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1. Background

Reading the vaste literature of power and sample size analysis techniques in biostatistics one
might have the impression that this issue is overemphasized. The feeling is strengthened by
the phenomenon that if a certain number of trials were run in the same indication or if a
certain number of discovery studies were performed based on a common pharmacological
methodology then any trialist knows what is the recommended size of the trial. Yet the
biostatistician (influenced by the existing harmonized guidelines and the internal position
papers of each company dealing with trial and experiment planning) usually cannot assume
the responsibility of proposing a sample size without any statistical argumentation, based only

on the “common sense”.

However, the increasing number of publications about power and sample size analysis does
not necessarily mean a change in the conception itself. It’s true that the continuous
diversification of statistical methodologies implies a parallel diversification process of the
sample size estimation formulae (since every widely used statistical method should have a
corresponding sample size estimation procedure), but the main need is now a kind of

summarizing activity leading to the change of the basic notions and preconceptions.

In fact, our view about the sample size itself has to be changed. The sample size needed to
achieve a certain power varies in fact randomly, since its calculation is based on some
observed values of random variables (usually the sample mean and the variance). Thus it is
preferable to assess a whole distribution of the sample size instead of considering it a single

number.

The confidence interval approach is now generally accepted and recommended by all the
guidelines as an added information to the point estimate of each parameter. The same
recommendation is seldom met for power or sample size assessment in spite of the fact that
the necessary techniques are already existing for a long time. And even if in some cases no
closed form expressions exist for the confidence limits, the computer-intensive methods

serving this purpose are now widely available.



The two type of errors (type I and type II), the so-called “primitive inputs” of the sample size
analysis may also be reconsidered as perhaps they are less “primitive” than it is usually
thought and their choice does not need to be automatized. The levels of 5% for the type I and
20% for the type II error are rarely changed and even if they are, the reason is usually a
retrospective justification of the initially fixed sample size rather than a conscious process of
choice. The choice of these levels should depend on the aim and type of the study (e.g. to
prove efficacy one needs lower type I errors than in safety studies, in a screening experiment it
is more important to not lose any efficient compound, in early phases of preclinical studies
usually the type Il error is important, while the type I error may be higher since the

experiments giving “significant” results are repeated anyway).

And finally: a new interpretation of the effect size might come. The anticipated value of the
effect size is usually rather carefully chosen because of the belief that a well chosen effect size
may assure the success of the trial. But sometimes the effect size might change in time (as the
overall health condition of the population and the incidence of the different diseases is
changing). This change is usually neglictable for short trials but it might be considerable for

longer ones, involving the concept of effect size as a function of the time.

The main purpose of this study is to present a strategy for sample size estimation that

subsumes these new principles.

In what follows, a frequentist approach is applied. A broad range of methods subsumed by the
classical normal-theory models are treated, taking the unbalanced designs to be the norm
rather than the exception. To characterize the precision of a sample size estimation method
belonging to a given statistical procedure the term "relative discrepancy" was introduced
(defined as the relative departure between the obtained and the nominal power of the test

compared to the standard error of the actual power).

Reviewing the studies in biology, psychology, medicine and other fields relying on statistical
inference one can conclude that many of them are too small (in respect to their size) to ensure
enough statistical power to confirm meaningful effects [1], [2]. This might be partly due to the

fact that the homogeneity of variances is usually assumed, ignoring the principle that the



sample size calculation method and the statistical test used later must rely on the same
hypotheses about the population distribution. Chapter 2. presents a generalisation (made by
the author of this study [3]) for unequal variances of the usual t-test method of sample size
estimation, using Satterthwaite’s correction. The relative discrepancy between the old and the

new methodology is computed.

Chapter 3 contains an extension of the “allocation ratio” (the proportion of two group sizes) to
more than two groups by introducing the term “set of allocation ratios” and presents a sample
size calculation method (elaborated by the author of the present study [4]) for more than two

parallel groups with unequal sizes.

When no closed-form expressions or approximation methods exist, Monte Carlo simulation

techniques are used. The principles of such a simulation are worked out in Chapter 4.

In Chapter 5 the sample size is not regarded any more as a constant but a random variable the
distribution of which is estimated. Knowing the distribution of the sample size enables the
computation of the sample size with a certain confidence. The most common confidence
interval methods of the sample size (for given power) are presented. These methods are then
compared in terms of the coverage rates and mean relative widths. Examples of power and

sample size calculations are also presented for the case when the effect size depends on time.

In Chapter 6 a SAS-application (written by the author of this study and presented at the SAS
Conference of the European Users [5]) is described which treats 14 different simple models of
sample size estimation (for a given power). Its primary aim is to visualize the different
methods, the dependence of the parameters on each other by using simple graphical objects (in
the SAS-terminology they are called widgets) as sliders, list boxes, check boxes, radio boxes,

icons, help-entries, etc.

The Appendix contains the source code of the most important SAS programs, a short

description about the SAS functions used by them and some screens of the SAS application.



2. Two independent groups, population variances are unequal

The usual methods of sample size determination assume that within-group variances are the
same for each group to be compared. However, there are some situations when this
assumption fails to be true (even if the tests for homogeneity of variances do not show
significance). It happens rather frequently that variances tend to change with the changes of
the mean. One of the possible solutions is to find a variance-stabilising transformation and to
apply the usual sample size formulas to the transformed data. This method has the
disadvantage of requiring previous estimates of means and variances for the transformed data.
The other solution is to find a generalisation of the old sample size formulae which is valid for
unequal variances. Satterthwaite’s correction for a linear combination of independent

variances [7] enables such a generalisation.

There are more methods to plan the sample size [8],[9] in case of the comparison of two
means and equal within-group variances. Each of them uses normal deviates, with some
correction applied when the t-test replaces the normal approximation. One such formula

which doesn’t need any iteration is given by Machin et al [9] :
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where 7 is the group size (supposing equal number of subjects in the two groups), « is the
significance level, /- is the desired power, the anticipated population means are u; and >, z,
denotes the p” percentile of the standard normal distribution, while the population variances

2
are equal to o°.

For unequal group sizes with an allocation ratio of 4=n,;/n,, group sizes are given by:

n, = nand n, = A—Zln , Where 7 is the sample size computed for equal-sized groups.



Guenther [10] derived a formula for the two-sample t-test with pooled variance estimate when
equal group sizes are assumed. This approximate method was generalised by Schouten [11]

for unequal group sizes. Schouten’s recent paper gives the following estimation:
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where o,°, oy are the variances of the two groups, 7= ol / o} is the proportion of the

variances and y = n, /n, is the allocation ratio.

Another possibility (giving almost the same result as (1) except some rounding differences) is

to use Student’s t-values in an iterative way, that is, to increase » until the

2
2
S 2(’4f‘,1—a/2 + ’4f,1—ﬂ) d

- | 1 — ,Uz|2 [where df=2(n-1) for equal within-group variances)]

inequality becomes true.

The least value of n which satisfies the above inequality is the sample size/group. The use of

this method has the advantage that it can be easily extended to the case of unequal variances.

According to Satterthwaite’s formula, the variance of the difference between means is

estimated by:
2 2
S
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and it follows a y’-distribution with the degree of freedom:
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where s;” and s, are the estimated group variances and »;, n; are the group sizes.

As Singer showed [3] it can be noted that df depends in fact only on 3 variables (6, 4 and »)
and it can be expressed in terms of 6= s 12/s;2 , A=n/n; and n=n, as:
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With the above notations we have s° = —(j + s2] .
n

For A=1 and 6=1, df=2(n-1) is reobtained.

Using the above s° and df, the sample size can be computed by increasing » until the

inequality
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becomes true. The least value of » which fulfils the above criterion is the size of the second

group, n,, while the size of the first group is n;=n.A.

Differences between the results obtained assuming equal variances (using the normal
approximation method (1) and the pooled variance) and those obtained by assuming unequal
ones (and using the iterative method (2) with Satterthwaite’s correction) were evaluated for
different values of & and 4. Sample sizes computed with the two methods (keeping constant
a=0.05, 1-=0.8, |u;-u21=10 and s,=10) are contained by Table 2.1. For the assumptions of
Table I the sample sizes computed with Schouten’s approximation [11] were exactly the same

as those computed using the iterative method.

The sample sizes were then tested on simulated data. Normally distributed data were
generated with group sizes n; and n,, variances 6 57> and s5° and |u-u21=10 to test for the
power, and with |u;-u>|=0 to test for the significance. The two groups were compared by a t-
test with and without Satterthwaite’s correction. 1000 datasets were generated for each power

and significance estimation.



Table 2.1
Group sizes for different values of dand 4 *. The simulated power and the significance of the

t-tests (with and without Satterthwaite’s correction).

Var. Alloc Assuming t-test t-test with Assuming t-test t-test with
rat.  rat. S1=%7 assuming Satterthwaite’ S1#S) assuming Satterthwaite’
©® (A (Method equal s correction (Method equal s correction

(1)) variances (2) variances

n; n, Power Sign. Power Sign. n N, Power Sign. Power Sign.

173 173 8 24 778 16 916 52 6 18 643 0.7 786 43
1/2 9 18 790 3.0 883 45 8 16 752 19 839 40

1 11 11 80.0 45 755 42 12 12 835 47 80.1 42

2 18 9 8.2 112 695 54 22 11 910 87 837 47

3 24 8 88.1 121 666 50 33 11 949 129 815 538

12 173 9 27 80.6 24 855 58 8 24 738 20 83.0 53
12 10 20 80.7 3.6 857 46 9 18 755 33 809 44

1 13 13 795 48 789 47 13 13 795 48 789 47

2 20 10 838 67 777 42 24 12 905 76 821 4.6

3 27 9 846 115 717 6.1 33 11 929 101 804 5.8

1 /73 12 36 829 49 780 55 12 36 829 49 780 55
12 13 26 804 57 799 53 13 26 804 57 799 53

1 17 17 795 58 80.1 538 17 17 795 58 80.1 58

2 26 13 838 51 781 44 26 13 838 51 781 44

3 36 12 832 49 80.1 5.1 36 12 832 49 80.1 5.1

2 /3 16 48 812 100 713 54 20 60 8.1 101 788 5.0
12 18 36 80.6 6.7 742 47 21 42 863 84 794 54

1 24 24 798 67 756 67 25 25 796 58 818 5.8

2 36 18 753 37 8.7 58 34 17 735 35 81.1 58

3 48 16 765 2.0 8.5 49 42 14 690 23 800 44




Table 2.1 (continued)

Var. Alloc Assuming t-test t-test with Assuming t-test t-test with

rat.  rat. S1=%7 assuming Satterthwaite’ S1#S) assuming Satterthwaite’

©® (A (Method equal s correction (Method equal s correction
(1)) variances (2) variances

n; n, Power Sign. Power Sign. n N, Power Sign. Power Sign.

3 /3 21 63 840 13.8 634 50 28 84 892 133 80.7 49
12 23 46 809 101 70.7 5.7 29 58 89.7 115 782 6.0
1 31 31 76,7 64 784 63 33 33 8.8 54 796 5.1
2 46 23 742 23 839 438 42 21 692 26  8l1.1 59
3 63 21 7209 1.3 86.3 6.8 51 17 63.6 1.4 814 49

* For method (1) results were rounded up to the nearest integer. For method (2) rounding was

necessary only for n;.

Methods (1) and (2) give the same result for #=1. For equal group sizes, that is, for A=1, the
results of the two methods are close to each other. Table 2.1 shows that for </ the old
method overestimates the sample sizes when A</ (when more subjects are assigned to the
group with larger variance), and underestimates them when 42>/. The reversal of this happens
for &> 1. Sample sizes are underestimated when 4 </, while they are overestimated when 4> 1.
Intuitively this can be explained as follows: having a better estimate of the smallest variance
and a less precise estimate of the largest one means fewer information (thus, less power) than
needed. While estimating the larger variance using more subjects means a gain in power

compared to the design of equal allocations.

Simulation results from Table 2.1 also reflect that Satterthwaite’s approximation gives
reasonable estimates of the type I and type II errors. Student’s t-test performs well when A=/
or =1, but shows a considerable departure from the nominal significance level and power
when A4 and @ differ from /. The t-test with Satterthwaite’s correction has even larger
departures from the nominal significance level and power as Student’s t-test does when the

sample size is computed with method (1).
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The t-type tests with different adjustments for the inhomogeneity of variances will have
different power values for the same sample sizes. For instance, using the data from the last
line of Table 2.1 (n;=51, ny=17, =20, =10, 0,°=300, 0°=100, a=0.05), the power of
Satterthwaite’s t-test is 81.4, the Cochran and Cox approximation [12] has a power of 80.2,
while the Welch’s t-test [13] has a power of 81.8 %. Differences between the power values of
the various tests increase when decreasing the significance level. Changing the significance
level to a=0.01, for the previous stream of data we obtain: Student 29.6, Satterthwaite 59.6,
Cochran 55.2 and Welch 59.8%.

Table 2.2 shows that for greater sample sizes the discrepancy between the approach which
ignores inhomogeneity of variances and the one which takes it into account becomes larger.
Increasing the power and decreasing the significance level does not change considerably the

relative difference between the two methods. Table 2.2 contains the sample sizes and their

relative differences (n1 - nl') /n, for different power and significance levels, assuming s,°=10,

0=1/4, A=1/4 and |u;-us|=1 (n; is the sample size of group 1 computed with method (1),

while 7;’ is the same sample size estimated with method (2)).

Table 2.2
The influence of the choice of power and significance level on the relative difference between

the two methods

Power (%) Sign. (%) n; ny’ (”11 - ”1')/ n
80 5 384 246 0.561
80 1 572 366 0.563
90 5 514 329 0.562
90 1 728 466 0.562

The above examples underline that in fact each statistical procedure needs his own sample
size estimation method. However, there are some robust sample size approximation methods

which can be applied in many circumstances. This arises the following question: how far one

11



can go with the violation of some of the assumptions. Or, in other terms, how can one define

the robustness of a statistical method.

We introduce the term "relative discrepancy” between the statistical procedure and the sample

size estimation method (for a given significance level) which can be defined as follows:

_ p actual p nominal

5€(Pacr)

. The value |pacuar - Prominail 18 @ measure of the appropriateness of the

sample size estimation method assuming that the statistical procedure itself is adequate (that
is, its nominal and actual significance levels do not differ). Table 2.3 shows the relative
discrepancy between the ordinary t-test (assuming equal variances) and the traditional sample
size estimation method (Machin [9]) for different allocation ratios and different variance

ratios, for @=0.05 (pacma computed from 1000 simulations).

Table 2.3 Relative discrepancy values between the ordinary t-test (assuming equal variances)

and the traditional sample size estimation method

Var. ratio  Alloc. ratio n n Actual  SE(pactwar) Nominal d
power(%) (%) power(%)
1/3 1/3 8 24 77.8 1.31 80 -1.67
1/2 9 18 79.0 1.29 80 -0.77
1 11 11 80.0 1.26 80 0.00
2 18 9 85.2 1.12 80 4.63
3 24 8 88.1 1.02 80 7.91
1/2 1/3 9 27 80.6 1.25 80 0.47
12 10 20 80.7 1.25 80 0.56
1 13 13 79.5 1.28 80 -0.39
2 20 10 83.8 1.17 80 3.26
3 27 9 84.6 1.14 80 4.03
1 1/3 12 36 82.9 1.19 80 2.44
1/2 13 26 80.4 1.26 80 0.32
1 17 17 79.5 1.28 80 -0.39
2 26 13 83.8 1.17 80 3.26
3 36 12 83.2 1.18 80 2.71

12



Table 2.3 shows (similarly to Table 2.1) that the discrepancy for a given variance ratio is the

smallest when the allocation ratio equals to 1.

For 6=1 it is known [9] that the optimal allocation ratio (that which minimises the total
sample size, n;+n;) is A=1. Schouten’s method offers the possibility of computing the optimal

allocation ratio for a given 6. Computing the first-order derivative of the total sample size as a
function of 4 (and keeping & constant), it equals 0 for 4 = V6 and analysing the sign of the
derivative it follows that 4 =+/6 is a minimum point for the total sample size N(4). Figure

2.1 shows that for a=0.05, 1-=0.8, |u;-u2|=I1, s;=1 and s,=2, the minimum of the total

sample size is attained when 4=1/2.

Figure 2.1 The minimum of the total sample size is attained for A=0.5 when s,/ is supposed
to equal 0.5

Total sample size
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Allocation ratio

Using Satterthwaite’s correction for sample size determination [3] may improve the planning
of experiments when unequal variances are anticipated and no variance-stabilising
transformation is available. The iterative character of the algorithm presented here enables the
substitution of Satterthwaite’s approximation with other methods (Cochran and Cox, Welch,

etc.).
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Example 1. (real example)

In a pharmacokinetic study assessing food effect in two parallel groups, there were 12 subjects
fed and 12 subjects fasted. After a single-dose administration of the active compound to both
groups, the mean area under the curve was 120.6 mg.h/l (s.d.=127.8 mg.h/l) in the fasted and
1119.4 mg.h/l (s.d.=340.2 mgh/l) in the fed group. After the administration of another
formulation of the same compound to the same subjects, the mean area under the curve was
84.1 mg.h/l (5.d.=96.8 mg.h/l) in the fasted and 968.6 mg.h/l (s.d.=371.2 mg.h/l) in the fed
group. Planning a new study based on these data, a coefficient of variation of 100% in the
fasted and of 33.3% in the fed group can be assumed. If the fasted mean area under the curve
is 300 mg.h/l and the least clinically relevant difference is of 300 mg.h/l, the group size
needed in case of equal group sizes is of 65 subjects/group for a 1% significance level and a

power of 90%.

If the AUCs (areas under the curve) are deemed to be log-normally distributed (as it is usually
recommended), the sample size estimation can also be performed on the transformed data,
using the transformations [12] which make the transition between the mean and variance of
the initial and the log-transformed data:

| _mean = (4log(mean) — log(mean * mean + sd * sd)) / 2

and

[ sd= \/log(mean *mean + sd * sd) — 2log(mean)

(where mean and sd are the statistics for untransformed data, while 1| mean and 1 sd are the

statistics for the log-transformed data).
The transformed means are 5.6511 and 6.0504, while the transformed standard deviations are

0.3246 and 0.8326, respectively. So on the log scale the variances are still very different.

Recomputing the sample size with these assumptions, 77 subjects/group are needed.

14



Example 2. (Snedecor and Cochran [8])

This is a constructed example in which two methods of estimating the concentrations of a
chemical are compared. The standard method, a precise but slow one, is anticipated to give a
mean of 25 and a variance of 0.67. The new method, which is quick but less precise and
which is suspected to systematically over- or underestimate concentrations, is supposed to
have a mean of 21 and a variance of 17.71. Analysing the sample sizes needed to have a test
of 80% power for the above data and for an allocation ratio of 1/4, method (1) yields 5 and 20.
Group sizes obtained with method (2) are 3 and 12.
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3. More than two parallel groups with unequal sizes

In case of two groups when the overall sample size is kept constant the maximum power is
achieved for equal number of elements in each group. However, it may happen that for some
reasons (a rare disease, a very expensive compound) unequal group sizes are preferred.
Adjustments for two groups are known. For more than two groups the noncentral F
distribution can be used. It needs only a natural extension of the relation which defines the
noncentrality parameter. The maximum efficiency is not any more attained when group sizes

are equal.

The method described in Fleiss [14] (pp.371-376) is briefly the following:

For g parallel groups supposed to have a normal distribution and equal means (1= o=... =)
with » subjects in each, the ratio of mean squares from the analysis of variance table (mean
square between groups/mean square within groups) follows a central F* distribution having
two parameters, the degrees of freedom of the numerator and that of the denumerator.

When the null hypothesis is rejected, thus there are at least two different group means, the
ratio mentioned above has a noncentral F-distribution, which also depends on a third

parameter, the noncentrality parameter. This parameter is defined as being:

5=,/ni(ﬂ,—ﬁ)z/a 1)

g
where y = Z U, / g and o is the common variance of the groups. To achieve a power of /-f
i=1

while the significance level is o, we have to increase » until we find that

Pr(Fn(mct - > F

vy, vy,

)21—,8 (vi=g-1, v»=ng-g). Scheffé [15] (pp. 38-42) gives a formal

definition of the noncentral F distribution, while Laubscher [16] gives a good normal

approximation to the square root of a noncentral F variate.
In case of unequal group numbers let n;, n,,..., ny denote the number of elements in each

group. We define the set of allocation ratios as (r;,75,...,7g) With n;=rng n>=romng,..., Ng.|=rg.

mg and r,=1 [4]. Let u ., denote the overall mean of the whole sample, that is the weighted

16



mean of the group means 4, 10,... f4, with weighting factors r,75,...,7g. Scheffé’s definition for
the noncentrality parameter says: “If in the sum of squares in the numerator of F each
observation is replaced by its expected value under Q (€ denotes the underlying

assumptions), the result is 0?5

g
Thus the noncentrality parameter can be calculated as o = \/ Z n(u,—u,) / o (2).
i=1

All the rest of the rationale remains the same as described for the equal group numbers. For

nj=ny=...=ng=n (that is, r;=r;=...=rg=1), (2) reduces to (1).

g
Keeping the overall sample size constant (z n, = k') the maximum power is achieved when o

i=1
is as great as possible. To obtain the maximum point of & the partial derivatives of its

numerator under the above condition were calculated.

The numerator of the squared noncentrality parameter is

g
< Z”fﬂj
— — J=1
fg = f(”lanza'“vng) = ZI’Z, M=
i=1
2
I=

g-1 -1

2

From the condition Z n =k we substitute : n, =k — ) n,
i=1 i=1
g-1 g-1 2 g1 g1 2
g1 Z”fﬂ/ +(k ‘Z”j )/ug g1 an K +(k_zn/ ),ug
fom ST =S g,
i=1 k Jj=1 k

So fg—l =an_(,ul_—yg)2—k(pz(nl,nz,...,ngfl)

Thus for any m=1,2,...,g-1 we have

17
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This function equals 0 if g,=g, for all m=1,2,...,g-1 (which is in fact the null hypothesis and

g1 k - >
M (3) . Since m is arbitrary, the

is a minimum point for o) or if Zn,(,u, —,ug) =
i=1

expression on the right hand side of the equation is constant. Replacing p,-s;=c in (3) for

= ke .8 k k
m=1,2,...,g-1 we obtain Zn,c =7,that is Zn, =5 and n, =5.

i=1 i=1

Thus as Singer pointed out in [4] - if no constraints are added - 6 has an extreme if the
anticipated means of (g-/) groups are equal and one of them is different. In this case the size
of the group with different mean has to be a half of the total sample size to obtain the
maximum of the noncentrality parameter (thus, maximum power). This is not the only
solution, as we can see in Finney’s [17] example in which pairwise comparisons are assessed
instead of global significance:

More test preparations are compared to the same standard in a parallel line assay and “the
possibility of gaining in efficiency by unequal distribution must be borne in mind”. Finney
[17] searches for the optimal allocation minimizing the variance of log potency (the horizontal
distance between the control and a test preparation line when dose-response curves are
assessed) which is approximately proportional to the variance of the difference between
means, while making no hypothesis on the anticipated group means. For a fixed number of
subjects where only one response per subject can be measured and (g-1) of the g group sizes
are equal (n;+(g-1).n,=k and n,=ns3=...=ny), the variance of the difference between the control

and a test mean is proportional to I/m;+1/n;. This expression has a minimum if
n =n,\/g—1 or if n;=k/2 and n,=k/2(g-1) (this latter solution is the same as the one

mentioned above).
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For g=2 both cases mean exactly n;=n,. Thus equal group numbers constitute indeed an

optimal design for two groups, but not for more than two groups.

Coming back to the general case, without loss of generality 1 <1»><.. <y, can be assumed. The
-
maximum of the noncentrality parameter will then be 5, = k(‘zlj / o, exactly the

same as that obtained for allocation ratios 7,0,...,0,1 (but this set of ratios involves only two
groups, so it is not a sensible design). This approach answers only the question of global
significance and does not solve the problem of different contrasts. For further investigations
Scheffé [15] recommends “to ask whether the confidence intervals for the quantities of

interest will be sufficiently narrow”.

Examples

For given o pfB s and rs (i=1,2..8) n, was increased until the inequality

g
Pr(F”””‘" nans > F, Vz,a) >1- B was fulfilled (vi=g-1, v, = Z n—g).

Vi,
i=1

1. The first example, presented by Day and Graham [18] (1991), compares the mean diastolic
blood pressure of three groups. The anticipated means are 100 mmHg, 95 mmHg and 85
mmHg, the common standard deviation is 15SmmHg. The significance level is 0.01, the power
is planned to be 0.9 . The sample size obtained on the proposed nomogram is of 35

patients/group (equal group numbers).

Trying the above method with the same means and common standard deviation and the
allocation ratios 2, 1 and 1 we obtain 6=4.32 and a total sample size of 112 distributed in
three groups as 56, 28 and 28. In case of equal numbers a total sample size of 105 would have
been sufficient. If we choose the allocation ratios to be 1,1,2, the sample sizes are 25,25,50 - a
total of 100 which is less than that obtained for equal group numbers (105). Putting the
condition of n;23 for i=1,2,3 the minimum of total sample size is 77 (group sizes: 37, 3, 37 or

36, 3, 38 and a noncentrality of 4.31), but this is a rather disproportionate design. (Without the
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condition #;2>3 for i=1,2,3 the minimal size is 38+0+38=76 and this is in accordance with the
result “felt” intuitively: the larger are the weights put on the extremes of the group means the
greater is the value of the noncentrality.) To obtain a sensible optimal design some constraints

are needed.

Submitting the test program for 1000 stream of data the following results (Table 3.1) were

obtained:

Table 3.1
Total Number of

Group sizes sample Group means (mmHg) signinficant

size ANOVAs

35 35 35 105 100 95 85 905

35 35 35 100 100 100 11

56 28 28 112 100 95 85 897

56 28 28 100 100 100 9

25 25 50 100 100 95 85 928

25 25 50 100 100 100 13

37 3 37 77 100 95 85 908

37 3 37 100 100 100 9

(These numbers were obtained for seed=13426,13427....,14425. Due to the definition of the
rannor procedure by choosing the same positive seed the same streams of variates can be

generated again.)

2. An example with four groups is given by Fleiss [14] . The four anticipated means are 9.775,
12, 12 and 14.225. The standard deviation within each group is expected to be 3, the
significance level is 0.05 and the power of the test 0.8. For equal group sizes the required
sample size per group is 11. Under the condition that each group has at least three
observations the optimal allocation ratios are 4:1:1:4 (for group sizes 12, 3, 3, 12 the
noncentrality is 3.633 and the power is 0.82) - the total size of 44 could be reduced to 30. The

cumulative central and noncentral F distributions for this latter case (v;=3 and v,=26,
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0=3.633) are shown on Fig. 3.1 . Calculating the F values corresponding to the dashed lines
we find F3J26(2.975)=0. 95 and Fﬂ0n6t3jg6y3‘633(2.975)20.183.

Figure 3.1.

Cumulative central and noncentral (noncentrality=3.633) F distributions with degrees of
freedom 3 and 26. For x values less than 2.975 the null hypothesis is not rejected because
Fenrai(x)<0.95. The corresponding area under the noncentral F distribution is 0.183, thus
the power is 0.817.
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3. For two groups we have to obtain the same result which is given by the formulas

A+1 A+1 n : . . : :
n = nand n, = 5 n , where — = A is the allocation ratio and # is the sample size

n

202(za/2 + zﬂ)z

>~ . Such a worked example (due to Godfrey

for equal groups calculated by n =
(:ul - /Jz)

et al) is presented by Campbell, Julious and Altman [19] (1995). The blood pressure of people
who have no whorls on their finger is compared with blood pressure of people who have at
least one whorl. Let 5 Hgmm be the minimum clinically accepted difference and the standard
deviation within each group is assumed to be 17 Hgmm. We would expect to recruit two

people with whorls for every one person with no whorls. The sample sizes to detect this
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difference with a two-sided significance level of 5% and a power of 80% will be 137 and 274,
respectively (calculated by the original formula for two normal distributions mentioned
before). The approximate sample sizes for the standardised difference d=5/17~0.3 read from
the table presented in the same paper are 132 and 264. While using the method based on the F

distribution we obtain a noncentrality of 2.81 and sample sizes of 137 and 274.

Thus for two groups this extension gives the same result as the known formulae. In case of
two groups and for fixed overall sample size the maximum power is attained when groups are
equally sized, while in case of more than two groups a general solution for the same problem
cannot be found (but there exist allocation ratios which give greater power than the equal

ones). Sensible constraints are necessary to obtain feasible sample sizes.
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4. Simulation-based sample size investigations

There are occasional situations where power and sample size equations or software do not
exist. In such situations, the power or sample size can be computed with Monte Carlo
simulation techniques. This section describes some situations where simulation-based power
and sample size calculations are a necessary or useful alternative, and provides guidelines for

conducting such calculations.

Simulation-based methods are a useful alternative whenever the power equation for the data
analysis/decision procedure of interest is not analytically tractable, so no closed-form
expressions and no approximation-based software exist. Such situations occur in case of: 1)
multi-step data analysis/decision procedures (such as some multiple comparison tests, and
some analytical tests for drug manufacture, release, and stability), 2) multi-part data
analysis/decision procedures (such as multiple endpoints like AUC and Cmax, or inference
about both means and variances), and 3) various ad hoc data analysis/decision procedures
(such as those based on percent conforming of individual observations in bioanalytical

validation, and also in some analytical tests for drug manufacture, release, and stability).

Secondly, simulation-based methods are a necessary alternative whenever the assumptions of
the data analysis/decision procedure of interest are likely to be violated. In such situations, the
usual sample size estimation methods and softwares may give results far from the actual
values. Additionally, the robustness of the type I error against deviations from the assumptions
can be determined. Examples of such assumption deviations include 1) small/moderate
sample sizes for asymptotic statistical procedures, 2) departures from the distribution form
(such as non-normality), and 3) departures from variance structure assumptions (such as non-

homogeneity, non-independence, and hierarchical variance components).
Thirdly, simulation-based methods may give better results than the traditional methods when

the latter ones are based on approximation formulae, which may not be very good in the

situation of interest (such as small or moderate sample sizes).
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After presenting so many applications of the simulation one may ask whether it has any
contraindications. In fact, a situation when the simulation-based method gives worse result
than the traditional one is hard to imagine. However, there are many situations when it does

not have any advantage compared to the other methods and so it is not worth applying.

Steps to conduct a simulation study for power or sample size calculations

Situations where simulation-based sample size calculations are used can be quite complex.
Although each situation has its own unique complexities, a general set of basic recommended

steps can be specified.

Planning

Select the primary variables, the experimental design, the statistical method and the
parameters (variability, effects, error risks « and f) according to the study plan, like for any

traditional sample size estimation.

Programming

1. Specify the probability distribution of the outcome variable for each treatment population,
and the program function to generate these random errors (e.g., the SAS RANNOR function

to generate random N(0,1) errors).

2. Specify the statistical model and its parameter values (fixed effects, random effects,

variance structure).

3. Specify the sample sizes for each group (these values should be regarded as a minimum

size).
4. Generate random data according to the conditions in steps 1-3, and repeat in a DO loop for

a total of N experiments. N should be chosen depending on the desired standard error of the

power, using the formula:
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Ip(1 - -
S.E = p(Tp) Example: For p=0.8 and S E.<0.01 we have N>ps(1 p)’ or

E2

0. 8x0.2
> S —

0. 0001 1600). Use random seeds which allow verification of your results at a
later time (e.g., in SAS use the RANNOR function initialized with a positive seed rather than

the 0 (time clock) seed - see SAS® Language, Reference, Chapter 12).

5. Perform the statistical analysis of the data generated, and save the p values (for each of the
N streams of data). Compute the power (= proportion of the N simulated experiments where

the desired conclusion was reached).

6. If the computed power is less than the prescribed level, then increase the group size

accordingly, and repeat steps 3-5.
7. If the power has attained the prescribed level, then the sample size is sufficient.

8. If the power exceeds considerably the prescribed level, then the group sizes can be

decreased, and steps 3-5 repeated.

SAS-specific pieces of advice for programming:
1. Store each of the N experiments in the same dataset
2. When possible, code statistical procedures within the DO loops rather than executing
formal PROCs
3. When possible, generate necessary statistics instead of actual observation (a
performance analysis was done and it yielded that generating directly the statistics instead
of individual values - where possible - means a considerably less runtime)
4. Suppress output to LOG and OUTPUT windows (otherwise one

gets the error message ‘Window is full’)
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Example: Blend Uniformity Analysis

A typical situation where simulation-based sample size is required is the blend uniformity
analysis, where - according to the guidelines - a "composite decision" procedure is needed. A
blend is declared to be uniform when the following two criteria are met for 3 independent
batches:

1. Strength (the actual mean as a percent of the theoretical mean) between 90% and 110%

2. Relative standard deviation (RSD, or - in other words - the coefficient of variation) less
than 5%

The question is then how many samples have to be taken from each batch to have a high
probability (e.g. >99%) of passing the test when all the three batches fulfil the uniformity

criteria.

Probabilities of passing the test were computed by simulation for different sample sizes

(sample size was increased by a step of 10) for a theoretical mean of 100% and RSD=4%.

The results are given in the following table (Table 4.1):

Table 4.1 The probability of passing the test for different sample sizes

N Probability of passing the test for
1 batch 3 batches
10 89.5 69.1
20 94.1 83.3
30 97.2 90.7
40 >99 97.1
50 >99 98.3
60 >99 98.6
70 >99 >99
80 >99 >99
90 >99 >99
100 >99 >99

Thus, a probability greater than 99% can be obtained for N=70 (in case of 3 batches).
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5. The power and the sample size as random variables (sensitivity analysis)

The simplest definition of the sensitivity analysis would be: "the study of robustness of the
sample size analysis under different scenarios when the initial assumptions are not met".
However, more sophisticated interpretations can be given and the notion of “initial
assumptions” can be extended by not considering them simply a set of initial values but some

random variables with given distributions.

Most power analyses are prospective, that is, they assess the power of a future study. The
mean and variance estimates used in the planning phase are anticipated, usually based on a
pilot study or some previous trials. Hence the power for a given sample size, or the sample
size needed to achieve a certain power, vary in fact randomly, since their calculation is based
on some observed values of random variables (usually the sample mean and the variance).
Thus it is preferable to study a whole range of possible values instead of a single point
estimate. In fact, this is one of the possible definitions of the sensitivity analysis: to study the
distribution of the sample size (or that of the power) for different distributions of the starting

values.

Another role of the sensitivity analysis might arise when a longitudinal study covers a long
period of time and the endpoint itself is time-dependent. Such situation might occur for
instance in a cohort study where the endpoint is an event rate the frequency of which is
decreasing with time in the control group due to new and efficient prevention methods [21].
Moyé [21] gives an example of a clinical trial in post myocardial infarction where new
cholesterol reducing therapies become available which are expected to decrease the incidence
of infarction. In such situations the assumption of a constant control group event rate may lead

to severely underpowered trials.

According to the above definitions, different types of sensitivity analyses can be conducted.

Some examples of sensitivity analysis are given below:
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5.1 Confidence intervals

The most frequently used sample size formulae are based on the relationship between the
variance of the estimator of a parameter of interest and the sample size. Usually the input of
these formulae has a "primitive" part (e.g. type I and type II errors that may also be
reconsidered as perhaps they are less “primitive” than it is usually thought and their choice
does not need to be automatized - but this would be the subject of another paper) and a
"sophisticated" part which needs qualified guesswork (e.g. population variances, population
event rates, etc.). Currently, the routine practice is a kind of "plug-in principle", that is, to take
the estimated value of a parameter from a previous study (or to combine in some way the
results of more studies) and to substitute it in the formula of choice as being the "theoretical"
value of the respective parameter. As some authors already pointed out [6],[32],[33] this

practice is rather risky.

In the present chapter the continuous outcome and two parallel group design is analysed. We
suppose equal variances, a given least clinically relevant difference and fixed error levels. If
data from a previous study with one group of size N are available and the estimated variance
is &, then (N-1)6%/0” is chi-square distributed with N-I degrees of freedom. Supposing the
equality of the estimated variance and the theoretical one (applying the "plug-in method")
means in fact to pick up that y percentile of the chi-square distribution for which the equality
N-1= ;(2de holds. Thus, one can be (1-»)100% confident that the "true" variance is less than

our estimated one. Table 5.1 shows the values of (1-7) corresponding to different values of .

If data from a previous study with two parallel groups, each of size N/2 are available an
estimate for the population variance can be obtained by taking the usual pooled estimate, G .
In this case (N-2)6%/o” is chi-square distributed with N-2 degrees of freedom. Supposing the
equality of the estimated variance and the theoretical one (that is, to use the plug-in method)
means in fact to pick up that y percentile of the chi-square distribution for which the equality
N-2= ;(2de holds. Thus, the equation is similar to that obtained for one group. The results are

shown in Table 5.1.
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Table 5.1 The probability that the true variance is less than the estimated one

Ly

N one-group | two-group

pilot study | pilot study
3 0.368 0.317
4 0.392 0.368
5 0.406 0.392
6 0.415 0.406
10 0.437 0.433
15 0.450 0.448
20 0.457 0.456
50 0.473 0.473

Table 5.1 shows that the confidence level remains always below 50% (for both the one- and
two-group pilot study). As ;(2 is asymmetric (converging slowly to the normal distribution
N(w,2p)), the confidence level of 50% is never attained. This means that the probability of

attaining the desired power is less than 50%.

To avoid the “surprisingly low powers™ due to the random variation of the standard deviation
one solution would be the use of internal pilots [34], [35], [36]. But this method can be

applied only for long clinical trials and might arise problems with the unblinding of the trial.

The other solution is the use of a confidence interval method. A sensitivity analysis is usually

performed together with the sample size estimation (computing the sample size for the
confidence limits of 6”). However, in most of the cases the chosen final sample size is that

belonging to 6> and the results of the sensitivity analysis are not used further.

The situation is worsened by the fact that - as it is shown by O'Brien [6] - "unless the data are
strictly Normal, the traditional 3 -based confidence intervals for &7 cannot be trusted to have

their nominal confidence levels' .
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The aim of this study is to compare the coverage rates of different confidence interval

methods.

The assumption of equal variances is supposed to be true, a given least clinically relevant
difference (d) and fixed error levels (o and P) are supposed. The least clinically relevant
difference is assumed to be equal to the difference between the population means. Since the
lower limit of the confidence interval does not have too much importance for the sample size,
only one-sided confidence intervals are considered. For a balanced two-group design with
equal group variances and two-sided test the sample size formula:

2
2 2
Z(Zl—a/2 + Zl—ﬂ) O Zig
‘ 4

(1)
‘,Ul —H

performs well [3], [9], so this formula is used throughout the present study. The methods

evaluated are as follows:
a. y’-based confidence interval method

Given the results of a pilot study, the upper (1-».100% confidence limit of the estimated

variance is computed by the formula:

(N-2)&*/ o yar @
The sample size corresponding to this variance is taken as the upper (1-3.100% confidence

limit of the sample size.
b. Parametric bootstrap confidence interval

A parametric bootstrap [20] (with 2000 bootstrap samples) is performed on the results of a
given pilot study. The sample size is estimated for each bootstrap sample. The (7-)) percentile
of the sample size distribution is taken as the upper (1-7).100% confidence limit of the sample

size.

c. Noncentrality-based confidence interval
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This method is proposed by O’Brien [6]. The t-value t; is computed for the given pilot study
of size N. The (1-.100% upper confidence limit of the noncentrality ¢, is computed by the
formula:

Pr(t""™ 45,>t0)=y 3)

The noncentrality value ,” of a similar study from the same population but with a size N’ is

then

5 =5 @)
"IN

The sample size of the new study has to be increased until the

Power=Pr(t""" 4¢ s>teri)>1-B (5)

becomes true, where .= t4r, o 1s the (1-a/2) percentile of the central t-distribution.

In order to compare the three methods, the coverage rates of the confidence intervals and the
relative distances of their upper limit from the theoretical value were computed. The
theoretical means of the two populations and the common standard deviation were supposed
to be known and 2000 two-group pilot studies of size 10 were drawn (normal distributions
were deemed and the rannor procedure of SAS was used). The upper limit of the confidence
interval for sample size estimation was then computed for each method and it was compared
to the “theoretical” sample size, the one obtained for an “exemplary” pilot study having the
estimated standard deviation equal to the theoretical one. The coverage rate was the
proportion of cases when the theoretical sample size didn’t exceed the upper limit of the
confidence interval. The relative distance was the absolute value of the difference between the
upper limit of the confidence interval and the theoretical mean expressed as a percentage of

abs(upper limit — theoretical value)x100

the theoretical mean (rel.dist =

).

theoretical value

The fixed values used for this simulation study were as follows: 1;,=10, =18, o=10, N=10
(the total size of the pilot study), a=0.05, =0.2, y=0.1, 0.2 and 0.3. The “theoretical”” sample
size computed by (1) for the “exemplary” study is

= 2(20.975 + 2ZO.8 )2102 n Zoons ~26
8 4
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Table 5.2 contains the coverage rates and the mean relative differences obtained for each

method.

Table 5.2. The coverage rates (%) and mean relative distances (%) of the different methods for

the confidence levels of 70%, 80% and 90%

Nominal Method
confidence a b c
(1-y).100 | coverage | relative | coverage | relative | coverage | relative
(%) rate dist. rate dist. rate dist.
70 72.69 57.1 62.0 40.1 54.3 64.4
80 82.20 78.8 71.6 50.9 79.3 225.6
90 91.90 125.6 83.4 79.5 84.5 721.3

4. Example (constructed)

A placebo-controlled parallel group study was planned in obesity. The outcome variable was
the body weight. The clinically relevant difference was presumed to be 5 kg. A pooled
standard deviation of 15 kg was obtained from a pilot study of size 12. A two-sided
significance level of 5% and a power of 80% was required. Substituting in equation (1) we

have

2 2 2
2z +z 15 z
n= ( 0975 0.8) 4 20975

e ~142

Hence, about 142 completing patients per treatment arm were required when using the usual

“substitution” method.

The 90% confidence interval of the standard deviation was [11.1, 23.9]. The width of the
confidence interval reflected that the size of 142 per group was not at all reassuring. For
example if in the future study the sample standard deviation would attain the former upper
confidence limit of 23.9, the sample size of 142 yielded only a power of 42% . For a power of

80% and a standard deviation of 23.9 the sample size/group of 360 would be required which
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was a total sample size 2.5 times larger than the initially planned one. It was decided to use a

one-sided confidence level of 70%.

The first two methods yielded upper confidence limits of 195 and 166, respectively, while the

third one had a result greater than 1000. The final sample size was chosen to be 166.

Increasing the size of the pilot study enables better planning precision and the gain in the final
sample size may be considerable. Figure 5.1 presents the upper 70% confidence limit of the
sample size as a function of the size of the pilot study. This figure shows that under the

conditions of the example the increase of the pilot study size above 24 is of little use.

Figure 5.1. The precision of the sample size estimation depending on the size of the pilot

study
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The Xz-based confidence interval method gives the best coverage rates (the closest to the
nominal confidence levels) but rather large relative distances (and thus large sample sizes).

The noncentrality-based confidence intervals are extremely large and without having a highly
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reassuring the coverage rates. The bootstrap confidence intervals yield usually smaller
coverage rates than the nominal confidence level but with lower relative distances and lower
sample sizes. The one-sided confidence level of 70% can be recommended since the other

levels result in unfeasibly wide ranges.

In most cases the variance estimates used in the planning phase are anticipated, usually based
on a pilot study or some previous trials. Hence the sample size needed to achieve a certain
power varies in fact randomly and the “plug-in principle” may lead sometimes to surprisingly
low power values. The confidence-interval approach enables the improvement of the current
practice. In case of a variance the estimated value corresponds to a confidence level less than
50%. The one-sided bootstrap upper 70% confidence limit (or the y*-based confidence limit)

can be used instead.
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5.2 Time-dependent effect size

An osteoporosis-prevention trial aimed to prove the long-term effect of a drug slowing down
the rate of loss of bone mineral density (BMD). The study was a placebo-controlled,
randomized clinical trial with two parallel groups. The primary endpoint was the rate of
change in BMD after a 36-month treatment. The standardized effect size was supposed to be
0.55 . There was not taken into account that during the study a new diet containing calcium
and vitamin D became available and the BMD of the control group lowered with a smaller

rate due to this diet. The effect size was only 0.49 and this resulted in an underpowered trial.

The time-dependence of the effect size can be modelled with different functions. The simplest

one is the linear one, supposing that the standardized difference is decreasing with time

linearly. Let’s suppose that in the above trial the effect size had a linear relationship with JT,

thus the effect size was given by the function:
e(T)=¢e, - bAT

If t is the time measured in months then b is given by the equation

0.49 = 0.55 - b/36 , hence b=0.01
For a balanced design with group sizes of 40 and for a significance level of 5% the power of

the t-test and its 60% confidence interval depending on 7 is shown in Figure 5.2
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Figure 5.2 Time-dependent power and its 60% confidence interval
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6. A SAS application for trial sample size determination

The sample size estimation in prospective clinical and preclinical trials is much more than a
statistical task. It needs an agreement between researchers on the anticipated value of the
parameters (the design, the treatment effect, the level of the type I and type II errors and the
sidedness as well). Therefore the basic notions of the sample size estimation have to be known
by all the researchers participating in the study planning. "Going through the process of
determining and justifying the sample size also has an important ancillary effect: it catalyzes
the synergism between science and statistics at the study's conception” - formulated concisely

O'Brien in [6].

Thus the need of an interactive teaching software, a kind of tutorial for researchers was a
stringent need. Our aim was to visualise by our application (written in SAS® 6.08, transposed
later on to SAS® 6.11) the different models in order to help the physicians in using the
program and understanding the underlying models. To achieve this we used frame entries and
help entries. We associated certain widgets for certain variable types (for instance sliders for
proportions, list boxes for choosing power, confidence and significance levels, check box for
choosing one- or two-sided test and a graphical text box for showing always the actual sample
size per group). While the majority of sample size determination problems involves the
underlying distributions, the great variety of distribution functions in SAS® 6.11 (PROBIT,
PROBNORM, PROBT, TINV, PROBF, FINV, TNONCT and FNONCT) helped much in
simplifying the original algorithms (which used previously rather complicated approximations
for these functions) and saved several steps and much time of SCL program writing. The
results can be printed and each screen has a separate help (the help contains the definition and

explanation of screen variables and the references concerning the respective model).

At present fourteen screens correspond to the fourteen different statistical methods contained
in the application. New models and new screens can be easily added. They are classified by
the type of statistical problem (hypothesis testing or estimation), by the number of groups

involved and by the nature of the primary endpoint (continuous and normally distributed,
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categorical, binary). They can be reached passing through a set of icons which has the

following structure:

Hypothesis Estimation
testing
Comparative Equivalence Mean Proportion
trials trials
Comparative
trials
Two groups More than two
groups
Normally Propor- Ordered Survival Normally dist- Categorical data

distr. tions cat. data data ributed data

| T

Paired

Unpaired

N T

Parallel Parallel Factorial
groups groups, design
ordered
responses

Equivalence trials

P—

Normally
distributed

Theoretical background

\

Proportions

Categorical
data
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The formulae which constitute the theoretical background of the program and the references:

1. Estimation of a population mean ( [22]).

24 2
8o" *z,

%

It where l=the length of the confidence interval

n=

o=the anticipated standard deviation
zq=the 100ath upper percentage of the

standard normal distribution

2. Estimation of a proportion (source: [25])

p ¥ (1 —p )* Zo/z
n= ) 2) 2 where p=the anticipated proportion
w

w=the width of interval

3. Comparative trials, normally distributed, two groups of equal size, related samples (two-

sided) ([25]).

2

2
ozt 2) _ . -
n= 57 where c=the anticipated standard deviation

d=u;-l the least clinically significant difference
between the means of the groups

B=the power of the test

4. Comparative trials, normally distributed, two groups of equal size, unrelated samples (two-

sided) ([25]).

2
2*52*(20(/2"‘25) .. -
n= 57 where c=the anticipated standard deviation

O=the least clinically significant difference
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size.of . group2 n, A):
size.of .groupl  n, '

In case of unequal groups and if A is the allocation ratio (the ratio

n1=A;1n and n2=A2+1n [14].

5. Comparative trials, ordered categorical data, two groups, unrelated ([27])

The model is the so called “proportional odds” model. Let c¢; denote the anticipated proportion
in the ith category of the control group and let q; denote the corresponding cumulative
proportion. According to this model we suppose that the odds ratios between the cumulative
proportions of the two groups are constant in each category. The equivalent for the least
clinically significant difference will be the reference improvement, Or , which equals to the
constant odds ratio mentioned before. We define the allocation ratio A which is the proportion
of the sample sizes of the two groups. Then we can calculate using Or the anticipated
proportions for all categories in the treatment group. Let p; be the mean of the two
proportions (i.e. the control group and the treatment group proportion in the ith category). The

following formulas give the sample sizes in the two groups:

. 3(4+D (z,, +Zﬁ.)2

L40,a-Yp)
_3(4+]) (za/z-i-zﬂ)2

T oA )

6. Comparative trials, binomial data, two unrelated groups of equal size([23])

Lz 2P0 D) + 2 p (= p )+ 2t (1))

(pz - p1)2

n

where p;=the proportion anticipated in the /st group
p2=the proportion anticipated in the 2nd group

P =the mean of p; and p»

40



size.of . group2 n, A):
size.of .groupl  n, '

In case of unequal groups and if A is the allocation ratio (the ratio

_A+1

A+1
I’Zl— =

n and n, = 5 n [19].

7. Survival data, two groups of equal size, up-front accrual ([26])

This is a model which supposes that the daily failure rate in each group is constant
(exponential model) and that the period of the accrual is relatively short compared with the
follow-up time (“up-front™ accrual). Then the following relation determines the sample size

per group:

B +(C° B (Q-T)

- 2
n (za/2 +zﬁ)

where B and C may be calculated using the formulas:

B2 — Q2(1 _ e—(_)t )—l

CZ — T2(1 _ e*Tl )71

Q and T are the daily failure rates while t is the duration of the study (in days). The relation
between the daily failure rates and the failure rates at the end of the trial (p;, p2) is given by
the equation:

—

b =e

~Tt

Il
®

D>

8. Normally distributed data, more than two parallel groups of equal size, unrelated (analysis

of variance, completely random design) [14]

Let g denote the number of groups, p i the mean of the ith group and o the anticipated

standard deviation within each group. We define A as:
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XS0
(g-1o’

Then the required sample size per group is such that the equation

Zp = Jg-1 : —
g-1D[0+nA)F + g(n-1)(1+2nl)

—J/(g=D+n2)2g(n-1)-11}

x{\/g(n -D[2(g -1+ ni) —(1+2n1)] -

is approximately satisfied. So we increase 7 until the desired power is attained.

This method described by Fleiss [14] and Day [18] can be simplified in SAS because the
value of noncentral F distribution with given noncentrality parameter 8 can be calculated

using the FINV and PROBF functions directly, without using the approximation shown above.

9. Normally distributed data, more than two parallel groups of equal size, unrelated, ordered

responses [18]

The method described in 8. may be applied but the alternative hypothesis will no longer be
that some of the group means are unequal. It will be that there is a certain (fixed) order
between them. We also suppose that the class variable is quantitative, so a linear regression
model may be applied. The formula from 8. is valid with A ‘=(g-1)*1 (where g is the number

of groups) and with one degree of freedom for the sum of squares between groups.

10. The 2x2 factorial design

It is also based on the method described in 8. When applied for the difference beteween the
means of the two factors the sample size obtained is the total for the two levels, so it has to be
divided by 2 to obtain the sample size per group. When testing the interaction of the two
factors, the estimate of the size of interaction can be obtained in the following way: we
calculate for each of the factors the difference between the means of two levels and then we

take the difference of the two results. The sample size per group obtained with formula 8
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should be doubled because the interaction effect is determined by a contrast between four

means, thus the standard error of the interaction is o,/ % .

11. Categorical data, more than two parallel groups of equal size, unrelated (Kruskal-Wallis

test) [14]

Introducing the concept of relative efficiency of two tests, RE , we can apply the formulas
from point 8. using the relation n=n".RE, where n" is the sample size for the Kruskal Wallis
test, n is the sample size for the one-way ANOVA and the asymptotic efficiency of the
Kruskal Wallis test related to the one-way ANOVA is always greater than 3/ (Hollander and
Wolfe: Nonparametric statistical methods, New York, Wiley, 1972).

12. The equivalence trials ([23], [28], [29]) have the purpose of showing the “negative” result
that two treatments are equally effective. These models use in fact the formulae already
described as estimations of population means or proportions with given length of the
confidence interval, applied for the difference between the two groups. The terminology used
is slightly modified: the limits within which the confidence limits has to lie are called

equivalence acceptance limits.
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Worked examples

1. Vitamin D trial (Pocock, 1983)

The effect of Vitamin D on the prevention of neonatal hypocalcaemia is going to be examined
on pregnant women. Vitamin D group is compared to placebo group and women will be
randomized to one of these groups. The main efficacy parameter is the infant’s serum calcium
level one week after the birth. Previous knowledge about untreated women shows that the
serum calcium level has 1;=9.0 mg/100ml and 6=1.8 mg/100ml. We consider an increase of
0.5 mg/100ml to be clinically relevant and we choose a significance level of 0.05 and a power

of 0.95. Then we apply the method described in model 4. and we obtain n=337 patients per

group (Fig.6.1).

Figure 6.1. The screen for comparing two independent means
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Sometimes the value of the standard deviation is difficult to anticipate. In this case these data
can be assessed in an other way applying model 6. However, dichotomizing a continuous
variable means always a loss in power [30]. Let’s fix the criterion of hypocalcaemia to be a
serum calcium level less than 7.4 mg/100ml. The proportion of hypocalcaemic newborns in
the placebo group is approximately 15% and we anticipate a decrease of 8%. Keeping the
significance level and power unchanged we obtain a number of 395 patients per group

(Fig.6.2).

Figure 6.2 The screen for comparing two independent proportions
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2. A trial with categorical outcome variable (Whitehead, 1993)

In a placebo-controlled, three-month study the condition of patients is classified at the end of
study to be very good, good, moderate or poor. In the placebo group the four proportions
corresponding to these categories are 0.2, 0.5, 0.2 and 0.1. Thus the probability of a good or

very good outcome is 0.2+0.5=0.7 (these are the so-called cumulative proportions and at this
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point the ordering between categories becomes necessary). As a clinically significant
improvement we have to choose one of the categories and to establish the respective
cumulative proportion in the treated group. Let’s say that we anticipate an increase of 0.15 in
the “good or very good” category, that is, a cumulative proportion of 0.85. In this case
applying the proportional odds model 5. for equal group numbers (significance level: 5%,

power: 90%) the result is 94 patients/group.

The example above is a refinement of grouping patients into two categories, for instance
unifying category 1 with 2 as “good” and 3 with 4 as “poor”. If we do this, we can apply
model 6 with proportion 0.7 increasing to 0.85. Keeping the significance level of 5% and the
power of 90% unchanged the result is a group size of 161 (each group representing two from

the former categories, that would mean 81 patients/category for the former example).

Figure 6.3 Categtorical outcome
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3. Survival Analysis (Shuster, 1990)

The primary endpoint of a comparative, two-group clinical trial is the time until the patient
needs to take sedatives regularly. The duration of the study is one year. At the end of the trial
we presume a survival rate of 10% in the placebo group and of 25% in the treated group.
Considering a significance level of 2% (two-sided test) and a power of 80% we shall need 102
patients per group to prove the effect (if it exists) of the new drug, applying model 7 . This
problem can also be solved like an ordered categorical one (model 5), in this case the solution
is a patient number of 116, or like a simple comparison of proportions (model 4) which gives

the result of 128.

4. A three-group comparison (Day and Graham, 1991.)

The diastolic blood pressure of three patient groups is to be compared. The hypothesized
means are 100 mmHg, 95 mmHg and 85 mmHg. The common standard deviation of the
groups is supposed to be 15 mmHg. The significance level is set to 1% and the power to 90%.

Applying model 8 the sample size per group is 35 .

Figure 6.4 Comparison of more than two groups (continuous outcome, equal group sizes)
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If the same groups are compared but the alternative hypothesis is changed from “some of the
group means are unequal” to “there is a certain order between the group means”, we can

decrease this number from 35 to 31.

In case of two groups this method gives the same result as 4.

All the examples above show that sample sizes depend much on the model applied, so it has
to be chosen carefully. This application does not contain the model described in Chapter 2, the
comparison of two groups assuming unequal variances, since this method was elaborated

later. As mentioned, new models can be easily added to the program, this is among our further

plans.

The modules used were SAS/BASE®, SAS/AF® and SAS/STAT®.
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8. Appendix

SAS programs

8.1 Macro computing the group sizes when the group variances are unequal

/* given sdl,sd2,d,alfa,beta,allocation ratio */

¢macro size(sdl,sd2,d,alfa,beta,ar);

option mprint;
data result;
diff=&d;
sl=&sdl;
s2=&sd2;
tau=s2*s2/sl/sl;
a=1/&ar;
aa=(100-&alfa/2)/100;
ba=&beta/100;
if a<l then
b=ceil (1l/a)+1;
else b=3;
do i=b to 10000;
teta=sl*sl/s2/s2;
df=(teta/a+l) * (teta/a+l)/ (teta*teta/a/a/(a*i-1)+1/(1i-1));
t=tinv(aa,df)+tinv (ba,df);
s=sl*sl/a+s2*s2;
fract=t*t*s/diff/diff;
if (i>=fract) then do;
ml=(a+1l)*1/2;
m2=ceil (ml/a);
ml=ceil (ml);
output;
stop;
end;
end;
run;

data null ;
file print;
set result;
put 'tau=' tau;
put 'allocation ratio (n2/nl) = ' a 5.3;
put 'Size of groupl:' ml;
put 'Size of group2:' m2;

s=ml+m2;
put 'N=' s;
run;

gmend size;

52



8.2 Program computing the group sizes for more than two groups with unequal sizes

data null ;
array m[25]; /* group means */
array r[25]; /* set of allocation ratios */
array sz[25]; /* nulsance variables */
array nnn[25]; /* group sizes */
m[1]=100;

file print;

alfa=0.99;

beta=0.9;

do i=1 to 25;
sz[il=r[i]l*m[i];

end;

zlimit=probit (beta);

mean=sum(sz[1l],sz[2],m[3],m[4],m[5],m[6],m[7],m[8],m[9],m[10
m[{13],m[14],m[15],m[16],m[17],m[18],m[19],m[20],m[21],m[22]
m[25])/rr ;

n=n(m[1l],m[2]),m[3],m[4],m[5],m[6],m[7]),m[8],m[9],m[10],m[11],m[12],m[13],

m[14],m[15],m[16],m[17],m[18],m[19],m[20],m[21],m[22],m[23],m[24],m

stop=0;
nl=n-1;
nn=3;
do while (stop=0);
do i=1 to 25;
nnn(i]=nn*r[i];
end;

n2=sum(nnnfl],nnn[2],nnn[3],nnn[4],nnn[5],nnn[6],nnn[7],nnn[8],nnn|[
O], nnn[11],nnn[12],nnn[13],nnn[14],nnn[15],nnn[16],nnn[17],nnn[18],
nnn[19],nnn[20],nnn[21],nnn[22],nnn[23],nnn[24],nnn[25])-n;

delta=0;
do i=1 to n;

[25])7

9],nnn[1

delta=delta+nnn[i] * (m[i]-mean)* (m[i]-mean)/s/s; /* noncentralitasi

parameter */

end;

f=finv(alfa,nl,n2);

b=probf (f,nl,n2,delta);

if b>1-beta then
nn=nn+1;

else do;

stop=1;
sizel=ceil (nn*r[1]);
size2=ceil (nn*r[2]);
size3=nn*r[3];
put nl1 ' , ' n2;

put 'b=' b;

delt=sqgrt (delta);

put 'delta= ' delt;

put 'mean= ' mean;

put 'allocation ratios' r[1]' , ' r[2] ' , ' r[3];
put 'number of patients in groupl = ' sizel;
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put 'number of patients in group2 = ' size2;

put 'number of patients in group2 = ' size3;
end;
if (nn>5000) then do;
stop=1;
put 'number of patients/group > 5000' ;
end;
end;
run;
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8.3 Program simulating 2000 pilot studies and estimating the sample size and its
confidence interval by parametric bootstrap

$macro invoke;
$macro boot (pilot);

data a;
seed=&pilot+3;
do i=1 to 5;
call rannor (seed,n);
value=n*10+10;
group=1;
output;
end;
do i=5 to 10;
call rannor (seed,n);
value=n*10+18;
group=2;
output;
end;
run;

proc univariate data=a noprint;
by group;
var value;
output out=ki
std=var;
run;

data null ;
set ki;
if group=1 then call symput('varl',6 left (put(var,6.3)));
if group=2 then call symput('var2',6 left (put(var,6.3)));
run;

data d;
seed=1225;
do j=1 to 2000;
do i=1 to 5;
call rannor (seed,n);
value=n*&varl+10;
group=1;
output;
end;
do i=6 to 10;
call rannor (seed,n);
value=n*&var2+18;
group=2;
output;
end;
end;
run;

proc univariate data=d noprint;
by j group;
var value;
output out=ki
var=var;
run;

55



data b (rename=(var=varl));
set ki;
where group=1;

run;

data c(rename=(var=var2?));
set ki;
where group=2;

run;

data bc;
merge b c;
by j;

run;

data abc;
set bc;
d=8;
z=probit (0.975)+probit (0.8);
z=z%z;
s2=(varl+var2)/2;
n=ceil (2*z*s2/d/d+probit (0.975)/4);
output;

run;

proc univariate data=abc noprint;
var n;
output out=kiki
pctlpts=70 80 90
pctlpre=p
run;
data a.egybe;
set a.egybe kiki;
run;
$mend boot;
data a.egybe; run;
$do pilot=1 %$to 2000;
$boot (&pilot);
dm log 'clear';
$end;
$mend invoke;
libname a 'd:\cikkl\';
$invoke;
proc means data=a.egybe n;
where p 70>=24;
run;
proc means data=a.egybe n;
where p 80>=24;
run;
proc means data=a.egybe n;

where p 90>=24;
run;
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