.0012 0.0029

Table 3
Noise models of zero expected value and different variance.

Absolute noise was added to every addition while every multiplication was loaded with

relative noise.

In Fig. 6 it can be seen that according to the different noise levels the compression

behaves differently at the different cut-off frequencies. At low noise (Noise0 and

Noise3) the loss of higher frequency components (cut-off frequency decreases)

increases coding error (PSNR decreases) while at higher noise levels (Noise1, Noise2)

the loss of high frequency decreases coding error (PSNR increases). It is important to

note that the decrease of performance is much more significant than in case of imprecise

AD conversion.

���
�����
�
�	��
��'!��
����������

	�

	�


�


�

��

��

� � � � �

�
��
������ 
���!

�
�
"
#
�$
�
%
& ������

�����	

�����


������

Figure 6.
PSNR between original and DCT decoded images (blocks are of size 8∗8, of “Lena

512”) at different cut-off frequency and at different Noise parameters.



Image Compression with Noisy 2D Processor Arrays

Chapter II 58

���
�����
�
�	��
��'!��
����������

	�

	�


�


�

��

��

� � � � �

�
��
������ 
���!

�
�
"
#
�$
�
%
& ������

�����	

�����


������

Figure 7.
PSNR between original and HT decoded images (blocks are of size 8∗8, of “Lena 512”)

at different cut-off frequency and at different Noise parameters.

Fig. 7 illustrates the same experiments, but for the Hadamard Transformation. As it is

expected in case of low noise (or noise free computation) the HT is less effective

(curves of Noise0 and Noise3), however HT is also less sensitive for noise, i.e. graphs

have much less slope in case of Noise1 and Noise2.

In the above examples all of the coefficients below the cut-off frequency were taken

into account in the reconstruction/decoding process irrespectively of their value.

However, in our case, and generally in all bit allocation problems, a large amount of

redundancy can be reduced with the proper coding (e.g. discarding) of coefficients close

to zero. Naturally we should consider the noise level to find an optimal threshold for

coefficient zeroing.



Image Compression with Noisy 2D Processor Arrays

Chapter II 59

2.2 Thresholding Coefficients

If we automatically take all of the coefficients into consideration in the decoding

process then we accumulate a high amount of noise, since many of the coefficients are

zero or below the noise level. For this reason now we take into account only those

coefficients that are above the noise level. Only the reasonable values are transmitted

through the system significantly decreasing the code length and coding error.

In the following I simulated the CNN architecture with the second noise model (Noise2)

given above, that is:

• The accuracy of D/A and A/D converters is 8 bit.

• The variation for absolute noise is 0.0029 and for relative noise is 0.0058.

• Cut-off limit for thresholding coefficients is given by ε.

Noise parameters of the above model can be considered as achievable VLSI parameters

of analog chips of good quality [21].

The coding algorithm is the following:

1. The input test images are divided into disjoint image blocks.

2. Each block is transformed with the appropriate encoder, analog computations are

simulated with noise model Noise2.

3. Coefficients below cut-off frequency are read out in a zigzag order, similarly to that

of implemented in the JPEG standard [105].

4. Values below noise are thresholded and substituted by zero.

5. Zero coefficients are run-length encoded.

6. All coefficients are written to a data stream and encoded with GZIP.

Here we should note that considering the architecture of recent CNN chips and our

coding model the optimum block size (depending also on noise parameters) may differ

from the size of the chip itself. In case of image blocks of size 16∗16 a CNN chip of

size 32*32 is divided into 4 equal parts. It means insignificant modifications in the

specification of the model, like changing the summation output (POS) to give the 4

coefficients of the 4 different areas.

The next diagrams (Fig. 8 - Fig. 11) show the reconstruction error (given in PSNR) and

the compression ratio (in bit/pixel) versus threshold (ε), achieved with the help of the

mentioned GZIP entropy encoder run on the 8bit DCT coefficients.



Image Compression with Noisy 2D Processor Arrays

Chapter II 60

As we have seen in a previous example (Fig. 6) if we increase the threshold, the value

of PSNR is not decreasing unambiguously, at a certain threshold level it even increases

while the compression ratio increases monotonously.

However, it is not easy to find the right threshold value where PSNR reaches its top,

moreover it does not seem to be an easy task to find an optimum coding if the set of

possible solutions includes different cut-off frequencies, thresholds, and block sizes.

Yet, the things that are important for us are the slopes of the diagrams. If we compare

the diagrams of the full-length coefficient results and the truncated results, we observe

that the full-length data varies much more according to the threshold values. They have

higher dynamics through the threshold parameter, still their peak PSNR and

compression values are not as much better (if they are better at all). So it seems that the

truncated codes are much more tolerant for the different thresholds. An important

question might be what cut-off frequency to choose at a given noise parameter and what

is the proper block size. This way we might simplify the search for a more efficient

code, however, in some cases we would not reach the optimal result.

DCT 8x8, Lena 512, Noise2

24

26

28

30

32

34

1 3 5 7 9 11 13 15 17 19 21 23

Threshold

P
S

N
R

 (
d

B
)

0.2

0.7

1.2

1.7

2.2

2.7

b
it

/p
ix

el

PSNR

bit/pixel

Figure 8.
PSNR and Compression Ratio for “Lena 512”, DCT.



Image Compression with Noisy 2D Processor Arrays

Chapter II 61

DCT 8x8, CF=4, Lena 512, Noise2

24

26

28

30

32

34

1 3 5 7 9 11 13 15 17 19 21 23

Threshold

P
S

N
R

 (
d

B
)

0.2

0.7

1.2

1.7

2.2

2.7

b
it

/p
ix

el

PSNR

bit/pixel

Figure 9. PSNR and Compression Ratio for “Lena 512”, DCT, cut-off requency = 4.

DCT 16x16, Lena 512, Noise2

24

26

28

30

32

34

1 5 9 13 17 21 25 29 33 37 41

Threshold

P
S

N
R

 (
d

B
)

0.2

0.7

1.2

1.7

2.2

2.7

b
it

/p
ix

el

PSNR

bit/pixel

Figure 10. PSNR and Compression Ratio for “Lena 512”, block size 16x16, DCT.

DCT 16x16, CF=8, Lena 512, Nose2

24

26

28

30

32

34

1 5 9 13 17 21 25 29 33 37 41 45

Threshold

P
S

N
R

 (
d

B
)

0.2

0.7

1.2

1.7

2.2

2.7

b
it

/p
ix

el

PSNR

bit/pixel

Figure 11. PSNR and Compression Ratio for “Lena 512”, block size 16x16, DCT, cut-
off frequency=8.

We should also investigate the effect of noise and thresholding in case of the Hadamard

Transformation. As it was already mentioned this transformation is less affected by



Image Compression with Noisy 2D Processor Arrays

Chapter II 62

noise due to its binary feature, that is why increasing the threshold level does not lead to

so powerful PSNR increase. See Fig. 12 and Fig. 13 for some data examples.

HT 8x8, Lena 512, Noise2

24

29

34

1 3 5 7 9 11 13 15 17 19 21 23

Threshold

P
S

N
R

 (
d

B
)

0.4

0.9

1.4

1.9

b
it

/p
ix

el

PSNR

bit/pixel

Figure 12.
PSNR and Compression Ratio for “Lena 512”, block size 8x8,HT.

HT 8x8, CF=4, Lena 512, Noise2

24

29

34

1 3 5 7 9 11 13 15 17 19 21 23

Threshold

P
S

N
R

 (
d

B
)

0.4

0.9

1.4

1.9

b
it

/p
ix

el

PSNR

bit/pixel

Figure 13.
PSNR and Compression Ratio for “Lena 512”, block size 8x8,HT, cut-off frequency is

4.



Image Compression with Noisy 2D Processor Arrays

Chapter II 63

2.3 Parameters for the Compression of an Image Block

As we have seen there are a lot of parameters to be optimized in case of the analog

coding architecture. They are the following:

1. The size of the basic image blocks (BS). It can be smaller than the size of the CNN

chip.

2. Cut-off frequency (CF) of the DCT or HT coefficients (above the value of CF all

coefficients are substituted with zero).

3. Threshold level for coefficients (ε).

4. Type of orthogonal transformation: DCT or HT. In case noiseless coding DCT

usually have higher energy compression features. On the other hand, as we have

seen, HT is more robust against error.

Now, in this work I do not deal with the optimization of the quantization levels. Our aim

is to show the effect of analog noise and to investigate if the analog CNN-based

encoder/decoder is capable of efficient coding of still images. However, the proposed

method could include various quantization levels, now 8 bits represent all coefficients.



Image Compression with Noisy 2D Processor Arrays

Chapter II 64

3 Optimizing the Compression in a Dynamic Coding
Environment

There are a lot of approaches to achieve high compression ratio by choosing an optimal

bit allocation strategy [15]. Generally speaking, fixed allocation algorithms do not

perform very well compared to adaptive procedures. At the same time, the problem of

adaptive codecs is the overhead introduced by the transmission of additional

information necessary to describe the parameters of the adaptive bit allocation, such as

bit allocation tables, block classification, and normalization factors. In the following

sections we will propose an optimization based on the variable size of blocks, variable

thresholding, cut-off frequency and the type of transformation.

3.1 Dynamic Image Coding with Lagrange Optimization

Dynamic Video Coding (DVC) [72,22] is a new method for effective image

compression. It is based on the assumption that by coding the different image parts the

most appropriate way - according to the local image structure - we may get a more

efficient and compact code of a video sequence or a single image frame. To achieve

this, different coding methods are executed for each small basic image block

simultaneously then the optimum representation is chosen from all possible candidates

as a final code representation of the image.

Many of the optimization methods are established on the framework of Shannon’s rate-

distortion theory [83]. Image transmission problems can usually be formalized in one of

the following two ways:

1. { }Maxiii
C

Optimal BRCRandCCCEC
i

≤∈= )(|)(min (1)

2. { }Maxiii
C

Optimal ERCEandCCCRC
i

≤∈= )(|)(min (2)

where Ci is one of all possible encodings ( C∈iC ), E(Ci) is the error-rate, R(Ci) is the

bit-rate belonging to a given code Ci. ERMax is the maximum allowed coding error,

while BRMax is the admissible bit-rate, and one of them is a constraint in a possible

image coding problem. We want to find the solution for the constrained problems of Eq.

(1) or Eq. (2) and an optimal solution should be given for the whole image frame or

even for several frames of a video sequence. To avoid extreme computational loads it is



Image Compression with Noisy 2D Processor Arrays

Chapter II 65

advised to restrict the model to intra frame coding where no redundancy between frames

are reduced, only the image redundancy in frames are processed.

The algorithmic solution for the above problems is given by converting the constraint

problems to unconstrained problems as proposed in [25].

Equation (1) can be transformed into the minimization of the following cost function

with different values of λ :

)()(),( iii CRCECCost λλ += , (3)

where λ is called the Lagrange multiplier. By sweeping λ  over a positive interval and

minimizing the cost function for each λ we get different values for E and R denoted by

*
λE  and *

λR . As λ increases we get smaller values for *
λR  and larger values for *

λE , in

particular the previous value is monotone decreasing while the later is monotone

increasing. If we reach a predefined value with *
λR  then the Ci that minimized

),( iCCost λ  is the solution for Eq. (1). Eq. (2) can be similarly solved by transforming

the problem to equation:

)()(),( iii CECRCCost λλ += . (4)

These algorithms do not guarantee solutions for the constraint problems but if there is a

solution they are able to find it at a certain precision.

Now, what follows is to give the set of admissible solutions (C) in the framework of our

analog coding architecture.

3.2 Optimal Image Coding with Lagrange Optimization in Quadtree

Representation

So the task is to define an admissible set of solutions within the proposed architecture,

to give the constraint problem, to convert this problem to an unconstrained problem,

then to define the encoding model, the image representation, and the bit allocation.

As it comes from a previous section the set of admissible solutions consists of the two

type of transformation DCT and HT, different block sizes and several cut-off frequency

settings. Assuming that we have a given noise model, the thresholds for coefficients are

fixed. Generally, HT has smaller threshold than DCT and larger blocks also owe larger

thresholding than blocks of smaller size.

The proposed method can be adequate for solving both Eq. (1) and Eq. (2), however if

BRMax is given as a constraint (Eq. (1)) then the image quality can be highly varying



Image Compression with Noisy 2D Processor Arrays

Chapter II 66

according to the content, which can be very annoying in many situations. Therefore, in

this work we deal with Eq. (2), that is we are looking for the most compact coding of

the image above a given quality criterion.

Our following assumption states that the minimization of the function

)()(),( iii CECRCCost λλ +=  for the whole image can be solved by cutting the image

into different blocks. Namely, our energy function can be decomposed:

( )∑ +=+=
=

N

n
niniiii CECRCECRCCost

1
,, )()()()(),( λλλ (5)

where n stands for indexing the different image partitions (they can even be overlapping

image blocks). Naturally, it is not necessarily true in many situations, since the assumed

equation does not take into consideration the redundancy in the code of groups of

separate image partitions. For example if R(Ci) is measured by the product of Ci’s

entropy and the number of code words in Ci, then the sum of )( 1.niCR  and )( 2.niCR  is

larger or equal than )( 2,1. nniCR , measured on the larger block made be the merge of the

two separate partitions. However, in the examples we will see that the sum of the

entropy-based measure of several image blocks highly correlates with the code length

necessary for the encoding of the whole image.

As to specify the elements of the cost function by entropy:

∑⋅−=
=

255

0
2log)(

k
kkii ppCCR (6)

where Ci is a transform coding (DCT or HT), iC is the number of code words, and pk is

the probability of 8-bit coded coefficients.

( )∑ −=
=

MM

k
CkCki ii

bbCE
1

2

,,
ˆ)( (7)

where bkCi are the pixel values belonging to the block of size MxM coded by Ci, and b̂ -s

are the original image values.

To generate different block partitionings of the image frame we use a quadtree

representation, where there is a maximum and minimum block resolution, typically

ranging from 32x32 to 8x8 pixels. This way an image block can be represented in 16

possible configurations, namely (see Fig. 14):

1. 1 parent (1 configuration)

2. 1 parent and 1 child (4 configurations)



Image Compression with Noisy 2D Processor Arrays

Chapter II 67

3. 1 parent and 2 children (6 configurations)

4. 1 parent and 3 children (4 configurations)

5. 4 children (1 configuration).

Figure 14. The different possible configurations of parent and child nodes. Children are

dark gray and parents are white.

Each node of the quadtree can have codes for all admissible solutions. The algorithm for

finding the most optimal code and generating the compressed bit series is the following:

Code Generation:

1. The quadtree for representing the input image is built.

2. Each node of the tree is transformed with DCT and HT. Considering two different

values for cut-off frequency (defined e.g. at 30% and 70% of the maximum

frequency) we get four codes for each node.

3. Coefficients are thresholded then quantized to 8 bit resolution.

4. R(Ci) and E(Ci) is computed for each solution.

Optimization:

5. Initial value forλ is selected.

6. Each node of the tree is visited once and the most efficient code of the four for the

current node is selected by computing )()(),( ,,, jijiji CECRCCost λλ += .

7. Starting a recursion at the parents of the leaves the best solution is selected from the

16 configuration listed above. At the end of the recursion we have the most optimal

code for a given λ .

8. If E(Ci), computed for the whole image, is below a required critical value, we can

stop the optimization and go to step 10.

1. 2. 3. 4. 5.



Image Compression with Noisy 2D Processor Arrays

Chapter II 68

9. Increase λ  and step to 6.

Generation of final code:

10. Bytes from the selected optimal codes of image nodes are read out in a zigzag order.

11. Zeros are run-length encoded.

12. Coefficients and the type of optimal codes at each quadtree node are written to a

data stream and encoded with GZIP. If we have 4 kinds of possible codes for each

node, it means 2bit information/node to encode.

Here we should note that according to Parseval’s theorem the encoding error could also

be measured in the transformed domain. However, in our case the decoding algorithm is

also based on inaccurate analog circuits. That is why it is necessary to compute the

coding error by the inverse transformation on the proposed architecture.

3.3 Analysis of Code Efficiency

Here I examine the basic properties of the proposed algorithm through some

experimental data. In all measurements two DCT and two HT methods were available

for the image blocks at different cut-off frequency and threshold settings.

First the usage frequency of the two transformations (DCT and HT) in case of noisy

(model Noise2) and noiseless (model Noise0) simulations are compared.

Ratio of Different Coding Modalities, Noise0

0
10
20
30
40
50
60
70
80

0.98 1.40 1.58 1.65 1.71 1.75 1.78 1.81 1.83 1.84

bit/pixel

R
at

io
 [

%
]

0
5
10
15
20
25
30
35
40

P
S

N
R

 (
d

B
) DCT1

DCT2

HT1

HT2

PSNR

Figure 15. The ratio of the different coding modalities and the measured PSNR values
for different compression ratios for “Lena 256”, block size is 8x8, no circuit noise is

present.



Image Compression with Noisy 2D Processor Arrays

Chapter II 69

Ratio of Different Coding Modalities
Noise2, CF: 70%, 30%

0
10
20
30
40
50
60
70

0.991.371.531.621.661.681.711.731.751.76

bit/pixel

R
at

io
 [

%
]

0
5
10
15
20
25
30
35

P
S

N
R

 (
d

B
) DCT1

DCT2

HT1

HT2

PSNR

Figure 16. The ratio of the different coding modalities and the measured PSNR values
for different compression ratios for “Lena 256”, block size is 8x8, Noise2, cut-off

frequencies were set at 30 and 70 percent of 8 (maximum frequency were 2 and 5 in
both directions).

Ratio of Different Coding Modalities, Noise2, 
TH-DCT 15, TH-HT 5, CF: 70%, 30%

0

20

40

60

80

100

0.82 1.23 1.32 1.38 1.42 1.44 1.45

bit/pixel

R
at

io
 [

%
]

0
5
10
15
20
25
30
35

P
S

N
R

 (
d

B
) DCT1

DCT2

HT1

HT2

PSNR

Figure 17. The ratio of the different coding modalities and the measured PSNR values
for different compression ratios for “Lena 256”, block size is 8x8, Noise2, threshold for
DCT and HT is 15 and 5 respectively. Cut-off frequencies were set at 30 and 70 percent

of 8 (maximum frequency were 2 and 5 in both directions).



Image Compression with Noisy 2D Processor Arrays

Chapter II 70

(a) HT1 11% (b) HT2 11% (c) DCT1 57% (d) DCT2 20%

(e)

Figure 18.
The result of the optimization for blocks of size 16x16, “Lena 256”. Decoded image at

0.6 bit/pixel and 28.7 dB, CF: 70%, 30%, noise model: Noise2. The blocks of the
different transformation methods are also drawn.

As Fig. 15-17 show, in case of noiseless simulations the ration of HT transformed

blocks in the optimal code are usually smaller than in the case of noisy circuits. It may

justify the robustness of HT against noise as discussed before.

It is important to consider the overhead information originating from the code necessary

to encode the structure of the optimal quadtree. The larger range is allowed for the

selection of the optimal block size the larger the overhead might be. Typically if we

want to achieve higher quality, smaller block partitions are required, while at lower

quality encoding the number of small blocks is smaller. Unfortunately, the Lagrange

optimization does not take into account the amount of data for the encoding of the

structure of the optimal quadtree. The following graphs (see Fig. 19 - Fig. 21 and the

corresponding table Table 4) illustrate the ratio of the overall entropy based code-length

measure (R*(Ci)) and the real size of the compressed data, both given in bytes. It can be

seen that while the effective length is always much above the measure applied in the

optimization, there is a high correlation between the two data, the effective code length



Image Compression with Noisy 2D Processor Arrays

Chapter II 71

increases monotonically as the entropy grows. The difference originates from the

overhead of the partitioning information, the overhead of the GZIP compression and the

sub-optimal entropy coding. The first reason can be justified by the fact, that in Fig. 21

(the variable size encoder) the difference between the two data functions is much more

significant, that is more code is allocated for coding the structure of the optimal

quadtree.

Lagrange Optimization, Block Size: 16x16

0

2000

4000

6000

8000

10000

0
0.

00
6
0.

01
2
0.

01
8
0.

02
4

0.
03

0.
03

6
0.

04
2
0.

04
8
0.

05
4

Lambda

B
yt

es

22
23
24
25
26
27
28
29
30

P
S

N
R

 (
d

B
)

R(C)

Code Length

PSNR

Figure 19.
Lagrange optimization of “Lena 256” in a noisy model at fixed block size (16x16).

PSNR is given on the right side while code length and estimated code length is given on
the left side in bytes.

Lagrange Optimization, Block Size 16x16

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

0
0.

00
3
0.

00
6
0.

00
9
0.

01
2
0.

01
5
0.

01
8
0.

02
1
0.

02
4
0.

02
7

Lambda

B
yt

es

24

25

26

27

28

29

30

P
S

N
R

 (
d

B
)

R(C)

Code Length

PSNR

Figure 20.
Lagrange optimization of “Crowd” in a noisy model at fixed block size (16x16). PSNR
is given on the right side while code length and estimated code length is given on the

left side in bytes.



Image Compression with Noisy 2D Processor Arrays

Chapter II 72

Lagrange Optimization, Variable Block Size

0

2000

4000

6000

8000

10000

0
0.

00
6
0.

01
2
0.

01
8
0.

02
4

0.
03

0.
03

6
0.

04
2
0.

04
8
0.

05
4

Lambda

B
yt

es

0
5
10
15
20
25
30
35

P
S

N
R

 (
d

B
)

R(C)

Code Length

PSNR

Figure 21.
Lagrange optimization of “Lena 256” in a noisy model at variable block size (8x8 and
16x16). PSNR is given on the right side while code length and estimated code length is

given on the left side in bytes.

The problem that still remains is how to select the range of possible block sizes.

Generally, we can state that if we want to reach high quality it is worth allowing the use

of small blocks, while if the necessary image quality is low, it is not worth using small

blocks in the optimization process.

Let us examine the optimal codes with the help of Table 4 when PSNR is cc. 26dB.

When variable sizes are allowed we expect shorter optimal codes than in the fixed size

case, since the set of possible codes (C) is much larger. It is justified by the values of

R*(Ci) in the second line of the table below (atλ =0.002). However, the final code

lengths are better for the fixed size algorithm. Fig. 22 and Fig. 23 also illustrate this

effect, where fixed size algorithms outperform their competitors usually in the high

compression regions.

The consequence of these observations is that to get the most optimal code we should

run the Lagrange optimization more than once with different block range settings, then

we can avoid sub-optimal code due to the effect of overhead information.



Image Compression with Noisy 2D Processor Arrays

Chapter II 73

Fixed block size (16x16) Variable block size (8x8, 16x16)
λ PSNR R*(C) Length(C) PSNR R*(C) Length(C)
0 24.452 1032.3 2169 24.328 737.23 2972

0.002 26.021 1613.2 2740 26.338 1477.5 3809
0.004 27.676 2792.8 3818 28.663 2917.1 5353
0.006 28.232 3309.2 4255 29.707 3693 6273
0.008 28.435 3558.3 4502 30.845 4585 7433

0.01 28.581 3781.5 4780 31.479 5110.5 8084
0.012 28.664 3937.3 4984 31.804 5406.2 8437
0.014 28.688 3989.9 5032 32.039 5649.5 8690
0.016 28.731 4096 5160 32.142 5770.4 8851
0.018 28.771 4210.7 5295 32.228 5876.8 8981

0.02 28.796 4288.8 5386 32.297 5973.4 9115
0.022 28.829 4402.7 5521 32.38 6099.3 9275
0.024 28.846 4468.3 5601 32.431 6182.8 9372
0.026 28.86 4524.8 5655 32.47 6252.1 9451
0.028 28.872 4577.4 5721 32.502 6312.8 9544

0.03 28.888 4656.7 5815 32.524 6355.8 9597
0.032 28.899 4714 5884 32.553 6417 9670
0.034 28.91 4772 5959 32.559 6433.7 9693
0.036 28.91 4772 5959 32.576 6471.1 9725
0.038 28.914 4797.1 5983 32.591 6509.1 9763

0.04 28.919 4828 6017 32.604 6544.5 9796
0.042 28.919 4830.7 6019 32.629 6612.7 9890
0.044 28.922 4852.3 6042 32.636 6633 9914
0.046 28.926 4877.8 6073 32.646 6659.8 9945
0.048 28.93 4904.4 6105 32.66 6708.5 10006

0.05 28.933 4930.4 6137 32.667 6729.4 10024
0.052 28.94 4985.9 6194 32.673 6752.2 10064
0.054 28.94 4985.9 6194 32.68 6773.7 10094
0.056 28.94 4985.9 6194 32.689 6804.9 10141
0.058 28.942 5005.2 6216 32.696 6829.2 10174

Table 4
Lagrange optimization of “Lena 256” in a noisy model at fixed (16x16) and variable

block size (8x8 and 16x16). See Fig. 19 and Fig. 21 for graphical representations.



Image Compression with Noisy 2D Processor Arrays

Chapter II 74

��"#�����
�������
��#	��


	�

	�


�


�

� ��� � ���

'��(��)��

�
�
"
#
�$
�
%
&

��

����

�

 Figure 22.
PSNR (dB) vs. Compression Ratio (bit/pixel) at different possible block sizes for “Lena

256” in a noisy coding model (Noise2)

��"#�����
�������
� �#	��


	�

	�

	�


�






�

� �� � �
 � �� � ��

' ��(� �)� �

�
�
"
#
�$
�
%
& ��

� ���
�

� ��� �
	

 Figure 23.
PSNR (dB) vs. Compression Ratio (bit/pixel) at different possible block sizes for “Lena

512” in a noisy coding model (Noise2)



Image Compression with Noisy 2D Processor Arrays

Chapter II 75

4  Conclusions

In this chapter I have examined some VLSI constraints [13,21,77] based on the

necessary accessories [75, 94] to build a parallel analog system for image coding by

orthogonal transformations. In [94] DCT and HT were given as possible methods for

energy compression. Results show that DCT is usually better in terms of performance,

but HT is more robust against circuit noise and it is easier to be implemented in VLSI

(instead of analog lines only logical data lines are needed for transferring the

components of the basis functions).

On the other hand the dissertation has shown that analog noise can accumulate with the

increasing number of coefficients used in coding. While the proposed compression

models are loaded with circuit noise, the estimated time required to carry out the

compression algorithms in analog VLSI is noticeably small. Compression efficiency

achieved by the discussed encoding/decoding methods is comparable with standard and

highly optimized algorithms, however, in some degree remains under best competitive

techniques. For examples see images Fig. 25-27. Fig. 28 and Fig. 29 serve visual

comparisons, while Fig. 24 compares compression performance with some other highly

efficient methods.

There can be several reasons for this:

1. The proposed architecture is based on analog circuits with finite (~8bit) precision

and computational noise.

2. The implemented encoding algorithm is less efficient in bit allocation than other

methods. For example, in our examples 8 bits are used to encode all coefficients and

the entropy encoder is not particularly configured for the coding of different

coefficients as in the case of JPEG [66,105].

3. Usually, frequency threshold techniques are less effective than other bit allocation

methods [41], also wavelet or fractal based algorithms are more efficient both in

standard error measures or subjective human vision-based measures.

It has also been shown in this work that the overhead from the encoding of the quadtree

may distort the results of the Lagrange optimization method. The cost of the overhead

can not be included in the Lagrange method, so the optimization should be run for the

different block range settings independently.



Image Compression with Noisy 2D Processor Arrays

Chapter II 76

Besides all, its is important to mention that the proposed optimization algorithm is able

to involve other different allocation techniques, such as the optimization of the

coefficient quantization matrices not discussed in this work. By implementing it and

with the use of optimized entropy codecs better efficiency is expected.

Comparison of Different Techniques,"Lena 256"

0

5

1 0

1 5

2 0

2 5

3 0

3 5

0 0 . 2 0 . 4 0 . 6 0 . 8

Bit-Rate (bit/pixel �

P
S

N
R

 (
d

B
) CNN-DCT 16x16

Fractal [5]

Wavelet SA-W-VA [11]

Figure 24.
Comparison of the analog CNN DCT and other optimized compression methods on

“Lena 256” [27,86].



Image Compression with Noisy 2D Processor Arrays

Chapter II 77

(a) DCT1, CF=90% (b) DCT2, CF=30%

(c) HT1, CF=70% (d) HT2, CF=30%

(e)

Figure 25.
Decoded “Lena 512” at 0.49bit/pixel and 32.1dB in the noisy model.



Image Compression with Noisy 2D Processor Arrays

Chapter II 78

Figure 26. “Peppers”, coded/decoded in the simulated analog noisy CNN model, at
0.246bit/pixel and 29.42dB.

Figure 27. “Crowd”, coded/decoded in the simulated analog noisy CNN model, at
0.384bit/pixel and 28.44 dB.



Image Compression with Noisy 2D Processor Arrays

Chapter II 79

Figure 28. “Lena 512”, coded/decoded with baseline JPEG at 0.269bit/pixel and
31.9dB.

Figure 29. “Lena 512”, coded/decoded in the simulated analog noisy CNN model,
optimized at 0.268bit/pixel and 30.7dB.



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 80

CHAPTER III

Spatio-temporal Segmentation of Video Sequences with 2D
Processor Arrays

1 Introduction

Generally, the class of spatio-temporal image analysis tasks requires both low-level

and high-level optimization procedures with a huge amount of computing power [98].

In this chapter, a fully parallel methodology to investigate some motion analysis and

motion segmentation problems with low-level algorithms based on limited local

neighborhood connectivity is described [17,95]. Our efforts are aimed at finding

solutions to these problems that need almost low-level, simple functions that can be

implemented on special parallel VLSI architectures at superior speed, such as chip-

sets built around the CNN-UM. The output of these low-level operations can be

forwarded to high-level processors responsible for controlling the whole operation

and for final interpretation. Since most of the computations would be done on a

parallel processor array, significant speed-up could be achieved compared to other

processor architectures as shown in later sections.

1.1 General Tasks in Motion Segmentation and Tracking

Motion models may consist of estimations about the components of the 3D scene and

the motion of the camera itself. The latter is called ego-motion and if present without

known motion parameters, it increases computation demands significantly. Motion

observed on the image plane is formed by a projection system. It is called 2D motion,

apparent motion or also optical flow. Generally perspective projections are used, but

is some cases special optics generate unusual flow fields [19].

Tasks in motion segmentation and tracking can be classified into the following main

groups:

• Estimation of motion information.

• Segmentation of motion fields.

• Spatio-temporal segmentation and tracking of video sequences.

Although there is, from a certain aspect, a sequential order of these tasks, an implicit,

iterative estimation may result in better performance.



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 81

Spatio-temporal segmentation can be considered as the most important information

source to detect or to track different moving objects in a video sequence. One

important application is the analysis of image sequences for encoding objects in the

MPEG4 environment. In spatio-temporal segmentation we use both spatial and

motion information and by combining the two it may answer questions like whether

two image areas belong to the same object or not. This is often impossible to answer

correctly if only spatial or only temporal information is employed. On the other hand,

many times it is difficult to make these decisions any way, since the two information

sources can not only complement but can also conflict with each other. A more

perfect solution would be the use of 3D geometric models of objects but that is

beyond this work.

Estimation of optical flow fields can be crucial for the performance of the whole

problem of spatio-temporal segmentation, since the estimated motion field is a basic

input to all higher level algorithms. During estimation it is necessary to assume some

constraints such as the local homogeneity of optical flow vectors. In most of the

models smooth motion fields are assumed, so estimation is usually followed by a

segmentation procedure or estimation and segmentation are run simultaneously.

Tracking motion information means that not only the current velocity of video objects

is analyzed but also other characteristics such as the trajectory of moving objects or

the motion in past frames.

To carry out dense optical flow estimation, segmentation and tracking on a single

processor computer is hardly achievable on today’s computing platforms (although

feature based, non-dense optical flow methods are much closer to real time [58,85]). It

is important to note, that as the image complexity increases (e.g. more moving objects

appear), the required computational time also increases tremendously. This effect is

avoidable if massively parallel architectures are used.

1.2 Basic Features of the Proposed CNN-based Model

In this chapter it is shown that besides the existing sophisticated algorithms many of

the basic motion analysis tasks can be implemented in the special computation

environment of VLSI feasible 2D arrays, which have a restricted number and type of

operations.



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 82

The analog hardware platform of the proposed model has the following advantages:

• Low energy consumption.

• Integrated visual sensor.

• Real-time operation with locally parallel computations.

• High pixel densities are possible.

On the other hand, analog implementations are less precise and less versatile than the

digital counterparts. In [82] 1D motion sensing problems are discussed with an

emphasis on the effects of different SNR values on measurable speed range. Example

applications such as heading direction estimation and time-to-contact measurements

are given.

In the following model it is assumed that no ego-motion (the motion of the camera) is

present and we concentrate on the segmentation of optical fields in the spatial and

temporal domain. Since we mainly apply low-level processing rather than object-level

motion analysis we neglect trajectory information but utilize the history of motion on

the pixel level. This introduces some tracking abilities.

In our approach we utilize the dense spatial distribution of the cells to estimate the

dense optical vector field. While most of the compression techniques (H.261, H.263,

MPEG-1, MPEG-2 [43,44,46]) use only one 2D vector per block, the new MPEG-4

standard offers a region-based model for more flexible and precise video processing.

In the proposed algorithm, starting from an initial estimation of the dense field we are

approaching a region-based representation with the help of segmentation using spatial

and temporal information.

Since the discussed methods are to be implemented on a discrete 2D field, motion

vectors may have limited accuracy as well; especially we do not deal with sub-pixel

or fractional velocity components. This approximation is reasonable if we consider

that it is not our aim to get a precise motion field, rather to find, eliminate and

describe the different video objects.

To sum up, the proposed architecture would be a useful intelligent sensor for stand-

alone applications or front-ends in machine vision systems.



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 83

1.3 Elementary Functions of the Cell Array

In our model the elementary functions can be executed in parallel on all image pixels

and can be realized by a set of VLSI functions in analog circuits like [21]. An

important limitation of physical realization is the radius of local connectivity. We use

only first (a pixel is connected to 4 of its neighbors) or second order (pixel is

connected to 8 of its neighbors) neighborhood relations, since higher order

connectivity would make it difficult to design the circuits for hardware manufacturers.

In some cases larger neighborhood relations can be replaced by multi-scale

representation and processing (see the first chapter for multi-scale processing in a

pixel-level MRF environment).

The necessary cell functions and components are as follows:

• Comparison of neighboring pixels.

• Convolution operators. Convolution is a basic function already realized in many

CNN chips. Since it is often used in many algorithms its execution speed is crucial

for real time algorithms.

• Arithmetic and logic functions, relations. These functions are also core elements

and since they are executed on the whole pixel array simultaneously, their

implementation also calls for fast parallel processors.

• Cell memories. Results of arithmetic and logic functions are stored locally in cell

memories. These local memories can be analog or logical - storing usually 8-bit

precision or only binary values. Naturally, the number of memory per pixel has an

upper limit depending on hardware technology. We should keep the number of

necessary local memories per pixel as low as possible.

• Nonlinear functions: absolute value, gradient, etc.

Fig. 1 shows some sample-frames used in our experiments.

(a) (b)



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 84

(c)

Fig. 1.
Samples from the video sequences used in our tests. (a) “Table Tennis”, (b) “Mother

and Daughter”, (c) “Hamburg Taxi”.

2 Estimation and Segmentation of the Optical Flow

2.1 Estimation of the Motion Displacement Field

Our approach of motion segmentation is based on estimating and segmenting the

dense 2D optical vectors rather than using an image motion model of 6 or 8

parameters like in [42]. This is not a limitation, since camera ego-motion can be

determined from motion vectors if needed. Instead of using a 2D or 3D parametric

model, projections of vector flow fields can be used for ego-motion estimation as

described in [26]. On the other hand, our model can be described with a small number

of parameters reducing computation demands.

In most motion models there are several assumptions about the dependence of image

data on the real motion of the scene. A very often used and important hypothesis is

that image intensity remains unchanged along motion trajectories. However, this

assumption can be violated by spatio-temporally varying illumination, non-opaque

surface reflectance, occlusion, and noise. In our model we do not deal with

accelerating motion and our dense model also disregards the description of non-rigid

objects.

Basically, there are three main approaches to estimate dense optical vectors without

involving a parametric model of more than two parameters:

1. In correlation or block matching techniques small patches of the image are

compared with nearby patches of the consecutive frames.



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 85

2. Gradient-based algorithms compute optical vectors from spatial and temporal

derivatives of image intensity.

3. Spatio-temporal filtering methods estimate optical flow in the frequency domain.

In the next sections we describe two models for the estimation and segmentation of

motion information. Both solutions have approximately the same complexity and can

be used with stochastic relaxation steps. The first is a correlation technique, which

does not combine motion field estimation with optimization into one step. The second

is basically a gradient-based approach that jointly estimates and classifies optical

vectors in an iterative process.

2.2 Motion Estimation by a Parallel Correlation Technique

If motion field estimation itself is reliable then it is not always necessary to combine

the estimation and segmentation into one process. Its main advantage and

disadvantage originates from the same fact: we do not reevaluate motion information

during segmentation. Obviously, this is computationally more effective but no

sophisticated algorithm ensures the confidence of results. Since in many cases this

method, followed by a segmentation algorithm, can still achieve good motion

segmentation, results can be satisfactory for many motion-based applications. Its use

is particularly advantageous when there is relatively fast motion, the sequence is

temporarily undersampled or there are serious memory storage limits.

In this approach the most time consuming task is the computation of the displaced

frame difference, or the so-called sum of squared differences (SSD):

( )∑
∈

++ −++=
),(),(

2
1,,1, ),(),(),(

yxii Nyx
iittyitxittt yxIVyVxIyxSSD (1)

That is the SSD at point x,y is calculated by comparing a translated pixel and its

spatial neighborhood with the following frame. The vector (Vx,Vy) that gives the

smallest error is considered as the estimated velocity vector. Since the quadratic form

is very sensitive to outliers, it is often substituted with the more robust absolute error

criterion [88] or by correlation techniques. To speed this search up, to find the most

appropriate vector with the least SSD value, there are two basic approaches:



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 86

1. The number of points investigated can be reduced to some critical feature points.

It is convenient because there may be homogeneous regions where the estimation

is not reliable.

2. Sophisticated search methods can be applied to replace full search with special

traversals.

Instead of these techniques we propose an algorithm of five steps to implement a full

search. Since each step can be easily implemented in cell array architectures, the

solution is not computationally prohibitive:

1. Spiral movement of the whole current frame. The current frame is shifted with

one pixel and the direction of motion is given in a spiral order. By moving the

whole frame the search is performed for each pixel simultaneously. See Fig. 2 for

illustration.

2. Subtraction from the next frame to get the difference image.

3. Multiplication to get the square.

4. Smoothing in a local neighborhood with heat diffusion or convolution. This step

gives the spatial support ),(, yxii Nyx ∈ .

5. If the resulting SSD value is smaller than the previously stored minimum value,

store it as a new reference and also store the recent spiral-offset (the new motion

vector candidate).

Fig. 2.
The spiral movement of an image frame over the preceding frame. The current

position is shown after the series of steps: up, right, down, down, left, left, up, up, up,
right, right, right.



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 87

This way the calculation is performed not only at one location but also at all pixels’

neighborhood in one computation cycle. To run the search for all image pixels in a 5

by 5 window, 24 steps of one-pixel shifts (in the spiral traversal) of the image frame

are necessary. See Fig. 4 showing motion fields for the “Table Tennis” sequence

obtained with this correlation technique.

(a) (b)

(c) (d)

Fig. 3.
Motion field estimation of the frame #76-77 of the “Mother and Daughter” sequence.

x component, (b) y component of velocity vectors,
(c) x component and (d) y component filtered with statistical change detection.

A possible solution for noise filtering is to apply statistical change detection [1],

where differences (changes) of succeeding image frames are smoothed and

thresholded. This threshold can be based on a general noise model or on the specific

noise parameter of the camera. Where no change is detected by statistical change

detection between two subsequent frames, the estimated displacement can be

neglected. Fig. 3 illustrates motion of the “Mother and Daughter” sequence in the x

(3a) and y (3b) directions. The corresponding masked motion fields (3c and 3d) were

obtained with statistical change detection.

Optimization of the motion field is not possible during motion field estimation in the

correlation approach, since the iterative reevaluation of the SSD does not match the



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 88

spiral-translation model. Instead, segmentation is carried out after the estimation

process as illustrated in Fig. 4 and Fig. 6.

2.3 Segmentation with an MRF-based method

In the first chapter a CNN-based MRF model was described with very simple

functions to solve a general segmentation problem based on local observations of

image intensity. Generally, the algorithm can be used for the segmentation of any

scalar valued 2D field e.g. the magnitude of motion vectors as illustrated by Fig. 4. As

for the energy optimization, the use of the Modified Metropolis Dynamics (MMD)

[50] algorithm is proposed, which is a pseudo-stochastic relaxation process.

Since motion information is not scalar, this method’s efficiency is very limited in our

case. On the other hand the optimization of optical vector fields would involve too

large number of possible classes in case of general image flows, accordingly, the

direct transition of this optimization model to motion vector segmentation is limited to

some special cases.

Instead, now we restrict the possible states, of 2D velocity vector candidates, at each

image location to be one of its neighbors. Naturally, this restriction increases the

probability that the algorithm will be trapped in a local minimum, that is why a good

initial state is required. The definition of sites, neighbors and cliques does not change,

however, the random variables at each site (pixel) are vectors from a common state

space: { }S∈= sXX s  so that Λ∈=∈∀ ),(: yxs XXXs S , where { }L,.....,1=Λ  are

the labels for the different velocity vectors and let

{ }Ni
iN sssss ≤≤Λ∈==Ω 1  ,:),...,,,(

321
ωωωωωω  be the set of all possible

configurations.

The energy function to be minimized is the following:

)(),(),( 21 ωωω EFEF +=E , (2)

where

( )∑
∈

−=
Ss

FE
ss

2),(
1 ωμμω , (3)

∑=
∈CC

CEE )()(2 ωω , (4)

and



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 89

{ }
⎩
⎨
⎧

≠
=−

==
rs

rs
rsrsC if

if
EE

ωωβ
ωωβ

ωωω ),()( , . (5)

Local observation is generated similarly to the original CNN-MRF model:

2
ss

s

sf +
=μ , (6)

where fs is the initially estimated motion field and ss is its smoothed version. In our

experiments we used a second order neighborhood system for generating the new

vector candidates but cliques were defined only on a first order neighborhood system.

This way we achieved relatively fast convergence (compared to a truly stochastic

optimization method where possible vector candidates are not limited to be chosen

from the neighborhood).

Naturally, such an optimization of a vector field requires 2 cell array layers for the

state representation of Vx and Vy respectively.

Fig. 5 (a) shows an artificial test image where the two blobs are moving to the North

East and North West direction respectively. These input images were loaded with

different Gaussian noise (Fig. 5 (b), (c)). Motion-segmentation results of the noisy

sequences are illustrated by Fig. 5 (f) and (g).

Fig. 6 shows the 2D optical vector field for the sequence “Hamburg Taxi”. Both the

initial estimation, obtained with the correlation method, and the segmented vector

field is illustrated.

(a) (b)

Fig. 4.
(a) Magnitude of optical vectors, (b) segmented with the CNN-MRF model to 9

classes. The optimization ran for 50 iterations. First the motion field was estimated
with the correlation technique, then it was segmented with the MRF-based method.



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 90

    
(a)  (b) (c)

      

(d) (e) (f) (g)
Fig. 5.

(a) Two grayscale rectangles moving NE and NW at speed 2 , (b) original image
loaded with Gaussian noise, RMSE≈20, (c) RMSE ≈ 15, (d) initial motion field of (b)
obtained by the correlation method, (e) initial motion field of (c), (f)-(g) motion
segmentation of (b) and (c).

(a) (b)



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 91

(c)

Fig. 6.
(a) Initial vector field after a rough correlation estimation, (b) segmented vector field

with the CNN-MRF method, (c) result projected onto frame #2 of the sequence
“Hamburg Taxi”.

2.4 A Gradient-Based Method: Simultaneous Estimation and segmentation
of the Optical Flow by Energy Minimization

When estimated and segmented motion information is not satisfactory due to heavy

noise or other effects, then we can run the motion estimation and segmentation in one

optimization process. In [40] and [65] this technique is used with the correlation

approach. Since motion information should be reconsidered many times during the

segmentation process the above algorithms can be extremely time consuming.

On the contrary, we have chosen the gradient approach for optimization, because the

continuous reevaluation of the SSD in the correlation-based model does not fit our

parallel framework. In other words, the spiral movement of frames made it possible to

calculate the SSD in all pixel locations simultaneously but an optimization involving

the motion model would require the repetition of the spiral image translation process.

This problem is resolvable with using the gradient-based estimation approach, where

the evaluation of a possible motion vector candidate can be achieved for all pixels

simultaneously in the parallel framework.



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 92

2.4.1 Constraints for the Optical Flow from the Intensity Conservation
One way of deriving the gradient constraint is based on image intensity conservation,

stating that the image intensity is constant along the motion trajectories (see [38] for

details):

0)),(),(( =ttytxI
dt

d
. (7)

Applying the chain rule:

tyyxx IVIVI
dt

dt

t

I

dt

dy

y

I

dt

dx

x

I
ttytxI

dt

d ++=
∂
∂+

∂
∂+

∂
∂=)),(),(( . (8)

Since we have two unknowns and one constraint equation, it is common to combine

constraints from several neighboring locations:

( )2
,

,
),(

),( ∑ ++=
∈

−−
yxii

iiiii
Nyx

tyyxxyyxxyx IVIVIWVVE (9)

I, with corresponding lower indices, stands for spatial (Ix, Iy) and temporal (It)

derivatives of the image. This equation assumes that motion vectors are distributed

smoothly (it is naturally not always true). W is a decaying window (e.g. Gaussian

form) and E(Vx,Vy) can be considered as a measure of how much the set of constraints

are satisfied by a motion vector candidate.

Giving an analytical expression for the velocity vectors in the least square estimate

sense we can write:

0)(
),(

0)(
),(

2

,

2

,

),(

),(

=++∑=
∂

∂

=++∑=
∂

∂

∈

∈

iiiiiii
yxii

iiiiiii
yxii

tyyyxyx
Nyxy

yx

txyyxxx
Nyxx

yx

IIVIVIIW
V

VVE

IIVIIVIW
V

VVE

 (10)

Leaving small indexes the above equations can be written in a matrix form:

0),(),(),( =+⋅ yxbyxVyxM (11)

where V is the optical flow field of components Vx and Vy and M and b are:

⎟⎟⎠

⎞
⎜⎜⎝

⎛
∑
∑

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑∑
∑∑

=
ty

tx

yyx

yxx

IWI

IWI
b

WIIWI

IWIWI
M 2

2

.

(12)

Assuming that M is invertible the solution is given:

bMV 1ˆ −−= (13)



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 93

This description uses a constant model for V in a small neighborhood, giving further

constraints to solve the problem in the least square sense. As to find the most

appropriate motion vectors, we must obviously choose the vector that approximates

the constraint equation with the least error.

It is easy to see that the elements of M and b can be directly computed in a parallel

way, well suited to our cell array framework and this calculation is required only once

for each video frame. The evaluation of a motion vector candidate in each pixel

position at time t, carried out by some multiplications and additions with the elements

of M and b, foretells that the evaluation can be a part of a motion

optimization/segmentation algorithm. This way, motion vector estimation and

segmentation can be combined into one model and can be processed by the iterative

change of Vx and Vy and evaluating an energy function defined below.

2.4.2 Segmentation by Energy Minimization
To achieve our final goal of spatio-temporal video segmentation it is not necessary to

achieve a very accurate optical flow, but rather to get a smooth segmentation of the

moving areas. Next we propose a segmentation model that is based on the energy

minimization of a formulae including the smoothness of the optical flow and the

gradient-based motion estimation model.

The optical flow segmentation model is similar to the previous MRF based image

segmentation. Now, the energy term of this model to be minimized is the following:

∑ ∑++⋅=
∈ ∈Ss C

Css EbVMME
S

C
)(),(

2
ωω ω (14)

where

{ }
⎩
⎨
⎧

≠+
=−

==
rs

rs
rsrsCC if

if
EE

ωωβ
ωωβ

ωωω ),()( , . (15)

In the equations ω is the appropriate label field and sVω is the corresponding velocity

candidate. As we want to optimize a vector field, there might be too much possible

vector candidates (in other words in general motion fields the number of possible

classes could be too large) so it would make it impossible to achieve fast convergence.

Due to this reason we made two restrictions on the label field (similarly to the

segmentation method in the previous section):

1. For the initial vector field we use the vectors obtained by an initial estimation.

During the optimization no new values are introduced.



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 94

2. In the optimization process a label can be changed only to the value of one of its

neighbors.

We found other authors applying the same constraints with success under similar

conditions [11,40].

With these restrictions fast convergence can be reached within some hundred

iterations using the MMD optimization method. Similarly to the previous motion

segmentation model, this algorithm also requires 2 cell array layers for the state

representation and optimization of Vx and Vy respectively.

Fig. 7 (a) and (b) shows the results of segmentation on the input images Fig. 5 (b) and

(c) respectively. Fig. 8 shows motion segmentation results from the sequence

“Hamburg Taxi”.

(a) (b)

Fig. 7.
Segmented vector fields with the gradient-based optimization method of input images

Fig. 5 (b) and (c).

(a) (b)
Fig. 8.

(a) Segmented vector field with the gradient-based optimization method, (b) result
projected onto frame #2 of the sequence “Hamburg Taxi”.



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 95

2.4.3 Related Motion Segmentation Models Based on Energy Minimization
Here we describe shortly other motion segmentation models, that we found similar to

the proposed method. The most similar segmentation algorithms found in the

literature are based on the model of Horn and Schunk [38], where the estimated

velocity field is obtained by the minimization of the form:

( ) ( )( )∑ ∇+∇+++
222

yxtyyxx VVIVIVI λ (16)

where the magnitude of λ determines the influence of the smoothness term. Iterative

algorithms are used to minimize Eq. (16), e.g.:

( )

( )
222

1

222
1

ˆˆ
ˆ

ˆˆ
ˆ

yx

t
k

yy
k

xxyk
y

k
y

yx

t
k

yy
k

xxxk
x

k
x

II

IVIVII
VV

II

IVIVII
VV

++
++

−=

++
++

−=

+

+

α

α
(17)

where k stands for the iteration, and k
xV̂ and k

yV̂  are for spatial averages of k
xV  and

k
yV . Both terms of Eq. (16) have the same meaning as the members of Eq. (14),

however, our model simplifies computations in several aspects. In our solution the

first term contains smoothing effects itself, and there is no need to reevaluate k
xV̂ and

k
yV̂  during the iterations, M and b are invariant during our algorithm. While the

second terms are very similar, our smoothness constraint is justified to the

Gibbs/Markov model, similarly to the optimization procedure, where our Markovian

model contains a pseudo-stochastic optimization - instead of the iterative calculation

of Eq. (17)  - to solve the minimization problem.

Other Markovian segmentation models are described in [11,29] but with different

estimation models, both referenced papers deal with global affine motion models not

well-suited to our pixel-based 2D array model.



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 96

3 Edge Optimization for Spatio-Temporal Segmentation and
Tracking

3.1 Subroutines of the Proposed Model

Since the proposed model for the whole spatio-temporal segmentation algorithm

includes a large number of image manipulation steps, it might be useful to list them

separately, then to simply reference them in the next sections. These sub-tasks, such

as finding edges, filtering noise, estimating motion parameters can be considered as

subroutines of the parallel solution.

3.1.1 Nonlinear Diffusion
Nonlinear or anisotropic diffusion [2,12,67,79] is an effective tool in image

enhancement, capable of smoothing images in an adaptive way. While linear

smoothing removes not only noise but the edge content also, nonlinear and anisotropic

smoothing can preserve edge information, often crucial in the solution of image

analysis problems.

Two equations for nonlinear filtering were already given in Section 3.4 in Chapter 1.

In a later section it was also discussed, how the exponential characteristics of edge

sensitivity could be substituted by a linear approximation.

Fig. 9 shows a sample image as the result of this diffusion. Edges are preserved while

noise is removed. Since other nonlinear filters, such as rank order filters, can also be

implemented in our parallel framework [71], we will use them for oversegmentation

purposes.

Table Tennis Sequence, Frame #6 Edge Map Projected onto Original

Image

Edge Map of Nonlinear Diffusion

Filtered Image Projected onto

Original Frame

Fig. 9.
The effect of nonlinear diffusion for the enhancement of main edges.



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 97

3.1.2 Pixel Level Tracking: Motion History

As we will see, accumulated motion information of the recent frames is an important

part of our spatio-temporal segmentation model. In many cases the currently

measured motion field itself cannot describe the motion very well. With the help of

motion history information, temporal uncertainty of estimation can be reduced and

long-range information can be accumulated. We track the motion of each point and

register if it has stopped or was in motion within a given period of time:

⎭
⎬
⎫

⎩
⎨
⎧

−>=+−+−+−
<≠+++−+−

=+
MtyxIandtyxVifttyxVytyxVxI

MtyxIandtyxVifttyxVytyxVxI
tyxI

MHyxMH

MHyxMH

MH ),,(0)1,,(1)),1,,(),1,,((

),,(0)1,,(1)),1,,(),1,,((
)1,,(

(18)

where V is the corresponding motion field (with components Vx and Vy) and the

magnitude of M determines the memory-length (or temporal support) of the process.

This way we get a motion history field denoted IMH, where areas with greater value

mean regions that have been moving further in the last M frames. Greater M means

that the algorithm has longer memory and thus motion transparency is weaker. Fig. 10

shows two succeeding motion maps and the corresponding motion history maps of the

sequence “Mother and Daughter”.

(a) (b)

(c) (d)

Fig. 10.
Motion and motion history of the sequence “Mother and Daughter”.

Speed #81 (a) speed #82 (b) motion history #81 (c) motion history #82 (d).



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 98

3.1.3 Morphology Operators on Cell Arrays

The implementation of morphology operators on parallel machines is very reasonable

[68], since these functions are simple and operate in the close neighborhood of a

pixel. But to hug to the CNN-UM computation model, we refer to [103] where the

implementations of many grayscale and binary morphological operators on the CNN-

UM are described. For our purpose we need only binary operators especially for the

thinning of edge maps obtained during the optimization process. Small patch removal

is also useful in motion analysis e.g. to mask out moving regions below a certain size.

3.1.4 Disocclusion Removal in Parallel

Vector fields, obtained by any motion field estimation technique, generally suffer

from errors of disocclusion [7]. It is a systematic error, since we know that estimating

motion from image projections is an ill posed problem. The removal of disocclusion

effects needs higher interpretation of motion, at least (observable) background areas

should be recognized. If we assume that background regions are separated from

objects in the front, then we can give an approximation to the solution of the problem

of disocclusion with parallel low-level steps.

Measuring the optical vector for every pixel, the false stripes (disoccluded

background areas) can be removed from the estimated motion field in a consecutive

series of steps. The disadvantage of our approximation that we are able to handle only

a finite number of directions and magnitude of velocity vectors. The number of

iterations of the disocclusion removal algorithm depends on the maximum velocity

and the number of directions present in the segmented motion field.

We should repeat the following steps below for all featuring directions φ . φ can take a

value from the 8 basic orientation: E, W, S, N, NE, NW, SW, SE and can be

represented numerically in the cell memories of every pixel. Vφ equals the maximum

speed in direction φ. The initial state of the algorithm is the segmented motion field.

0. Choose φ as one possible direction present in the motion field and initialize

Vφ.

1. Set every pixel to “background” if there is a "background" neighbor on the

opposite direction (E–W, S-N, etc.) and has different value than "P" (for

the definition of “P” see the next step).



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 99

2. Decrease the speed of those pixels that lay in the direction of the pixels

that are set to “background” in the previous step (#1). If the speed of them

reduces to zero, mark them "P" (as “processed”, a new value different

from “background” and any other speed.

3. Decrease Vφ. If Vφ is greater then zero then go to step #1 otherwise go to

step 0.

While most steps of the algorithm is a deterministic parallel labeling process based on

local operations and decisions, some serial functions are still needed. Such as those

for histogram analysis of the initial segmented motion field to determine the possible

set of directions of motion and the maximum speed in all directions.

3.2 The Basis of the Spatio-Temporal Segmentation Algorithm

While many probabilistic approaches use labeling algorithms for spatio-temporal

segmentation [11,31,49], in our model we employ fast contour-based segmentation. In

this contour-based optimization method there is no need for registering regions or to

deal with graph-based representations that is not possible in the framework of cell

array processors.

Our algorithm is mainly based on three inputs: the oversegmented image (based on

grayscale information), the estimated and segmented optical flow and the motion

history information. We found that in many cases the joint utilization of intensity

values and the current motion information (motion estimated between two

consecutive frames) was not enough to satisfactorily define the objects’ contours. On

the other hand, the probability that two neighboring image blobs belong to the same

object is the higher the more of the following requirements are satisfied:

• The two blobs have similar color (or grayscale intensity value).

(In case of textured areas, texture filters [91] can be applied to label these regions

with colors.)

• The two blobs have similar velocity.

• The two blobs had similar activities in the recent past.

In our spatio-temporal segmentation process we apply a contour controlled split &

merge algorithm to find coherent image areas based on these three features of

neighboring regions.



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 100

(To reduce the dimensionality of the problem it is possible to replace motion vectors

with scalars by a clustering method. In some of our experiments we simply dropped

one component, the segmentation algorithm seemed to be quite robust and gave

satisfactory results when we considered only the magnitude of velocity vectors.)

3.3 The Segmentation Process

Now, instead of constructing an explicit energy model like in Sections 2.3 and 2.4, we

introduce an implicit optimization algorithm where contours are responsible to get an

optimal spatio-temporal segmentation of video sequences.

Four edge maps are generated during the algorithm: edges separating areas of

different intensity values (Ein), edges separating different motion fields (Emx,Emy) and

edges separating fields of different motion history values (Emh).  Edge-fragments of

these maps are different subsets of the spatio-temporal binary edge map Esegm, which

is a subset of the edge map of the initially oversegmented image  (Eos).

The edge maps (Ein, Emx, Emy, Emh) are weighted and then added to form a unified

edge map (Eu) that is thresholded and used to modify the actual Esegm. Then the

intensity, motion and motion history fields are updated by diffusion inside the

contours of the new Esegm . If the difference between the new state of the three feature

fields and their previous state is too large, some edges may be restored. Then at the

next iteration the different edge maps are measured again and a new unified map is

formed, etc.

The optimization is based on the following implicit model:

When the four edge maps are added to form a new unified edge map, the applied

threshold criterion is analogous to evaluating a Dam-potential between the

neighboring segments Si and Sj:

∑ −=
=

4

1
)()(),(

k
jkikkji SLSLwSSD   (19)

where L1 = intensity, L2,3 = motion, L4 = motion history (see Section 3.1.2), while wk is

a weighting coefficient. If ),( ji SSD is above a threshold, then the edge is kept,

otherwise deleted at that location.

The reconstruction of edges is a necessary part of the algorithm, because the merging

of similar neighboring regions in one step can result in the merging of distant areas

that have very different values (see Fig. 12). Hence we use the following expressions



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 101

to measure the effects of edge removal. First, we define the new average feature

values over a segment:

∑
⊆

=
Mi SS M

iki
Mk A

SLA
SL

)(
)( (20)

is the kth feature value of the unified region SM obtained by merging regions Si,

corresponding segment-areas are denoted by AM and Ai. The change due to the

formation of a new region SM is expressed for each Si ( Mi SS ⊆ ) by the difference of

the old and the new levels:

∑ −=
=

4

2
)()(),(

k
ikMkiM SLSLSSQ   . (21)

If Q(SM ,Si) is above a predefined value, then the previously eliminated but stored

edge-fragments around Si are reconstructed again. Notice, that no intensity is

considered in the edge reconstruction process. It means that regions with different

intensity can be merged more easily than with different motion information.

Alternatively, instead of measuring the change for each Si separately, we can measure

the accumulated error over SM  as a volumetric average:

∑ ∑ −=
= ∈∀

4

2
)()(

1
)(

k SS
iMkiik

M
M

Mi

ASLASL
A

SQ .  (22 )

In this case the reconstruction of edges applies for the whole area of SM, causing the

restoration of all previous edges over SM. This second solution results in larger areas

while the other is rather to maintain smaller segments with large contrast. Note that in

Eq. (21) and (22) averaging over an area is carried out diffusion inside the edge-

defined borders.

The individual steps of the proposed algorithm are the following (see Fig. 11 for

illustration while Fig. 16 shows some examples):

1. Segment the input image, based on intensity observations, possibly to a large

number of segments of characteristic closed regions. The obtained segmented

image is called oversegmentation, and it gives the finest partitioning that could be

achieved in the whole spatio-temporal segmentation process. Good

oversegmentation can be generated with the help of anisotropic diffusion or

median filtering of the input frame. Both can be implemented in the parallel

framework [71,79].



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 102

2. Produce the edge map of the oversegmented intensity field (Eos) by an edge-

detector [103]. Eos  is a binary map showing the more-or-less closed segment-

borders of  the oversegmented image parts. In the segmentation process the state

variable is the actual edge map, the binary  Esegm .

• Starting condition:  Esegm =  Eos .

3. Diffuse intensity, motion and motion history fields inside the regions defined by

Esegm with the help of external edge controlled diffusion. Then make the

grayscale edge maps of these fields, namely Ein , Emx, Emy, and Emh respectively.

These non-binary maps contain the edge-strength values between the different

diffused areas in the same points where the oversegmented binary edge-segments

are in Esegm.

External edge controlled diffusion is similar to anisotropic diffusion (see Section

3.1.1), however, the edge control should act from the external Esegm edge map. We

found that in some cases the anisotropic diffusion may not smooth the feature fields

inside strong contours uniformly – in spite of the large number of iteration steps of the

numerical approximation of the formula given in the first chapter of this work.

Naturally, we do not expect precise averaging like in a region-based segmentation

method with conventional numerical solutions. Instead, after a given number of steps

we stop the diffusion process. Then, as a supplement, a new series of operations begin

when we change every pixel’s value to its greatest neighbor, except if a pixel has at

least two neighbors with corresponding edge points represented in the external edge

map Esegm. This last condition ensures that we get homogenous areas inside contours

and it prevents averaging between regions separated by the “external” edges. This last

series of steps is also responsible to get continuous contours rather than leaking edge

lines and curves.

Note that while diffusion takes a long computation time on a conventional digital

computer (or any SISD architecture), this time is proportional with the diffusion

radius on the parallel array. For comparison, a diffusion process on the CNN chip on

the whole image of radius r should take similar time than reading out r different

values from a memory!

4. Weight and add together the maps Ein, Emx, Emy, and Emh to form a unified map

Eu. With the increase of the weight of one component we can control how much

the segmentation process should lean on that given type of information. In our



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 103

experiments we applied approximately the same weights (w) for the two motion

type maps and a significantly smaller weight for the intensity map, e.g.:

w(Ein) : w(Emx) : w(Emy) : w(Emh) =  0.2 : 1.2 :1.2: 1.2.

5. Threshold the superimposed edge-map Eu and reduce the edges in Esegm :

Esegm  := Esegm  \ Eu
(thresholded) . 

 Edges of Esegm below a threshold in Eu are neglected: closed contours can leak or

whole edges can disappear this way.

6. Approximate the average motion and motion history feature fields by external

edge controlled diffusion inside the contours of the modified Esegm. This

diffusion is just similar to step 3.

7. Correct Esegm with reconstruction (Erec). Naturally, the optimal control of the

merging of different areas with different intensity, motion and motion history

must be a reversible method [62]. Although, our cell array framework does not

enable us to process a graph-based optimization or higher-level understanding, we

can still make a feedback to rebuild some lost edges. In every cycle, the change

between the current motion fields and the previously segmented motion fields is

measured. Over those areas, where the difference of the old and the new features

(given by Eq. (21) or (22) ) is greater than a predefined value, a mask is generated

(Erec). Then with the help of this mask we can reconstruct edges from the stored

edge map of the previous iteration cycle: Esegm  := Esegm U Erec .  Fig. 12 illustrates

a typical situation (applying Eq. (21)) when a cascade of edges are removed

because neighboring areas were similar to each other, but the regions at the two

margins had significant differences. One may think that the contour-based

segmentation is very sensitive for leaks on edges but this feedback can interact

and correct the segmentation process.

8. Cycle controlling

• Decrease edge weights. In our experiments we decreased edge weights by 0-

20%. If this relaxation-factor is small, then edge destruction is slow; otherwise

the different regions merge into each other faster.

• Go to step 3.

According to our test results, approximately 10-15 iterations were sufficient to get

stable edge contours. Morphology operators may then be used to get thin lines as a



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 104

final result. The segmented motion history of the last iteration cycle can also be used

as the input for the calculation of motion history of succeeding frames.

The resulted map (Esegm) contains the contours of the spatio-temporal objects. This

map can be forwarded to a vector based DSP processor for further analysis, such as

MPEG-4 video transmission or motion analysis applications.



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 105

Fig. 11.
 Iterative edge-based spatio-temporal segmentation.

Dotted lines symbolize feedback of the new contour to the following iterations and to
the error computation. The broken lines mean data transfer needed only for the first

iteration.

Fig. 12.
Edge reconstruction in the edge-based optimization model. In the first step all five
regions are merged but then at the next step the one on the right is separated. The

difference between its value and the average of the five blocks was over a threshold of
1.0.

Diffusion of Motion Inside
Contours

Corrected  New
Contours

Diffusion of Motion History Inside
Contours

Diffusion of
Intensity Inside
Contours

Over-segmentation in the
Spatial Domain

Motion Estimation –
Motion Segmentation

Motion History

Forming New
Contours

Contour correction by diffusions
and comparison to previous states:
Measuring deviation from previous
state of Motion and Motion History



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 106

4 Experimental Results
The following examples are the results of a parallel simulation (with the help of a

parallel VLSI programming language (Analogic Macro Code, [53]). All steps, except

the controlling and global parameter-setting operations, are defined with simple

analog low-level operations.

Fig. 16 and Fig. 14 contains some results of the proposed algorithm. We also show

some images of segmentation of motion/motion history at different steps of the

iteration cycle (Fig. 16 (d),(e),(f),(g),(h),(i)). In the first example (the sequence “Table

Tennis”) the algorithm marked those parts that had different motions. The upper part

of the arm was handled separately from the hand since it had different color and either

motion, or motion history was far from being uniform within the object’s borders. Fig.

16 (j) and (k) shows the average speed and motion history within the detected region’s

borders after the 10th iteration. Edge maps are also demonstrated at two different

iteration levels.

Fig. 14 illustrates how edges are being modified through an iteration cycle of 10 steps.

The optimization for this image is stable after 10 steps. Small moving areas were

removed because no spatial content was present at those blobs, however the effect of

shadow was only partly removed. Fig. 15 is another example how incomplete motion

field is reconstructed by spatio-temporal segmentation.



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 107

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

(l) (m)
Fig. 13.

Spatio-temporal segmentation of the sequence “Table Tennis”. (a) Oversegmentation obtained by
nonlinear diffusion, median filtering and edge detection, (b) magnitude of velocity vectors, (c) motion

history, (d) edge map of color, (e) edge map of velocity and (f) edge map of motion history after the 2nd

iteration; (g) edge map of color, (h) edge map of velocity, (i) edge map of motion history after the 8th

iteration; , (j) edge map of velocity, (k) edge map of motion history after the 10th  iteration; (l) final
contours after the 10th iteration, (m) final contours projected onto the input image.



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 108

(a) (b)

(c) (d)

(e) (f)

(g)
Fig. 14.

Edge optimization for the spatio-temporal segmentation of “Mother and Daughter”.
(a) Oversegmented input frame, (b) motion of the current frame, edges of the (c) 1st, (d) 3rd, (e) 5th,

(f) 9th, iterations, (g) final edge map (10th iteration) projected onto the input image.

 Input image with motion-border Speed-map  Contour of moving object
Fig. 15. A moving person with detected object borders. In spite of the scanty motion field, the upper

part of the body is still detected as a moving area (Some artifacts are also present, e.g. the shadows on
the background.)



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 109

Fig. 16.
Spatio-temporal segmentation of “Table Tennis” frames #16-23.



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 110

5 VLSI Chip Speed and Complexity Estimation

Since spatio-temporal segmentation is a high-complexity task, even our fully parallel

solutions require fast hardware implementations. We give computation complexity

and running time estimations for the proposed algorithms on the CNN-UM parallel

computation platform. With the help of our test programs, most of which ran on a

software simulator [53], we estimated the number of different steps and the

executions-times on the CNN-UM. For VLSI chip speed of basic operations we used

data based on empirical tests [57]. Table 1 contains some physical parameters of a

CNN chip [21] compared to other computation platforms.

CNN
τ=200ns

Pentium®II.
@ 400 MHz &

MMX™

TMS320C80
@40 MHz

Matrox Genesis with
C80 & NOA ASIC

@ 50 MHz

Technology λ = 0.5μm λ = 0.25μm λ = 0.35μm λ = 0.35μm

Image Save/Load 90 μsec 40 μsec 80 μsec 80 μsec
Arithmetic Operation 500 nsec 38 μsec 156 μsec 47 μsec

Logical Operation 100 nsec 30 μsec 125 μsec 40 μsec
Conversion from
analog values to

binary values/Memory
Transfer

200 nsec

Convolution, 3x3 2μsec 125 μsec 383 μsec 28 μsec
Feedback Convolution
(Dynamic IIR Spatial

Filter)
5μsec

Table 1
Comparison of execution times on different image processor platforms. Image size is

64x64. τ  is the time constant of the analog chip [57].

Number of instructions per iterations Time
Number of
iterations

Parallel
Data-
Transfer
in Chip

Serial
Data-
Transfer

Arithmetic
Operations

Logical
Operations

Convolution
Template msec

MDF 120 11 - 12 - 2 1.4
DR 100 7 - 11 6 1 1.1
MRF 100 7 - 16 6 5 2.4
NLDIF 30 4 - 10 - 8 0.7
MH 120 5 - 3 - 1 0.6
STS 15 22 2 13 2 3 5.6
∑ 11.8

Table 2.
Execution-time estimations for the different algorithms. The table gives typical data for

processing a 64x64 image. In the columns there are the necessary numbers of steps per
iteration and estimated time given in msecs. MDF: estimating motion displacement field
with the correlation technique. DR: disocclusion removal. MRF: Markov Random Field
based segmentation. NLDIF: nonlinear diffusion. MH: estimating motion history. STS:

spatio-temporal segmentation.



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 111

Table 2 gives estimations about how fast our algorithms would run on a fully parallel

architecture (like the CNN-UM). The full operation time would satisfy real-time

requirements.

The following conditions are supposed in our comparison:

1. Test image size: 64x64 (currently available CNN chip is of size 64x64).

2. Grayscale image (8bit/pixel).

3. DSP is used for parameter setting and controlling the segmentation cycles.

On the other hand, there are other physical parameters than speed, such as area, power

consumption, pin-number etc. Table 3 shows the most important technical data for

common image processing platforms. This table shows that with a CNN chip we can

achieve extremely fast computation at low power consumption on a small area. And

what is about the technology? While the CNN-UM technology parameters are

restrained: 0.5 μm VLSI technology with very low clock-speed, the computing power

of the CNN-UM is still superior regarding the other image-processor architectures.

Processor Technology
[μm]

Chip area
[mm2]

Pin count
Worst case

power
consumption

[W]

Clock speed
[MHz]

Pentium®II @ 400
MHz & MMX™ 0.25 230 242 25.0 400

TMS320C80
40 MHz 0.35 ~240 305 8.3 40

TMS320C62x
250 MHz 0.25 n.a. 352 1.9 250

CNN
τ =200 nsec cP4000 0.5 90 120 1.2

Digital: 10
Analog:  1

Table 3.
Comparing some physical properties of different image  processing platforms.



Spatio-temporal Segmentation of Video Sequences with 2D Processor Arrays

Chapter III 112

6 Conclusion

In this chapter fully-parallel motion segmentation and spatio-temporal segmentation

schemes based on local computations and optimization were outlined.

I introduced two basic approaches for the segmentation of the optical flow, for both

main techniques (gradient-based method, correlation-based method) I described the

algorithms that have relatively small complexity. These algorithms can be used as

inputs for higher level analysis. This analysis is carried out in the spatio-temporal

segmentation process accomplished also with low-level operations.

The spatio-temporal approach consists of two main modules:

1. Algorithms for image and motion segmentation of spatial and temporal

information by optimization.

2. Contour-based split-and-merge spatio-temporal segmentation to utilize the

information obtained in the first module. It is showed that with the usage of

motion history, intensity and the current motion it is possible to segment video

sequences in the spatio-temporal domain.

Both parts can be realized with the same set of simple operations; the need for high-

level control is not considerable. Basic local instructions are convolution operators,

simple arithmetic steps, logical relations and the simplest nonlinear functions

(sigmoid and gradient in a neighborhood). As it was found in the current and previous

tests [17,96,95,], these algorithms are fast and give stable results in a reasonable

number of steps.

The aims were to design optimal algorithms for fast implementations on parallel

processor arrays. As time complexity estimations in Section 5 show the proposed

approaches can result in real-time operation if implemented in VLSI. The parameters

of the latest CNN chip have been applied to estimate the possible implementation and

time complexity of the proposed system.



Theses

113

Theses

Thesis 1

1.1 New multiscale segmentation models have been introduced into the MRF-based

segmentation model in the CNN environment. Two theoretically equivalent realizations

are made with different memory and instruction requirements.

The range of neighborhood connectivity is an important limitation in CNN models. The

aim of the proposed technique is to tailor the requirements of the CNN-MRF model to

these neighborhood constraints. Its is shown that the multiscale model is capable of

similar segmentation performance with reduced neighborhood connectivity. (Chapter I,

Sections 3.5-3.8)

1.2 The noise sensitivity of the CNN-MRF model has been investigated, the

robustness of the method is shown experimentally. It is also shown by simulations that a

certain amount of noise, originating from VLSI implementation, does not decrease the

segmentation precision, even segmentation accuracy increases at low noise.

The application of the optimization method, called Modified Metropolis Dynamics

(MMD), is advantageous due to its low complexity and fast convergence [50,96],

however it gives local optimum and it is only a pseudo-stochastic process. According to

my simulations, low noise added to the MMD decision algorithm modifies its

deterministic behavior and results in a real stochastic process. (Chapter I, Section 3.9)

Thesis 2

2.1 I have investigated the role of parameters in DCT coding, implemented on noisy

analog parallel hardware (CNN-UM architecture). Experimentally I have showed that the

increase of the number of DCT coefficients can increase coding error.



Theses

114

While in the case of conventional digital implementations of transform coding the

increase of the number (or quantization levels) of transform coefficients increases coding

quality and decreases compression rate, contrary in the proposed model of [94] the

increase of the number transform coefficients can cause the increase of coding error.

(Chapter, II Section 2)

2.2 I have introduced a dynamic coding method for the use of HT and DCT coding on

analog 2D processor arrays.

With the help of the features of the model of [94] I have showed how to optimize the use

of the two transformation methods in case of noisy implementations. At the same time it

is shown that the dynamically changing block size causes an unwanted overhead and

reduces compression ratio, which can be avoided by repeating the Lagrange

multiplication method with different block size settings. (Chapter II, Section 3)

Thesis 3

3.1 I gave an MRF-based method for the segmentation of estimated optical motion field.

The proposed algorithm does not require the definition of classes and fits well the

structure of 2D processor arrays.

The method is similar to the CNN-MRF model of [96] but it is applicable for the

segmentation of 2D vector fields. The new candidates for possible states are selected

from the neighborhood of each pixel. (Chapter III, Section 2.3)

3.2 I have introduced a parallel gradient-based optical vector field segmentation method

for 2D processor arrays.

The segmentation algorithm is based on the minimization of an energy function

composed of two components: one component is formed from the gradient-based motion

equation while the other component forces homogeneity. (Chapter III, Section 2.4)



Theses

115

3.3 I have showed that the pixel-level tracking, together with the segmented intensity

information and segmented motion information, enables spatio-temporal segmentation of

video sequences in the parallel 2D processor array environment.

Tracking implemented in the spatio-temporal segmentation algorithm consists of pixel-

level steps and it generates a field describing the motion of some recent frames called

motion history. Edge fields defined on motion history, motion field and the intensity

information are the bases of the contour-based segmentation algorithm. The advantage of

this method is that it contains simple operations executable on parallel 2D arrays.

(Chapter III, Section 3)



Acknowledgements

116

Acknowledgements

I would like to thank the help of my supervisor Tamás Szirányi who supported my

studies and research in the last years. Also a lot I got from my friends and colleges,

both technically and personally, at the Department of Image Processing and

Neurocomputing, UofV and at other laboratories like the Analogical and Neural

Computing Laboratory, MTA SZTAKI.

Last I would like to thank the patience and support of my family, my parents and Judit

and I hope that it was worthy to standby in the last couple of years.



References

117

References

[1] T. Aach, A. Kaup, R. Mester, “Statistical model-based change detection in

moving video”, Signal Processing, Vol.31, pp.165-180, 1993.

[2] L. Alvarez, F. Guichard, P. L. Lions, J. M. Morel, “Axioms and Fundamental

Equations of Image Processing”, Arch. Rational Mech. Anal., V.123, pp.199-257,

1993.

[3] R. Azencott, “Markov Fields and image analysis”, Proceedings of the AFCET,

Antibes, 1987.

[4] R. Azencott, “Parallel Simulated Annealing, Parallelization techniques”,

Wiley, 1992.

[5] P. Baldi, W. Heiligenberg, “How sensory maps could enhance resolution

through ordered arrangements of broadly tuned receivers”, Biol. Cybernetics, Vol.59,

pp.313-318, 1988.

[6] J. L. Barron, D. J. Fleet, and S. Beauchemin, “Performance of optical flow

techniques,” International Journal of Computer Vision, Vol. 12(1), pp.43-77, 1994.

[7] S. S. Beauchemin, J. L. Barron, “On the Fourier Properties of Discontinuous

Motion”, Submitted to Journal of Mathematical Imaging and Vision, 1999.

[8] J. Besag, “On the statistical analysis of dirty pictures”, Journal of the Royal

Statistical Society, B-68, pp. 259-302, 1986.

[9] A. Blake, “Comparison of the efficiency of deterministic and stochastic

algorithms for visual reconstruction”, IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol.11, pp.2-12, 1989.

[10] C. A. Bouman, M. Shapiro, “Multiscale Random Field Model for Bayesian

Image Segmentation”, IEEE Transactions on Image Processing, Vol.3, pp.162-177,

1994.

[11] P. Bouthemy and E. Francois, “Motion Segmentation and Qualitative

Dynamic Scene Analysis from an Image Sequence,” International Journal of

Computer Vision, Vol.10:2, pp.157-182, 1993.

[12] F. Catté, T. Coll, P. L. Lions, and J. M. Morel, “Image selective smoothing

and edge detection by nonlinear diffusion”, SIAM J. Numerical Anal., Vol.29, pp.182-

193, 1992.



References

118

[13] L. O. Chua, L. Yang, “Cellular Neural Networks: Theory”, IEEE Transactions

on Circuits and Systems, Vol.35, pp.1257-1272, 1988.

[14] L. O. Chua, L. Yang, “Cellular Neural Networks: Applications”, IEEE

Transactions on Circuits and Systems, Vol.35, pp.1273-1290, 1988.

[15] Roger J. Clarke, “Digital Compression of Still Images and Video”, Academic

Press, 1995.

[16] K. Crounse, T. Roska, L.O. Chua, “Image halftoning with Cellular Neural

Networks”, IEEE Transactions on Circuits and Systems Vol.40, pp.267-283, 1993.

 [17] L. Czúni, T. Szirányi, ”Motion Segmentation and Tracking with Edge

Relaxation and Optimization using Fully Parallel Methods in the Cellular Nonlinear

Network Architecture”, Real-Time Imaging, accepted, 2000.

[18] L. Czúni, T. Szirányi, J. Zerubia, “Multigrid MRF Based Picture Segmentation

with Cellular Neural Networks,” CAIP’97, Kiel, Proceedings in Lecture Notes in

Computer Science, Vol.1296, pp.345-352, 1997.

[19] L. Czúni, B. Vágvölgyi, T. Szirányi, T. Greguss, “A Compact Panoramic

Visual Sensor for Intelligent Applications”, Proceedings of the 4th Asian Conference

on Computer Vision (ACCV2000), Taiwan, IEEE, pp.258-263, 2000.

[20] L. S. Davis, A. Rosenfeld, “Cooperating Processes for Low-level Vision: A

Survey”, Artificial Intelligence, 17, pp.245-263, 1981.

[21] R. Domínguez-Castro, S. Espejo, A. Rodríguez-Vázquez, A. Carmona, P.

Földesy, Á. Zarándy, P. Szolgay, T. Szirányi, T. Roska, “A 0.8μm CMOS Two-

Dimensional Programmable Mixed-Signal Focal-Plane Array Processor with On-Chip

Binary Imaging and Instructions Storage”, IEEE Journal of Solid-State Circuits,

Vol.32, No.7, pp.1013-1026, 1997.

[22] T. Ebrahimi et al., ”Dynamic coding of visual information,” technical

description ISO/IEC JTC1/SC2/WG11/M0320, MPEG-4, Swiss Federal Institute of

Technology, October, 1995.

[23] S. Espejo, R. Carmona, R. Dominguez-Castro and A. Rodriguez-Vazquez, “A

CNN Universal Chip in CMOS Technology”, International Jorunal of Circuit Theory

and Applications, Vol.24, pp.93-110, 1996.

[24] R. Etienne-Cummings, S. A. Fernando, J. Van der Spiegel, and P. Mueller,

“Real-time 2D analog motion detector VLSI circuit” Proceedings of IEEE

International Joint Conference on Neural Networks, New York, Vol.4, pp.426-431,

1992.



References

119

[25] H. Everett III., “Generalized Lagrange Multiplier Method for Solving

Problems of Optimum Allocation of Resources”, Operation Research, Vol.11,

pp.399-417, 1963.

[26] S. Fejes and L. S. Davis, “What can projections of flow fields tell us about the

visual motion,” Proceedings of the ICCV, Bombay, India, 1998.

[27] Y. Fisher (ed.), “Fractal Image Compression”, Springer Verlag , 1994.

[28] D. J. Fleet, K. Langley, “Recursive Filters for Optical Flow,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol.17, pp.61-67, 1995.

[29] E. Francois, J-F. Vial, and B. Chupeau, “Coding Algorithm with Region-

Based Motion Compensation”, IEEE Transactions on Circuits and Systems for Video

Technology, Vol.7, No.1, February 1997.

[30] S. Geman, D. Geman, “Stochastic relaxation, Gibbs distributions and the

Bayesian restoration of images,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol.6, pp.721-741, 1984.

[31] M. Gelgon, P. Bouthemy, “A Region-Level Graph Labeling Approach to

Motion-Based Segmentation”, Technical Report, INRIA, France, 1996.

 [32] C. Graffigne, F. Heitz, P. Pérez, F. Prteux, M. Sigelle, J. Zerubia,

“Hierarchical Markov random field models applied to image analysis: a review”,

SPIE Conference, San Diego, July 10-11, 1995.

[33] GZIP Manual: http://www.gnu.org/manual/gzip-1.2.4/html_mono/gzip.html

[34] R. Haralick, “Image segmentation survey”, Fundamentals in Computer Vision,

Cambridge University Press, 1983.

[35] F. Heitz, P. Perez, P. Bouthemy, “Multiscale minimization of global energy

functions in some visual recovery problems”, CVGIP: Image Understanding, Vol. 59,

No.1, pp.125-134, 1994.

[36] W. D. Hillis, “The Connection Machine”, MIT Press, 1985.

[37] M. W. Hirsch, S. Smale, “Differential Equations, Dynamical Systems, and

Linear Algebra”, Academic Press, San Diego, pp.180-203, 1974.

[38] B. K. P. Horn and B. G. Schunk, “Determining optical flow”, AI 17, pp.185-

204, 1981.

[39] T. Ikenaga, T. Ogura, “Discrete time Cellular Neural Networks using highly

parallel 2D cellular automata CAM”, Proceedings of NOLTA’96, Japan, pp.221, 1996.



References

120

[40] K. Illgner and F. Müller, “Image segmentation using motion estimation” In V.

Cappellini, editor, Time-Varying Image Processing and Moving Object Recognition,

Vol. 4, Elsevier Science B.V., Amsterdam, pp.238-243, 1997.

[41] K. Illgner and M. Braess, “On optimized selection of DCT-coefficients in

H.261-like videocodecs”, Proceedings of the IEEE International Workshop on

Intelligent Signal Processing and Communication Systems ISPACS’93, pp.339-344,

Tohoku University, Sendai, Japan, October, 1993.

[42] M. Irani, P. Anandan, “A Unified Approach to Moving Object Detection in 2D

and 3D Scenes”, IEEE Transactions on Pattern Analysis and Machine Intelligence,

Vol.20, No.6, pp.577-589, 1998.

[43] ISO/IEC JTC1 IS 11172-2 (MPEG-1), Information technology – coding of

moving pictures and associated audio for digital storage media at up to about

1.5Mbits/s, 1993.

[44] ISO/IEC JTC1 IS 13818-2 (MPEG-2), Information technology – generic

coding of moving pictures and associated audio information, 1996.

[45] ISO/IEC JTC1/SC29/WG11 N3536, Overview of the MPEG-4 Standard,

Editor: Rob Koenen, http://www.cselt.it/mpeg/standards.htm, 2000.

[46] ITU-T Recommendation H.263, Video coding of narrow telecommunication

channels at <64 kbit/s, 1995.

[47] Z. Kató, “Bayesian color image segmentation using reversible jump Markov

chain Monte Carlo”, CWI Report, 1999.

[48] Z. Kató, “Modélisations Markoviennes Multirésulution en Vision Par

Ordinateur”, Thése, L’Université de Nice-Sophia Antipolis, pp.52-55, 1994.

[49] Z. Kató, T.C. Pong, J.C.M. Lee, “Motion Compensated Color Video

Classification Using Markov Random Fields”, Proceedings of ACCV, Vol.I, pp.738-

745, 1998.

[50] Z. Kató, J. Zerubia, M. Berthod, “Satellite image classification using a

modified Metropolis dynamics”, Proceedings of ICASSP, San Francisco, 1992.

[51] Z. Kató, Zerubia, M. Berthod, “A Hierarchical Markov Random Field Model

and Multitemperature Annealing for Parallel Classification, Graphical Models and

Image Processing, Vol.58, No. 1, pp.18-37, 1996.

[52] S. Kirkpatrick, C. Gellatt, M. Vecchi, “Optimization by simulated annealing”,

Science 220, pp. 671-690, 1983.



References

121

[53] T. Kozek, Á Zarándy, S. Zöld, T. Roska, P. Szolgay, “Analogic Macro Code

(AMC) - Extended Assembly Language for CNN Computers,” Technical Report,

MTA SZTAKI, Budapest, 1998.

[54] T. Kozek, C. W. Wu, Á. Zarándy, H. Chen, T. Roska, M. Kunt, L.O. Chua,

“New results and measurements related to dynamic image coding using CNN

universal machine chips”, IEEE Transactions on Circuits and Systems-VT, Vol.7,

pp.606-614, 1997.

[55] P. A. Laplante, A. D. Stoyenko Editors, “Real-Time Imaging, Theory,

Techniques, and Applications”, IEEE Press, 1996.

[56] S. Z. Li, Markov Random Field Modeling in Computer Vision, Springer-

Verlag, 1995.

[57] G. Linan, S. Espejo, R. Dominguez-Castro, E. Roca, A. Rodríguez-Vázquez,

“A Mixed Signal 64x64 CNN Universal Machine Chip”, MicroNeuro’99, IEEE,

Granada, Spain, pp.61-68, 1999.

[58] H. Liu, Tsai-H. Hong, M. Herman, T. Camus, R. Chellappa, “Accuracy vs.

Efficiency Trade-offs in Optical Flow Algorithms”, Computer Vision and Image

Understanding, Vol.72, No.3, pp.271-286, 1998.

[59] R. Mester and U. Franke, “Spectral entropy-activity classification in adaptive

transform coding”, IEEE J. Selected Areas Commun. 10, pp.913-917, 1992.

[60] N. Metropolis, A.W. Rosenbluth, M. N. Rosenbluth, A.H. Teller and E. Teller,

“Equation of State Calculations by Fast Computing Machines,” Journal of Chemical

Physics, Vol.21, No.6, pp.1087-1092, 1953.

[61] J. P. Miller, T. Roska, T. Szirányi, K. Crounse, L. O. Chua, L. Nemes,

“Deblurring of Images by Cellular Neural Networks with applications to

Microscopy”, Procedings of 3rd IEEE Workshop on CNN and their Applications,

Rome, December, pp.237-242, 1994.

[62] F. Moscheni, S. Bhattacharjee, M. Kunt, “Spatiotemporal Segmentation Based

on Region Merging,” IEEE Transaction on Patter Analysis and Machine Intelligence,

Vol.20, No.9, pp.897-915, 1998.

[63] H. H. Nguyen and P. Cohen, “Gibbs Random Fields, Fuzzy Clustering, and

the Unsupervised Segmentation of Textured Images”, CVGIP: Graphical Models and

Image Processing, Vol.55, pp.1-19, 1993.

[64] N. Pal and S. Pal, ”A review on Image Segmentation techniques”, Pattern

Recognition, Vol.26, No.9, pp.1277-1294, 1993.



References

122

[65] J. N. Pan, Y. Q. Shi, and C. Q. Shu, “Correlation-Feedback Technique in

Optical Flow Determination,” IEEE Transactions on Image Processing, Vol.7, July,

pp.1061-1067, 1998.

[66] W. B. Pennebaker, J. L. Mitchell, “JPEG Still Image Data Compression

Standard”, Van Nostrand Reinhold, 1993.

[67] P. Perona, T. Shiota, J. Malik, “Anisotropic Diffusion, Geometry - Driven

Diff. In Computer Vision”, Kluwer Academic Publishers , pp.73-92, 1992.

[68] I. Pitas, editor, “Parallel Algorithms for Digital Image Processing, Computer

Vision and Neural Networks”, Wiley Professional Computing, 1993.

[69] A. D. Poularikas, editor, “The Transformations and Applications Handbook”,

CRC and IEEE Press, 1996.

[70] Steve Purcell, “The Impact of Mpact 2”, IEEE Signal Processing Magazine,

March, 1998.

[71] Cs. Rekeczky, T. Roska, and A. Ushida, "CNN Based Difference-controlled

Adaptive Nonlinear Image Filters", International Journal of Circuit Theory and

Applications, Vol.26, pp.375-423, 1998.

[72] E. Reusens, T. Ebrahimi, M. Kunt, “Dynamic approach to visual data

compression”, IEEE Transactions on Circuits and Systems for Video Technology,

Vol.7, pp.197-211, 1997.

[73] Á. Rodriguez-Vázquez, S. Espejo, R. Dominguez-Castro, and G. Linan, "The

64x64 Analog Input CNN Universal Machine Chip and its ARAM", Proceedings of

the International Symposium on Nonlinear Theory and Applications, (NOLTA’98),

pp.667-670, Le Régent, Switzerland, 2-88074-391-5, 1998.

[74] Y. Rosanov, “Markov Random Fields”, Springer Verlag, 1982.

[75] T. Roska, “CNN Chip set Architectures and the Visual Mouse”, Proceedings

of CNNA ‘96 (Seville), IEEE, pp.487-492, 1996.

[76] T. Roska, G. Bártfay, P. Szolgay, T. Szirányi, A. Radványi, T. Kozek, Zs.

Ugray and Á. Zarándy, “A digital multiprocessor hardware accelerator board for

Cellular Neural Networks: CNN-HAC”, International Journal of Circuit Theory and

Application, Vol.20, pp.589-599, 1992.

[77] T. Roska, L. O. Chua, “The CNN Universal Machine: An Analogic Array

Computer,” IEEE Transactions on Circuits and Systems-II, Vol.40, March, pp.163-

173, 1993.



References

123

[78] T. Roska, L. Kék, L. Nemes, Á. Zarándy, M. Brendel and P. Szolgay (editors),

“CNN Software Library (Templates and Algorithms), Version 7.2”, DNS-1-1998,

(CADET-15), Computer and Automation Institute, Hungarian Academy of Sciences,

Budapest, 1998.

[79] T. Roska, T. Szirányi, “Classes of Analogic CNN Algorithms and Their

Practical Use in Complex Processing”, Proceedings of the IEEE Non-linear Signal

and Image Processing, June, pp.767-770, 1995.

[80] T. Roska, P. Szolgay, T. Kozek, Á. Zarándy, Cs. Rekeczky, L. Nemes, L. Kék,

K.László, I.Szatmári, M.Csapodi, "CADETWIN", Budapest, MTA SZTAKI, 1997.

[81] T. Roska, G. Bártfai, P. Szolgay, T. Szirányi, A. Radványi, T. Kozek, Zs.

Ugray and Á. Zarándy, “A Digital Multiprocessor Hardware Accelerator Board for

Cellular Neural Networks: CNN-HAC”, International Journal of Circuit Theory and

Applications, Vol.20, pp.589-599, 1992.

[82] R. Sarpeshkar, J. Kramer, G. Indiveri, and C. Koch, Analog VLSI

Architectures for Motion Processing: From Fundamental Limits to System

Applications, Proceedings of the IEEE, Special Issue on Parallel Architecture for

Image Processing, Vol.84, pp.969-987, July, 1996.

[83] Claude E. Shannon, Warren Weaver. A Kommunikáció matematikai elmélete,

OMIKK, Budapest, 1986.

[84] B. E. Shi, T. Roska and L. O. Chua, “Estimating Optical Flow with Cellular

Neural Networks,” International Journal of Circuit Theory and Applications, Vol.26,

No.4, July, pp.343-364, 1998.

[85] J. Shi, C. Tomasi, “Good Features to Track”, Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, pp.593-

600, June, 1994.

[86] E. A. B. da Silva, “SA-W-VQ: wavelet based vector quantization”, IEEE

Transactions on Image Processing, Vol.6, No.2, pp.299-310, 1996.

[87] K. Slot, L. O. Chua, T. Roska, “Very low-bitrate video coding using Cellular

Neural network Universal Machine”, UCB/ERL, Memo M97/46, 1997.

[88] C. Stiller, and J. Konrad, “Estimating Motion in Image Sequences” IEEE

Signal Processing Magazine, Vol.16, No.4, pp.70-90, 1999.

[89] A. Stoffels, T. Roska, L.O. Chua, “Object oriented image analysis for very-

low-bitrate video-coding systems using the CNN Universal Machine”, International

Journal of Circuit Theory and Applications, Vol.25, pp.235-258, 1997.



References

124

[90] T. Szirányi, “Robustness of Cellular Neural Networks in image deblurring and

texture segmentation”, International Journal of Circuit Theory and Applications,

Vol.24, pp.381-396, May 1996.

[91] T. Szirányi, M. Csapodi, “Texture Classification and Segmentation by Cellular

Neural Network using Genetic Learning”, Computer Vision and Image

Understanding, Vol.71, No.3, pp.255-270, 1998.

[92] T. Szirányi, J. Csicsvári, ”High speed character recognition using a dual

Cellular Neural Network architecture”, IEEE Transactions on Circuits and Systems,

V.40, No.3(II.), pp.223-231, 1993.

[93] T. Szirányi, L. Czúni, “Picture Segmentation with Introducing an Anisotropic

Preliminary Step to an MRF Model with Cellular Neural Networks”, Proceedings of

the 13th ICPR, IEEE, Vienna, pp.366-370, 1996.

[94] T. Szirányi, L. Czúni, “Image Compression by Orthogonal Decomposition

Using Cellular Neural Network Chips”, International Journal of Circuit Theory and

Applications, Vol.27, No.1, pp.117-134, 1999.

[95] T. Szirányi, K. László, L. Czúni, F. Ziliani, “Object oriented motion-

segmentation for video-compression in the CNN-UM”, Journal of VLSI Signal

Processing, V.23, No.2-3, pp.479-496, 1999.

[96] T. Szirányi, J. Zerubia, “Markov Random Field Image Segmentation using

Cellular Neural Network,” IEEE Transactions on Circuits and Systems I., Vol.44,

January, pp.86-89, 1997.

[97] T. Szirányi, J. Zerubia, L. Czúni, D. Geldreich, Z. Kato,”Image Segmentation

Using Markov Random Field Model in Fully Parallel Cellular Network

Architectures,” Real-Time Imaging, accepted, 2000.

[98] L. Torres, M. Kunt (Editors), “Video Coding: The Second Generation

Approach”, Kluwer Academic Publishers, ISBN: 0 7923 9680 4, 1996.

[99] T. Toyoda, Y. Nitta, E. Funatsu, Y. Miyake, W. Freeman, J. Ohta, and K.

Kyuma, “Artificial retina chips as image input interfaces for multimedia systems,”

Proceedings of the Optoelectronics and Communications Conference, OECC'96,

Chiba, Japan, July, 1996.

[100] P. L. Venetianer, T. Roska, “Image Compression by CNN”, Proceedings of

the IEEE ICNN-96, Washington, DC, 3, pp.1510-1515, 1996.

[101] P. L. Venetianer, F. Werblin, T. Roska, L.O. Chua, “Analogic CNN

algorithms for some image compression and restoration tasks”, IEEE Transactions on



References

125

Circuits and Systems I: Fundamental Theory and Applications, (CAS-I), Vol.42,

pp.278-284, 1995.

[102] F. Werblin, A. Jacobs, J. Teeters, “The computational eye”, IEEE Spectrum,

pp.30-37, 1996.

[103] Á. Zarándy, A. Stoffels, T. Roska and L.O. Chua, “Implementation of Binary

and Gray-Scale Mathematical Morphology on the CNN Universal Machine”, IEEE

Transactions on Circuits and Systems I: Fundamental Theory and Applications,

(CAS-I), Vol.45, No.2, pp.163-168, 1998.

[104] J. Zerubia, R. Chellappa, “Mean field approximation using Compound Gauss-

Markov Random Field for edge detection and image estimation”, IEEE Transactions

on Neural Networks, Vol.8, pp.703-709, 1993.

[105] Independent JPEG Group's CJPEG, version 6a, 7-Feb-96, Independent JPEG

Group’s DJPEG



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


