Dynamics of Fractal Functions

Doktori (PhD)értekezés

Muiuszaki informatikai alkalmazasok
doktori program

Determinisztikus és sztochasztikus dinamikus
rendszermodellek alprogram

Vicsek Tamasné

Veszprémi Egyetem
2001



Contents

1 Introduction
2 Theoretical Background
2.1 Mathematical foundations . . . . ... ... ... .......
2.1.1 Fractals and fractal dimension . . . . . ... ... ...
2.1.2  Graphs of functions and fractal functions . . . . . . . .
2.1.3 Power-law behaviour of fractal functions . . . . .. ..
2.2 Physical background — Surface growth . . . . .. .. ... ..
2.2.1 Dynamicscaling. . . . .. ... ... oL
2.2.2 Lattice models of surface growth . . . ... ... ...
2.2.3 Stochastic differential equations for surface growth
2.2.4  Deterministic differential equations for surface growth .
2.2.5 Numerical solution of surface growth equations
3 Results

3.1 Simulations of surface growth related to physical experiments .
3.2 Results related to the deterministic growth equation . . . . . .

3.2.1 Numerical results . . .. ... .. ... .. ......
3.2.2 Analytic results: special solutions . . . ... ... ...
4 Summary — (")sszefoglalés

(in Hungarian)

Fractal Growth software package

10
10
10
13
17
19
19
22
24
28
29

32
32
41
41
51

62

68



Abstracts

Fraktalfiiggvények dinamikaja

A fraktalfiiggvények dinamikajara vonatkozé vizsgalataink a fizika és a
matematika hatarteriiletéhez tartoznak, gyakran a szamitégépes szimulaciot
hasznalva eszkozil. A fraktalfeliillet—novekedés dinamikajat elsésorban a
fizikai folyamat lényegét leiré egyenletek (sztochasztikus és determinisztikus
parcidlis differencidlegyenletek - PDE) segitségével tanulményoztuk.

A fizikai kisérletekhez kapcsol6dd sztochasztikus novekedési modellek
esetében célunk az volt, hogy olyan modellt talaljunk, amely a kisérleti
felillethez mennyiségileg is j6l leirhatéan hasonld onaffin fraktalfeliiletet hoz
létre. Uj, multiplikativ befagyott zaj tag sztochasztikus parcidlis differen-
cidlegyenletet irtunk fel és vizsgaltunk numerikus médszer segitségével. Mod-
elliink a kisérleti eredményekkel nagyon jé egyezést mutat.

Célunk az instabil vagy szinguldris tagot tartalmazé determinisztikus
PDE esetében mdr magénak az egyenlet megolddsanak numerikus és
szimbolikus vizsgalata volt. A kapott komplex térido—viselkedést a
fraktalfiiggvények dinamikajaval, az ott felhasznalt mddszerek segitségével
irtuk le.

A sztochasztikus feliilletnovekedést szimuldlé racsmodellek megértését
segitette el0 az a programcsomagunk, amelyet 1992-ben a World Scientific
kiadé publikalt. Megjelenésekor ez a maga nemében els6 ilyen programc-
somag volt, tartalmazta a modellek leirasat és forrasnyelvu programjukat
is. Azéta tobb szdz példanyat sikerrel haszndaltdk elsésorban az oktatasban,
esetenként kutatasra.



Dynamics of Fractal Functions

The dynamics of fractal functions is related to physics and mathematics
as well, while in many cases we use computer simulation as a tool. The
growth of fractal surfaces is mostly investigated by phenomenological equa-
tions (stochastic or deterministic partial differential equations — PDE) de-
scribing the physical process.

In the case of stochastic growth models related to physical experiments
our aim was to find a model producing self affine fractal surfaces similar to
the observed ones. By numerically solving our new, stochastic PDE with
multiplicative quenched noise term we have obtained fractal surfaces which
are in good agreement with the experimental interfaces.

We investigated a deterministic PDE with instable or singular terms nu-
merically and simbolically as well. In this case we described the complex
behaviour of the solutions in space and time also by the dynamics of fractal
functions.

Our program package published in 1992 by World Scientific was the first
one of its kind containing the description of the lattice models simulating
fractal growth and their source code as well. Since that it was used mostly
for educational purposes and small scale research.



Dynamik von fractal Funktionen

Die Dynamik von fractal Funktionen hangt mit Physik und Mathematik
zusammen, wahrend in vielen Fallen wir Computersimulation als Hilfsmittel
verwenden. Das Wachstum der fractal Oberflichen meistens nachgeforscht
durch die phdnomenologischen Gleichungen (stochastische oder determinis-
tische teilweise Differentialgleichungen - PDE) den Kern von physikalischen
Prozess beschreiben.

Im Fallen der stochastischen Wachstummodelle, die auf Systemtestexper-
imenten war unser in Verbindung gestanden wurden, Ziel, einen vorbildlicher
produzierenden Selbst zu finden, die fractal Oberflichen zu lautern, die
beobachteten ahnlich sind. Indem wir numerisch unser neues, stochastisches
PDE mit multiplikativer geloschter Gerauschbezeichnung losten, haben wir
fractal Oberflichen erhalten, die im Einverstiandnis mit den experimentellen
Schnittstellen sind.

Wir forschten ein deterministisches PDE mit den instable oder einzigar-
tigen Bezeichnungen numerisch und simbolically ausserdem nach. In diesem
Fall beschrieben wir das komplizierte Verhalten der Losungen im Raum und
in der Zeit auch durch die Dynamik von fractal Funktionen.

Unsere Programmeinheit veroffentlichte 1992 durch World Scientific war
die erste seiner Art, welche die Beschreibung der Gittermodelle fractal Wach-
stum und ihren Quellencode ausserdem simulierend enthalt. Seit dem, dass
es wurde verwendet meistens fiir padagogische Zwecke und Forschung



Chapter 1

Introduction

During the late 1980-ies ”there has been an explosion of activity in the field of
dynamics of fractal surfaces, which, — through the convergence of important
results from computer simulations, analytical theories and experiments, —
has led to significant advances in our understanding of nonequilibrium surface
growth phenomena” [11].

A rich variety of natural and technological processes leads to the for-
mation of complex interfaces. If the conditions of the growth processes are
such that the development of the interface is only marginally stable and the
fluctuations are relevant, the resulting structure is a rough surface and can
be well-described in terms of nowhere differentiable, single-valued self-affine
fractal functions.

A self-affine (fractal) function i has the property
h(l‘l, ceey ﬂin) = /\;al...)\;anh(Alxl, cey Anﬂin)

where «; is called the roughness or Hurst exponent [2]. Typically there is
only one characteristic roughness exponent « and the x; are equivalent from
the point of view of scaling and we can write a simpler form for any A

h(z) = A %*h(A\x), z € IR



For a single variable = this property expresses the fact that the function
is invariant under the following rescaling: shrinking along the z axis by a
factor of 1/, followed by rescaling of the values of the function (measured
in the perpendicular direction) by a different factor A=*.

The dynamics of fractal surfaces can be investigated by the help of
simplified lattice models or by phenomenological equations (stochastic or
deterministic partial differential equations) describing the physical process.

The surface growth is generally modeled by the Kardar, Parisi, Zhang
(KPZ) equation [13]

g—? =1V2h + N/2(Vh)? + n(z,t).

The KPZ equation shows the time dependence of the height h(z,t) on the
spatial derivatives of the surface. After some time the initially flat surface
(h(z,0) = 0) becomes rough and can be described by the help of fractal
geometry and fractal functions. Here 1 is a constant (related to the surface
tension) and 7 is a noise term. In the original KPZ 7 is an uncorrelated
Gaussian noise with zero-mean.

During the years the continuum equation approach has been developing
through (a) numerous studies of the original equation and (b) investigations
of closely related other equations containing further terms.

Our investigations are related to physics and mathematics as well, while
in many cases we use computer simulation as a tool. We carried on research
in two main directions. Both stochastic and deterministic growth models
were described by PDEs. In case of the stochastic PDE we started from a
flat surface, while for deterministic models the initial surface was different
from zero.

We investigated some stochastic growth models related to physical
experiments (of wetting fronts). Our goals were (i) to make assumptions
which are as close to the experimental conditions as possible, (ii) to numer-
ically investigate the resulting equation and (iii) to compare the obtained
behaviour with that observed in the experiments. We proposed a modified
KPZ type equation and we have obtained surfaces remarkably similar to
those observed in the experiments [27],[28].



We were also interested in deterministic models producing complex
spatio-temporal behaviour. In a recent approach to d dimensional com-
plex spatio-temporal behaviour the various functions associated with these
structures are considered as growing rough surfaces in a d + 1 dimensional
space [25]. This development connects the studies of growing fractal surfaces
to the research how stochastic spatio-temporal behaviour emerges in more
complex deterministic processes.

We studied the simplest family of deterministic PDEs producing growing
fractal surfaces. These equations originally proposed by Zhang [17] have the
forms

Oh(x,t)
ot

where several form of the singular term can be used, including

= V?h(x,t) + nonlinear term

\Vh|*  with a<1 or In(|Vh]).

Here we usually start from a random (or periodic) surface, (e.g., h(z,0) is
a random surface with heights uniformly distributed between 0.0 and 0.01).
Physicists and mathematicians alike studied the Zhang equations, however,
inspite of its simple form the complex behaviour of the solutions (even their
existence, stability etc.) are not well understood mathematically. We could
obtain analytic results — special solutions — for the equation with the log-
arithmic term [31].

In addition, we investigated the parameterized versions of the Zhang
equations numerically. We showed that the discretized versions exhibit rich
spatio-temporal behaviour representing a mixture of stochastic and deter-
ministic regimes (see Figures 3.5,3.10). Varying the relative weight of the
singular term we have been able to detect transitions in the global behaviour
of the solutions [29].

The dissertation consists of the following parts. In Chapter 2 the theoret-
ical background (both mathematical and physical) of the dynamics of fractal
functions is presented. Here we review very briefly the basic mathematical
ideas and notations concerning fractals used in our physical applications.
We also present the main physical principles (as the dynamical scaling) and
the most wide spread simulation methods used also in our study of surface
growth phenomena. In Chapter 3 we summarize our results concerning the



two main research approaches we applied. The Appendix contains a short
description of our Fractal Growth Software [6] which was the first educational
software of its kind.



Chapter 2

Theoretical Background

2.1 Mathematical foundations

Here we review very briefly the basic mathematical ideas and notations con-
cerning fractals used in our physical applications. We introduce fractal func-
tions and include some propositions (together with their proofs) based on
the works of Falconer [1] and Mandelbrot [2]. Graphs of such functions are
generally fractal sets.

2.1.1 Fractals and fractal dimension

We generally work in n-dimensional Euclidean space, IR". We use the usual
Euclidean distance or metric on IR". If x, y are points of R" (z = (21, ..., Z,,),
y = (y1,.--,yn)) the distance between them can be defined as |z — y| =

(S0 |2 — wil?)' /2.
According to Falconer [1] it seems best to regard a set F' as a fractal if it
has some of the following properties.

e [ has a fine structure, i.e., details on arbitrary small scales.

e [ is too irregular to be described in traditional geometrical language,
both locally and globally.

e Often F' has some form of self-similarity, perhaps approximate or sta-
tistical.

10



Figure 2.1: Construction of the middle third Cantor set F', by repeated
removal of the middle third of intervals. Note that F;, and Fg, the left and
right parts of F', are copies of F' scaled by a factor 1/3

e Usually, the ’fractal dimension’ of F' (defined in some way) is greater
than its topological dimension.

e In most cases of interest F' is defined in a very simple way, perhaps
recursively.

A well-known fractal is the middle third Cantor set F' (Figure 2.1). Al-
though F' is quite a large set (uncountable infinite), its size is not quantified
by the usual measures such as length — by any reasonable definition F' has
length zero.

Of the wide variety of fractal dimensions in use, the definition by Haus-
dorff is the oldest. Hausdorff dimension based on measures can be defined
for any set. However, in many cases it is hard to calculate or to estimate
it by computational methods. In our physical applications we prefer some
more practical definitions.

Let dimF' denote the dimension of F'. Fundamental to most definitions of
dimension is the idea of 'measurement at scale §’. For each J, we measure a
set in a way that ignores irregularities of size less than ¢, and we see how these
measurements behave as § — 0. Some typical properties of a ’dimension’ are
the followings.

Open sets. If F' is an open subset of IR” then dimF = n.
Smooth manifolds. If F' is a smooth m-dimensional manifold dimF = m.

Monotonicity. If E C F then dimFE < dimF'.

11



Stability. dim(E U F') = max(dimFE, dimF).

Geometric invariance. If f is a transformation of IR" such as translation,
rotation, similarity or affinity then dimf(F) = dimF'.
For a fractal set I’ the boz-counting dimension can be defined as
log Ns(F
dimy F = lim -8V (F). (2.1)
=0 —logd
if this limit exists, where Ns(f) is any of the following equivalent definitions:

i) the smallest number of closed balls of radius ¢ that cover F

ii) the smallest number of cubes of side § that cover F;

(

(

(iii) the number of 6-mesh cubes that intersect F;

(iv) the smallest number of sets of diameter at most ¢ that cover F;
(

v) the largest number of disjoint balls of radius  with centres in F'.

The lower and upper boz-counting dimensions of F' are respectively de-
fined if we use lim or lim in (2.1).

Remark 1. (On the comparison of the boz-counting dimension to the clas-
sical one). It can be shown that the above mentioned general properties of
dimension are fulfilled for the boz-counting dimension dimgF [1]. However,
for finite or countable sets F resp. F;, dimgF # 0 and dimpg(UX,F;) #
SUD; <j<oo dimpF; either, while for such sets the equality would be natural in
the case of a classical dimension definition.

Ezxample. Tt is easy to show that the box dimension of the middle third
Cantor set is dimgF = dimgF = log 2/ log 3.

For most fractals obvious upper estimates of dimension may be obtained
using natural coverings by small sets. For the box-counting dimension the
following proposition is an immediate consequence of the definitions.

Proposition 1. Suppose F' can be covered by ny, sets of diameter at most oy,

with 6, — 0 as k — oo. Then
. . log ny
dimgF <1 —_—
dimp S My Lo _ lOg 5]@
and, if Opy1 > O for some 0 < c <1,

log ny
—logdy

dlmBF S mk_)oo

12



2.1.2 Graphs of functions and fractal functions

A variety of interesting fractals occurs as graphs of functions. Indeed many
phenomena display fractal features, e.g., when plotted as function of time.
A function f : X —» Y (X,Y C R") is called a Hélder function of exponent
a if
[f(z) - f(Z)| Sclz—2[*  (2,2€X) (2.2)

for some constants ¢ > 0 and « > 0 is the Holder exponent.
Under certain circumstances the graph of the function f : [a,b] - R

graphf = {(t, f(t)) : a <t < b}

regarded as a subset of the (¢,2) — coordinate plane may be a fractal. If
f has the continuous derivative or f is of bounded variation, then it is not
difficult to see that graph f has dimension 1. However, it is possible for a
continuous function to be sufficiently irregular to have a graph of dimension
strictly greater than 1. The best known example is the Weierstrass function

o0
F(t) =3 Ak gin(Ake) (2.3)
k=1
where 1 < s < 2 and A > 1. It is a continuous function that is nowhere
differentiable and has box dimension s, as we shall see later. Various cases
of the Weierstrass function are shown in Figure 2.2.
For a given function f and an interval [t1, 5] let
Rylti, 2] = sup [f(t) = f(u)

t1<t,u<ts
denote the maximum range of f over an interval.

Proposition 2. Let f : [0,1] — IR be continuous. Suppose that 0 < 6 < 1,
and m is the least integer greater than or equal to 1/6. If Ns is the number
of squares of the §-mesh that intersect graphf, then

m—1 m—1
61 Ry[i6, (i +1)8] < Ny < 2m+ 6> Ry[id, (i + 1)4]. (2.4)
=0 =0

Proof. The number of mesh squares of side ¢ in the column above the interval
[i0, (i + 1)d] that intersect graph f is at least R[id, (¢ + 1)4]/6 and at most
2 + Ry[i6, (i + 1)d]/0 using that f is continuous. Summing over all such
intervals gives (2.4). This is illustrated in Figure 2.3. O

13



Figure 2.2: A typical example of fractal functions. The Weierstrass function
(2.3) with A=1.5and (a) s =1.3, (b) s =1.5

The relation between dimp and «, the Holder exponent of a function, is
well-known. We can get it by applying Proposition 2 to functions satisfying
a Holder condition with 0 < o < 1 as in the following Corollary.

Corollary 1. Let f :[0,1] = IR be a continuous function.

(a) Suppose
@O = f)l <clt—uf™  (0<tu<) (2.5)

where ¢ > 0 and 1 < s < 2. Then dimpg graphf < s. This remains
true if (2.5) holds when |t — u| < & for some § > 0.

(b) Suppose that there are numbers ¢ > 0, 69 > 0 and 1 < s < 2 with the
following property: for each t € [0,1] and 0 < § < 0 there exists u
such that |t —u| < § and

f(t) = fu)] > eo®. (2.6)

Then s < dimp graphf.

14



Figure 2.3: The number of j-mesh squares in a column above an interval
of width ¢ that intersect graph f is approximately the range of f over that
interval divided by 6. Summing these numbers gives estimates for the box
dimension of graph f.

Proof. (a) It is immediate from (2.4) that Ry[t1,t2] < c|t; — t2f*7* for 0 <
t1,ty < 1. With notation as in Proposition 2, m < (1 +§71) so

Ny < (1462 +e576°°) <ci67°

where ¢; is independent of §. The result now follows from Proposition 2.
(b) In the same way, (2.6) implies that Ry[t1,ts] > c|t; — t2|>*. Since
6~ < m, we have from (2.4) that

Ns > 67167 ed?™ = co*

so equivalent definition (iii) of dimpg gives s < dimp graphf. O

In our physical applications we are going to work with self-affine or fractal
functions [2], f(x) € R, which are continuous and VA have the property

flz) 2 A *f(Az), (2.7)

where o > 0 is some constant exponent.

(2.7) expresses the fact that the function is invariant under the following
anisotropic — direction dependent rescaling: shrinking along the x axis by a
factor of 1/, followed by rescaling of the values of the function (measured in
the perpendicular direction) by a different factor A™®. For some deterministic
self-affine functions this can be done exactly, while for random functions the

15



above considerations are valid only in stochastic sense (expressed by using
the sign ~).

A rough interface (occuring in growth phenomena as we shall see in 2.2)
can be well described in terms of such fractal functions.

Remark 2. Self-affine functions, f : [0,1] — R, are locally Holder functions
satisfying (2.2) with Hélder exponent 0 < a <1 (see, e.g,[2]). Then accord-
ing to Corollary 1, provided X is large enough, their local fractal dimension
1s dimp graphf = s where 1 < s < 2.

Example of a typical self-affine function is the Weierstrass function de-
fined by (2.3). Suppose A > 1 and 1 < s < 2. It is easy to see that first
derivative of the above function diverges everywhere, although the function
itself is continuous. Formally replacing £ with k+1 we get the scaling relation

ft) =1 ().
Calculation of the local dimension of Weierstrass functions. Given 0 <
h <1, let N be the integer such that

ATNHD < p < A7V, (2.8)
Then

[f(t+h) = F@)] < D0 ACTH[sin(A(t + h)) — sin(A*(2))]

k=1

00 N )
+ > ACPF[sin(A(E 4 h)) — sin(AF(2))] < DO ACDENER 4+ S 262k
k=N+1 k=1 k=N+1

using the mean-value theorem on the first /V terms of the sum, and an obvious
estimate on the remainder. Summing these geometric series,

h)\(s—l)N 2)\(5—2)(N+1)
A= 1y

[ft+h) = f{)] < < ch®™?
where c is independent of h. Then using (2.8) Corollary 1(a) now gives
dimp graphf < s.

In a similar way, but splitting the sum into three parts — the first N — 1
terms, the Nth term, and the rest — if (2.8) holds we get

f(t+h) = f(t) = XDV (sin(AN (¢ + h)) — sin(A\Vt))| <
/\(sz)Nfs—H 2)\(572)(N+1)

T Ve G Ve

(2.9)

16



Suppose A > 2 is large enough for the right-hand side of (2.9) to be
less than A2 for all N. For § < A%, take N such that AV < § <
A~ (V=1 For each t we may choose h with A~(¥+1 < b < A~V such that

|sin AV (¢ + h) —sin ANt| > 5, so by (2.9)

1
[f(t+R) = f(8)] > )\(5 N> AT
It follows from Corollary 1 (b) that dimp graphf > s.
The Weierstrass function is representative of a more general class, i.e. if
g is a suitable periodic function, a similar method for the calculation of the
dimension applies. Namely

— i )\(sz k
k=1

has dimp graphf = s. Such functions may occur in dynamical systems [1].

2.1.3 Power-law behaviour of fractal functions

One way in which the fractal nature of a graph of a function is often mani-
fested is by a power-law behaviour of the correlation between measurements
separated by time h. In this section we only outline the ideas involved [1];
without being rigorous. In particular, the limits are all assumed to exist.

For convenience of analysis, we assume that f : (—oo,00) — Ris a
continuous bounded function and we consider the average behaviour of f
over long periods [—7,T]. Similar ideas hold if f is just defined on [0, o),
or on a finite interval, by extending f to IRin a periodic manner. We write
f for the average value of f, i.e.

_Ill—{I;OQT/

A measure of the correlation between f at times separated by A is provided
by the autocorrelation function

C(h) hmﬁ/ (t + h) f(t)dt — ()2

T—)oo

17



Since
/(f(t—i—h)—f(t))Zdt:/f(t+h)2dt+/f(t)2dt—2/f(t+h)f(t)dt
we have

C(h) = () = T2 = Hlimp o o [T0(F(E+ B) — F()dt
= C(0) = Slimy s o [T (F(E+ B) — F(1)dt

where

is the mean square of f, assumed to be positive and finite. Now we use
Corollary 1 to show the relationship between the autocorrelation function
of f and the dimension of graph f. Suppose that f is a function satisfying
(2.5) and also satisfying (2.6) in a reasonable uniform way. Then there are
constants ¢; and ¢; such that

clh* % < T/ ft+h) — f(t)dt < cph*™2

for small A. While it is not directly equivalent to (2.5) and (2.6) in many
reasonable time-homogeneous situations, the conditions do correspond. Thus
if the autocorrelation function of f satisfies

C(0) — C(h) ~ ch*? (2.10)

for small h we can expect the box dimension of graph f to be s.

Autocorrelations provide us with several methods of estimating the di-
mension of the graph of a function f. If the power law behaviour (2.10) is
observed for small h then

. B . log(C(0) — C(h))
dimp graphf =2 — ,lll_r,% 2logh

if this limit exists.

18



2.2 Physical background — Surface growth

Solids form through growth processes which take place at the surface. If
the conditions of the growth process are such that the development of the
interface is marginally stable and the fluctuations are relevant, the result-
ing structure is a rough surface and can be well described quite often by a
formalism based on the concept of scale invariance and on self-affine frac-
tal functions. Marginal stability means that the fluctuations (which die out
quickly for a stable surface and grow exponentially for an unstable one) sur-
vive without drastic changes for a long time. In many cases the growth and
roughening of a surface advances as new parts are added according to some
dynamical process.

In the following part we review the surface growth phenomena [5], [11], [4]
related to our results using the notations widespread in the physics literature.
The dynamics of fractal surfaces is described at first by the help of scaling
theory, then by some simple lattice models of simulating growth. We briefly
present the different types of related continuum equations together with the
general ideas concerning their numerical solution. In most cases we shall work
with the time and one space variable, considering space as 1+ 1-dimensional
one.

2.2.1 Dynamic scaling

Dynamic roughening of interfaces is an example of a far-from-equilibrium
phenomenon. The analysis of the scaling behaviour of the time and spatial
dependence of the surface properties has led to the development of a gen-
eral dynamic scaling approach for describing growing interfaces. During the
growth of compact (non-fractal) objects the motion of the interface is directed
outward, and this orientation plays a special role. Typically, the interface
can be well approximated by a single valued function of d — 1 variables, e.g.
one can describe the properties of the surface by examining only those points
of the object which are farthest from the centre of the structure in a given
direction. The scaling properties of such surfaces are direction dependent
(anisotropic): parts of various sizes can be rescaled into an object with the
same overall behaviour using a rescaling factor in the direction parallel to
the growth which is different from that needed to rescale the perpendicular
lengths.

19



The evolution of interfaces is generally governed by stochastic processes
involving nonequilibrium many-body effects. These complexities preclude
applications of standard analytical approaches to this problem. On the other
hand, it has been recognized that growing surfaces are fractal and naturally
evolve to a steady-state having no characteristic time or length scale which
led to the development of the scaling theory for describing the dynamics of
fractal surfaces. In 1985 a dynamic scaling formalism based on the surface
width was introduced providing a tool for both theoretical and experimental
studies of surfaces [9]. It has several alternative — but completely equivalent
— forms. Here we use the original formulation.

We consider the time evolution of a rough interface in a d-dimensional
space starting from an initially flat surface at time ¢ = 0. In particular, let us
concentrate on a part of the surface having an extent L in d — 1-dimensions
perpendicular to the growth direction. The growing surface typically can be
described by a single-valued function A (r, t) which gives the height (distance)
of the interface at position r (along the substrate) at time ¢ measured from the
original d — 1 dimensional flat surface. In the cases where the surface cannot
be described by a single valued function of r, we assume that the function
h(r,t) corresponds to the maximum height of the surface at r. During growth
the interface heights fluctuate about their average value and the extent of
these fluctuations characterizes the width or the thickness of the interface.
The root mean-square of the height fluctuations w(r,t) is a quantitative
measure of the surface width and is defined by

w(r,t) = [(h*(r, 1)), — (h(r, )72 (2.11)

Thus, the width w(L, t) is a measure of the correlations along the direction
of growth and perpendicular to the d — 1 directions along the surface. Here
( )r denotes the spatial average taken by space variable r at fixed time t.
Since we assume that the surface is a continuous function, its width has to
saturate to some value after some relaxation time 7. The only scale in the
problem is the linear size of the substrate r (there is no size independent
time scale), thus, w depends only on some power of  and a ratio of the form
t/r*, where z is an exponent describing how the relaxation time depends on
the system size.

Correspondingly, the dynamic scaling of the surface width has the form

w(r,t) =7‘"‘f(t/7“a/ﬂ), (2.12)

where o/ = z is the dynamic scaling exponent.
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In the limit where the argument of the scaling function f(y) is small,
y < 1, the width depends only on ¢ and this implies that for small y the
scaling function f(y) has to be of the form f(y) ~ y”. Saturation at large
times means that f(y) goes to a constant in that limit and the surface reaches
a steady-state characterized by a constant value of the width. The surface
is scale invariant and becomes a self-affine fractal function with Holder ex-
ponent «. In physics « is often referred to as roughness exponent, while
Mandelbrot called it Hurst exponent at first. From the above it follows that
for long times and r < L

w(r,t — o) ~ 1%, (2.13)
and for fixed r (e.g., = L) and short times
w(r,t) ~ 9. (2.14)

An alternative approach to the characterization of self-affine surfaces chang-
ing in time is the determination of various correlation functions. One of the
most convenient quantities is the height-height correlation function c(r,t) de-
fined as

c(r,t) = (|h(r', t") = h(r" + 7, + ) )r v,

which is the average height difference measured for a time difference ¢ at two
points whose coordinates on the substrate are separated by r. On the basis
of the scaling behaviour of self-affine functions, ¢(r, t) scales the same way as
the width,

c(r,t) = refi(t/rP), (2.15)

with a scaling function fi(x) analogous to the above described one.

For the surfaces obtained experimentally or numerically from a growth
model the expressions (2.13) and (2.14) can be used to determine the expo-
nents o and . In these formulas instead of w(r,t) often the averaging of
surface width over samples (e.g. many simulation runs or many experiments)
is considered. In most cases the exponents o and [ are effectively derived
from the log-log plot of the corresponding quantities (using the surface width
or some appropriate correlation function).

In their turn these exponents provide us with a quantitative tool for
analyzing the microscopically different stochastic growth models. The scaling
exponents define some universality classes, so the different models with the
same exponents belong to the same universality class. Most of the studies of
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self-affine growth concentrate on the determination of the exponents o and
[ characterizing the time development of surfaces.

2.2.2 Lattice models of surface growth

One of the most successful approaches to understanding the dynamics of
growing interfaces has been the study of simplified numerical models or phe-
nomenological equations capturing the essential physics of a given growth
process.

At first let us consider the most typical lattice models simulating aggre-
gation of particles and stochastic surface growth (see, e.g., our paper [32]).

Structures consisting of connected particles are usually called clusters or
aggregates. In most of the cases the growth will be assumed to take place
on a lattice for computational convenience, and two particles are regarded
as connected if they occupy nearest neighbour sites of the lattice. A lattice
site with a particle assigned to it is called occupied or filled. An important
additional feature included into the majority of models to be described is
stochasticity which is typical for growth phenomena.

In general, a stochastic cluster growth model may lead to all possible
configurations which can be formed from a given number of particles. What
makes these models differ from each other is the weight or probability Pj ;
associated with a given configuration ¢ consisting of N units. Pr; can be
different for the same configuration even in the same model, because generally
it depends on the sequence, according to which the individual particles are
added to the cluster.

There are two main types of cluster growth processes, depending on the
global character of the rule which is used in the course of adding a particle
(or a cluster of particles) to the growing cluster. The rule will be called local
if it depends only on the immediate environment of the position where the
new particle is to be added. In other words, when deciding whether to add a
particle at site X only the status (filled or not) of the nearest or next nearest
neighbours of this site is taken into account. On the contrary, in non-local
models the structure of the whole cluster can affect the probability of adding a
site at a given position. In the following we deal with local models related to
our continuum equations. There are two typical geometries considered in the
simulations of fractal aggregation. In the first case the growth starts from a
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Figure 2.4: Lattice models of surface growth created by the Fractal Growth
program package ([6]). (a) Eden model in a strip. (b) Ballistic deposition

single particle and usually results in isotropic aggregates, while in the second
geometry the initial configuration is assumed to be a hyperplane (chain, a
two dimensional lattice, etc. of seed particles). If the growth starts along a
plane, the object we investigate is the advancing and gradually roughening
surface of the growing structure. This surface is usually anisotropic and can
be described in terms of self-affine fractals.

The two most studied aggregation models leading to self-affine surfaces
are the Eden and the ballistic aggregation models. There is a rich variety
of different modifications of these models in the literature, however, all of
them have the same dynamic scaling properties. The algorithms considered
here are implemented on a square lattice of horizontal width L, with periodic
boundary conditions imposed in the lateral directions, and of infinite vertical
extent.

(i) Eden model. (Figure 2.4a) A row of seed particles is placed at the base
and a cluster is grown by randomly choosing one of the empty sites next to
the aggregate (perimeter sites). In the simulations of the most common
version of the Eden model a single perimeter site is filled with probability
1/N(p) where N(p) is the total number of perimeter sites. Therefore, each
nearest neighbour site to the cluster has the same probability to be occupied
at the given time step. A large cluster is obtained after having repeated this
procedure many times.
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It is well-known (see,e.g., [10]) that the width of the simulated surface
grows as the cubic root of the time and saturates at a value which is pro-
portional to the square root of L. This fact expresses the dynamic scaling of
our self-affine surface, namely « = 1/2 and g =1/3.

(ii) Ballistic deposition. (Figure 2.4b) Here, a column ¢ € {1,...,L} is
picked at random, a particle is dropped vertically in that column and sticks
upon first contact with the evolving deposit. The update rule is:

h(i,t + 1) = mazlh(i — 1,4), h(i,t) + 1, h(i + 1,1)],

where the surface position h and space coordinate 7 assume integer values.
Here h(i,t + 1) denotes the height at the new time level ¢ + 1, which is
computed from the corresponding height values at the previous time level .
After many iterations, it produces a highly non-trivial structure e.g, the sizes
of the empty regions are widely scattered. In spite of this, the structure can
be considered homogeneous on a large length scale and its average height
grows linearly with time. But more importantly, the deposit has a rough
surface which can be shown to be a self-affine fractal. Extensive simulations
indicate that in the asymptotic limit the structure of the surface is such that
its vertical extension (width) is equal to the square root of its horizontal size
9], (& = 1/2). This is precisely what self-affinity means.

Both models lead to surfaces exhibiting interesting scaling both in space
and time corresponding to the dynamic scaling principle. By going to very
large length and time scales they are truly described by the same exponents,
indicating that they belong to the same universality class. The introduced
models and their different versions can easily be programmed and are con-
tained in our Fractal Growth software package [6] including other growth
models as well (see briefly in the Appendix).

2.2.3 Stochastic differential equations for surface
growth

There were several attempts to construct a continuum equation for describing
the dynamics of growing surfaces.

Equilibrium surface growth is often modelled by the Langevin equation
which describes how a surface relates under the balance of a driving noise
term due to relaxation mechanisms such as surface tension or diffusion. For
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far from equilibrium models, we are interested in, also a Langevin type equa-
tion of motion is suggested. Let us denote by h the local height of the sur-
face above a d-dimensional substrate corresponding to growth in a (d + 1)-
dimensional space. It is convenient to ignore overhangs so that h can be
considered as a single valued function of z € IR®. Therefore one can assume
that local coarse scale derivatives 0h/0z exist. Let us now express the ve-
locity of the interface h(x,t) as a function of its local gradient. To take into
account the stochastic nature of the growth we can write down the simplest
nonlinear Langevin equation for A = h — vt (v is the velocity normal to the
surface). In 1982 Edwards and Wilkinson [3] derived a continuum partial
differential equation (PDE) of this type — EW equation — for describing the
growth of an interface

g—}; =vV?h +n(z,1) (2.16)

where the time variable ¢ is associated with the average deposition height h
and v is a constant (related to the surface tension). n(x,t) is assumed to
have a Gaussian distribution with zero-mean, e.g., such that

(n(z,t)n(2’,t")) = 2Dé(z — z')o(t — t'), (2.17)

so it would be an uncorrelated noise term. Here D > 0 is a constant and
d(z) is the well-known delta function.

The first term in (2.16) describes the relaxation of the interface due to the
surface tension v. Its meaning is quite obvious; protrusions (places with local
curvature V2h < 0) tend to disappear under the influence of the smoothing
effect of surface tension. 7 is included to take into account the fluctuations:
the process of random deposition. Equation (2.16) provides a phenomeno-
logical description for the type of ballistic deposition processes described
earlier. In 1986 Kardar, Parisi and Zhang (KPZ) extended the EW equation
[13]. In order to take into account the sideways growth in the ballistic aggre-
gation and Eden models they proposed an additional nonlinear term which
is the lowest-order non-vanishing term in a gradient expansion. In general
the growth takes place in a direction locally normal to the interface. When a
particle is added, the increment projected onto the h axis (as it is shown in
Figure 2.5) is 6h = [(vdt)? + (v5tVh)?]/? which leads in the weak gradient
limit to

oh

5 = o[l + (VA)?]M2 ~ v + (v/2)(VA)? + ... (2.18)
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Figure 2.5: Schematic picture showing the increment of h as the growth
locally occurs along the normal to the interface

The above expression reduces to A/2(Vh)? after transformation to the co-
moving frame (like in (2.16)). Here A is a constant. Then the KPZ equation

reads
oh 9 9

5 wV<h+ A/2(Vh)* + n(z,t), (2.19)
1y is a constant related to the surface tension,n is a noise term, in the original
version it is an uncorrelated Gaussian noise term with zero-mean as (2.17).

The KPZ equation (2.19) enjoys a subtle local symmetry: Galilean invari-
ance. This symmetry has its origin in the fact that if we tilt the mathematical
coordinate system slightly by an infinitesimal angle ¢, our dynamical equa-
tion should remain invariant, since the physics remains manifestly so. If we

apply the following coordinate transformation to our equation
h—h+¢eux, T —x+ et

then it leaves our equation invariant. As a consequence of this local sym-
metry there is a characteristic identity between the two fundamental scaling
exponents, (the roughness or Holder exponent and the dynamic scaling ex-
ponent)

a+z=2 (2.20)

which is called KPZ scaling relation [14].
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The KPZ equation (2.19) embodies three different universality classes,
depending on the values of the parameters vy and .

(i) The vy = 0, A = 0 case corresponds to random deposition of particles
without surface restructuring or sticking of the particles to each other. Then
for L > 1 the columns grow according to the Poisson statistics describing
the probability that the number of particles in a given column is equal to h
if h particles per column have been deposited. Thus w ~ 7% s given by the
central limit theorem, and 5 = 1/2. Since the size of the substrate does not
have an effect on w, the other two exponents can be regarded to be equal to
Zero.

(ii) If A = 0, it corresponds to the linear EW equation (2.16) when the
evolution of the interface is dominated by the surface restructuring. For
this case a = (3 —d)/2, 8 = (3 —d)/4 and z = 2 as it can be obtained
by Fourier transforming the equation [3]. We expect that the large scale
behaviour of the growth model is again governed by the dynamic scaling
theory. Since equation (2.16) is linear, it is easy to solve it by Fourier
methods. The surface width of the fluctuating interface can be computed
w?(L,t) = (L=4 [ d'z[h(z,t) — h]?) where the angular brackets denote
the averaging over samples and h is the mean height. Direct integration
shows for w the following scaling behaviour

w2(L,t) ~ BLawa(l/t/L2)
Vo

where oo = (3 — d)/2 and

K 2 2\(3—d)/2 [
few(z) = G=d) (d27r)3_d(1 _ o 8mat(8n%) 3D/ B y3=D/2e=vqy)
with Ky = 29 27(@D/2T'((d —1)/2). We can get 3 = (3 —d)/4 and z = 2. It
was shown that for d = 2 ((1 + 1) dimension) f =1/4, a = 1/2.

(iii) The third universality class corresponds to the general case when
neither 1y nor \ is equal to zero. Here the following exponents were found
a=3-d)/2,=(3—-d)/3 and z =3/2.

The KPZ equation has been thoroughly analyzed for one-dimensional
interfaces [13]. In case when the nonlinear term A vanishes it corresponds
to EW equation with scaling exponents as indicated above. For large A it
gives f =1/3, « =1/2 and z = 3/2. Simulations of various surface growth
models like, e.g., Eden or ballistic deposition are in good agreement with
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these values, implying that the KPZ equation provides a proper description
of surface evolution in this class of growth processes.

The KPZ universality class describes most of the physically relevant and
important cases of non-equilibrium surface growth. In KPZ class further
investigations were motivated for e.g. by the fundamental question: what
features are responsible dictating the universality class of a particular rough-
ening process.

2.2.4 Deterministic differential equations for surface
growth

As was shown by Kardar, Parisi and Zhang a relatively simple nonlinear par-
tial differential equation with a stochastic term could successfully be used
to describe the major features of the process of roughening in a wide class
of surface growth phenomena [13]. Under some conditions, however, the ap-
pearently stochastic development of the interface is not due to an external
noise, but is a result of an underlying instability. Thus, a possible alterna-
tive description of rough surface growth can be based on simple determin-
istic partial differential equations containing a singular or unstable term. A
well-known example of this type, the Kuramoto-Sivashinsky (KS) equation
(0h/Ot = —V?h+|Vh|?>— A*h), has been argued to describe the propagation
of flame fronts. The simultaneous effects of the unstable, nonlinear and the
stabilizing terms in the KS equation have been shown to result in a chaotic
spatiotemporal behaviour of the solutions being fractally rough (self-affine)
on large length scales [24].

In an interesting approach to d dimensional complex spatio-temporal be-
haviour the various functions associated with these structures are considered
as growing rough surfaces in a d + 1 dimensional space [25]. This develop-
ment connects the studies of growing fractal surfaces to the research how
stochastic spatio-temporal behaviour emerges in more complex deterministic
processes.

In the following we shall consider perhaps the simplest family of determin-
istic PDE-s producing growing fractal surfaces. These equations, originally
proposed by Zhang have the form

Oh(zx,1t)
ot

= V?h(z,t) + singular term (2.21)
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where several forms of the singular term can be used, including
\Vh|*  with a<1 (2.22)

" In(|Vh]|). (2.23)

Zhang argued that the complex directed polymer problem leads to an
equation analogous to (2.21). Here we simply assume that the simultaneous
effects of more complicated mechanisms under some conditions can be ac-
counted for by a simple singular term of the form we are considering. The
time dependence of the roughness W of surfaces generated by (2.21) with
(2.23) was investigated by Zhang who found that W ~ ¢# with 8 ~ 0.2.

It was Zhang who recently proposed that the above equation for o <
1 is expected to produce chaotic behaviour. He showed that the singular
term results in an instability for 0 < a < 1 ; small perturbations would
grow exponentially and they become tamed only by the Laplacian term.
Following Zhang’s suggestion, Amar and Family ([18]) numerically integrated
Eq. (2.21) with (2.22) for a = 1/2. In this case (2.22) does not diverge as
Vh — 0, however, the corresponding term is unstable (we shall consider later
on the case with singular terms diverging as VA — 0). They determined
B and the Lyapunov exponents corresponding to the chaotic behaviour of
(2.21) with (2.22). They also observed a grooved phase characterized by
occasionally occuring and disappearing linear parts embedded into the rough
interface.

Neither version of the equation of Zhang are well understood mathemat-
ically in spite of their simple form. Nothing is known about the existence,
uniqueness and stability of solutions. For (2.21) with (2.23) only the solu-
tions with non-empty set of extremal singular points, where u, = 0, are of
physical interest. We shall investigate the numerical and analytical solutions
of both types of the above mentioned singular interface equations.

2.2.5 Numerical solution of surface growth equations

The surface growth equations are solved numerically. We show here the most
often used numerical method — a standard finite difference algorithm [20].
We briefly review it for the KPZ type equations (2.19) with initial value
h(z,0) =0in 1+ 1 dimension.
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Let us introduce a grid of mesh points (z,t) = (iAzx, jAt). Here Az, At
are the mesh parameters which are small (and thought of tending to zero),
and 7,j are integers, j > 0, ¢ = 1,2,...,L, L > 1 is a constant (we work
with finite linear size in z direction). We then look for an approximate
solution of (2.19) at these mesh points. We need some boundary conditions
in z direction: because of physical considerations either we may use (i) free
boundary conditions h(0,t) = h(1,t) and h(L + 1,t) = h(L,t) or (ii) periodic
boundary conditions h(0,t) = h(L,t) and h(L + 1,t) = h(1,t). The spatial
derivatives of the right hand side of (2.19) are discretized using standard
forward-backward differences with the mesh parameter Azx. We integrate
(2.19) by using the Euler algorithm with time increments At [8]. Then the
discretized equation is

h(z,t+ At) = h(z,t)+ (AATty((h(x + Az, t) — 2(z,t) + h(z — Az, t))

+é)\(h($ + Az, t) — h(z — Az, t))?) + discr. noise. (2.24)

The discretization of the noise term depends on the type of the noise we are
using. For the stochastic noise when 7 is an uncorrelated Gaussian noise term
with zero-mean, namely (n(z,t)n(z',t')) = 2D§(x — 2")d(t — '), (D > 0 is
a constant), we can take the discretization n(Ax, At) = 0v12AtR(t). Here
0? = 2D/(Az)? and random numbers R are uniformly distributed between
—1/2 and 1/2. The prefactor ov/12At guarantees that the noise has the
same second moment as the Gaussian noise integrated over the time interval
At (see, e.g., [7]).

In the quenched noise case n(x,h) depends on the surface h(z,t) in a
highly nonlinear way. Usually we suppose that (n(z,h)) = 0 and 7 is an
uncorrelated quenched noise with Gaussian distribution of amplitudes and a
correlator which in the continuum limit is formally given by

(n(xo, ho)n(xo + ', ho + h')) = DS (x")6(R)

(D > 0 is a constant). Then we define the discretized noise on a two dimen-
sional lattice: we put n(z, [h(z,t)]) into (2.24) where [h(z,t)] denotes integer
part (see [19]), and 7 is chosen to be uniformly distributed on the interval
(0,1). Then the noise is correlated over the distance of a lattice spacing.
The discretization parameters Az and At have to be chosen small enough
to ensure the stability of the algorithm. For the deterministic linear equa-
tion (A = 0,D = 0) in (2.19), a simple von Neumann stability (see e.g.,[8])
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analysis gives the condition At < Az?/2. Above this limit even the dis-
cretized Laplacian in (2.24) would be numerically unstable. Empirically it
was found that At has to be significantly smaller than this upper bound for
the nonlinear stochastic equation, so the stability limit no longer increases
like Az? but with a smaller power. In fact a scaling analysis suggests that
At < constans (Ax)” should be required (where z is the scaling exponent).
By physical considerations Ax = 1 is used in most of the simulations.

For the numerical solution of the singular interface equations (2.21) with
(2.23) or (2.22) we shall use also the simple finite difference method and
similar reasoning for the choices of stepsizes Az, At.
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Chapter 3

Results

3.1 Simulations of surface growth related to
physical experiments

By the beginning of the 1990 years a considerable amount of interesting
results has accumulated about the far from equilibrium growth of fractal
surfaces as we could see in 2.2. From the available data it became clear
that perhaps the most exciting question regarding the growth of rough inter-
faces was the apparent discrepancy between the experimental results and the
corresponding predictions based on the most general theoretical approaches
and related simulations. In particular, in the 1 4+ 1 dimensional case of KPZ
for the exponents describing the dynamic scaling of the width of the surface
a =1/2 and § = 1/3 were predicted.

On the other hand, the existing experimental estimates obtained for the
interface of viscous flows and the surface of bacteria colonies range between
0.63 and 0.81 for o and give 5 ~ 0.65. These values are in clear conflict with
the predictions 1/2 and 1/3. There are many more experimental systems in
which the measured roughness exponents differ from the KPZ values.

During the past decade a few specific models have been proposed to elim-
inate the above mentioned disagreement. In some cases the original KPZ
equation is modified by adding additional terms to it or in other cases the
type of the noise 7(z,t) is changed.

We worked with different approaches (i) using multiplicative noise term
instead of the original additive one, or (ii) instead of the originally stochastic
noise term we dealt with quenched noise n(x, h) which was fixed in space and
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depended on the coordinate x, as well as the precise interface position A, but
not explicitly on .

Our goals were (i) to make assumptions which are as close to the exper-
imental conditions as possible, (ii) to numerically investigate the resulting
equation and (iii) to compare the obtained behaviour with that observed in
the experiments.

In our papers [27],[28] concentrating on the experiments of the advance-
ment of a wetting fluid in inhomogeneous media we introduced a new concept
of studying the actual physical situation by considering a stochastic differ-
ential equation for the surface development with a multiplicative quenched
noise. We argued that multiplicative noise is the appropriate choice to de-
scribe experiments where the interface between two flowing phases is consid-
ered.

We proposed that the development of the interface h(z,t), e.g., in the ex-
periments on quasi 141 dimensional viscous flows is described by the equation

oh
% = (V2h + (1 + (VR)*)2) (p+ ), (3.1)
where p > 0 is some constant, v is the normal velocity of the growing interface

and the term 7 > 0 corresponds to quenched noise with no correlations, i.e.,
(n(z, h)n(', ")) = Cé(x — z")d(h — K'). (3.2)

From physical considerations here we do not assume that the distribution
of the noise amplitudes is Gaussian with a zero mean; it would be equivalent
to supposing that flat parts of the interface would move backward at places
with n < —p. Rather, we shall assume that n follows some other simple
distribution, e.g., the uniform distribution. In this way, we can avoid (unlike
in the case of Gaussian distribution) the occurrence of the unphysical values
p+mn<O.

To support the particular form in which the noise term enters (3.1) let
us consider the experiment on the two phase flow of viscous fluids in porous
media. We are interested in the case when the more viscous, wetting fluid
advances due to the presence of capillary forces and the interface exhibits
kinetic roughening. Under such circumstances the system can be considered
as a network of randomly interconnected channels of widely distributed sizes
and geometry. The motion of the wetting fluid is determined by the simul-
taneous effects of surface tension, capillary forces and local flow properties
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(permeabilities of the channels). The advancement of the interface at a given
point is proportional to the local driving force and the permeability (Darcy’s
law); just as the electric current j is proportional to the conductivity ¢ and
the electric field E, j = Eo. In our case the driving forces are (i) the wetting
or capillary force which would produce velocity v for unit permeability and,
(ii) the forces due to the surface tension which are represented by the term
V2h (we assume that there is no extra pressure applied to the penetrating
fluid). Thus, equation (3.1) is equivalent to

vy = Fe, (3.3)

where v, is the velocity of the surface in the vertical direction, ¢ is the ran-
domly changing local permeability and F' denotes a general driving force.
Although here we used the wetting experiment as an example to justify the
necessity to take into account multiplicative noise, we think that in many
other situations (e.g., motion of domain walls in magnetic systems with ran-
dom fields and pinning of charge density waves) our approach should also be
considered.

Next let us make a few relevant comments on the other aspects of the
proposed equation (3.1). (i) The term v(1 4+ (VA)?)'/? is included in its full
form from the gradient expansion (2.18) (instead of its linearized version used
in the KPZ equation), because in the actual experiments at the majority of
the points along the interface the condition |VA| < 1 is not satisfied. This
statement becomes very relevant when pinning forces are present and the
interface develops deep valleys with |[VA| > 1 playing a determining role in
the process of roughening. (ii) Naturally, equation (3.1) can be extended by
including other terms, e.g, an explicit additive noise ¢ which can be indepen-
dent of or proportional to 7, and a term A(Vh)? instead of (Vh)? only (] is
a parameter). In this case (3.1) reads as

g—? = (VQh +o(l+ /\(Vh)2)1/2) (p+mn)+¢. (3.4)

In fact, even without including additive noise explicitly, in (3.1) or in the
above equation the term v(1+ A(Vh)?)Y/?p has a contribution which corre-
sponds to additive noise. If both types of noise are present, one may expect
that in the limit of very large system sizes and long times the additive noise
will dominate the growth since the various derivatives of the surface become
very small on a coarse grained scale. The detailed discussion of this impor-
tant question cannot be included into the present work. The only feature
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we note here is that choosing \,v < 1 in (3.4) the additive noise can be
made arbitrarily small and the behaviour is determined by the multiplicative
nature of the noise. This regime then is likely to cross over to the additive
noise dominated case after arbitrarily long characteristic time.

Now we are in the position to describe the development of the interface
in terms of kinetic roughening dominated by pinning forces. At places where
p+1n <K 1, the motion of the interface slows down dramatically. These
points can be considered as temporarily pinned. However, like in all of the
existing experiments on growth (with no evaporation), after some time the
surface passes by this place or region of low permeability and advances further
without a complete stop.

An interesting special case of the noise is when 7 depends only on z. An
existing aspect of the physics is reflected by this choice: the motion of the
interface is determined not only by the conditions at the surface, but also by
the permeability of regions already left behind (which may partially block
the supply of additional fluid).

Before describing our numerical studies of (3.1) we briefly discuss the
applicability of the KPZ approach to the experiments on wetting fronts. Ac-
cording to the KPZ equation the development of the surface is described by
(2.19) where A is a parameter which for wetting flows is larger than 0. As was
pointed out by Kessler et al. [19], for the interpretation of the experiments
it is more appropriate to use a quenched noise in (2.19), n(z, k), and this is
the version we shall discuss below.

At the places where the surface is locally almost pinned (slowed down)
Oh/0t < 1. On the other hand, at the same locations V2h + \/2(Vh)? > 1.
According to (2.19) this can hold only if —(v + n) > 1 in these points. We
argue that large negative values of the noise 1 are not physical, because this
would mean that a flat surface in the given point would move with a large
velocity in the direction opposite to the growth. Since the fluid is wetting,
its spontaneous motion cannot be reverse.

Nevertheless, the equation (2.19) with quenched noise can be solved nu-
merically making various assumptions for 7. Kessler et al. [19] solved the
KPZ equation in the absence of the nonlinear term (so for A = 0) using
quenched noise. Without mentioning the details, we would like to point out
that such an approach does not lead to surfaces similar to the experimental
ones.

Since our main goal is to understand what are the most relevant factors
determining the behaviour of experimental surfaces, we have numerically
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Figure 3.1: Subsequent interfaces obtained by numerically integrating equa-
tion (3.1) for p = 0.0001 and v = 0.5 for a system of linear size L = 1500.
Here each interface corresponds to a fixed t.(a) A=1, (b) A=0

studied (3.1) for times and system sizes compatible to those which have been
realized in the wetting experiments of Rubio et al. [15] and of Horvath et
al. [16]. It is straightforward to integrate (3.1) numerically, the associated
questions we discussed earlier in subsection 2.2.5 describing the numerical
solution for both the quenched and time dependent noise cases. We have
assumed that p+n is always larger than zero, thus, the surface never becomes
completely pinned. On the other hand, at places where p+7n < 1, the motion
of the interface slows down dramatically. These points can be considered
as temporarily pinned. Like in all of the existing experiments on growth
involving flow of matter, after some time the surface passes by these places
or regions of low permeability and advances further without a complete stop.

For simplicity we assumed that n was distributed uniformly on (0,1].
We calculated the surfaces for the following set of parameters: system sizes
L = 800 and L = 1500 with p = 0.0001 and v = 0.5 for A =1 and A = 0.
Figure 3.1 displays the numerical interfaces for L = 1500.

It should be pointed out that in the present case the mesh size used in
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Figure 3.2: (a) The time dependence of the surface width w for various values
(ranging from 0.0001 to 1) of the parameter p related to the strength of the
pinning forces (smaller p corresponds to stronger pinning). There is a well
defined crossover at a time t., depending on p, from a scaling according to
an exponent 5 ~ 0.65 to a scaling with # about 0.26. These results were
obtained for by averaging over 20 runs of 50000 time steps for system sizes
L = 1500. (b) The behaviour of the crossover time ¢, as a function of the
parameter p. In a limited region the dependence can be approximated as
ty ~ 0T,

the course of discretizing the = dependence in (3.1) has a physical meaning:
it corresponds to the lover cutoff length scale of the fluctuations of the media
(for example, it can be identified with the diameter of the glass beads in the
series of experiments mentioned above, since 7 is assigned to the grid points
of a square lattice with mesh size Az). In ¢ a finer discretization is used, and
the actual value of A is a quasi continuous variable.

The simulated surfaces look very similar to the observed ones. Interest-
ingly, the EW case (A = 0) resulted in interfaces having a closer resemblance
to the experimental ones, although there is no particular reason to think that
lateral growth can be neglected during the development of wetting fronts.

Next we investigated w(L,t), the time dependence of the width of the
entire system. The results shown in Figure 3.2a indicate that at early times
there exists a non-trivial scaling

w ~ P (3.5)
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Figure 3.3: The distribution of the noise values (output noise) along the
surface for ¢ > t.. The solid line is for p = 0.0001, the thin line is for
p = 0.0003, the dotted line is for p = 0.001.

with 8 ~ 0.654+0.05 in a surprisingly good agreement with the only published
experimental result [16]. The crossover to a behaviour described by a smaller
exponent 8 = 0.26+0.05 is well pronounced and according to our simulations
the crossover time . only weakly depends on L. Our preliminary calculations
indicate that for larger system sizes and longer times the value 0.26 does not
change significantly. The crossover time has a dependence on p which in a
limited region of the p values can be interpreted in terms of power law scaling.
This is demonstrated in Figure 3.2b. Assuming that for the intermediate
values t. ~ p~7, a linear fit to the data gives the estimate v = 0.7 + 0.1.

We have also calculated the spatial scaling of w. According to our results
for L = 800 and 1500 there exist no well defined, extended straight parts in
the logw versus logr plots for the sizes and times we could realize. However,
for larger sizes (L = 5000) a scaling of w(r) as a function of r over a lim-
ited range of length scale could be observed (just as in the EW case of the
quenched additive noise). The corresponding exponent a ~ 0.47 was close
to 0.5.

The actual status of the growing surface can be characterized by the
distribution P(n) of n values. We consider a large set of surfaces obtained
for times ¢ > . and determine the number of lattice sites with a given 7. The
time the interface spends in a particular grid point (with the corresponding
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Figure 3.4: Series of surfaces obtained as a function of time for the model
with 7 depending on x only (see the text).

n) strongly depends on the value of 1 as well as on the local derivatives
of the surface. These factors lead to a P(n) which is rather different from
the original uniform distribution for 7. The results are presented in Figure
3.3. This figure suggests that in the limit of very small p there is a range
of n in which the distribution of the random numbers along the interface
scales with an exponent close to 0.5. Again, a trivial, Gaussian type input
noise distribution is transformed by the growth mechanism into a power law
distribution of the noise values along the interface.

An interesting special case of the noise is when 7 depends only on . An
existing aspect of the physics is reflected by this choice: the motion of the
interface is determined by not only the conditions at the surface, but also by
the permeability of regions already left behind (which may partially block
the supply of additional fluid). A possible realization of this case includes a
Hele-Shaw cell with parallel grooves of different depth engraved onto one of
the glass plates.

Figure 3.4 shows a typical series of surfaces for L = 1500, p = 0.0001
and v = 0.5. In this model there is a well pronounced scaling both in time
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and space, with numerically determined exponents close to 1 (@ ~ § =~
0.96 + 0.06). A temporal scaling with an exponent 1 can be considered as
a trivial consequence of the particular choice for the noise. On the other
hand, the result o = 1 is far less trivial and indicates that the surfaces attain
a limiting case when the interface is both a single valued self-similar (and
self-affine) function.

In conclusion, we have proposed an approach which is intended to take
into account the experimental conditions during two-phase fluid flows in in-
homogeneous media as well as possible. By introducing a stochastic partial
differential equation with a multiplicative noise describing the development
of the interface we have been able to obtain (i) surfaces remarkably similar
to those observed in the experiments (ii) a scaling behaviour of the surface
width with an exponent being in an excellent agreement with the measured
value. (iii) In addition, the transformation of the uniform input noise to a
power law distribution of the n values along the surface could be observed.
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3.2 Results related to the deterministic
growth equation

3.2.1 Numerical results

Here we present our simulation results of ([29],[30]) concerning the singular
interface equations (2.21) of Zhang. We show by numerical integration that
the discretized (and parametrized) version of these simple deterministic par-
tial differential equations exhibit rich spatiotemporal behaviour representing
a mizture of stochastic and deterministic regimes.

We study the following variants of (2.21)

‘;—? = V?h — BIn(|Vh| + A) (3.6)
and

oh  _,

5=V h+ B|Vh+ A~ (3.7)

The parameters A > 0 and B are used to control the weight of the singular
term.

Our main goal is to demonstrate the various interesting phenomena which
are exhibited by equations (3.6), (3.7) as B is increased from 0. We shall use
the following approach: (i) start with random or some simple initial surface
(no relevant difference has been seen between the two kinds of simulational
results), (ii) numerically integrate the equation using a simple discretization
scheme (iii) evaluate the data in terms of the surface roughness (the total
width) w(t) of the advancing surface given by the function A(t) and the
height-height correlation function ¢(z) (for some ¢). In the computations of
the surface width by (2.11) and of ¢(z) by c(z) = (|h(z + Az) — h(z)|)s
the averaging is made over the h(z) values for x = 1,...,L at time ¢. All
our simulations are carried out in a 1 + 1 dimensional strip with periodic
boundary conditions.

At first we shall pay most of our attention to the numerical solution of
equation (3.6). We use the discretization scheme similar to (2.24)

h(z,t + At) = h(z,t)+ At (h(z —1,t) — 2h(z,t) + h(z + 1,t)) —
—B At (In(|(h(z +1,t) — h(z — 1,t)| + A)) . (3.8)

Since we are considering periodic boundary conditions the solutions must
have extrema (or at least one extremum point). In the case of continuous
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Figure 3.5: Subsequent snapshots of the evolving surface obtained by nu-
merically integrating eq. (3.6) for L = 512, A = 0.0002 and B = 0.002 (a);
B = 0.0053 (b); B = 0.0061 (c¢) and B = 0.01 (d). All surfaces have been
shifted by an amount —C(B)t (this is equivalent to including an extra, irrel-
evant term —C into the RHS of Eq. (3.6)) in order to show many surfaces
(othervise separated by a much larger gap) in the available area of a figure. In
addition, the solutions are stretched in the vertical direction (multiplied by
a factor, depending on B, in the range of 200 - 2000 to enhance the details.)
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solutions at an extremum point either the term In(|VA|) (smooth extremum)
or the term V?h (sharp kink) diverges. Discretization eliminates this sort
of divergences because starting with random initial conditions the finite dif-
ference expression for the gradient takes on the value VA = 0 with zero
probability while for V2h it is always finite even at the sharpest extrema.

For the integration step At in time we used in most of the cases 0.05
(the results did not depend on At for At < 0.1). The width of the strip
was typically L = 512 grid points, but we have also carried out simulations
for L = 256 and L = 1024 to check whether there is any significant size-
dependence in our calculations. The parameter A was kept constant and B,
the relative weight of the singular term, was increased gradually from zero.
The initial condition h(z,0) was a random surface with heights uniformly
distributed between 0.0 and 0.01. We fulfilled the computations with some
simple initial functions also, e.g., psin(4rx/L) + ¢ (p > 0 parameter, ¢ > 0
is a small constant).

Our findings are demonstrated in Figures 3.5-3.8. First we present
(Fig. 3.5a-d) sets of actual surface configurations for various B to illus-
trate the qualitative behaviour of the solutions.

(i) Naturally, for B = 0 the surface becomes perfectly smooth as t —
oo since, as can be seen from a trivial linear stability analysis, the surface
tension-like term V2 leads to the dying out of the perturbations.

(ii) As B becomes larger, at places where Vh is approximately zero the
term Bln(|Vh|+ A) is close to Bln(A) which, for A < 1, represents a large
perturbation to the local velocity of the advancing surface. The strength
of this perturbation sensitively depends on how close is VA to zero at the
given discretization node and this feature, through the nonlinearity of the
dependence of the velocity on the local slope, results in the roughening of the
surface (Fig. 3.5a).

(iii) For B > By, the surface becomes piecewise linear, consisting of
straight line segments of a given slope (Fig. 3.5d). It is natural that the
singular term dominated regime is made of straight line segments which (a)
minimize the number of points where VA = 0 and, (b) correspond to a trivial
steady state because for these segments V2h = 0 and VA = const.

(iv) Perhaps most interestingly, the crossover from stochastic to piecewise
behaviour is accompanied with a phenomenon analogous to intermittency:
periods of almost perfectly regular (piecewise) growth regimes are interrupted
with intervals of stochastic growth (Fig. 3.5c). As an intermediate regime we
can also observe surface evolution during which parts of the surface become
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Figure 3.6: The total width of the growing surfaces w(t) as a function of time
for A = 0.002 and B = 0.0061. The intermittent nature of the solution is
demonstrated by the periods of steady state regime (relatively large, constant
value of w corresponding to a piecewise linear solution existing for some time)
interrupted by stochastically fluctuating time dependence.

piecewise linear and turn random at later stages while the rest of the surface
remains disordered (Fig. 3.5b).

In order to describe the above changes in the spatio-temporal behaviour in
a more quantitative manner we calculate the total width of the surfaces. The
intermittent nature of the solution of Eq. (3.6) for B = 0.0061 is demon-
strated in Fig. 3.6. Intervals of the steady state regime (relatively large,
constant value of w corresponding to a piecewise linear solution existing for
some time) are interrupted by stochastically changing behaviour.

Fig. 3.7a shows how W = w(t — oo) depends on the relative weight
B of the nonlinear term for A = 0.0001. In this plot the log(1¥) values
approximately follow two straight lines as a function of log(B) indicating a
power law dependence of the total surface width in a certain range of the
parameter B. For small B the slope is about 3, while for larger B the slope
is close to 1. As discussed above the discretized version of the term In(|Vh|)
never becomes equal to infinity; in the simulations the role of A is to introduce
a largest possible value of the nonlinear term. Thus, the size of the scaling
region and the value of B at which the crossover takes place depend on the
value of A. Fig. 3.7b shows the results for A = 0. In this case the data fall
onto a straight line over many decades because the term In(|VA|) can assume
much larger (but still finite) values than In(|Vh + A) for A > 0.

We have investigated also the geometry of the surface by calculating the
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Figure 3.7: The dependence of the steady state width W on the weight
of the singular term B for Eq. (3.6). (a) A = 0.00001 (b) A = 0. The
approximately straight part indicates scaling over a limited region of the B
values. The slope of the straight lines in (a) are approximately 1 and 3, while
in Fig. 3.7b the slope is equal to 1. Here the data scale according to an
exponent (slope of the line) approximately equal to 0.68. These results were
obtained by averaging over 100 runs and 200 surfaces/run.

Figure 3.8: The height-height correlation function ¢(z) for A = 0.0002 and
B = 0.002. The self-affine fractal nature of the growing surface is indicated by
the straight part in the plot. The slope corresponds to a roughness exponent
H~0.7.
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Figure 3.9: The dependence of the steady state width W on the weight of
the singular term B for Eq. (3.6). with o = —1/2.

height-height correlation function (for some t¢) ¢(z). The fractal roughness
of the growing surface for B = 0.002 is indicated by the straight part in the
plot of logc(z) as a function of x (Fig. 3.8). The corresponding roughness
exponent is H ~ 0.7, where H is defined by the expression c(x) ~ z.

In conclusion, we have shown that the discretized version of simple deter-
ministic partial differential equations with singular terms (Zhang equations)
exhibit a behaviour which is an interesting mixture of stochastic and de-
terministic regimes. Varying the relative strength B of the singular term
we have been able to detect transitions in the global behaviour of the so-
lutions in analogy with some viscous flows in which changes from laminar
to intermittent and turbulent regimes take place as the Reynolds number is
increased. In our case the emergence of the new type of solution depends on
B as a power law with a well defined exponent. The piecewise linear solution
we find numerically may be related to the ’groove’ instability observed in
several surface growth models.

In the following we consider the parametrized Zhang equation (3.7). with
the power term. By increasing B we can make the relative role of the non-
linearity stronger, while increasing A ”softens” the nature of the singularity
(the relative change of the singular term for small gradients is decreased).

In [29] we investigated (3.7) for o < 0. Fig. 3.9 displays the total width
versus B for o = —1/2. It demonstrates that the behaviour of W is essentially
the same as it was for equation (3.6) independently of the actual form of the
singular term. The slope corresponding to the surprisingly straight set of
data is &~ 0.68. The extension of this behaviour depends on the actual value
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of A. The value of the parameter A has a simple effect of a cutoff of scaling
for smaller B. As A — 0 the almost perfect scaling behaviour extends over
many orders of magnitude.

Then in [30] we study the case o > 0 in (3.7) which is quite different since
the singular term for such an exponent does not diverge as the gradient goes
to zero.

We integrate equation (3.7) using the finite difference scheme (2.24) while
discretizing the singular part in (3.7) by

B At (| (h(z + 1,t) — h(z — 1,t)| + A)“.

Most of the parameters of the scheme are the same as previously. We take for
the integration step At in most of the cases 0.05 (the results did not depend
on At for At < 0.1). We used o = 1/2 for the exponent and the width of the
strip was typically L = 512 grid points. We have also carried out simulations
for L = 256 and L = 1024 to check whether there is any significant size-
dependence in our calculations. The parameter A was kept constant and B,
the relative weight of the singular term, was increased gradually from zero.
The initial condition h(z,0) was a random surface with heights uniformly
distributed between 0.0 and 0.01.

The qualitative aspects of our findings are illustrated in Figure 3.10,
where two sets of actual surface configurations for two selected B values and
for A = 0.01 are shown (for B = 0 the surface becomes perfectly smooth
as t — oo since, as can be seen from a trivial linear stability analysis, the
surface tension-like term V2h leads to the dying out of the perturbations).

For B = 5 the interplay of the instability mentioned above and
the smoothening effect of the Laplacian term results in a rough surface.
(Fig. 3.10a). As B is decreased (B = 1) the surface develops parts which
are close to linear and travel along the z axis. These wave-like parts may
collide and annihilate as is demonstrated by Fig. 3.10b. The total width of
the surface is rather small in this case which is compensated by streching
the curves in the vertical direction by a factor 100. Subsequent “snapshots”
of the evolving surface obtained by numerically integrating eq. (3.7) for
L =512, A=10.01 and (a) B = 5 and (b) B = 1. All surfaces have been
shifted by an amount —C'(B)t (this is equivalent to including an extra, ir-
relevant term —C' into the RHS of Eq. (3)) in order to show many surfaces
(othervise separated by a much larger gap) in the available area of a figure.
In addition, the solutions in (b) are “stretched” in the vertical direction by
a factor 100.
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Figure 3.10: Subsequent snapshots of the evolving surface obtained by nu-
merically integrating eq. (3.7) for L = 512, A = 0.01 and (a) B = 5 and
(b) B = 1. All surfaces have been shifted by an amount —C'(B)¢ (this is
equivalent to including an extra, irrelevant term —C into the RHS of Eq.
(3.7)) in order to show many surfaces (othervise separated by a much larger
gap) in the available area of a figure. In addition, the solutions in (b) are
stretched in the vertical direction by a factor 100.

Fig. 3.11 shows how W = w(t > 1) (for t = 25000) depends on the rela-
tive weight B of the nonlinear term for two values of A. In this plot log(WV)
approximately follows two straight lines as a function of log(B) indicating
a power law like dependence of the total surface width beyond some A de-
pendent threshold value of B. For small B the plots converge to a constant,
while for larger B the slope of the line fitted to the data on this log-log plot
corresponds to an exponent approximately equal to 6 = 0.5. Thus, B plays
the role of a control parameter and the change in the behaviour can be inter-
preted in terms of a morphological phase transition of the rough surface (see
[4]). The value of the parameter A has a simple effect of a cutoff of scaling
for smaller B. As A — 0 the almost perfect scaling behaviour extends over
many orders of magnitude. For ¢ = oo and B = 0 the surface width should
go to zero; however, this convergence is very slow. Thus, in the limit £ — oo
for A = 0 the scaling may extend down to B = 0.

A very peculiar effect can also be observed in Fig. 3.11. For A > 0 the
surface width shows a sharp minimum at an A dependent position. There
is only one reasonable explanation for this phenomenon: for some B the
singular term leads to the smoothening (!) of the surface. For B = 0 and
t — oo the surface should be perfectly smooth. The convergence to this limit
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Figure 3.11: The dependence of the width W = w(¢ = 25000) on the weight
of the singular term B for Eq. (3.7). (o) A = 0; (A) A = 0.01. The
approximately straight part indicates scaling over a limited region of the B
values. The slope of the straight part is approximately 0.5.

is, however, very slow. Apparently, the rate of convergency to the smooth
solution is drastically increased by the nonlinearity in a given region of B
values.

We have investigated also the geometry of the surface by calculating the
height-height correlation function c¢(z) (for some t). The fractal roughness
of the growing surface for B = 5 and A = 0.01 is indicated by the straight
part in the plot of log ¢(z) as a function of z (Fig. 3.12). The correspond-
ing roughness exponent is H ~ 0.7, where H is defined by the expression
c(z) ~ xf. In the regime where the surface has mainly linear parts H is
approximately equal to 1.

Remark. The simulation and the surface drawing programs have been
written in Pascal, and later on some of them had C versions. During the
years the numerical simulations have been carried out in workstations (SUN
OS 4.1.3, Solaris 2.3 etc) and main frames (like IBM RISC 6000) provided at
different places: at the Computer and Automation Center H.A.S. (SZTAKI),
at the Supercomputing Centre (HLRZ), KFA Jiilich and at the Budapest Uni-
versity of Economics. The calculations have been very CPU time consuming.
For a given parameter set A, B we considered as one numerical experiment
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Figure 3.12: The height-height correlation function ¢(z) for A = 0.01 and
B = 5. The self-affine fractal nature of the growing surface is indicated by

the straight part in the plot. The slope corresponds to a roughness exponent
H =~ 0.7.

the computations of our quantitative measures w(t) and ¢(z) with one initial
function. Then for several hundred times we repeated the numerical experi-
ment for the same A, B but different initial functions (in case of the random
initial conditions, naturally, each run becomes different) and took the average
of w(t) and ¢(z) by the number of experiments.
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3.2.2 Analytic results: special solutions

In [31] we obtained analytical results for the singular interface equation of
Zhang

4
8“5,;;’ ) V2u(z. 1) + In(|Vu|) (3.9)
and a closely related more general equation
0 t
“(a”“; ) — V2u(z, 1) + du2 + In(|Vul). (3.10)

(For the sake of mathematical traditions we used here u(z,t) instead of
h(z,t).)

In the previous section the finite difference version of a slightly modified
form of the singular interface equation (3.9) has been numerically investigated
for the Cauchy-Dirichlet problem with periodic boundary condition where
the initial function was a non-negative noise function with u,(z,0) = 0 at
several points [29]. Our numerical calculations (beside other results) have
shown that after some time (for large ¢) the typical form of the solution is
like the one in Figure 3.13. Here the minimum points correspond to those
values of z (for fixed t) where u; = 0. In the neighbourhood of the two local
minima the solution looks like a linear function which seems to be logical
because x and —z are solutions to equation (3.9). On the other hand, the
function |z| is not a classical solution due to a lack of smoothness at zero
(the flux is not continuous). It is easy to see that |z| is not a weak solution
either (see the definition of weak solution below). The analytical approach
could provide us with a possible explanation how the typical forms like in
Figure 3.13 can arise.

Our results show the existence of special solutions namely travelling waves
(TW) and self-similar solutions which have linear asymptotics, at singular
points have continuous first derivatives consequently they are solutions in
the weak sense.

We shall see that u(z,t) has no continuous second derivative with respect
to x at the points where u, = 0. In the neighbourhood of such points
we indicate in what sense the solutions u(z,t) satisfy equations (3.9) and
(3.10). This is the usual definition of weak solutions in the theory of partial
differential equations (see, e.g., [21]). The identity (3.11) is the result of
multiplication of (3.10) by ¢(z,t) and of formal integration by parts.
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Figure 3.13: Typical form of the numerical solution to equation (3.9) for fixed
(large) t. The minimum points correspond to those values of z (for fixed ¢)
where u, = 0.

Weak solution. We shall say that u(z,t) is a weak solution to equation
(3.10) if the integral identity

T T t
/ 1 ucp|§;dx = / 1 /t l(ugot — Ugpg + SuZp + @ In |ug|)dwdt (3.11)
Zo Zo 0

is satisfied for all rectangles R = [xg, z1] X [to,t1] € (—00,00) X (0,00) and
smooth (on R) functions ¢(z,t) such that ¢(xg,t) = ¢(x1,t) = 0.

Note that this definition requires only the integrability of functions wu, u,,
u?, In |u,| and does not contain .

Travelling wave. The travelling wave (TW) solution to equations (3.9)
and (3.10) is a solution of the form u = g(§), where £ = x — At and X is a
real number (speed) [26].

If function g(€) is to be a function providing a TW solution then it should
satisfy the following second order ordinary differential equation

gll +)\gl + 69’2 +ln‘gl| — 0
Using the substitution ¢’ = f we get
'+ Af+6f2+In|f|=0. (3.12)

First we consider the case 6 = 0 (equation (3.9)) which turned out to be
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more general from our point of view. Then equation (3.12) reads

[f'==A+In— (3.13)
|f
Here we shall study equation (3.13) with A > 0 in detail; the A < 0 case
can be handled analogously.
The roots of the non-linear equation

1
i

1 —_—
/]
determine the equilibrium points (where f' = 0) of (3.13) .

~\f +1n 0 (3.14)

Remark 3. If the constants f; are equilibrium points of (8.13) then the linear
functions v = (x — At) f; will be TW solutions to equation 3.9.

In the following we shall consider the nontrivial TW solutions to (3.9).

Remark 4. In each interval not containing any of the equilibrium points,
the function

F(f):/fln'idis_/\szf (3.15)

is strictly monotone (increasing or decreasing). So the inverse function, F~1,
exists in this interval and the solution to equation (3.13) is the function

f(&)=F (¢

which gives us the solution to (3.9):

u=g(&) = /f(ﬁ)df—i— c, ¢ is a constant.

Let \g = e !, (In e =1). Depending on the speed of the travelling wave
A, we shall have three different cases.
I.If 0 < XA < Ag then equation (3.13) has three equilibrium points. Namely
equation (3.14) has exactly three roots: fy, fi, fo, where 0 < fo <1, f1 < —1
and fy < f.
IT. If A = Ag, then equation (3.14) has two roots: fo, fi, where 0 < fy < 1,
Ji=—e.
III. If A > Ao then we have only one equilibrium point 0 < fy < 1.
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Figure 3.14: Function F'(f) used to construct u(z — At), the TW solutions
to equation (3.9) in case 0 < A < A.

Case I: 0 < A < Ao

Here equation (3.13) has four different solutions separated by equilibrium
solutions f; (i = 0,1,2). The solution between f; and fy, is the only one
which becomes 0 in one point. Because f = ¢’ = u,, the original equation
(3.9) is genuinely singular there.

In the following we construct TW solutions by the help of function F'(f) of
(3.15) as described in Remark 4. The starting point our proofs is the function
F'(f) (see Figure 3.14).

(i) —oo < f < fa. In this interval F > 0, F/ — +oc when f 7 f, and
F' 0 when f — —oo. The function, F, is strictly monotone increasing,
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F—+if f S foas —In|f — fo| and FF — —o0 for f — —o0 as — In(—f).
Consequently, the function f(£) for large £ > 0 behaves like —e ¢ + f,, for
large negative £ like —e ¢. Integration gives the function v = g;(£¢) which
has asymptote f>£ if € — +oo and is like e ¢ for large negative &.

(ii) fo < f < 4+o00. Here F' < 0, F is strictly decreasing, F' ~ —In|f — fo| if
f ¢ fo,and F' behaves like —In f for large f.

Hereafter a(z) ~ b(xz) means that limz_)o% = ¢, where c is a positive
constant.

The function f(£) decreases from oo to fy and globally behaves like e7¢ + fj.
The corresponding solution, u = g¢o(£), has fo€ as its asymptote for large
positive & and behaves like —e ¢ for large negative £&. Thus, basically, go
looks like —gy (€).

(iii) fo < f < fi < —1. In that case, as it is easy to see, we have a bounded
negative f(&) such that f(—oo) = f; and f(4+00) = fo. Thus, u = g3(§) is like
a hyperbole with asymptotes fi£ for large negative & and f¢ for £ — +o0.
The TW solutions, ¢1(€), g2(€), g3(¢) for which u, never turns to zero, are
presented in Figure 3.15.

(iv) f1 < f < fo. This is the first important case: the derivative of the corre-
sponding solution becomes zero at some point (without a loss of generality,
we can suppose that it happens at the origin x = 0).

In the interval (fi, fo) the function F'(f) is nonnegative, F'(0) = 0 and
F"(£0) = +o00. In the neighbourhood of fy and f; the function F’ behaves
like |f — f;|=*. The function F is strictly monotone increasing, F — —oo if
f — fiand F — +oo for f — f;. Consequently, the function u = g4(&)
decreases to zero and is increasing from zero. It is a non-negative hyperbole-
like function with asymptotes fi€ — & from the left and fo& — &; from right,
& > 0, see Figure 3.16.

The function F'(f) for small f behaves like (In ﬁ)*l, thus F(f) ~ f(In ﬁ)*l.

It is easy to see that f(&) ~ [¢] lnﬁ?l for small |£], so

1
13

One can see that the second derivative of g4(§) at zero is not continuous:
gl (€) ~ In ‘—2' — 400 when [£| — 0. In contrast to (3.9) identity (3.11) does
not contain u,, and all the integrals in (3.11) exist except, possibly, the last
one [@ln|ug|dz. If ¢ =1 in the ¢ -neighbourhood of zero (we suppose that
uz = 0 at zero) then the convergence of this integral is equivalent to the

94(€) ~ € 1n

for small €.
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Figure 3.15: Travelling wave solutions (u = ¢1(§),u = ¢(§),u =
93(&),where & =1z — At) of equation (3.9) for the case when u, never turns
to zero.
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Figure 3.16: Travelling wave solution of equation (3.9) when u, = 0 at some
point (without loss of generality we suppose that at z = 0, for fixed ¢). It
has the cusp-like form similar to Figure 3.13.
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convergence of [¢_In(|z|In ﬁ)d:ﬁ However,

1

1
|In(jz| In—)| < |In|z|| + \lnln‘ |
x

]
which is integrable at zero.
Case II: A = )\y. Equation (3.14) has two zeros : fy € (0,1) and f; = —e.
The function F'(f) is the same as in Figure 3.14 with fo = f;. Thus, we have
three travelling waves which behave qualitatively like g1, g5 and g, from the
previous case.

Case III: X > Xy. The travelling wave corresponding to f > f; is like go.
Let us now assume that f < fo. The function F’'(f) in the interval [—¢, fo),
e > 0 behaves like F'(f) in Figure 3.14, but decreases to zero when f — —oo
like —% having a maximum at some point f; < —e. The corresponding
solution, u = g5(&), behaves like g4 in the neighbourhood of zero, while for
large positive £ it has a linear asymptote fo& — & and for large negative &
behaves like e7¢. In the case A = 0 (stationary TW) we have F'(f) = —ﬁ.

Here there are two equilibria fy = 1, f; = —1. The travelling wave between
fi < f < fo is qualitatively the same as g, while for fy < f the solution is
like ga.

When f < —1 the TW solution u = g¢(€) is a strictly monotone decreasing
function having £ as an asymptote for large negative £ and behaves like £2 In %
for large positive &.

| <c[nz]]

The case 6 > 0 (equation (3.10)), A > 0 is qualitatively the same as the
previous one (6 = A = 0): one has two equilibria ,f3 and f4, such that
fi<0< f3<1.

Now we deal with a self-similar type solution to equation (3.9) and describe
its geometrical properties. This solution will have the form
x

(t+t0)ﬂ) + f(2) (3.16)

where the functions ¢(§), f(¢) and the positive constants «, [ are to be
determined.

Formula (3.16) expresses the self-similar nature of the solution, or can be
regarded as solution with dynamic scaling. Here we refer to dynamic scaling
because equation (3.16) has a form which is analogous to the scaling be-
haviour of self-affine growing surfaces (see, e.g., in [5] equation 7.19) whose
properties can be described in terms of dynamic scaling.

u(z,t) = (t+t9)%g(
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Theorem 1. Let g(&) be the solution of the generalized Weber equation

9(§) =5 € 4'() =4"(€) +Inlg (). (3.17)

Then
1) the function

u(z, 1) = (t+1t0)[g(€) + %(ln(t Yt — 1), €= —
(t+to)

satisfies equation
Up = Ugg + 10 |ugl.

2) Function g(§) has the following geometrical properties

(i) g(&) is monotonously increasing for & > 0 and g(§) is monotonously
decreasing for £ <0,

(i6) g(¢) ~ €In L, for small |¢],

(ii) (&) ~ &, for large |].

Remark 5. We see that g(&) roughly looks like % (we suppose, as before,
that g(0) = 0.) The only important difference is the nonsmoothness of g at
zero: the second derivative blows up at &€ = 0. The next to leading order term
in (ii) is € 1n .
Remark 6. It follows from (3.17) that if g€) is a solution then h(§) = g(—&)
also satisfies (3.17). Since g = constant is not a solution, it is possible to
show, that for € > 0 the initial value problem for (3.17) with g(0) = 0, ¢'(0) =
0 has a unique global solution g = g*(§). For & <0 we set g = g7 (=§). At
the point £ = 0 the function g(§) is not necessarily smooth (g"(0) can blow
up) but we can understand equality (8.17) in the neighbourhood of £ = 0 in
a weak sense, as in definition of the weak solution for 3.9.

Proof of 1) Substitution to 3.9 gives

aft +10)*'g(&) — Bt +1)* T E(E) + f'(t) =
(t+1t0)* #g" +In|(t +10)* Pg'(€)]
(t+10)*"*g" + (@ = ) In|(t + to)| +1n |¢'(€) -
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Now, one can see that if we take

I

f(t):%(t+t0) In(t+t)—1], ty>e, a=1 and B=

— N =

u(z,t) will be a solution to 3.9 provided that g(£) satisfies equation (3.17).
Proof of 2)

(i) It is sufficient to show that ¢'(£) > 0 for £ > 0.

In fact, suppose that & is the first value where ¢'(§) is zero. Let us take
& =& —e > 0, where ¢ is a small positive number. One has ¢"(&) < 0 and
In |¢'(€)| is a large negative number. However, in the same neighbourhood
the left hand side of (3.17) is positive. So ¢'(£) > 0 for £ > 0.

(ii) We can see from (3.17) that the behaviour of ¢g(£) in the right neigbour-

hood of £ =0 (£ > 0) is controlled by equation
91(&) +1nlg1(§)[ = 0.
By setting g (§) = y(£), one has

y'(€) +Infy(§) =0

from which we have y(§) ~ &1In 4, for € € (0,¢), >0 is small, so

1
Ea

91(&) ~ g(&) ~ £21n %, for &€ (0,¢).

Thus, g(§) at £ = 0 (where ¢’ = 0) behaves like £21n
u(z,t) is like 2 1In |71| for fixed t at x = 0 (where u, =

|~

Gl which means that

= m

. This proves (ii).
(iii) First we show that g(§) is at least power-like at infinity. Suppose the
contrary:

9(&)

é‘s
i.e. that g(&) grows slower than any power of £&. In that case, because of the
monotonicity of g, we have ¢’(§) — 0 as £ — oo. Indeed, if ¢'(§) > ¢ > 0
for £ > & then integration gives ¢ > ¢ & which contradicts to (3.18). But
if ¢'(§) — 0, then the right-hand side of (3.17) goes to minus infinity. The
only term of (3.17) which is able to balance it, is —% & ¢', consequently
g€ ~ %ln{ for large £ and g ~ (In&)?. Substituting this into (3.17) and
taking & large enough we obtain a contradiction.

— 0, for all >0 (3.18)
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Substitution g(£) = £“ into equation (3.17) gives
ga _ %ga — a(a _ 1)£a—2 +1In |a€a—1‘

which is true in the limit £ — oo only if @ = 2. For a more exact result,
suppose that g has the form g = £2h(€) where limg_, o hg(f) =0 for all ¢ > 0.
Substitution into (3.17) leads to the equation

1 2h 4h 1

——¢h =h"+ — —In2&h+ &R

2§ +€2+£+§2n\§+€ |

from which we can see that the behaviour of h(§) at infinity controlled by
the equation

1
- hI:h”
5¢

having the explicit solution h(£) = J&e~"*/*dr with h(+o0) = constant.
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Chapter 4

Summary — (")sszefoglalzis
(in Hungarian)

Onaffin fraktal feliiletek dinamiksja

Tevékenységiink elsésorban az onaffin fraktalfeliilletek dinamikajanak aktualis
kérdéseire irdnyult, melyeket a fizika vetett fel az 1980-as évek végétdl
kezdve. Azota a teriilet oridsi iitemi fejlédésnek indult, fontos eredmények
sziilettek szamitogépes szimulacié segitségével, valamint elméleti és kisérleti
modszerekkel.

Az egyensulytol tavoli jelenségek osztalyaba tartozo onaffin novekedés szamos
dinamikus folyamat sordn fellép, amikor a novekvé hatarfeliilet j részek
keletkezésével halad elore. Példaul a kristalynovekedés, permetezés, galva-
nizalas vagy biolégiai novekedés folyaman. Fraktal feliiletek alakulhatnak
ki anyagrétegek eltavolitasa esetén is, igy kémiai oldaskor, csiszoldsnal, kor-
rozié és erozidé kozben. A feliiletnovekedés mas folyamatokkal is rokon je-
lenség, beleértve példaul a langfrontok terjedését, a véletlen idopontokban
megkevert folyadék hosszi id6 elteltével kialakulé viselkedését, a szeny-
nyezések bekeriilése miatt durvulé és lemaradé hatarfeliileteket. A latszolag
kiillonb6zo, de egymaéssal rokon jelenségek kozotti Osszefiiggések lehetdvé
teszik, hogy a durva feliiletek kialakuldsat tobbféle mdédon kozelitsiik meg

5].
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Ha a novekedési folyamat feltételei olyanok, hogy a hatarfeliilet kialakulasa
margindlisan stabil (a fluktudciék hosszi ideig fennmaradnak nagyobb
valtozas nélkiil) és a fluktudcick lényegesek, a kialakulé struktira durva
felillet lesz. Ez a feliilet jol leirhaté fraktdlfiggvények - sehol nem differ-
encidlhat6 onaffin fliggvények segitségével.

Az onaffin fliggvényekre teljesiil az aldbbi tulajdonsag
h(:vl, ceey 37”) = )\;al...)\;anh()\ll'l, ceey )\nJTn),

ahol «; durvuldsi vagy Hurst-kitevo. Tipikusan dltaldban csak egy karakte-
risztikus durvuldsi kitevénk van («), és skdldzds szempontjabol az x; értékek
ekvivalensek, azaz egyszeriibben h(z) = A™*h(\x). Beldthatd, hogy lokalisan
az Onaffin fiiggvények Holder folytonosak o exponenssel [2].

Az onaffin feliilletnovekedés dinamikajat egyrészt egyszeriisitett racsmo-
dellek, mésrészt a fizikai folyamat lényegét leiré egyenletek (sztochasztikus
és determinisztikus parcidlis differencidlegyenletek — PDE) segitségével
tanulméanyozhatjuk.

A sztochasztikus feliilletnovekedést és a részecskék Osszetapadasat szimulald
racsmodellek megértését segitette elé az a programcsomagunk, amelyet 1992-
ben a World Scientific kiad6 publikélt és terjesztett [6]. Megjelenésekor ez a
maga nemében elsé ilyen programcsomag volt. Sikerrel hasznaltak elsérban
az oktatasban, esetenként kutatasi feladatok megolddsdban is. Rovid leirdsat
a dolgozat fuggelékében adjuk meg.

A fent leirt fizikai folyamatok sordn kialakulé durvulé feliilet dinamikdjat
altaldban az aldbbi Kardar-Parisi-Zhang (KPZ) egyenlettel lehet modellezni
[13]:

oh

5 = VVh e A2(VR) + (1),

Itt n tobbnyire nem korreldlt zajt jeldl, v a feliileti fesziiltség, A konstans. Az
altalunk vizsgalt esetekben (r,t) € R?, h(z,t) € Ra hatarfeliillet magassiga

(tadvolsdga) az x helyen a t pillanatban, az eredetileg sima kezdeti feliilettdl
(h(z,0) = 0) mérve.
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Vizsgalataink a fizika és a matematika hatarteriiletén mozognak, gyakran a
szamitastechnikat haszndlva eszkoziil. Két {6 irdnyra koncentraltunk.

1. Fizikai kisérletekhez kapcsol6doé
sztochasztikus novekedési modellek

Fizikai kisérletekhez kapcsolodo onaffin fraktalfeliiletek novekedését kivantuk
modellezni. A kapott nemlinedaris sztochasztikus differencialegyenleteket nu-
merikus szimulacio segitségével vizsgaltuk. A kisérleti és numerikusan kapott
feltiletek Osszehasonlitdsara haszndlt mennyiségi mutaték a skalazasi ex-
ponensek. FEzek az exponensek a feliillet valamilyen fontos jellemzdjének
(példaul a w(t) felilletszélességnek, vagy a c(x,t) magassdg-magassig kor-
reldcids fiiggvénynek) a viselkedését irjak le.

A nedvesitési frontok kisérleti vizsgdlatai sordan kapott eredmények [15],[16]
nincsenek Osszhangban a KPZ egyenlet megolddsaval. Ennek f6 oka, hogy
inhomogén kozegben valé terjedés leirdsakor a fluktudcidkat mint befagyott
zajt kell figyelembe venni, szemben a KPZ egyenletben szereplé termikus
tipusi zajjal. (A befagyott n(x,h) zaj nemlinedrisan fiigg a felillet magas-
sagatol, h(z,t)-t6l.) Uj, a kisérleti eredményeknek jobban megfeleld mod-
ellt definidltunk [27],[28]. A zaj multiplikativ médon szerepel ay egyenlet-
ben, mert ez az eset jobban megfelel a kisérleti koriilményeknek, ha a feliilet
anyagtranszport kovetkeztében mozog. A vizsgalt egyenlet

g—? = V2h + o[l 4+ (VR)IY2(p + 1),

ahol p > 0 konstans, v a sebesség feliiletre merdleges komponense és 7 > 0 a
korreldlatlan befagyott zajnak felel meg.
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F6bb eredményeink a fizikai kisérletekhez kapcsol6dé modellben

A befagyott zaj a korabbiaktdl eltéro, 1j skalazasi exponenseket hataroz meg.
A numerikus integralds eredményeként azt kaptuk, hogy a feliilet idobeli
durvulésat leiré 8 exponens értéke befagyott multiplikativ zaj esetében kozel
van 0.65-h0z; ami

e (i) egyfeldl rendkiviil j6 egyezésben van a kisérleti eredményekkel,

e (ii) masfeldl 1ényegesen eltér a nem befagyott zaj esetére vonatkozd, az
elméletbdl ismert 1/3-os értéktél;

e (iii) ezenkivill megfigyelhetd, hogy az eredetileg egyenletes eloszldsi
input zaj hatvanytorvénynek megfelel6 eloszlasu lesz a feliillet mentén.

2. Komplex térid6 viselkedésii
determinisztikus novekedési modellek

Az elmilt néhdny évben nyilvanval6va valt [24], hogy a d dimenziés kom-
plex téridé—viselkedés érdekes megkozelitési médjait kapjuk, ha az ott fellépo
struktirak leirasara hasznalt kiilonbozo figgvényeket a d+1 dimenzids térben
novekvd (durvuld) feliiletnek tekintjiik. Ezeket a d 4+ 1 dimenziés feliileteket
pedig a fraktalgeometria terminolégidjaval, fraktalfiiggvények segitségével
leirhatjuk.

A komplex irdnyitott polimerek elméletébdl szarmazé Zhang egyenletet [17]
vizsgaltuk numerikusan és analitikusan

Oh(z,t)

e V2h(x,t) + szingularis tag

az aldbbi szinguldris tagokkal

\Vh|*  a<1l  vagy In(|Vh]).
Ezt a zaj nélkiili (determinisztikus PDE-vel leirt) komplex viselkedésii rend-
szert fizikusok és késObb matematikusok is tanulméanyoztdk. Egyszeri

alakja ellenére mindmadig nem teljesen feltdrt a megoldés komplex viselkedése
(egyéltaldn létezése, stabilitdsa stb.).
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e Numerikus vizsgalatok

Ugy talaltuk, hogy a nemlinearis vagy instabil PDE-k esetében
a diszkretizacié szingularis perturbaciot jelent, tehat a numerikus
megoldas sordn a folytonos egyenlet megoldasdhoz képest egy
mindségileg kiilonb6z6 megoldascsalad kaphaté csak meg. A Zhang-
egyenlet alabbi paraméteres valtozatait vizsgaltuk

g—}t‘ = V?h — BIn(|Vh| + A) (4.1)
és 9
yrie V?h + B|Vh + A|~. (4.2)

Itt A > 0 az egyes szimuldcidk alatt (kis) konstansként rogzitett érték
és B a szingularis tag silyat szabalyoz6 paraméter.

A kezdeti h(z,0) véletlen feliillet, amelynek magassidga 0.0 és
0.01 kozotti egyenletes eloszlasi. A szimuldciékban periodikus
hatarfeltételeket hasznaltunk.

Numerikus vizsgalataink f6 eredményei

A B paraméter értékét valtoztatva a megoldas globalis viselkedésének
kiilonbo6zo érdekes dtalakulasait — sztochasztikus és determinisztikus
viselkedést (valamint azok keverékét) — sikeriilt megfigyelni és meny-
nyiségileg leirni a (4.1) egyenletre és o < 0 esetén a (4.2) egyenletre.
[29].

A B = 0 esetben a feliilet teljesen kisimul ahogy ¢ — co. A (4.1) egyen-
letre a B értékét novelve (A < 1) a feliilet "durvul’ (3.5a dbra), mig
B > By, esetén a feliilet adott meredekségii linedris szakaszokbdl &ll
(3.5b 4bra). Taldn a legérdekesebb, ahogy a sztochasztikus viselkedés
4tvalt determinisztikusba. Ekkor van egy véltakoz6 periédus, mikor a
majdnem tokéletesen regularis (szakaszonként) novekedést megszakitja
a sztochasztikusan névekvd rész (3.5¢ dbra) vagy olyan dtmenet is
megfigyelhetd, amelyben a kés6bbi stddiumban véletlenre valto feliilet
részei szakaszonként linedrisak mikozben a feliilet tobbi része ren-
dezetlen marad. A B paramétertol valo fiiggést jol meghatarozhato
kitevéjii hatvanytorvény irja le.

66



Az a > 0 (a < 1) eset teljesen kiilonb6z6, mivel a szingularis tag pozitiv
kitevovel nem divergal, amikor a gradiens nulldhoz tart. Itt csak a két
f6 valtozat jelent meg a B paramétert6l figgben (ldsd 3.10. &bra):
durva fraktalfeliilet, illetve olyan feliilet, amelyen egyenes hulldmszeri
részek mozognak az x tengely mentén [30].

Az analitikus vizsgdlatok eredménye

A paraméterek nélkiili Zhang egyenlet logaritmus tagu valtozatat ana-
litikusan vizsgalva sikeriilt specidlis megoldasokat taldlni. A halado
hulldm h(z — At) és az 6nhasonlé megoldds geometriai tulajdonsagait
vizsgéalva bebizonyosodott, hogy a numerikus megoldas esetén lathato
struktirdk (hulldmszert, egyenes vonalakbdl all6 részei) (lasd példaul
3.13. 4bra) lokélisan ugy viselkednek, mint az dltalunk taldlt specidlis
megoldasok (3.16. abra) [31].
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Appendix A

Fractal Growth software
package

About two decades ago due to the activity of Benoit Mandelbrot, physicists
(and later other scientists) became interested in fractals and the field was
developing fast. It was realized that the rich variety of complicated patterns
in nature can be successfully modelled by simple fractal growth models which
capture the essential physics behind the associated phenomena. Computer
simulations of such aggregation models have been playing an important role
in our understanding of far-from-equilibrium growth processes. We developed
a sofware package for the demonstrations of fractal aggregation models for
IBM and compatible personal computers which was published in 1991 by
World Scientific ([6]). Besides the diskette with the software it includes a
user manual with short introduction about fractals and the models.

The program automatically detects the video standard of the particular con-
figuration (available those years) and adjusts the model parameters accord-

ingly.

The software is menu driven. The menus are organized hierarchically. Each
time an item is selected a new level is entered (until the last level). The six
menus are presented in the following Figures.

Different variants of four kinds of aggregation models have been presented:
beside ballistic and Eden models (described briefly in Chapter 2), diffusion
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limited aggregation and other models (cellular automaton, percolation, ran-
dom walk). The user could choose from the menus even a short explanation
of the particular model with the corresponding formulas and could learn a
few tricks, e.g., how to simulate diffusion effectively.

The programs were developed using Turbo Pascal 5.5. They were compatible
with higher versions (up to 7.0 we tested later). The names of the Pascal
files and the corresponding models are

e BBUSH.PAS — Ballistic deposition on a single seed particle

e BDEP.PAS — Ballistic deposition onto a straight line

e CELL.PAS — Probabilistic cellular automaton (clouds)

e DLA.PAS — Diffusion limited aggregation (demo)

e DLA.PAS — Diffusion limited aggregation (faster version)

e EDEN.PAS — Eden growth around a seed particle

e EDENAV.PAS — Eden growth with noise reduction

e EDEP.PAS — Eden growth along a straight line

e PERCOL.PAS — Growing percolation

e RDEP.PAS — Random deposition

e WALK.PAS — Random walk on a plane
Our software package was unique since the Fractal Growth diskette contained
the source files of the programs as well. It made possible for the user to learn

and to design his or her own versions of the aggregation models. The package
served both the educational purpose and research.

71



Bibliography

[1] Falconer, K. Fractal Geometry, Mathematical Foundations and Applica-
tions, John Wiley & Sons, Chichester, New York, 1990.

[2] Mandelbrot, B. B. Physica Scripta, 32, 257 (1985)

[3] S. F. Edwards and D. R. Wilkinson, Proc. Royal Soc. London, A381,
17 (1982)

[4] Halpin-Healy T. and Zhang Y-C. Kinetic roughening phenomena,
stochastic growth, directed polymers and all that, Physics Reports, 254,
4-6, 215 (1995)

[5] Vicsek T. Fractal Growth Phenomena, Second edition, World Scientific,
Singapore, 1992

[6] Vicsek M. and Vicsek T. Fractal Growth. Demonstrations of Fractal
Aggregation Models, World Scientific, Singapore (1992)

[7] Dedk 1., Random Number Generators and Simulation, Publishing House
of the Hung. Acad. Sci., Budapest, 1990.

[8] P. G. Ciarlet and J. L. Lions, eds. Finite Difference Methods, Part I,
North Holland, Amsterdam, 1990.

[9] F. Family and T. Vicsek, J. Phys. A, 18, L75 (1985)
[10] R. Jullien and R. Botet, J. Phys. A, 18, 2279 (1985)

[11] F. Family and T. Vicsek, eds., Dynamics of Fractal Surfaces, World
Scientific, Singapore, 1991.

72



[12] J. Krug and H. Spohn, in Solids Far From Equilibrium (ed. C. Godreche)
Cambridge University Press, Cambridge (1991)

[13] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett., 56, 889 (1986)
[14] M. Kardar and Y.-C. Zhang, Phys. Rev. Lett., 58, 2087 (1987)

[15] M. A. Rubio, C. A. Edwards, A. Dougherty, and J. P. Gollub, Phys.
Rev. Lett., 63, 1685 (1989)

[16] V. K. Horvéth, F. Family, and T. Vicsek, J. Phys. A, 24, 1.25 (1991)
[17] Y.-C. Zhang, J. de Physique, 51, 2113 (1990)

[18] J. Amar and F. Family, J. Phys. A, 24, L79 (1991)

[19] D. A. Kessler, H. Levine and Y. Tu, Phys. Rev. 43, 4551 (1991)

[20] K. Moser, J. Kertész and D. Wolf, Physica A178, 215 (1991)

[21] Ladyzhenskaya O. A., Solonnikov V. A., Ural’ceva N N, Linear and
Quasilinear Equations of Parabolic Type, Amer. Math.Soc., Providence,
R.I.,1968.

[22] G. I. Barenblatt Dimensional Analysis, Gordon and Breach Science
Publ., New York, 1987.

[23] D. K. Arrowsmith and C. M. Place An Introduction to Dynamical Sys-
tems, Cambridge University Press, Cambridge, 1990.

[24] V. S. L'vov and L. Procaccia, Phys. Rev. Lett. 69, 3543 (1992)
[25] P. Constantin and I. Procaccia, Phys. Rev. E., 47, 3307 (1993)

[26] A. L. Volpert et al., Travelling Wave Solutions of Parabolic Systems,
Amer. Math. Soc., Providence, Rhode Island, 1994, Translation of Math.
Monographs 140 (1994)

[27] T. Vicsek, E. Somfai and M. Vicsek, J. Phys., A25, L763 (1992)

[28] Z. Csahdk, K. Honda, E. Somfai, M. Vicsek and T. Vicsek, Physica
A200, 136 (1993)

73



[29] M. Vicsek and T. Vicsek, J. Phys.,A28, L311 (1995)

[30] Z. Neufeld, M. Vicsek and T. Vicsek, Physica A233, 754 (1996)
[31] R. Kersner and M. Vicsek, J. Phys., A30, 2457 (1997)

[32] M. Vicsek and T. Vicsek, CWI Quarterly, 10, 153, (1997)

74



