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Kivonat

Az elvégzett vizsgalatok célja a teljes valoszinliségi moddszernek elnevezett uj
spektrumkiértékelo eljaras tesztelése, osszehasonlitdsa a szokasos modszerekkel, alkalmazasi
terliletének bovitése €s végiil a modszer gyakorlati alkalmazhatdsagahoz sziikséges technikai
feltételek megteremtése volt.

A teljes valoszinliségi modszert eredményesen alkalmaztuk a kimutatdsi hatar és mas
analitikai kiiszobértékek meghatarozasanal, hasznalata a kimutatasi hatart egyértelmiien
csokkenti.

A moédszer Osszehasonlitdsa a spektrumkiértékelésnél hasznalt szokasos moédszerekkel (a
sulyozott legkisebb négyzetek modszerével ill. a Poisson-eloszlasra alkalmazott maximum
likelihood elvvel) nagy szamu szimulalt spektrumrészlet kiértékelésével valosult meg. Az 1j
modszer kis beiitésszdmu spektrumok kiértékelésében minden szempontb6l pontosabbnak
bizonyult a szokasos eljarasoknal.

A teljes valoszinliségi modszer bevezetése az analitikai gyakorlatba két 1€pcsében tortént:
eldszor ol ismert teriiletti csucsokkal rendelkezd mért gamma-spektrum kiértékelésére kertilt
sor az 1j mddszerrel, és a kiértékelésre rutinszerlien hasznalt, kereskedelmi forgalomban levd
szoftverrel. A teljes valdsziniiségi mddszer a csucsteriiletek becslésében kis mértékben, a
csucstertiiletek hibajanak becslésében pedig jelentdsen jobbnak bizonyult. Mésodik 1épcsdben
egy, a kereskedelmi forgalomban levd kiértékeld program szamara megoldhatatlan
radioanalitikai probléma sikeres megoldasara keriilt sor az ) modszerrel.

Az elvégzett vizsgalatok és fejlesztések alapjan a teljes valdszinliségi mddszer egyértelmiien
alkalmas kis belitésszamtii gamma-spektrumok kiértékelésére, és eredményesen veszi fel a

versenyt a szokasosan hasznalt eljarasokkal.



Abstract

A new gamma spectrum evaluation procedure, the total likelihood method is investigated in
the thesis. TLM is tested and compared with the common techniques, the least squares or
maximum likelihood methods. An algorithm for solving real evaluation tasks is also
presented. The author successfully adapts the total likelihood principle for calculation of
detection limit and of other analytical limits. The effectiveness of the method is shown in the
evaluation of simulated and measured low count gamma-ray spectra. A practical application

of this powerful tool is also presented.

Auszug

In den Thesen ein neues Verfahren fiir die Auswertung von Gamma-Spektren, die sogenannte
Methode der vollen Wahrscheinlichkeit wurde investigiert. Die VWM wurde gepriift und mit
den tiblichen Verfahren verglichen, und zwar mit dem Prinzip der kleinsten Quadrate und mit
der Maximum-Likelihood-Methode. Auch ein Algorithmus fiir die Losung von realen
Auswertungsaufgaben ist presentiert. Die Authorin adaptiert mit Erfolg das Prinzip der vollen
Wahrscheinlichkeit zur Berechnung von der Nachweisgrenze und von anderen Grenzwerte der
Analytik. Die Wirksamkeit der Methode ist an Auswertung von simulierten und von
gemessenen Gamma-Spektren geringer Impulszahl nachgewiesen. Auch eine praktische

Anwendung von diesem kraftvollen Mittel ist presentiert.



Bevezetés

A nukledris spektrumok kiértékelésének elmélete régota gyakorlatilag lezartnak tekinthetd. A
mérési modszer- ill. detektor-specifikus kiértékeld szoftverekbe ugyan belekeriilnek ujabb
kiegészitd algoritmusok, az alapelvek azonban véltozatlanok.

A leginkabb elterjedt spektrumkiértékeld programok a sulyozott legkisebb négyzetek
modszerét alkalmazzak. A matematikaban j6 tulajdonsdgai miatt méltan népszerti maximum
likelihood elv ritkan bar, de felbukkan néhany specialis kiértékelési probléma megoldasakor.
Az ez iranyu kutatasok irdnti érdeklddés hidnya részben azzal magyarazhatd, hogy a
gyakorlati spektroszkopidban eléforduld problémak zome a fenti moddszerekkel is
elfogadhatéan kezelhetd. Vannak azonban olyan hatérteriiletek, pl. a kis beiitésszamok
tartomanya, ahol a legkisebb négyzetek modszere nagyon nagy hibaval szolgaltatja az
eredményeket.

Ezekben az esetekben célszeri minden, a spektrumrészletben benne rejlé informaciot
felhaszndlni a csucsteriilet minél pontosabb meghatdrozdsa érdekében. 1994-ben Méray
Laszlo kifejlesztett egy kiértékeld eljarast, amely késobb a teljes valoszinliségi modszer nevet
kapta. Ez az eljards bizonyos szempontbol rokonsdgot mutat a maximum likelihood
moddszerrel, meg azonban nem egyezik vele.

Matematikailag bizonyitott, hogy a maximum likelihood modszer bizonyos szempontbdl a
lehetséges legjobb becslési eljaras. Ezzel a ténnyel nem vitatkozunk, csak a szempont mas egy
kicsit a mi esetiinkben. A dolgozat targya ennek megfeleléen egyrészt a kiilonbozo,
spektrumkiértékelésre alkalmas eljarasok hatékonysaganak vizsgalata a kis beiitésszamok
tartoményaban. (4. fejezet)

Doktori munkam masik fontos feladata a kimutatasi hatar, ill. az ezzel kapcsolatos analitikai
hatarértékek meghatarozasa a teljes valoszinliségi modszerrel. Miutan a kimutatési hatér fiigg
a kiértékeld eljarastol, joggal reméltik az Gj moddszer hasznalatatol a kimutatdsi hatar
csokkenését. Az ezzel kapcsolatos vizsgalatok a 3. fejezetben olvashatdk.

Végiil, de nem utolsésorban a modszer gyakorlati bevezetéséhez valodi spektrumkiértékelési
feladatok elvégzese sziikségeltetett. Két gyakorlati alkalmazast mutat be az 5. fejezet.

(Az 1. és 2. fejezet a téma irodalmi attekintését tartalmazza. A 3. fejezetben leirtak Méray
Laszloval kozosen végzett munkdnk eredményeit tartalmazzdk, a 4. €s 5. fejezet pedig Révay

Zsolt témavezetése alatt végzett sajat munkam eredményeit foglalja dssze.)






1. A felhasznalt matematikai apparatus
1.1 Valészintiségszamitasi alapok

Azonos koriilmények kozott elvégzett fizikai mérések eredményei mindig valamilyen mértékt
szorast mutatnak egy, szdmunkra ismeretlen érték koriil. Ahhoz, hogy ezt az ismeretlen
értéket — a mért fizikai mennyiség valddi értékét — meghatarozhassuk, pontosan ismerniink
kell mérési eredmények l1étrejottében szerepet jatszo véletlenfolyamatok természetét.

Jelen dolgozatban ennek a szokésosndl is nagyobb jelentdsége van, 1évén a dolgozat targya a
nuklearis spektrumok tulajdonséagait befolyasold véletlenfolyamatok vizsgalata. Kévetkezzen
ezért ebben az alfejezetben egy rovid Osszefoglalds a valdszinliségszamitasnak a dolgozat
késobbi részeiben felhasznalt eredményeirdl, az 1.2. alfejezetben pedig a matematikai
statisztika néhany elemérdl.

Minden méréshez hozzarendelhetd egy valdszinlségi valtozd, melynek konkrét értékei a
mérés lehetséges eredményei. A mérés tipusatol fliggden ezek az eredmények lehetnek
diszkrét, vagy folytonos <értéklieck (az elébbire példa az adott iddintervallumon beliil
bekovetkezd radioaktiv bomlasok szama, mig az utdbbira a két bomlds kozott eltelt
idéintervallumok hossza). A valdsziniiségi valtozok un. valdsziniiségeloszlast 1étesitenek a
valés szdmok halmazén. Ezt az eloszlast diszkrét valtozo esetében altaldban lehetséges
értékeivel, és ezek bekdvetkezési valoszintiségeivel adjuk meg. Folytonos valtozé eloszldsa az
eloszlasfliggvény, vagy a stiriségfiiggvény segitségével adhaté meg. Az eloszlasfiiggvény
diszkrét esetben is értelmezett.

Egy z valdszinliségi valtozo eloszlastiiggvénye az a fiiggvény, amely minden valos x szdmhoz

hozzéarendeli annak valdszinliségét, hogy z x-nél kisebb értéket vesz fel:
F(x) = P(z <Xx) VxeR. (1.1)

Az eloszlasfliggvény monoton névekvd, és értékkészlete a [0,1] intervallum.

Folytonos z valdsziniiségi valtozo stirliségfiiggvénye az az f fiiggvény, amelyre teljesiil, hogy

xjf:F(x) VxeR. (12)



Az eloszlasokat leggyakrabban a varhato értékiikkel €s a szorasukkal jellemzik..

Egy z valoszintségi valtozo varhato értéke diszkrét esetben:

E(z)=) xp,, (1.3)

ahol p; annak valoszintisége, hogy a z valtozo x; értéket vesz fel.

A varhat6 érték folytonos esetben:

+o0

E(z)= [xf(x)dx. (1.4)

—o0

Végiil a szoras definicioja:
o=+E\[z-E(2)]). (1.5)

Amennyiben az eloszlasok ennél arnyaltabb jellemzésére van sziikség, ugy képezhetjiik

kiilonbdzd momentumaikat. Ezek koziil a

k-adik momentum: E(z") ill. a

k-adik centralis momentum: E ( [z -FE (z)]k)

bir a legnagyobb gyakorlati jelentdéséggel, ahol k pozitiv egész szam. Az els6 momentum a
varhat6 értékkel egyezik meg. Az els6 centralis momentum 0, a masodik centralis momentum
pedig a szdéras négyzete (mas néven: variancia). A magasabb rendii momentumok is
alkalmasak az eloszlas jellemzésére: pl. a harmadik centradlis momentumnak és a szords
harmadik hatvanyanak hanyadosa az un. ferdeségi egyiitthatd, mely az eloszlas

aszimmetrigjanak mértékére jellemzo.

1.1.1 Néhany fontos valészintiiségeloszlas



A binomialis eloszlas

Ha egy kisérlet kétféle eredménnyel zarulhat (pl. egy radioaktiv atom adott id6 alatt elbomlik,
vagy nem), akkor annak valoszinliségét, hogy N szamu kisérletet elvégezve a kisérlet k
esetben az egyik, N —k esetben a masik eredményre vezetett, a binomidlis eloszlas irja le.
Mivel mind N, mind £ nemnegativ egész szamok, a binomialis eloszlas esetében diszkrét
eloszlasrol van szo6. A binomidlis eloszlds paramétere N mellett még p is, amely a kisérlet
elvégzésekor az elsé eredmény bekovetkezésének valoszinliségét adja meg. Ekkor

természetesen a masodik kimenetel bekovetkezésnek valdszinlisége 1— p. Ezek utan annak

valosziniisége, hogy N elvégzett kisérlet k esetben vezet az els6 eredményre:

P,(N:k) = “1-p)" (1.6)

~N—ik”

A binomialis eloszlas varhat6 értéke: E = Np, szérdsa: o =,/ Np(1— p). Az 1.1 abran a P(k)

valdszintiségek lathatok k fiiggvényében N ugyanazon, és p hadrom kiilonboz0 értéke mellett.

* p=0.1
0,4 P
. = p=0.5 R

0,3 . 2 p=0.9 .
x * " = A
I 012 ] ]

* A
0,1 - " "
0 4—.—.—!—A—$—ﬁ—a—a—b—§—o—!—'—.—q—.
0 5 10 15
k

1.1 abra. A binomialis eloszlas

A P(k) fuggvény képe csak abban az esetben szimmetrikus, ha p = 0,5.
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A polinomialis eloszlas

A polinomidlis eloszlas a binomidlis eloszlas 4ltalanositasa ketténél tobb lehetséges

kimenetel kisérletre. Itt a kisérlet minden egyes, m darab, egymast kizaré kimeneteléhez egy

pi (1=1,2, .., m) valészinliség tartozik, melyeknek Osszege természetesen egy: z p,=1. A
i=1

polinomialis eloszlads m+1 paraméterli, paraméterei: N, pi, pa, ..., pm. Annak valdszinlisége,

hogy az N elvégzett kisérlet k; esetben vezetett az elsé kimenetelre, k, esetben a masodikra, ...

ky esetben pedig az m-edikre:

N!

_ : ko ky km
_kl!kz!...km!p] p2 "'pm . (17)

P (N;klakZV' k )

Pr1sP2 Py m

Teljestilnie kell még a Z k, = N feltételnek is.

i=1
A polinomialis eloszlas tulajdonsagai a p; paraméterektdl fiiggéen széles skalan valtozhatnak.
A P fiiggvény is m valtozos ennél az eloszlasndl, ezért leirdsa meglehetésen bonyolult,
hasznalata pedig a gyakorlatban igen ritka. Azért keriilt mégis bele ebbe a felsorolasba, mert a

teljes valoszintiségi modszerben kdzponti szerepet kap.

A Poisson-eloszlas
A Poisson-eloszlast a kis valoszintségli, vagy ritka események eloszlastérvényének is
nevezik. Az el6z6khoz hasonldan diszkrét eloszlas. A Poisson-eloszlas a binomialis eloszlas

hataresete, amennyiben a binomidlis eloszlasbol az N — o, p — 0 hatardtmenetekkel

kaphatd, melynek sordn azonban az Np szorzat értéke véges, konstans kell maradjon.

A = Npjeloléssel a binomidlis eloszlast leir6 valoszintiségek a kovetkezd formaban irhatdk:

. (1.8)

[ H-T)
P,(N;k)= N N N ﬂk(l—%j .

Ha A rogzitett és N — oo, akkor

11



k
PN > P (20 = e (1.9)

amely nem mas, mint a Poisson-eloszlast meghatarozo kifejezés. A Poisson-eloszlds vérhato
értéke: A, szoérdsa: +/A. Mig a binomidlis eloszlas szorasnégyzete kisebb, mint a vérhatd

értéke (a p=0 sz€lsOséges esetet kivéve), addig ez a két érték a Poisson-eloszlds esetében

megegyezik.

0,25
0.2
0,15
0,1
0,05

P(k)

1.2 abra. A Poisson-eloszlas

Az é4bra a Pp(k;A) valoszinliségeket mutatja k fliggvényében A két értéke mellett. A Pp(A,k)
figgvény képe A kis értékei mellett aszimmetrikus, A névekvd értékei mellett egyre jobb

kozelitéssel szimmetrikus.

A Gauss-eloszlas

Az eddigiektdl eltérden a Gauss-eloszlas folytonos eloszlas. A gyakorlatban legtobbszor
hasznalt, ,legjobb” tulajdonsagokkal biro eloszlas. Jelentéségét leginkabb a centralis
hatareloszlastételeknek koszonheti. Ezek a tételek azt fejezik ki, hogy nagyszamu, fiiggetlen
valoszinliségi valtozd Osszege kozelitdleg Gauss-eloszlasu, feltéve, hogy az 6sszeg minden
egyes tagja (nagy valoszinliséggel) kicsi az 6sszeghez képest. Az egyes valoszintliségi valtozok
eloszlasanak ebbdl a szempontbol nincs jelentdsége.

A leggyakrabban emlitett példa ezzel kapcsolatban a mérési hibak eloszldsa. A mérési hibak

legtobbszor sok, egymastol fiiggetlen, véletlentdl fliggd tényezobdl adodnak Ossze, igy
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eloszlasuk jol leirhaté Gauss-eloszldssal. Természetesen vannak olyan esetek, amikor ez nem
igaz — ezek az esetek nagy hangsulyt fognak kapni a dolgozatban.

A Gauss-eloszlas stirtiségfiiggvénye:

G

e 2 | (1.10)

G(x)=

1
N2wo

1 ¢s o a Gauss-closzlas paraméterei. A u paraméter a varhat6 értékkel, o a szorassal egyezik
meg. Ezek, az eddig felsorolt eloszlasokkal ellentétben egymastol fiiggetlentil valtozhatnak. A
Gauss-striiségfiiggvénynek £-nél maximuma van, és a fliggvény az x=u tengelyre
szimmetrikus. A o paraméter a gorbe .,szélességével” all kapcsolatban, a kb. 2,355 ¢ a
spektroszkopiaban gyakran hasznalt un. félértékszélesség, azaz a gorbének a maximumérték
felénél vett szélessége.

Az eddig targyalt eloszlasok mindegyike nemnegativ értékeket felvehetd valdszintliségi
valtozok eloszlasa volt. A Gauss eloszlas értelmezési tartomdnya a teljes valos szamok
halmaza. Ez a tény fontos lesz szamunkra a tovabbiakban, mert az altalunk vizsgalt
mennyiségek (melyek eloszldsat szokasosan Gauss-eloszlassal kozelitik) csak nemnegativ
értékeket vehetnek fel, igy, kiilonosen, ha varhaté értékiik nem sokkal nagyobb 0-nal,
eloszlasukat a Gauss-eloszlas rosszul kozeliti.

A Gauss-, vagy mas néven normalis eloszlas specialis esete a standard normalis eloszlas,

melynek vérhato értéke: 1= 0, szérdsa: o = 1. Egy x, Gauss-eloszlasu valoszintiségi valtozd

o 1. , X — , ,
un. standardizaltjaa x’ = 2 Valtozo.

o
A statisztikai probdkkal foglalkozé fejezetben szo lesz a Gauss-eloszlas néhany tovabbi

tulajdonsagarol.

Az exponencidlis eloszlds
Ennek a folytonos eloszlasnak a targyaldsara azért kertil itt sor, mert egy radioaktiv anyagban
az egyes bomléasok kozott eltelt idétartamok ilyen eloszlast kvetnek.

Az exponencialis eloszlas stiriségfiiggvénye:

13



0 hax<0
f(>c)={/,t " . (1.11)
e

hax>0

ahol 4> 0 az exponencialis eloszlas paramétere. A strliségfiiggvény képe a kovetkezo:

0,25 -
0,2 1

0,15 +

f(x)

0,1 1

0,05

0 T T T T 1

0 5 10 15 20 25
x

1.3 abra. Az exponencialis eloszlas

A gorbe 4 = 0,2 paraméterértékhez tartozik, amely a fliggvénygorbének a fiiggéleges
tengellyel valo metszetébdl is leolvashato. Az exponencialis eloszlas varhato értéke és szordsa
egyarant £ =0 = !

e

Az exponencialis eloszlas eloszlasfiiggvénye:

hax <0

X 0
F(x)= [f= {1—5“ : (1.12)

hax>0

1
m-mel jelolve azt az x értéket, amelynél az eloszlasfiiggvény értéke F'(m) =5; m-re a

kovetkezd kifejezést kapjuk az eloszlasfliiggvényb6l kiszamolva: m =%ln2. Az

exponencidlis eloszlast a radioaktiv atomok élettartamara alkalmazva m éppen a felezési

idével egyezik meg.
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1.1.2 Valédszintiségeloszlasok kozelithetésége

A gyakorlatban gyakran felmeriild probléma, hogy milyen feltételek mellett kozelithetd a
binomialis eloszlas Poisson-eloszlassal, ill. a Poisson-eloszlas Gauss-eloszlassal. Az altalunk
a késobbiekben vizsgalt fizikai folyamatok nagy része a binomialis eloszlassal irhat6 le egzakt
moddon. A binomialis eloszlas paraméterei, N és p azonban a valds esetekben altalaban nem,
vagy csak nagyon hozzavet6legesen hatarozhatok meg, ami a binomidlis eloszldssal vald
szamolast nagyon megneheziti, vagy lehetetlenné teszi. Az esetek zomében azonban jo
kozelitéssel teljesiilnek az N — o0 és a p — o feltételek, amelyek lehetvé teszik a binomiélis
eloszlas Poisson-eloszlassal valo kozelitését. (Ez olyannyira elterjedt, hogy a radioaktivitassal
foglalkoz6 szakkonyvek nagy része az adott id6 alatt elbomlott atomok szamat eleve Poisson-
eloszlasunak tekinti.)

A Poisson-closzlasnak  Gauss-eloszlassal  valdo  kozelithetdoségének — kérdése a
spektrumkiértékelés problémainak kapcsan meriil fel. A kés6bbiekben bemutatandd (és a
gyakorlatban hasznélt) kiértékeld eljarasok tilnyomd tobbsége a csatornankénti
beiitésszamokat Poisson-eloszlast kozelit6 Gauss-eloszlasunak tekinti, matematikai
modelljeik erre épiilnek és mas esetben nem is érvényesek. Igy a csucsteriilet becslésénél, és a
csucstertilet becstilt hibajanak szamitasanal is Gauss-eloszlas hasznalata a bevett gyakorlat.

A fenti kozelitések feltételei azonban nem minden esetben teljesiilnek. A kovetkezOkben
megvizsgaljuk, hogy milyen feltételek mellett kozelithetd a binomidlis eloszlas Poisson-
eloszldssal, ill. milyen koriilmények kozott alkalmazhatdo a Poisson-eloszldsnak Gauss-
eloszlassal vald kozelitése. A binomialis eloszlas Poisson-eloszlassal valo kozelithetoségének
feltétele, mint azt az 1.1.1 alfejezetben mar lattuk, N — oo és p — oo egyidejli bekovetkezése,
az Np szorzat 0-nal nagyobb, véges értéke mellett. Ekkor a binomidlis eloszlast kozelitd
Poisson-eloszlas paramétere: A=Np. (A binomialis eloszlas szorasnégyzete: o> = Np(1— p) a
fenti feltételek mellett tart Np-hez, mivel (1— p) tart 1-hez. Igy teljesiil a Poisson-eloszlasra
jellemzé E = o° dsszefiiggés is.)

Poisson-eloszlasnak Gauss-eloszlassal valo kozelithetdségének feltétele 4 "nagy" értéke. A
nukledris spektrometriai szakirodalom a Gauss-kozelithetdség alsé hatarara valtozo értékeket
ad: 1=5 [LYOS86], 4=20 [LEO87], [KNO89], A=25 [GIL95]. (A A=20 érték egy 10 csatorna

szélességli csucsnal min. 200-as Ossz-beiitésszamot jelent. Ennek ellenére alacsony hattéren
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ilo, kis beiitésszamu csucsok esetén ennél joval kisebb 6ssz-beiitésszam mellett is gyakran
hasznaljak a Gauss-eloszlast feltételezé 7*-modszert.)

A Poisson-eloszlast kozelitd Gauss-eloszlas specidlis, mert az éltalanos Gauss-eloszlassal
ellentétben két paramétere, u és o nem fliggetlenek egymastol, hanem mint a Poisson-
eloszlasnal, teljesiilnie kell a 1 = o sszefiiggésnek.

Létezik egy masik lehetdség is a binomidlis eloszlasnak kozvetleniil Gauss-eloszlassal vald
kozelitésére, mely az Np szorzat kis értékei esetén ad jo kozelitést a binomidlis eloszlasra

[JANG68]. Itt a kozelitd Gauss-eloszlas varhato értéke u = Np+ p — 1/2, széréasa valtozatlanul

o=+Np(l-p).

Az alédbbi harom abran a fent felsorolt négy valdsziniiségeloszlas strliségfliggvénye, ill. a
diszkrét eloszlasoknal a megfeleld valoszintiségértékek lathatok N és p kiilonbozo értékei
mellett. "Gauss-1" az g=Np varhatd értékli Gauss-eloszlast jeloli, "Gauss-II" pedig az

L, = Np+ p—1/2 vérhato értékiit.

—e— Binom
—e— Poisson

Gauss

korr. Gauss

1.4 abra. Az eloszlasok kozelithetosége. N=20, p=0.,4
Az 1.4 abran N viszonylag kicsi (N=20), p viszonylag nagy (p=0,4). Ebben az esetben csak a

Gauss-II-vel jelolt strlségfiiggvény mutat jo egyezést a binomidlis eloszlashoz tartozo

valosziniiségértékekkel.
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02 - —e— Binom
’ —e— Poisson
0,18 Gauss
0,16 - korr. Gauss
0,14
0,12
0,1 4
0,08 -
0,06 -
0,04 -
0,02
0 - )
0 2 4 6 8 10 12 14

1.5. dbra. Az eloszlasok kozelithetdsége. N=100, p=0,05

Az 1.5 dbran N=100, p=0,05. N mar elegendden nagy, p pedig elegendden kicsi a binomidlis
és Poisson-eloszlasok jo egyezéséhez, a Poisson-eloszlas Gauss-kozelithetdségéhez viszont

még nem.

—e— Binom
—o— Poisson
Gauss

korr. Gauss

1.6 abra. Az eloszlasok kozelithetosége. N=400, p=0,05
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N=400 és p=0,05 (1.6 abra) A = 4 =20 az a minimalis paraméterérték, amelynél a Poisson-
eloszlas Gauss-eloszlassal vald kozelitése mar elfogadhatd, bar az egyezés még korantsem
tokéletes.

1.1.3 A Bayes-tétel és az inverz valoszintiség

A Bayes-tétel a valdszinliségszamitas egyik legtobb vitat okozo tétele. Nem mintha a tétel
maga nem lenne matematikailag kifogastalan, hanem alkalmazhatdsaganak kore az, ami a
vitakat kivaltja.

A Bayes-tétellel kapcsolatban, melyet az ,,okok valdszintiségének tétele”-ként is emlitenek,
maganak a tétel kitaldlojanak is lehettek fenntartdsai, hiszen haldlaig nem kozolte le
eredményét. Haldla utdn Price publikalta a tételt. [FIS30]. Manapsag a Bayes-elmélet
reneszanszat éli, és legalabb annyi kdvetdje akad, amennyi ellenzoje.

A Bayes-tétel matematikai megfogalmazasdhoz  sziikséges  valdszinliségszamitési
alapfogalmak definidldsara itt nincs sem lehetdéség, sem szikkség: ezek minden
valoszinliségszamitas-konyvben szerepelnek. Magat a tételt taldan mégis érdemes itt leirni:
Amennyiben By, By, ..., B, teljes eseményrendszer, az 4 esemény valoszintisége pedig P(A4)>0,
akkor a By eseménynek az A4 eseményre vonatkozo feltételes valdszinlisége a kovetkezd

moddon szamithato ki:

P(A|B,)P(B,)

P(B, | 4) =
ZP(A | B,)P(B,)

: (1.13)

ahol a P(X|Y) tipusu valészinliségek az X eseménynek Y-ra vonatkozo feltételes
valosziniiségét jelolik.

A tétellel kapcsolatos vitdk kivaltoja a By, B, ...,B, eseményrendszer mibenléte, ill. a P(By)
valoszinliségek meghatarozasi modja. Amennyiben ezen valdsziniiségeket nem ismerve az
eseményrendszer eseményeit egyforman valdszintieknek tekintjiik, a P(By|A4) értékeket inverz
valoésziniiségeknek nevezziik [FIS30]. Ennél még tovabb mehetiink: a B; eseményeknek nem
is okvetleniil sziikséges véletlen eseményeknek lenniiik: elég, ha egy szamunkra ismeretlen
értékli paraméter lehetséges ¢értékeit jelentik. Ez a megfogalmazds pedig mar a

valdszinliségszamitas alapjait: a valoszintiség definicidjat érinti.
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A gyakorlati tudomanyokban sokszor felmeriilé6 probléma egy olyan ismeretlen paraméter
értékének meghatarozasa, amely valamilyen, vele 6sszefliggd, véletlen ingadozasokat mutatd
mért értékekbdl hatarozhaté meg. Az ilyen problémak kezelését nagyban megkonnyiti az
inverz valoszinliség hasznalata. A fizikusok ezzel a lehetdséggel sokszor élnek is, méghozza
gyakran az inverz szo elhagyasaval, az eredményeket egyszerlien valoszinliségnek nevezve
[ORE82]. Ez a matematikusok szamara elfogadhatatlan megfogalmazas az esetek egy
részében csak nevezéktani/filozofiai probléma, az eredmények helyességét nem érinti.

Jelen dolgozatban az inverz valoszinlséget felhasznaldo szamitdsok csak a 3.1 alfejezet

szédmitasaiban szerepelnek.

1.2 Statisztikai alapok

A matematikai statisztika egyik feladata, hogy egy statisztikai mintabdl (valamely mérés,
megfigyelés véges szdmu eredményébdl) a vizsgalt valdszinliségi valtozo eloszlasara, €s az
eloszlas paramétereire kovetkeztessen.

Az elméleti eloszlastiiggvényre vonatkozoan leginkdbb a minta empirikus eloszlasfiiggvénye
alapjan kovetkeztethetiink. Ennek x helyen felvett értéke nem mas, mint az x-nél kisebb
mintaelemek szama, osztva az Osszes mintaelemek szamaval, azaz az x-nél kisebb
mintaelemek relativ gyakorisaga. Az empirikus eloszlasfiiggvény a minta elemszamanak
novekedésével az elméleti eloszlasfiiggvényhez konvergal. Folytonos eloszlast minta esetén
érdemes az Un. sirdséghisztogramot felvenni: a legkisebb és legnagyobb mintaclem altal
meghatarozott intervallumot egyenld részekre felosztva az egyes részintervallumokba esd
mintaelemek szamat abrazolni ugy, hogy a végeredményiil kapott hisztogram teriilete 1
legyen. Igy az elméleti stirliségfiiggvénnyel 6sszehasonlithaté grafikont kapunk.

Az elméleti varhatoé érték kozelitésére alkalmas a mintaclemek atlaga, a szérasnégyzet
kozelitésére pedig a mintaelemek atlagtol vald eltéréseinek négyzetosszege, osztva a

mintaelemek szamaval.

Mérés(ek) végzésekor célunk az elméleti eloszlas valamely paraméterének, vagy ezzel
figgvénykapcsolatban levé mas paramétereknek a meghatdrozdsa. Azonos koriilmények
kozott végzett mérések eredményei is csak ritkan egyeznek meg egymassal, altaldban

valamilyen, szamunkra ismeretlen érték koriil széornak. A mérések megfeleld kivitelezése
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mellett ez az ismeretlen érték a vizsgalt paraméter valddi értékével egyezik meg. Az ilyen
jellegi problémakkal a matematikai statisztika paraméterbecslés fejezete foglalkozik. A
paraméter megbecslése mellett tudnunk kell azt is, hogy a kapott eredmény milyen
megbizhatosaggal egyezik meg az ismeretlen, valodi értékkel, azaz a paraméter statisztikus
hibgjat is meg kell becsiilniink.

A matematikai statisztikdnak a nuklearis spektroszképiaban felhasznalt ilyen jellegt

eredményeirdl kovetkezik egy rovid 6sszefoglalas.

1.2.1 A legkisebb négyzetek modszere

A legkisebb négyzetek mddszere mért értékekhez valamilyen tipusu fliggvény illesztésére, ill.
az illesztéfiiggvény optimalis alakjanak megkeresésére alkalmas.

Meérési eredmények szamanak valamilyen x valtozo szerinti eloszlasat vizsgaljuk (pl. egy
detektorba beérkezett részecskék energia szerinti eloszlasat). Ezt megtehetjiik ugy, hogy az x
valtozd lehetséges értékeinek tartomanyat £ darab egyenld részre felosztva megszamoljuk az
egyes intervallumokba esé események szamat (pl. egy adott energiaintervallumba esd
energiaju detektalt részecskék szamat). Eredményiil a £ darab intervallumban yy, ys, ..., V&
darab eseményt regisztralunk. Ehhez a hisztogramhoz probalunk meg egy fix; ai, aa, ..., an)
figgvényt illeszteni, ahol ay, ay, ..., a, a fliggvény meghatarozandé paraméterei. A modszer
hasznalhatosaganak feltétele, hogy sem az intervallumok & szdma, sem az intervallumokba esd
események y; szama nem lehet talsagosan kicsi. (Ez a feltétel problémat okozhat a modszer
spektroszkopiai alkalmazasandl, ezért ott részletesebben szo lesz rdla). Amennyiben ezek a

feltételek teljestilnek, képezzik a

. i(y’ S5
i= o (1.14)

Osszeget. Bar faltalaban folytonos fliggvény, itt csak bizonyos diszkrét értékeit hasznaljuk fel;
x; az intervallumokra osztott x skéala alkalmasan megvalasztott értékeit jelenti: pl. az
intervallumok kozepét. o; valamilyen statisztikus hibat jeldl: preciz leiras esetén ez az elméleti

eloszlds szdrasa, gyakorlatban azonban A&ltaldban jelentdsen leegyszerlsiti a tovabbi
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szamolast, ha ot a mért értékek szoérasanak tekintjiik. (Egész pontosan az itt ismertetett
eljaras a sulyozott legkisebb négyzetek modszere, 1/o stlyfaktorok hasznalataval.)

Az ay, ay, ..., a, paraméterek azon értékei lesznek a legmegfelel6bbek, amelyek mellett az S
Osszeg minimalis.

Amennyiben a mért értékeket Gauss-eloszlasunak tekintjiik, lehet6ség van informacidt
szerezni az illesztés josagarol is. Ebben az esetben ugyanis az S Osszeg y*-eloszlast
valoszintiségi valtozé (gyakran szoktak emiatt eleve y*-tel jelolni). A y*-eloszlas tablazataibol
kikereshetd annak valésziniisége, hogy #* nagyobb, vagy egyenlé a minimalis S értéknél.

7 -eloszlast valoszintiségi valtozo definicio szerint véges szamu standard normalis eloszlast
valoszintiségi valtozd négyzetdsszege. A valdszinliségi valtozok v szaméat a y*-eloszlas

szabadséagi fokdnak nevezik. Amennyiben az y; mért értékek normalis eloszlast kdvetnek f(x;)

- f(x e ) e
varhatd értékkel és o; szorassal, a y’—f(’) kifejezés valoban y; standardizaltja. A v
o.

1

szabadsagi foku Zz-eloszlés stirliségfiiggvénye:

hax<0

f)={,2"2 , (1.15)

ahol I a teljes gamma-fiiggvény (I'(a) = J. u®'e™du o>0). Az v szabadsagi foku y*-eloszlés
0

varhaté értéke v, szorasa +/2v . A gyakorlatban inkabb az t.n. redukalt 7* hasznélatos, mely a

2

ZA valdsziniiségi valtozé eloszlasa. Ennek varhato értéke 1, szorasa,|— .

14 v

Itt érdemes megjegyezni, hogy ha az 1.14 Osszefiiggésben a mért értékek hibajanak
reciprokdval sulyozunk, az Poisson-eloszlast kovetd mérési eredmények esetén szisztematikus

hibahoz vezet.
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1.7 abra. A sulyozott legkisebb négyzetek mddszerével kapott eredmény
eltérése a varhat6 értéktdl a varhato érték fliggvényében

Tételezziik fel, hogy az 1.14-ben szerepld f{x) fliggvény konstans: f{x)=A4. Ekkor az y; mérési
eredmények az E(y) véarhato érték koriil szérnak. Amennyiben egy mérési eredmény folfelé tér
el a varhato értéktol, akkor a kelleténél kisebb, ha lefelé, akkor a kelleténél nagyobb stlyt kap
a szdmitasban. Ez azt eredményezi, hogy 1.14 az optimumban alulbecsli A-t egy, az E(y)-t6l

fliged z értékkel (1.7 abra).”

1.2.2 A maximum likelihood modszer

A maximum likelihood (magyarul: a legnagyobb valoszinliség) médszer a leggyakrabban
hasznalt paraméterbecslési modszerek egyike. Bevezetése R. A. Fisher nevéhez flizédik
[FIS21]. A legkisebb négyzetek modszeréhez hasonldan ez is azonos, ismert tipusu eloszlasu
V1, V2, ..., Vi (mért) értékekbdl 4llé6 minta alapjan ad becslést az eloszlas ismeretlen paraméterére
(vagy paramétereire). Spektroszkdpiai alkalmazasi lehetdségét gyakran emliti a szakirodalom,
a gyakorlatban mégis nagyon ritkdn bukkan fel. Ennek oka valdsziniileg az, hogy a mért
értékek Gauss-eloszlasa esetén a maximum likelihood moddszer a legkisebb négyzetek
modszerével egyezd eredményeket ad, ettdl eltérd eloszlas feltételezése pedig a paraméterek
hibabecslését annyira bonyolultta (vagy pontatlannd) teszi, hogy emiatt ez a megoldas kevéssé
népszerti. A mddszer 1ényege roviden a kovetkezo:

Képezziik az

L(yl’ y2, "')yk’.ab a2; ---’an) :f(yl,al; a2; ---’an)f(yb'al; a2; ’an)f(yk;al’ a2, "')al’l) bl (1'15)
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un. likelihood-fiiggvényt, ahol a szorzat tényez6i a mintaclemek valdszinliségi
strtségfiiggvényei. Mivel a minaelemek fliggetlenek €s azonos eloszlasuak, ezért L(yy, vy, ...,
Vi ai, a, ...,a,) a mintaelemek egytittes stirtiségfliggvénye. y; s, ...,k helyére a mintaclemek
aktualis értékét irva a likelihood-fiiggvény csak az ai, a, ...,a, ismeretlen paraméterektdl fog
fliggeni. Az a;, a, ...,a, paraméterek maximum likelihood becslésének a paraméterek azon
értékeit nevezziik, amelyek mellett a likelihood-fiiggvény értéke maximalis. Altalaban

technikailag egyszertbb a likelihood-fiiggvény logaritmusanak maximumat keresni.

A késobbiek miatt talan érdemes par szot ejteni a likelihood sz6 jelentésérél. Magyarul a
valosziniiség szot hasznaljuk erre is, akdrcsak a probability széra. A maximum likelihood
moddszer kidolgozoja azonban nem véletleniil hasznalt a matematikai értelmi valoszintiségtol
(probability) kiilonbozd, jelentésében mégis hasonld szot. A likelihood-fliggvény értékei
ugyanis nem valoszinliségek matematikai értelemben, mivel a paraméter, amely a likelihood-
fliggvény valtozojaként szerepel, nem valdszinliségi valtozd, hanem csak szdmunkra
ismeretlen allando. Igy a valészintiség ma elfogadott matematikai definicidja szerint
legfeljebb a 0 vagy az 1 valoszinliség rendelhetd hozza. A sz6 nem matematikai értelmében
azonban beszélhetiink arrél, hogy a paraméter mely <értéke a legvaloszinibb, a
rendelkezéstinkre all6 adatok alapjan. Ilyen értelmi valoszintiséget fejez ki a likelihood sz6.

A modszer ,.életutjanak™ korai szakaszaban tobb kutatdéban felmeriilt a ,./ikelihood” és az
inverz valoszinliség fogalmanak esetleges egyezése. Fisher tobb cikkében [FIS30], [FIS32]
bebizonyitotta, hogy a két fogalomnak sem matematikai, sem filozofiai szempontbol nincs

koze egyméshoz.

A legkisebb négyzetek modszerénél az S fiiggvény minimumanak, a maximum likelihood
moédszernél az Inl fliggvény maximumanak, és igy a paraméterek optimalis értékének
megkeresése a fliggvényeknek a meghatdrozandd paraméterek szerinti parcidlis derivaltjai
zérushelyének megkeresésével torténik. Ez egy n egyenletbdl allé egyenletrendszerre vezet (n
az ismeretlen paraméterek szama), mely csak bizonyos esetekben oldhato meg analitikus uton.
(A legkisebb négyzetek moédszerének konkrét alkalmazasanal erre a ritka esetre lathatunk

majd példat). Megoldasukhoz &ltaldban numerikus modszereket haszndlnak. Ezek koziil a

" A legkisebb négyzetek modszerének szisztematikus hibajaval kapcsolatos sajat eredményeit (az abrat is
beleértve) Révay Zsolt bocsatotta rendelkezésemre.
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leginkabb elterjedtek a szimplex-mddszer, és a Newton-moddszer. Az eldbbi geometriai jellegli
moddon, un. n-szimplexek (a legegyszertibb n-dimenzios poliéderek) segitségével, a szimplex
csucsan felvett fliggvényértékek Osszehasonlitdsaval keresi az n-valtozds fiiggvény
minimumat. Elénye, hogy hasznalhatdésaga nem fligg jelentésen a minimalizalandé fiiggvény
tipusatol, hatranya, hogy viszonylag lassan konvergal [LEO87]. A Newton-modszer szerint
eljarva a fiiggvényt, melynek szélséértékét keressiik, Taylor-sorba fejtjiik a masodik tagig xy

pont, ill. n dimenzidban x, vektor koriil. Az n-dimenzids sorfejtés eredménye
B 1 B
f(3_6)~f(J_Co)+g1(£—£0)+5(£—£0)1H()_€—£o), (1.16)

of *’f

ahol g az ——elsé parcidlis derivaltak vektora, H pedig a
Ox, Ox,0x |

masodik derivaltak matrixa.

H-t Hess-matrixnak is nevezik. A moédszer tulajdonképpen egy n-dimenzids parabolaval

kozeliti a fliggvényt, melynek minimumhelye a kdvetkezd dsszefiiggés alapjan szamithato:

x,=x,-H'g. (1.17)
Ez még nem az f figgvény minimuma, de x; helyére x;:,-et helyettesitve az eljards tovabb
folytathato, €s viszonylag gyorsan elérhetd vele a fiiggvény tényleges minimuma. (A modszer
hatranya, hogy c¢sak H pozitiv definitsége esetén hasznalhato, amely probléma
kikiiszobolésére azonban kiillonb6z6 modszerek l1éteznek.)

A Hess-matrix inverze mind a maximum likelihood, mind a legkisebb négyzetek modszere
esetén alkalmas a paraméterek becsiilt hibdinak meghatdrozasara. A maximum likelihood
moddszer esetén a matrix inverzének (-1)-szerese, a legkisebb négyzetek moddszere esetén a
matrix inverzének (1/2)-szerese tartalmazza a paraméterek becsiilt hibait oly mddon, hogy a
matrix diagonal-elemei a megfeleld paraméterek szorasnégyzetével, a diagondlison kiviili
elemei pedig a paraméterek kovariancidjaval egyeznek meg. Megjegyzendd azonban, hogy a
hibabecslésnek ez a modja csak Gauss-eloszlas esetén ad pontos eredményt, ettdl eltérd

esetben a hibabecslésre csak kozelitd eljarasok léteznek.
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1.2.3 A hibabecsléssel kapcsolatos tovabbi megfontoldsok

Tegyiik fel, hogy a fent leirt modszerek valamelyikével meghatdrozva egy paraméter becsiilt
értékét, arra az A, hibajara pedig a o(4) szamot kaptuk. (Ennek szokésos irdasmodja 4 £ o(A)).
Tegyiik fel tovabba, hogy a paraméter — szamunkra ismeretlen — értéke Ay. A paraméter
Gauss-eloszlasa esetén annak valdsziniisége, hogy a becslés eredménye a valodi Ay érték o
kornyezetébe esik, egyenld az (1-re normalt) Gauss-gorbének az Ay — o -hoz és Ay + o-hoz

tartozo pontjai kozotti gorbe alatti terliletével. Ez a valoszinliség kb. 0,68, tehat:

p(Ad,—c<A<A,+0)~0,68. (1.18)

Mivel azonban szamunkra a paraméter becsiilt értéke ismert, valodi értéke pedig ismeretlen, a

fenti egyenldtlenséget célszerl atalakitani:

p(A-c< 4, £ A+0)~0,68. (1.19)

Ennek az egyenldtlenségnek a jelentése: a fenti intervallum két végpontja tekinthetd
valoszinliségi valtozonak, p pedig annak valdszinliségét adja meg, hogy az intervallum lefedi
a paraméter valddi értékét. Az intervallumot szokas konfidencia-intervallumnak, a p
valészintiséget pedig konfidencia-szintnek nevezni. Tetszdleges konfidencia-szinthez
meghatarozhatd konfidencia-intervallum a Gauss-eloszlas tablazatanak segitségével, a
gyakorlatban azonban a becsiilt érték koriili £o, £2¢; ill. £3 o intervallumok hasznalatosak,
melyek rendre kb. 0,68, 0,95 ill. 0,997 -es konfidencia-szintekhez tartoznak.

A paraméter normalistol kiilonbozd eloszlasa esetén mind a paraméterek hibajanak, mind a
konfidencia-intervallumoknak a meghatarozdsa nehézségekbe {itkozik. A nehézség oka
elsdsorban az eloszlas stiriségtiiggvényének aszimmetridja.

Gyakorlati alkalmazasok soran eléfordul, hogy valamely paraméterhez nem sziikséges két
végponttal rendelkez6 konfidencia-intervallumot megadni, elegendé egy felsé (ritkdbban als6)
hatar megallapitasa. Ennek elve nem kiilonbozik a kétoldalu konfidencia-intervallumok
meghatarozasi mddjatol: a konfidencia-szintet a felsé hatar altal a Gauss-gorbébdl levagott

(,,fels6™) rész gorbe alatti teriilete hatarozza meg.
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1.3 A radioaktiv bomlas statisztikdja

Radioaktiv atomok bomlésa a véletlen események egyik klasszikus példaja. Egy radioaktiv
anyagban adott id6 alatt elbomlott atomok szama, vagy a bomlasok kozotti idéintervallumok
hossza egyarant valamilyen eloszlast kovetd valdszintiségi valtozd. Ezeket az eloszlasokat
vizsgaljuk meg kézelebbrol a kovetkezdkben.

A radioaktiv bomlés torvényét eldszor kisérleti megfigyelésekre tdmaszkodva allitotta fel
Rutherford és Soddy. Eszerint egy radioaktiv anyagban a df id6 alatt bekdvetkezé bomlasok

dN szama aranyos a radioaktiv atomok pillanatnyi N szaméaval:

a=-N_,.N. (1.20)
dt

A itt az aktivitas, azaz az id6egység alatt bekovetkezd bomlasok szama, A pedig a folyamatra
jellemz6 bomlasi allando, melynek jelentése egy bizonyos atommag iddegység alatt

bekovetkezd elbomlasanak valoszintisége. A bomlasi térvény integralis alakja:
N(t)=N(0)-e™*, (1.21)

ahol N(0) a r=0-ndl jelenlévd radioaktiv atommagok szdma. A bomlasi torvény statisztikus

jellegti: a ¢t idépontban még el nem bomlott atommagok szama N(f), mint varhato érték koriil

ingadozik.

A bomlasi torvény az adott pillanatbeli aktivitas €s az abban a pillanatban jelenlevé el nem

bomlott atommagok szdma kozti linearis 6sszefiiggés miatt az aktivitasra is felirhato:

A=Ae™. (1.22)

Megemlitendé még egy, a radioaktiv anyagok jellemzésére hasznalt mennyiség, a felezési ido.

Ez alatt az a T id6tartam értend6, amely alatt az atommagok (atlagosan) fele elbomlik:

L =Nge* . (1.23)
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A radioaktiv bomlastorvény bevezethetdé matematikai megfontoldsok alapjan is. Ennek
ismertetését Janossy Lajos alapveté munkajara [JAN68] tamaszkodva tessziik meg. A torvény

bevezetéséhez mindossze két eldzetes feltevésre van sziikség:

1. A vizsgalt radioaktiv sugarforras minden atomja azonos természetlii (azonos bomlasi
allando jellemzd rajuk)

2. Az egyes bomlasok egymastdl fliggetlenek.

El6szor annak valdszinliségét (p(f)) hatarozzuk meg, hogy ¢ id6 alatt egyetlen bomlas sem
kovetkezik be. A p(f) fliggvény meghatarozasa céljabdl a r idintervallumot két részre osztjuk:
t =t, +t,. Ekkor p(t)) ill. p(f,) annak valdsziniisége, hogy #; ill. £, id6 alatt nem kovetkezett

be bomlas. A fenti 2. feltétel miatt

p() = p(t, +1,) = p(t,) - p(t,). (1.24)

Ennek a fiiggvényegyenletnek regularis megoldasa a

pt)=e™ (1.25)

figgvény, ahol « >0 4llandoé.
a [0;f] idointervallumban. Ennek levezetéséhez a feltételes valoszinliségekre vonatkozd
szabalyt hivhatjuk segitségiil. Azon feltétel mellett, hogy egy bizonyos atommag a #,<t

idépontban még nem bomlott el, annak valoszintisége, hogy ¢ ideig sem bomlik el:

()=20 126
plt]t) o) (1.26)

ahol p(z), ill. p(#)) jeloli a bomlas be nem kovetkeztét az adott ideig. Mivel egy atommag adott
idétartam alatt bekovetkezd bomlasanak valdszinlisége fiiggetlen a részecske ,,el6életétol”, a

p(t|t)) feltételes valdszinliség csak a 7 — #1 iddintervallum hosszatol fuigghet:
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ptlt)=pt-t,). (1.27)
Ezért az 1.26 egyenlet alapjan:

p(t)=p(t—1,)pt,). (1.28)
Az ilyen tipusu fiiggvényegyenlet megoldasa, hasonldan az elézéekben leirtakhoz:

PHy=e™ (120) (1.29)

alakd. Mivel ez a megfigyelt atommag ¢ idétartam alatti el nem bomlasanak valdszintlisége, az

elbomlés valdszintisége:
Pt)=1-P@t)=1-e". (1.30)
Ennek az 0sszefliggésnek a segitségével mar elméleti ton is levezethetjiik a bomléstorvényt.

Ehhez tekintsiik annak valosziniségét, hogy a [0, ¢] iddintervallumban k£ darab atommag

bomlott el, és igy a ¢ idépontban N(#) = N, —k elbomlatlan atommag van jelen. Ez a

valosziniliség a binomialis eloszlassal irhaté le [Jan68]:

N
pB(NO;k):( kO)(l—e’“)ke_(N"_kw. (1.31)

Ennek az eloszldsnak a maximuma N(f) varhato értékének kozelében van, ezért nagyon

valdszint, hogy
N(@t) ~ (N (1)) = Noe ™. (1.32)

Eszerint a A alland6 jelolése jogos, hiszen fizikai jelentésében éppen a bomlasi allandonak

felel meg.
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Az eddigiekben egy radioaktiv sugarforras altal kibocsatott részecskesugéarzas statisztikus
tulajdonsagait vizsgaltuk. A gyakorlatban ezt a sugarzast valamilyen detektor segitségével
tessziik észlelhetové. A forras altal kibocsatott részecskéknek minden esetben van egy
hanyada, amely nem keriil megszamlalasra a detektorban. Mivel a szdmunkra elérhetd
informéciot a detektalt részecskék szama (a tovabbiakban: beiitésszam) jelenti, meg kell
vizsgalni, mi jellemz6 pl. az adott id6 alatt detektalt részecskék szamanak eloszlasara. A
kiilonbség az el6zdéekhez képest nem szamottevo. Bevezetve az

detektalt részecskék szama

= — : - : — mennyiséget (a detektalasi hatasfokot), annak
a forras altal kibocsatott részecskék szama

valdszintisége, hogy a [0, 7] iddintervallumban egy atommag elbomoljon, és az ezaltal
keletkezett részecske detektalasra keriiljon, az 1.29 egyenletben megadott valoszintiségnek, és

a detektalasi hatasfoknak a szorzata. Igy az adott id6 alatt detektalt részecskék szama is
binomialis eloszlast kovet, melynek p paramétere: p = (1 —e ) £ . Mivel a hatasfok minden

esetben 1-nél kisebb szam — sdt, az esetek nagy részében 1-nél joval kisebb — ezért a detektalt
részecskék szamanak eloszlasa az esetek nagyobb részében kozelithetd Poisson-eloszlassal,

mint a forras altal kibocsatott részecskék szama.

Az eddigiekben eredendden radioaktiv anyagok 4ltal kibocsatott részecskesugarzas
vizsgalatarol volt sz6. A spektroszkopiai gyakorlatban nagy szerepe van azoknak az
eljarasoknak is, amelyek sordn kiilonb6z6 — esetleg eredendden nem radioaktiv — anyagokat
aktivalnak valamilyen tipusi sugarzassal, amely anyagok ennek hatasara rajuk jellemzd
energiaju részecskesugarzast bocsatanak ki. (A kibocsatott sugarzas tipusa természetesen a
gerjesztd sugarzas tipusatdl és energidjatol fligg.) Ez a kibocsatott sugarzas statisztikai
szempontbol nem kiilonbozik az eldbbiekben targyalt, radioaktiv atommagok bomlasa soran
kibocsatott sugarzastol. Az allando aktivald sugarzasnak kitett anyag altal kibocsatott sugarzas
egy nagyon hosszu felezési idejl, nagy mennyiségt radioaktiv anyag bomlasabol szarmazd
sugarzassal modellezheté. Ebben az esetben az aktivitas allandonak tekinthetd, az adott id6
alatt elbomlott atomok szama (ill. az aktivalt anyag altal kibocsétott részecskék szama, vagy
ezek detektalt hanyada) binomidlis eloszlast kovet, melynek varhatd értéke az idében nem
csokken.

A detektalt részecskék szamanak binomidlis tipusi eloszldsa mas megkozelitéssel is
magyardzhatd: az aktivdlds mogott valamilyen (4ltalaban nagyon kis) valoszintiséggel

lejatszodd magreakcio all. A besugarzott anyag N szdmua atomjabol valamilyen p
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valdszintiséggel m darab aktivalodik. Ezek koziil aztan egy bizonyos iddintervallumban p’
valdszintséggel m’ darab bocsatja ki a folyamatnak megfelelé részecskét. Az m” részecske
koziil pedig p” valoszintiséggel m ” darab szamlalodik meg a detektorban. A teljes folyamatot
igy N és p-p'- p"paraméterekkel rendelkez6 binomialis eloszlas irja le. A paraméterek a
valdsagban legtobbszor nem hatarozhatok meg.

A detektalt részecskék szamanak binomialis eloszlasahoz valdjaban elegendé az utolsoként
leirt részfolyamat is: a detektorban megszamlalasra keriild részecskék szdama a megel6zo
folyamatoktol fiiggetleniil binomialis eloszlast kovet. Ennek Poisson-kézelithetdségét
azonban biztosabban garantalja az a tény, hogy a megel6z6 folyamatok is binomidlis eloszlas
szerint mennek végbe, tekintve, hogy a detektorba jutd részecskék szamanal a forras altal
kibocsatott részecskék szama joval nagyobb, a p ~vel jelolt paraméternél pedig a p-p'- p”

szorzat joval kisebb.
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2. Spektrumok

2.1 A spektrumok létrejotte

A kiilonbozd tipusu részecskék észlelésére szolgdld detektoroknak, ill. a detektor jelét
feldolgozo elektronikai egységeknek kotetekre rugd irodalma van. Jelen dolgozat targyahoz
ezekbdl csak a végeredményiil kapott spektrumok alapvetd tulajdonsagai, legfoképpen
statisztikus viselkedésiik tartozik hozza. Ezért ennek a témanak itt csak egy egészen vazlatos,
¢s a fenti szempontra korlatoz6do leirasa kovetkezik.

A spektroszkopiai célokra alkalmas detektorok a beérkezd részecskék szama mellett azok
energigjat is ,.érzékelni” tudjdk. A detektor kimend jelének amplitiddja az, ami ardnyos a
beérkezett részecske energiajaval. Tokéletes detektor azonban nincs: a monoenergias sugarzas
hatasara kapott jelamplitudok mindig fluktuélnak valamilyen mértékben egy adott érték kortil.
A fluktuacidé mértékét €s jellegét az un. detektor valaszfiiggvény irja le, amely a monoenergias
sugarzassal valé bombdzas eredményeként kapott jelamplitudo-spektrum. Ez az esetek
tobbségében tekinthetdé Gauss-gorbének. Ezen gorbe szélességének segitségével definidlhatd a
detektor energiafelbontdsa. A legjobb felbontasuak, azaz legkeskenyebb valaszfiiggvénnyel
rendelkeznek a félvezetd detektorok. A felbontasnak fontos szerepe van a kialakulo spektrum
szempontjabol, mert minél jobban ,.elkenddik” a cstics, anndl nehezebb elvélasztani a
hattértdl, vagy a hozza kozel es6 mas csucsoktol.

A detektor jelét kiilonbozé elektronikai egységek alakitjak digitalis formaban tarolt
spektrumma. Ezek kozil itt egyrdl, a sokcsatornds analizatorrdl érdemes szot ejteni. Ez a
vizsgalt energiatartomanyt sok kis, jellemzden egyenld részre, (Gn. csatorndra) osztja, és a
detektorbol érkezé impulzusokat amplitudojuktol fiiggéen a megfeleld csatorndban
regisztralja. fgy a kapott spektrum végeredményben egy diszkrét energia-beiitésszam
figgvénynek felel meg.

A csatorndk szdmanak megvalasztdsa lényeges kérdés. A csatorndk szamdnak novelése
bizonyos hatérig javitja a felbontast, mivel a diszkrét fiiggvény ezzel egyre jobban kozeliti a
valdjaban folytonos eloszlast. A masik tényezd viszont, amely a csatorndk szdmanak korlatlan
novelése ellen szol, a beiitések véges szama. Tobb csatorna esetén kevesebb beiités jut egy
csatorndba, ami a csatornatartalmak relativ statisztikus ingadozasanak novekedését okozza. Ez

a viszonylag kis csucsoknak a hattérben valo ,,eltiinéséhez” vezethet.
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A csatornatartalmak, tobbszor, ugyanolyan koriilmények kozott elvégezve egy mérést,
statisztikus ingadozdst mutatnak. Ez az ingadozéds csatornanként fiiggetlen, binomialis
eloszldsokkal irhato le, amely a kordbban leirt feltételek mellett kozelithetd (vagy nem)

Poisson- ill. Gauss-eloszlassal.

A spektrum a spektroszkopus nézdpontjabol hasznos informacidt hordozd, ill. zavard
részekbdl tevodik 6ssze. Utdbbiakat eredetiiktdl fiiggetleniil, 6sszefoglaldan hattérnek hivjak.
Valojaban a hattér definicidja nem egyértelmii: a ,,forras nélkiil felvett spektrum”-tol elkezdve
addig a meghatéarozasig, hogy ,hattér mindaz, ami nem a vizsgalt csucs” az irodalomban
eléforduld definiciok széles skalan mozognak [DEB88]. A meghatarozastdl fiiggetleniil a
zavard hatdsok minden spektrumban kikiiszobolhetetleniil jelen vannak, és forrasai az
alkalmazott spektroszkdpiai eljarastol és kiegészitd technikaktol fiiggden masok és masok
lehetnek. Gamma- ill. rontgenspektroszkdpidban az un. teljes energidju csics hordozza a
hasznos informéaciot, amely mindazon fotonok altal keltett impulzusokbdl all, amelyek teljes
energiajukat a detektor anyagéaban adjak le, egy, vagy tobb 1épésben.

A cél tehat a teljes energidju csucsok elkiilonitése a hattértél, azaz a hozzajuk rendelhetd
betitések szdmanak minél jobb megbecslése. Egy kis kitéré utan ennek lehetséges modjairol

lesz szo.

2.2 Spektrumok szimulacidja

Szimulélt spektrumrészletek kiértékelése 1ényeges részét képezi a dolgozatnak: a kiértékeld
modszer teszteléséhez elengedhetetleniil fontos a vizsgalt mintadsszetevotdl szarmazd
beiitések szdmanak (azaz a valddi csucsteriiletnek) a pontos ismerete. Mért spektrumok esetén
ezt az értéket csak kozelitdleg ismerhetjiik. A valds folyamatokat a lehetdségekhez mérten
minél jobban kovetd szimulaciokkal viszont a valddiakkal azonos tipusu spektrumrészleteket
kapunk, amelyeknek azonban minden lényeges paramétere ismert: a csucsteriilet és a hattér
varhato értéke, de akar konkrét értéke is. A kiértékeld0 moddszer eredményessége igy jol
vizsgalhato.

A vizsgalatainkhoz sziikséges spektrumrészletek eldallitasdhoz sziikség volt egyrészt Poisson-
eloszlasu véletlenszdmok generalasara (az 6ssz hattér-beiitésszam, ill. bizonyos esetekben az

0ssz csucs-betitésszam megdllapitasdhoz) masrészt az igy meghatarozott dssz-beiitésszamok
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véletlenszerli szétosztasara a megadott szdmu csatornaban. Ez a cstcs €s a hattér esetében

kiilonboz6 modszerrel tortént. Ezen modszerek leirasa kovetkezik az aldbbiakban.

Poisson-eloszldsu véletlenszamok generdlasa

Poisson-eloszlasu véletlenszdmok generdlasa legprecizebben a radioaktiv bomlds valodi
folyamatanak kovetésével torténhet. Ismert, hogy az egyes bomlasok kozott eltelt idok
exponencialis eloszlasu valoszintiségi valtozo értékei, feltéve, hogy a bomlésra képes atomok
szama kozben jelentdsen nem csokken. Ekkor, mint azt az 1.3 alfejezetben be is lattuk, a [0,
7] iddintervallumban bekovetkezett bomlasok szama olyan Poisson-eloszlast kovet, amelynek
paramétere a7, ahol « az exponencialis eloszlas paramétere.

Exponencialis eloszlasu véletlenszamok az Un. inverz eloszlds modszerének segitségével
generalhatok [LUX91]. A szamitogépek [0;1] intervallumon egyenletes eloszlasu (pszeudo)-
véltelenszamok eldallitasara képesek. Az inverz eloszlds moddszere szemléletesen a
kovetkezot jelenti: derékszogli (x, y) koordinatarendszerben abrazoljuk az exponencialis
eloszlds eloszlasfiiggvényét, majd a [0;1] intervallumon egyenletes eloszlasu

véletlenszamokat generalunk. Ezeket a véletlenszamokat y, = F'(x,) fliggvényértékeknek

tekintve megkeressik a hozzajuk tartozd x; abszcisszdkat. Az igy kapott x; szamok
exponencialis eloszlasu véletlenszamoknak tekintheték. Valdjaban a feladat megoldasa nem
geometriai jellegli, hanem az F(x) eloszlas inverzének meghatarozasaval torténik. Mivel itt

bomlasok ko6zott eltelt idoket generalunk, a valtozot t-vel jelolve az exponencidlis eloszlas

eloszlasfliggvénye:

F(t)y=1-¢™. (2.1)
Ebbdl -t kifejezve:

{= —éln(l ~F(@)). (2.2)

Az inverz eloszlds moddszere szerint F(f) a [0;1] intervallumon egyenletes eloszlasu

valosziniliségi valtozo. Ekkor viszont 1— F'(¢) is az, igy irhatjuk, hogy
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t=——InU, (2.3)

ahol U a [0;1] intervallumon egyenletes eloszlasu véletlenszam. A T id6pontig bekovetkezett
bomlasok szamanak kiszamitadsahoz (azaz a Poisson-eloszlasu véletlenszam eldallitdsahoz) az
igy generalt ¢t idoket kell 6sszeadni addig, amig Osszegiik meg nem haladja 7-t. Az igy

végigfutott ciklusok szama minusz egy a keresett Poisson-eloszlasu véletlenszam.

A hattér esetében az igy eldallitott Ossz-betitésszamot kell egyenletesen elosztani a k&
csatorndban. Ehhez nem kell mast tenni, mint a [0;1] intervallumot k egyenld részre
felosztani, ¢€s egyenletes eloszlasu véletlenszamok generalasaval az dsszes betitést "kisorsolni”
valamelyik csatorndba. Ezzel az eljardssal csatornanként olyan binomidlis eloszlasu
betitéssszam-értékeket kapunk, amelynek paraméterei N: a tartomany 0Ossz-belitésszama,

p =1/k pedig az adott csatorndba esés valoszintisége. (Igy konstans hatteret kapunk abban az

értelemben, hogy a hattér minden csatorndban ugyanazon varhato érték koriil fluktual. Ez
egyszerlsitést jelent a valosaghoz képest, a kiértékeld6 moddszer tesztelése szempontjabol
azonban nem jelent tul nagy eltérést a mért spektrumrészletektél.) A kapott binomidlis

eloszlas varhato értéke Np = A-1/k, ahol 1 az §ssz-beiitésszam.

A cstucshoz tartozd beiitések csatorndkba vald szétszorasa a Neumann-féle céltabla-
moddszerrel torténhet [SRE65]. Ehhez egy olyan téglalapot kell létrehozni, amelynek
szélessége 1, magassaga pedig a csucs alakjat leird fliggvény maximuma. Ezutan a [0;1]
intervallumon egyenletes eloszlasu (x,y) véletlenszam-parokat generalunk, a téglalap 1
hosszusagu oldalat pedig felosztjuk & darab egyenld részre. Amennyiben az (x.,y) szamparra

teljestil, hogy

% <x< % (i=12....k) és (2.4)
y-max(f(x))< f(x) , (2.5)

f-fel jelolve a csucsalakot leiro fiiggvényt, akkor az i-edik csatornaban egy beiitést
regisztralunk. Mindezt addig folytatjuk, amig a regisztralt beiitések szama el nem éri az elére

meghatarozott cstcsteriiletet.
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2.3 A spektrumkiértékelés szokasos modjai

Spektrumok kiértékelésére daltalaban Osszetett, a spektrumok tulajdonsagait minden
tekintetben figyelembe vevd gyari szoftverek vannak forgalomban. Ezek t6bbnyire
ugyanazokat az alapelveket haszndljak fel, csak a konkrét megvaldsitas, és a kiegészitd
eljarasok kiilonboznek. Ebben az alfejezetben az alapelvekrol lesz szo.

A spektrumok kiértékelésének elso 1épése az energiakalibracio, melynek sordn a rendelkezésre
allo csatornaszam - beiitésszam fliggvényt energia — beiitésszam fiiggvénnyé konvertaljuk. Ez
altaldban a spektrum legalabb két, pontosan ismert energidju és nagy belitésszdmu csucsa
alapjan torténik.

A kovetkez6 1€pés a csucskeresés, ez tobbféle algoritmus szerint torténhet. A csucskeresdk
altalaban digitalis sziirdk; ezek allapitjak meg, hogy az illeszté algoritmus a spektrumban
hany csucsot illesszen €s azok energidjanak kezddértékéiil milyen energiat valasszon.

Ezutan az illesztd algoritmus folytatja a feldolgozast. Ez egyszerre illeszti a cstcsalak
valamennyi paraméterét: helyét, szélességét, magassagat.

Ezutan kovetkezik a csticsok teriiletének meghatarozasa. Ez is tobbféle modon torténhet, és itt
érdemes megjegyezni azt is, hogy a csucsteriilet nem egy egzakt, j6l definidlt mennyiség:
értéke fligg a meghatarozas modszerétol.

A tovéabbiakban a kovetkezd elnevezéseket hasznaljuk: illesztofiiggvénynek nevezzilk a
vizsgalt spektrumtartomanyon a csatornankénti beiitésszamokhoz illesztett (jellemzden
folytonos) fiiggvényt. Ez tartalmazza mind a hatteret, mind a csucsot leird fliggvényeket.
Modellfiiggvénynek nevezziik a csucsalakot leird fliggvényt (ez az altalunk vizsgalt esetek
zomében Gauss-fiiggvény). Végil célfiggvénynek nevezziik azt a fliggvényt, amely
szélséértékének megkeresésével hatarozhatdé meg az optimalis illesztés: azaz az
illesztofliggvény paramétereinek azon értéke, amelyek mellett ez legjobban illeszkedik a
vizsgalt spektrumtartomanyhoz.

Legegyszertibb a hattér levondsaval torténé meghatarozas. Ennél a modszernél a levonando
hattérértéket a csucs két oldalan elhelyezkedd spektrumrészek betitésszamainak atlagaként
kaphatjuk meg. Ez a modszer csak kifejezetten nagy betitésszamértékek, jo statisztika esetén
alkalmazhatd. A hattér levonasa utan visszamaradt csatornankénti betitésszamok kozvetlentl

egy valdszinliségi eloszlas konstansszorosanak tekinthetdék. A cstcs helyét ezen eloszlas elsd
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momentumaként, szélességét pedig masodik centrdlis momentumaként kaphatjuk meg. A
csucsteriilet hibaja a hibaterjedés szabalyainak megfelelden az Ossz-beiitésszam és a hattér-
betitésszam hibdinak négyzetdsszegébdl vont négyzetgyokként kaphatdo meg, mely elébbiek

Poisson-statisztikat kovetnek, igy hibajuk koézvetleniil szamithato.

2.3.1 Spektrum-tartomanyok kiértékelése a legkisebb négyzetek modszerével

A masik, és egyben legelterjedtebb csucsteriilet-meghatarozasi mod a sulyozott legkisebb
négyzetek modszerén alapuld gorbeillesztéses eljaras. Itt a vizsgalt spektrumtartomanyhoz két
folytonos fliggvényt illesztiink: a csticsot, illetve a hatteret leird fiiggvényeket. Ezek alakja a
konkrét spektroszkdpiai alkalmazastdl fligg, a hatteret leird legegyszerlibb fiiggvény a
konstans, a csucsot leird fiiggvények legegyszeriibbike pedig a Gauss-gorbe. A hattérhez
majdnem mindig ennél bonyolultabb fiiggvényt illesztenek, a csucs illesztésére viszont
bizonyos esetekben ténylegesen megfelel a Gauss-fliggvény. Ebben az egyszerii esetben a

csucsot tekintve két illesztendd paraméter van: a csics magassaga és szélessége. A csucs

terlilete ezen paraméterekbdl szamithatd ki magassag x szélesség x 7z modon.

Az illesztés az 1.2.1 alfejezetben leirt altalanos elveknek megfelelé modon torténik. Legyenek
a k csatornabol allo spektrumrészletben a csatornankénti betitésszamok: yi, ya, ..., yk. Az
illesztendé paraméterektdl fiiggd, és a hattér ill. a cstcs alakjat leiro illesztofiiggvényt jeldlje
fx; a1, as .., ay), ahol a; az illesztend6 paramétereket jeloli. A minimalizdland6 S

célfiiggvény az 1.14 6sszefliggésnek megfelel6en

S:Zil:[yi_f(f];_él""’an)] (26)

alakd. A nevezdben a csatornatartalmak Poissont kozelité Gauss-eloszlasa miatt szerepel

VY, , mint a mért értékek szorasa. Ugyanezen eloszlas miatt az S célfiiggvény megfelel a ;(2-

figgvénynek. A y*-eloszlas szabadsagi foka ebben az esetben a csatornaszam, minusz az
illesztett paraméterek szamdval egyezik meg. Az illesztés ezért akkor végezhetd el, ha a

csatornaszam meghaladja az illesztett paraméterek szamat.
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A paraméterek hibdja az 1.2.2 alfejezetben leirtak szerint a Hess-matrix invertalasaval kaphato
meg oly moddon, hogy az inverz matrix diagondl-elemei a paraméterek variancidjat,
diagonalison kiviili elemei pedig a paraméterek kovariancigjat tartalmazzak. A cstcsteriilet
hib4ja a paraméterek hibajabol a hibaterjedés szabalyainak megfeleléen szamolhato. A
kovariancia ebben az esetben altaldban negativ; ennek kovetkeztében a csucsteriilet hibgja
altalaban kisebbnek addédik, mintha fiiggetlennek tekintett paraméterek hibajabol szarmazott
volna, és o illesztés esetén (feliilrdl) kozeliti a teriilet négyzetgyokét.

A csucsteriilet-meghatarozasnak ez az utobbi modja jo eredményeket szolgaltat mindaddig,
amig a csatornatartalmak ¢és az illesztett paraméterek Gauss-eloszlasunak tekintheték. A kis
betitésszamok tartomanya az, ahol ezek a feltételek nem, vagy nem jé kozelitéssel teljesiilnek.
Korabbi vizsgalatok bebizonyitottak [MER96], hogy ezen a tartomanyon a fenti modszer
rosszul becsli mind a cstcsteriiletet, mind a csucsteriilet hibajat. A spektrumkiértékeld
szoftverek ezért tartalmazhatnak bizonyos kiegészité algoritmusokat a kis betitésszamok
tartomanyara, pl. a Hypermet PC program 25 alatti csatornankénti betiitésszadmok esetén harom

csatorna tartalménak atlagéval szdmol a 2.6 6sszefliggés nevezdjében [Phi76].

2.3.2 Kiértékelés a maximum likelihood modszerrel

Bar a gyakorlatban csak elvétve fordul eld, a teljesség kedvéért mégis meg kell emliteni ezt a
modszert is.

A likelihood-fiiggvény alakja attol fligg, hogy a csatornatartalmakat Gauss-, vagy Poisson-
eloszlasunak tekintjiik.

A csatornatartalmak Gauss-eloszlasa esetén a likelihood-fliggvény

=S (x5,))
1 2

k
L(YysVssees V3015 0y geend,) = ‘e ' 2.7
1>)2 k> %156 l:=_1[ ,_2713/,

alakban irhatd fel. A jelolések az elozo alfejezet jeloléseivel egyeznek meg, mint ahogy a
o, = \/y_, helyettesitést is alkalmaztuk az el6zdkben leirtak miatt.

A likelihood-fiiggvény logaritmusa pedig:



lnL—illn( 21 J—(y'_f(x'))z} . (2.8)

Y, 2yl

A csatornatartalmak Gauss-eloszldsa esetén szoros Osszefiiggés all fenn a maximum-

likelihood mddszer és a legkisebb négyzetek modszere k6zott, hiszen

1nL=—%;(2 +C (2.9)

1

V2rmy,

becslését nem befolyasolja. A likelihood-fliggvény maximumhelye ebben az esetben tehat

alaku, ahol a C konstans tartalmazza az ln[ Jtagok Osszegét, amely a paraméterek

megegyezik a y -fiiggvény minimumhelyével. Ezért Gauss-eloszlas esetén a maximum

likelihood becslés €s a legkisebb négyzetek mddszere azonos eredményre vezet.

Amennyiben a csucsteriiletet Poisson-eloszlasunak tekintjiik, a legkisebb négyzetek modszere
nem, csak a maximum likelihood elv alkalmazhaté. Ebben az esetben a likelihood-fiiggvény

alakja a kovetkezo:

L= f[—(f T s (2.10)

X
i=1 y,!

A maximum likelihood becslés ezen formajanak hasznalata kis betitésszamu spektrumok
kiértékelésénél indokolt, ahol a csatornatartalmak eloszlasanak Gauss-eloszlassal valo

kozelitése helytelen. A modszer hatrdnya, hogy a csucsteriilet hibajanak becslése nem

egyszerl. Mig ugyanis Gauss-eloszlés esetén az e 7 -fiiggvénynek ill. a likelihood-fiiggvény
logaritmuséanak a paraméterek szerinti masodik derivaltjai a paraméterektdl nem fliggenek, ez
a Poisson-eloszlasra felirt likelihood-fiiggvény esetén nem teljesiil. A szakirodalom a
probléma megoldasanak tobb modjat javasolja, azonban ezek mindegyike csak kozelitd
pontossaggal szolgaltatja a paraméterek becsiilt hibgjat. Ilyen athidalé megoldas lehet a
masodik derivalt atlaganak vétele a maximum kornyezetének egy olyan, alkalmasan valasztott

tartomanyan, ahol a likelihood-fiiggvény értéke nagy [LYOS86]. Egy masik lehetséges
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hibameghatarozasi mod a paraméter értékének kiszamitdsa az Inl fiiggvény maximumatdl
1/2-del eltérve jobbra és balra. A paraméter hibdja a maximumnal vett értékének eltérése ettdl
a két értéktdl [HAN99]. Az igy kiszamitott hibaintervallumok hossza viszont csak Gauss-

eloszlas esetén fog megegyezni a becsiilt érték két oldalan.

2.4 A teljes valosziniiségi modszer

A 2.3 alfejezetben bemutatott csucsteriilet-meghatarozo eljarasok mindegyike jo statisztikaja
(nagy belitésszamu, jo csucs/hattér aranyd) csucsok teriiletének meghatarozasara hasznalhato
csak megfeleld megbizhatésaggal. Amennyiben olyan spektrumrészletet kell kiértékelniink,
amelyben mar az is nehezen donthetd el, hogy amit latunk, az valddi csucs-e, vagy csak a
hattér fluktuacidja, a gorbeillesztés tobbnyire elfogadhatatlanul nagy hibaval végezhet6 el. A
spektroszkopusok altalaban nem is foglalkoznak ilyen kis beiitésszamti cstcsok
kiértékelésével, ami pedig hasznos lehet példdul kornyezeti mintdk analizise soran,
nyomelemek mennyiségének meghatarozasanal, vagy csekély mennyiségli radioaktiv
szennyezOdés kimutatasanal.

Amennyiben a csucsteriiletet mégis gorbeillesztéssel akarjuk meghatarozni, egy masik
problémaval is szembe kell nézniink: kis betlitésszamoknal a csucsteriilet becslésekor a Gauss-
eloszlas feltételezése helytelen. Bizonyos beiitésszamig a Poisson-eloszlas hasznalata javit az
eredményeken, viszont ez nagyon megneheziti a csucsteriilet hib4janak becslését. Még
alacsonyabb betitésszamok esetén a Poisson-eloszlas sem alkalmazhat6, helyette a binomialis
eloszlas hasznalata indokolt.

A tovabbiakban egy, az eddigiekt6l gyokeresen eltérd spektrumkiértékeld eljaras kertil
bemutatasra, amely kifejezetten az egészen kis belitésszdmi csucsok teriiletének
meghatarozasara alkalmas. A modszer Gtlete és alapelveinek kidolgozasa Méray Laszld
nevéhez flizédik [Mér94], jelen dolgozat irdja a modszer szimulalt és mért spektrumokon vald
tesztelésében, alkalmazasi korének bovitésében és gyakorlati spektrumkiértékelési feladatok

végrehajtasdban vett részt.
A modszer alapgondolata szerint, mivel a spektrum t6bb informéciot hordoz, mint amennyit a
gorbeillesztéses eljarasok felhasznalnak, e tobblet informacio kiakndzasaval a csucsteriilet-

meghatarozds pontosabban hajthaté végre. A legtipikusabb kiértékelési problémanal a
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kiértékelendd spektrumrészlet egy csucsot ¢€s hatteret tartalmaz; a feladat e kettd
szétvalasztasa. A gorbeillesztéses modszerek a csucsot ill. a hatteret leird, kiilonb6z6 tipusu
figgvények segitségével a vizsgalandd spektrumrészletet két részre bontjak, majd megkeresik
a lehetséges felbontasok koziil az optimalisat. A teljes valoszintiségi mddszer ezzel szemben a
lehetséges felbontdsokhoz egy-egy valoszintiséget rendel, és az azonos csucstertiiletre vezetd
felbontasok valdszintiségeinek Osszegét veszi. Az alapvetd kiilonbség ez a két modszer
kozott: mig az elébbi a maximalis valdsziniiséget keresi, addig az utobbi a teljes
valosziniliséget (az ugyanazon végeredményre vezetd események valdsziniiségeinek 6sszegét).
Még egy lényeges eltérés van a két modszer kozott: a gorbeillesztéses eljarasok az
illesztéfiiggvény  paramétereinek  valtoztatdsaval a csucshoz rendelt feltételezett
csatornatartalmakat a vizsgalt tartomanyon egylitt, szinkronban valtoztatjdk, a teljes
valoszinliségi modszer viszont csatornanként, egymastol fliggetleniil végzi el a cstucs-hattér
kettévalasztast. (Ez természetesen nem jelenti azt, hogy a teljes valdszinliségi modszer
figyelmen kiviil hagyna a csatornatartalmak kozotti kapesolatot.)

A két mddszer kozotti harmadik eltérés mar kovetkezményként adodik: mig a gorbeillesztéses
eljarasok szamos tulajdonsaga csak abban az esetben érvényes, ha a csucsteriiletet Gauss-
eloszlast kovetdnek tekintjiik, addig a teljes valdszinliségi modszer a csucsteriilet eloszlasat
végeredményként szolgaltatjia — ez az eloszlas pedig kis beiitésszamok esetén a legritkabb

esetben kozelithetd csak Gauss-gorbével.

A mobdszer matematikai megfogalmazasdhoz kezdetben tekintsiik a kovetkezd egyszertisitd
feltételeket:

a., a vizsgalt spektrumrészletben a hattéren kiviil legfeljebb egy csucs van jelen

b., a hattér minden csatornaban ugyanazon érték koriil ingadozik.
E két egyszertsitd feltétel csak a modszer bevezetésekor a logikus felépitéshez sziikséges, a
késobbiekben az eljards konnyen tovabbfejlesztheté tobb  csucsot  tartalmazd
spektrumrészletek esetére is, ill. a hattér varhatd értékének linearis, 1épcsdszerli, vagy mas,
tetszoleges fiiggvény szerinti valtozasara is.
Kiindulaskor ismertnek tekintjiik a kovetkezé mennyiségeket:

1. n(i=1,2,..,k) akcsatornabdl allé spektrumrészletben csatornanként regisztralt

beiitésszamok.
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2.

3.

<B> a spektrumrészletben jelenlevo hattér varhato értéke. A fenti b., egyszeriisitd

(B)

feltétel miatt ez csatornanként TVérhat() értéket jelent. Ennek meghatarozasa

vagy vak minta mérésekkel torténhet, vagy, amennyiben ez nem lehetséges, a
spektrumban a vizsgalando csucs ,.elott” és ,,mogott” (nala kisebb és nagyobb
energian) talalhaté hattérértékek alapjan.

pi (i =1,2, ..., k) avizsgaland6 csucs spektralis eloszlasa, azaz a csucshoz tartozo
betitések egyes csatorndkba keriilésének valdszinliségei. Ezen valdszintiségek
meghatarozasdhoz sziikséges egy azonos mérési koriilmények kozott végzett
referenciamérés egy, a vizsgalandd cstccsal azonos energidju, de nagyon jo

statisztikaju csucsrdl (azaz amelyre teljesiil, hogy a statisztikus hiba csatornanként

\Ja, << a,. Ez esetben a p; valdsziniiségeket a p, = a,/ Za, Osszefliggés szerint

1
szamoljuk minden i-re. (Amennyiben a referenciamérés valami miatt nem
végezhetd el, lehetdség van arra, hogy az adott mérdmoddszernél, kalibralt

spektrumban, adott energian érvényes ismert csticsalakot hasznaljuk fel a kérdéses

k
valdszintiségek kiszamitasara.) Természetesen fennall a z p, =1 Osszefiiggés.
i=1

Célunk a vizsgalt spektrumrészletben a legvaldsziniibb csucsteriilet meghatarozasa, ill. az
Osszes lehetséges csucsteriilethez a hozza rendelhetd valoszinliség kiszamitasa. Az X
csucstertilet egy k csatornabol allo spektrumrészletben tobbféle mdédon allhat eld az (x;), i=1,
..., k csatornankénti, a csucshoz tartozonak tekintett belitések Osszegeként. Az X
csucstertiilethez tartozo valdszinliség kiszamitdsdhoz eldszor az x = (x1, X2, ..., xx) lehetséges
megvaldsulasok valdsziniiségeit kell meghatarozni. Ehhez eldszor tegyiik fel, hogy a vizsgalt

spektrumrészlet mindossze két csatornabol all. Ekkor annak valoszintsége, hogy az elsd

csatorndban a csucshoz tartozo belitések szama x;, (a masikban pedig a X = Zx, feltétel

1

miatt X-xi,)

X\ . v
A= P (I=p)" . (2.11)
1
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mivel a cstics X szdmu, egymastdl fliggetlen betités egymasutanjaként alakul ki, és igy a
binomialis eloszlas érvényes ra [COL74]. A fenti egyenlet kézenfekvé mddon altalanosithatd

k>2 esetre. Ekkor a

X! X Xy Xy
Py Py Dy (2.12)
x e, lx,!

P =
polinomialis eloszlast kapjuk. Miutan a csatorndk tartalma csicshoz ill. hattérhez tartozd
betitések szamainak 6sszegeként adodik, és mivel a hattér sem alland6, hanem varhato értéke
koriil véletlenszertien ingadozik, ezért annak valoszintségét is ki kell szamitani, hogy az i-
edik csatorndban a hattér hozzajaruldsa a csatornatartalomhoz éppen y. A gyakorlatban
eléforduld esetek zomében a hatteret csatornanként Poisson-eloszlasunak tekinthetjiik. (A
teljes valdszinliségi moddszer matematikai leirdséhoz nem feltétleniil sziikséges ez a

feltételezés; errdl a késdbbiekben lesz sz9.)

Ekkor

I AV 2.13)

Mivel az egyes csatorndkbeli hattér-beiitésszdmok egymastdl fiiggetlenek, ezért a teljes

vizsgalt tartomanyon a hattér eloszlasa:

(2.14)

o)

vy, ly!

A 2.14 egyenlet megadja annak valosziniliségét, hogy a k csatornabdl allo tartoméanyon a
hattérnek tulajdonithat6 beiitésszamok rendre yy, y»,, ...,Vx. Ezek utan a cstcshoz tartozé x =
(x1, x2, .., xx) és a hattérhez tartozd6 y = (y1, )2, ...yx) Dbelitésszamok egyideji

bekovetkezésének valoszinlsége a 2.12 és a 2.14 kifejezések szorzata:
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In L = - —y + C - (2.15)

Mivel az egyes csatorndkbeli Ossz-beiitésszamok ismertek (ezekbdl all a spektrum) ezért a

fenti 2.15 6sszefiiggésben teljesiilnie kell az
Yi= ni—X; (216)

feltételnek is. gy 2.15 egyszerli atalakitasok utan 2.16 figyelembe vételével a

kovetkezoképpen modosul:

—<B> N-X
X' X X X e <B>
X)=—"p p, " . (217
Pl) xl!xz!...xk!p] PoP KNy = x )Ny = x))(n, —x,)! @17)

ahol N a teljes vizsgalt tartomanyon észlelt §ssz-betitésszam: N = Zn, .

1

Tekintve, hogy célunk nem egy x konfiguracidhoz tartozd valdsziniiség kiszamitasa, hanem
egy X csucsteriilethez tartozoé, ezért a 2.17-ben szerepld p(x) részvaldsziniiségeket 6sszegezni

kell minden olyan x-re, amelyre teljestil, hogy

Y =X, 218)

i

Ekkor az X csucsteriilethez rendelt valoszintiség:

X X, X -(B) N-X
Q(X):z Xip'p,"p " ¢ <B>

2.19
T x!x,lx, ! KV (ny = x)(n, —x,).(n, — x,)! @19

A 2.19 egyenlet alapjan minden lehetséges csucsteriilethez kiszamithatjuk a hozza tartozo
valésziniiséget (természetesen X nemnegativ egész értékeket vehet fel). A csucsteriiletek
figgvényében abrazolva a hozzdjuk rendelt valdszintiségeket, egy, a 2.1 dbran lathatohoz

hasonlo diszkrét értéki fiiggvény képét kapjuk.
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2.1 abra. A kiértékelés végeredménye a teljes valdsziniliségi modszer szerint
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Ezek a fiiggvények az esetek tulnyomo tobbségében jol definidlt maximummal rendelkeznek.
A maximum helyét tekinthetjiik a csucsteriilet becsiilt értékének. A fliggvénygorbe alakja
viszont altaldban, mint itt is, aszimmetrikus. Ez lényeges tulajdonsag, mert a 2.3 alfejezetben
leirt eljarasok a csucsteriilet hibajanak becslésekor a csucsteriilet eloszlasat normalisnak (ezzel
egyuattal szimmetrikusnak) tételezik fel. A cstcsteriilet hib4jara adott +o becslés kis
betitésszamok esetén az aszimmetria miatt nem helytallo.

Bér az 6sszes lehetséges esetet figyelembe vettiik, a gorbe alatti teriilet, pontosabban, diszkrét

N
értékll fliggvényrdl 1évén szo, a ZQ(X ) mennyiség nem egyenld 1-gyel. Ennek oka a 2.16

X=0
feltételben keresend6. Mind a Poisson- mind a polinomialis eloszlas esetében a valtozo(k)
tetszoleges, nemnegativ egész értékéhez 0-nal nagyobb valoszinliség tartozik. Ilyen
értelemben tehat nem vettik figyelembe az Osszes bekovetkezheté eseményt. Az 1-re

normalds, azaz a Q(X) valoszinliségek helyett a

ZN?(X ) (2.20)
0(X)

valdszinliség szerepeltetése mégsem Onkényes, hiszen a 2.16 feltétellel a lehetséges
események korét szukitettiik le, és igy abban a ,vilagban”, amelyet az adott spektrum
meghataroz, az Osszes lehetséges eseményt figyelembe vettik. Az 1-re normalt eloszlas
szamos jo tulajdonsaggal bir: segitségével kiszamithatjuk elére megadott csucsteriilet-
intervallumba  esések  valdszinliségét, vagy valamely kritikus csucsteriilet-érték
meghaladdsanak valdszintiségét.
N
Korabbi vizsgalatok soran [MER96] felmeriilt, hogy a ZQ(X ) mennyiség esetleg egyfajta
X=0
josagi tényez6 szerepét toltheti be (funkciodjat tekintve analog modon a gorbeillesztés josagat
jellemz6 4% értékkel). Révay egy z’-szerli mindsité faktor és a ZN:Q(X ) mennyiség kozott
X=0

egyértelmii korrelaciot mutatott ki [REV97].

A moddszer fenti megfogalmazasa a hattér esetében a tényleges binomialis eloszlast Poisson-

eloszlassal kozelitette. Ez a kozelités nem feltétlentil sziikséges a matematikai leirashoz. A
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hatteret — a csticshoz hasonldan — tekinthetjiik polinomidlis eloszlasunak a k csatornabol allo

tartomanyon. Ekkor annak valdszintisége, hogy a hattért6l szarmazo betitések szama N —X:

n;—Xx;

Py =(N - X)'H(l/k) 2.21)

x)"

ahol (csatornanként megegyez6 hattér varhatd értéket feltételezve) az egyes csatornakba
esések valdszinliségei megegyeznek, igy a polinomidlis eloszlds képletében szerepld k darab

valoszinliség mindegyike 1/k. A 2.19 képlet analdgiajara a Q(X) valoszintség ezek utan:

Xp i p,"p* N-X)1/k)"F
0(X)=% DDy Dy ( )I(A/k)

T x1x,0.x, ! (n, —x)(ny — x,).(1, —x,)! (2.22)

Arrdl, hogy a modszer két matematikai megfogalmazasaval kapott eredmények mennyire
térnek el egymastol, a gyakorlati alkalmazasokndl fog sz6 esni. Egy technikai jellegt
kuilonbségrol viszont itt kell szot ejteni: mig a Q(X)-re adott elsé 6sszefiiggésnél (B)-t, a hattér
véarhato értékét a modszertdl fliggetleniil, kiilon kell meghatérozni, addig a méasodik esetben
erre nincs sziikség. Az els6 képletben a hattér varhatd értéke kiinduld adat, a mddszer ezt
,biztosnak™ tekinti, és becslésének esetleges bizonytalansagat az eredményekben nem veszi
figyelembe. Ez azt eredményezi, hogy az elsé képlettel kapott eredmények valamivel
keskenyebb eloszladsgorbét mutatnak, mint a masodik képlettel szamoltak, mivel ez utdbbi
esetben a hattér varhato értéke nem rogzitett. Ez azonban nem jelenti azt, hogy az elsé képlet
pontosabb eredményeket szolgéltatna, csupan a statisztikus hiba nem teljes egésze jelenik meg
az eredményekben.

A gyakorlatban mindig a konkrét feladat donti el, hogy melyik képlet hasznélata célszertibb.
Amennyiben a hattér varhato értéke a fejezet elején leirt valamelyik eljarassal viszonylag
pontosan meghatarozhatd, az elsé Osszefliggést érdemes alkalmazni, ellenkezd esetben a
masodikat.

A 4. fejezetben részletes vizsgalatok alapjan be fogjuk latni, hogy az igazi kiilonbség a
moddszer két megfogalmazasa kozott nem is a Poisson-eloszlas kozelitd voltaban, hanem a

hattér varhato értékének kiilonb6z6 meghatarozasi modjaban van.
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Egy lényeges dolgot meg kell még jegyezni a teljes valoszinliségi mddszerrel kapcesolatban. A
modszer leirasa soran végig csucsteriiletek valoszintiségérdl volt sz6. Ez az egyszertiség — és a
megfeleld sz6 hidnya — miatt volt igy. Valdjaban a csucsteriilet szamunkra ismeretlen allando,
igy a sz6 matematikai értelmében valoszintiség nem rendelheté hozza (pontosabban: az egyes
csucstertiiletek valdsziniisége vagy 1, vagy 0). Azonban a csucsteriiletekhez a mddszer altal
rendelt 0 és 1 kozotti szam az inverz valdszintiséggel sem azonosithatd, mivel nem normal
valdszinliségekbdl a Bayes-tétel segitségével szdrmaztatott mennyiség. Jelentését tekintve
leginkabb a Fisher altal bevezetett /ikel/ihood fogalommal egyezik meg (Id. 1.2.2 alfejezetet).
Mivel a magyar nyelv nem kiilonbozteti meg a probability és a likelihood szavak forditasat,
ezért a tovabbiakban is a valoszinliség szot fogjuk hasznalni mindkettére, mert ennek
értelemzavaro hatdsa a dolgozatban targyalt kérdésekre nézve nincs.

A modszer altal a cstcsteriiletekhez rendelt 0 és 1 kozotti szdmokkal egy helyen végziink
olyan szamit4sokat, amelyek jogossagahoz ezen szamok valdsziniiségi jelentése sziikséges.
Az elsd ranézésre talan feleslegesnek ting 4.3 alfejezet azért kapott helyet a dolgozatban,

hogy ezen szamitdsok helyességét igazolja a gyakorlat oldalarol.

2.5 Kimutatasi hatar (L. Currie definicidja)

A kimutatasi hatar fontos jellemzdje a kiilonféle analitikai eljardsoknak. Attol fliggden, hogy
milyen spektrometriai modszert alkalmazunk, a kimutatdsi hatarnak nemcsak az értéke, de a
definicioja is kiilonb6z6 lehet.

Lloyd Currie 1968-as munkajaban [CUR68] felsorol néhanyat a radiokémiai gyakorlatban
definialja a kimutatasi hatart, van, amelyik a cstcs standard deviaciojat is figyelembe veszi, és
vannak Currie altal nem statisztikai jelleglinek nevezett definiciok is, mint pl. a hattér
kétszerese, vagy 10%-a, 1000 dpm (a-, B-, y-sugarzas detektalasanal), 100 dps (y-
sugarzasnal). Az azonos feltételek mellett az emlitett definiciok alapjan szamolt kimutatasi
hatar értékek széles skalan mozognak. Currie, a szoban forgd cikkében egzakt, és altalanos
érvényl definiciot adott a kimutatasi hatdrra. Miutdn sajat, a kimutatdsi hatarra és vele
kapcsolatos fogalmakra vonatkozd szamitasaink ezen a definicion alapulnak, a tovabbiakban
ezt részletesen ismertetem.

Currie cikkében harom fogalmat definial, amelyek a kvalitativ kimutathatosaggal és a

kvantitativ meghatarozhat6saggal vannak kapcsolatban.
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A kritikus szint (critical level) Lc, (mas forrdsok dontési kiiszob-ként (decision

threshold) emlitik) egy konkrét mérés kiértékelésekor szolgaltat informaciot arra nézve,
hogy az észlelt nettd jel nagysaga elegend6-e ahhoz, hogy eredetére nézve — egy elére
megadott valosziniséggel — valamilyen megallapitast tegylink. (Netto jel alatt a hattér
levondasa utdn megmarado betitésszdmot értjiik.)

A kimutatdsi hatar (detection limit) Lp mindig valamilyen mérémddszert jellemez,

megadja azt a legkisebb netté jel-nagysdgot, amely az adott mérési eljaras és
kortilmények kozott elegendd ahhoz, hogy az elére megadott megbizhatosaggal

allithassuk: detektaltuk a minta vizsgalt 6sszetevdjét.

A kvantitativ meghatdrozas kiiszébértéke (determination limit) Lo adott statisztikus hiba

melletti kvantitativ meghatarozas lehetségességére ad meg alsé értékhatart.
Mindharom fogalom definicioja valoszinliségszamitasi, ill. statisztikai megfontolasokon
alapul, és mindegyik kiiszobérték fiigg egy, az analitikus altal elére megadhat6, 0 és 1 kozotti
szamtol, amely megszabja, hogy milyen megbizhatdésaggal koveteljiik meg eredményeink
helyességét.
Lényeges kiilonbség L¢ és Lp kozott, hogy mig az eldbbi egy konkrét, mar elvégzett mérésre
vonatkozik, addig az utobbit a mérések elvégzése elétt, a modszerre jellemzéen kotjik ki. Igy
a kritikus szint egy a posteriori dontéshez, mig a kimutatasi hatar egy a priori becsléshez
tartozik. A definiciok sziiletésekor sokcsatornas analizatorok még nem alltak a
spektroszkopusok rendelkezésére, igy a ,.csucsteriilet” meghatdrozasa mindig két mérés
alapjan tortént: a minta vizsgalt Osszetevdjének jelenlétében, ill. anélkiil kapott beiitésszam
kuilonbségének kiszamitasaval. Currie cikkében a két mérés soran kapott beiitésszamokat, és
ezek kiilonbségét egyarant Gauss-eloszlastnak tételezte fel.
Lc és Lp matematikai megfogalmazasa statisztikai hipotézisvizsgalat segitségével torténik.
Sziikséges hozza az elsé- €s masodfaju hiba fogalméanak bevezetése: az elsdfaju hibat akkor
kovetjiik el, amikor arra a kovetkeztetésre jutunk, hogy a vizsgalt komponens jelen van a
mintdban, mikoézben valdjaban nincs (az elséfaji hiba valoszinliségét o-val jeloljik).
Masodfaju hibat kovetiink el, ha a vizsgalt 6sszetevot jelen nem levonek nyilvanitjuk,
mikdzben valdjaban jelen van a mintaban (a masodfaju hiba valdszinlisége: f). Az elso- €s
masodfaju hibak értékét a felhasznald szabja meg attol fiiggden, hogy mennyire kivan ,,biztos

lenni” a kapott eredmények helyességében.
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L¢ definidlasdhoz a kovetkezd eljarast kovetjik: a nettd jel varhatd értékét O-nak véve
tekintjiik annak valdszinliségi surlségfiiggvényét (mely esetiinkben 0 varhatd értéki, oy

szOrasu Gauss-fijggvény).’k Ekkor a kritikus szint a kovetkez6 6sszefiiggéssel adhaté meg:

L. =k,o,, (2.23)

ahol k, a standard normadl eloszlas 1-« valoszinliséghez tartozé pontjanak abszcisszaja. Az a

priori kimutatasi hatar ezek utan a kritikus szint segitségével definialhato:

Ly,=L.+k,o,, (2.24)

ahol kg jelentése k,~éval analdg, op pedig az Lp nagysagu netto jel szorasa.

Lc és Lp szemléletes jelentését €s kapcesolatukat a 2.2 dbra mutatja be.

2.2 abra. A kritikus szint és a kimutatasi hatar ([Cur68]-bol atvéve)
A kvantitativ meghatarozas kiiszobértéke a kimutatasi hatarhoz hasonléan a mérdmddszerre

jellemz6, a konkrét mérések elvégzése elott meghatarozandd mennyiség, melyet a kvetkezd

Osszefliggés definial:

L, =k,o, (2.25)

ahol op az L vérhato értékii netto jel szorasa, ko pedig a felhasznal6 altal megkovetelt relativ

hiba reciproka.

" Formalisan ez a fiiggvény Ugy hatdrozhaté meg, hogy a vizsgalt 5sszetevé nélkiil nagy szamii mérést végziink
el, és a kapott beiitésszam-értékeket kivonjuk a hattér ismert varhatd értékébol. Az igy kapott szamok
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Abban a specialis esetben, ha mérési eredményeink olyan jellegiieck, hogy valdszinliségi
szempontbol Poisson-eloszlast kozelitd Gauss-eloszlassal irhatok le, a fenti harom
Osszefliggés konkrétabb formaban is megadhato.

Jelolje wp a hattér varhato értékét, op pedig a szordsat. up.s a varhatod értéke az 9sszes észlelt
betitések szamanak a minta vizsgalt 6sszetevodje jelenlétében, op.s a megfeleld szorasérték. A

nettd jel paraméterei az el6z6ekbdl szamithatok: pg =p, ¢ —p, a varhatd érték,
1/2 . , . . , , . 1 . P
oy = (O'fm + 0'}23)/ pedig a szorés, a hibaterjedés szabalyainak megfeleléen. Megjegyzendd

még, hogy a Poisson-eloszlés tulajdonsagai miatt a o = \/; Osszefliggés teljestil a megfeleld

paraméterértékek kozott mindharom esetben. Egyszeri matematikai atalakitdsok utan Lc-re €s

Lp-re a kovetkezd Osszefliggések adodnak:

Lo =k 24, . (2.26)

) 1/2

k 4L. 4L
LD=L(T+%1+ 1+ —54—¢

2 2 2
k) kCk,

2.27)

Amennyiben — amint ez a gyakorlatban altaldban szokds is — az els6- €s mésodfaju hibak

valoszinliségét ugyanakkoranak valasztjuk, Lp kifejezése nagyban leegyszertisodik:

L,=k>+2L,., (2.28)

ahol k =k, =k,.

Currie definicidéja mind a mai napig széles korben elterjedt és alkalmazott meghatarozasokat
ad az alapvetd analitikai kiiszobértékekre. Két tényezdje azonban van ezeknek a
meghatarozasoknak, amelyeken ha valtoztatunk, joggal varhatjuk az eredmények javulasat, pl.
a kimutatasi hatar csokkenését.

Az egyik tényez6 a Gauss-eloszlas feltételezése a csucsteriiletre vonatkozoan. (A matematikai

Osszefliggésekben a Gauss-eloszlas feltételezése a k,, kg tényezOk hasznalatdban nyilvanul

(amennyiben igazak a korabbi feltevéseink) Gauss-eloszlas szerinti ingadozast mutatnak a 0 koril.
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meg.) Ez a feltételezés kis betitésszamok tartomanydban nem feltétlentil helytallo. Mind a
csatornankénti, mind az 6ssz-beiitésszamot valdsziniiségi szempontbdl egzakt mddon leird
eloszlds a binomialis eloszlas. Ennek Gauss-eloszlassal valo kozelitése a kis beiitésszamok
tartomanyaban — azaz a kimutatdsi hatar remélt értéke koriil — nem feltétleniil tehetd6 meg
elfogadhatd pontossaggal. A kimutatdsi hatdr Gauss-eloszlas feltételezése nélkiil is
definialhatd, Currie gondolatmenetéhez egyéb tekintetben szigoruan ragaszkodva. Ezzel
kapcsolatos szamitasainkat ismerteti a 3.1 alfejezet.

A masik tényez6 Currie definicidjdban, amelyen valo valtoztatastol a kimutatdsi hatar
csokkenését reméljiik, a csucsteriilet meghatarozasanak moédja. Mint kordbban mar volt szd
rola, a definicio sziiletésekor rendelkezésre allt technikai hattér a ,,csucsteriilet” becslésének
csak egy meglehetdsen kezdetleges modjat tette lehetové: a kiilon mért hattér levonasaval valo
meghatarozast. Azdta erre ennél precizebb modszerek is léteznek, amelyek hasznalatatol a
statisztikus hiba csokkenése, és ezaltal a kimutatasi hatar csdkkenése is varhatd. Miutan a kis
betitésszamok tartomanyaban a teljes valdszinliségi modszer bizonyult a leghatékonyabb
csucsteriilet-meghatarozo eljarasnak, ennek hasznalataval bovitettiik ki Currie definicidjat. Az

ezzel kapcsolatos vizsgalatokat a 3.2 alfejezet targyalja.
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3. Kimutatasi hatar

3.1 Az analitikai hatarértékek meghatarozasa Poisson-eloszlas feltételezésével

Ebben, és a kovetkezd alfejezetben a témaval kapcsolatos sajat vizsgalataink és ezek

eredményei szerepelnek, melyek két kozleményben [MERO1a], [MERO1b] jelentek meg.

A csucsteriiletet tovabbra is a feltételezett hattér levonasaval szamitjuk. A kovetkezd

jeloléseket hasznaljuk:

B ahattér aktualis (ismeretlen) értéke

S acsucsteriilet aktualis (ismeretlen) értéke
(B)  ahattér varhato értéke
(S)  acsucsteriilet varhato értéke

X  akiértékelés soran eredményiil kapott cstcsteriilet.

A hattér levonasaval kapott csucsteriilet:
X=B+S—(B). (3.1

B + S a vizsgalt tartomanyon az &ssz-betitésszam, ebbdl vonjuk le a hattér varhatd értékét,
melyet vagy vak minta mérésével, vagy a csucs két oldalan levo beiitésszamok segitségével
hatarozhatunk meg. (Igy a hattér empirikus varhato értékét kapjuk, amely azonban megfeleld
meghatarozasi mod esetén jo becslése az elméleti varhato értéknek.) Célunk azon
valdszintiségeknek a meghatdrozasa, hogy a kiértékelés soran a csucsteriiletet 0, 1, 2, ...-nek
kapjuk, a vizsgalt komponenstdl szarmazé S beiitésszam esetén. Ehhez tételezziik fel, hogy a

hattér aktualis értéke Poisson-eloszlas szerint valtozhat varhatd értéke koriil:

e7<B><B>B
P(B) = - (3.2)
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Annak az S rogzitett értékénél vett feltételes valoszinilisége ezek utan, hogy a hattér levonasa

utdn a nett6 csucsteriilet éppen X legyen, megegyezik annak a megfeleld feltételes

valoszintiségével, hogy a hattér aktualis értéke B = <B> +X -8

e,<3><B><B>+X—S
P(X|S)=P(B)+X-S|S)= (B x—sn

(3.3)

A P(X|S) valészinliség a X eredmény eléfordulasanak valdszinlisége S rogzitett értéke

mellett. Ezek a valoszinliségek minden egyes lehetséges X értékre kiszdmithatok. (X
lehetséges értékei nem feltétleniil esnek egybe a fizikailag lehetséges csucsteriilet-értékekkel,

ha a csucsteriilet meghatdrozasara ezt a modszert hasznaljuk. Abban az esetben példaul, ha

<B> > B és S kicsi, X negativ értékeket is felvehet. Ugyanigy, ha <B> < B és S nagy, a 3.3

egyenlet és a Poisson-eloszlas tulajdonsdgai miatt X-nek (S—<B>)-nél kisebb értékei 0

valoszintiségliek.
Valdjaban a vizsgalt komponenstdl szarmazo betitések szdma nem fix érték, hanem vérhato
értéke koriil szérhat azonos korilmények kozott elvégzett mérések soran. A hattérhez

hasonldan S-et is Poisson-eloszlasunak feltételezziik:
ei<S> <S>S
P(S) = — (34

Azon két esemény egyidejli bekovetkezésének valdszinlisége, hogy a vizsgalt
mintadsszetevotdl szarmazd betitések szama éppen S, és a kapott spektrumrészlet
kiértékelésekor a csucs teriiletét X-nek talaljuk, a fenti P(X |S) és P(S) valoszintségek
Szorzata.

Ugyanazt az X értéket tobbféleképpen megkaphatjuk az aktudlis S €s B értékektdl fiiggden:
adott hattér varhat6é érték mellett minden olyan esetben ugyanarra az eredményre jutunk,
amelyben a B+S Osszeg azonos (ld. 3.3 egyenlet). Ezért ahhoz, hogy megkapjuk az X
valészinliségeloszlasat leiro végsd Osszefiiggést, a  P(X |S)-P(S) valosziniségeket

Osszegezni kell S minden olyan értékére, melyre az adott X esetén a <B> + X - S kifejezés

nemnegativ értéket vesz fel, tehataz S = 0, 1,2, ..., <B> + X értékekre:
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B)+X e*(<B>+<S>)<S>S<B><B>+st
= SI(B)+X-S)!

(By+x {
PX[(S)= D P(S)-P(X|S)= .(3.5)

Megjegyzend6, hogy X valoszintiségeloszlasa nem Poisson-eloszlas, mivel az 1. egyenlet
szerint X-et két Poisson-eloszlasi mennyiség kiilonbségeként kaptuk. A Poisson-eloszlas
varhato értéke és szorasa kozotti szoros Osszefiiggésbol adodoan Poisson-eloszlasu valtozok
kiilonbsége nem lehet Poisson-eloszlast. Az analitikai hatarértékek Currie altali levezetésén
tehat nem annyiban valtoztattunk, hogy a Gauss-eloszlas feltételezésérdl Poisson-eloszlas
feltételezésére tértiink at, hanem hogy a nettd cstcsteriilet eloszldsdra nézve semmilyen

feltételezéssel nem €ltiink, csupan az 6ssz-betiitésszdmok Poisson-eloszlasat hasznaltuk ki.

Kimutatasi hatar

A kritikus szint és a kimutatasi hatdr Gauss-eloszlas helyett a fenti P(X | <S >) eloszlas

hasznalataval Currie gondolatmenetével teljesen analég mdédon definidlhatd. a-val ill. S-val
jelolve az elsd- ill. masodfaju hiba valdszinliségét, a kritikus szint az a legkisebb L. érték,

amelyre teljesiil a kovetkez6 6sszefiiggés:

iP(X\O)Sa . (3.6)

X=L¢

A kimutatdsi hatar ezutan Lo felhasznalasaval definidlhatd: értéke megegyezik a legkisebb

olyan (S) értékkel, amelyre:
Le
Y PX[(SH<B . (3.7)
X==(B)

A kritikus szint itt is, mint az eredeti definicioban egy konkrét, mar elvégzett mérést jellemez:
a vizsgalt mintadsszetevd valodi mennyisége rogzitett (méghozza 0), Lo értéke csak a

kiértékeléstdl, ill. a-tol fiigg. A kimutatasi hatar ezzel szemben tovébbra is a modszert
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jellemzi: a kérdéses komponens valodi mennyisége valtozik a 3.7 dsszefiiggésben leirtaknak

megfelelden.

Mindségi analizis

Ebben a részben also €s felsd hatart probalunk adni a vizsgalt mintadsszetevd mennyiségére a
csucstertiletre kapott eredmény(ek) alapjan. Természetesen csak abban az esetben van értelme
mindkét hatarértéket megadni, ha a kiértékelés soran kapott cstcsteriilet nem kisebb, mint a
kritikus szint. Amennyiben ez nem teljesiil, a mintadsszetevé mennyiségére csak felsé hatar —
becslést tehetiink.

Ha a csucsteriiletet Gauss-eloszlastinak tekintjiikk, az als6 és fels6 hatarértékek, azaz a
konfidenciaintervallum végpontjai a Gauss-eloszlds szimmetriatulajdonsdgai miatt konnyen
megadhatok. Amennyiben azonban — mint esetiinkben is — a csucsteriiletet valamilyen
aszimmetrikus valosziniiségeloszlassal irjuk le, a konfidencia-intervallumok meghatarozasi
moédja nem egyértelmii. Az idevagd szakirodalom a mddszerek széles skalajat targyalja
Neyman klasszikus definicidjatol [NEY37] a Bayes-elméletet is felhasznalo 4j eredményekig
[WEI98]. Feldman és Cousins munkdjukban [FEL98] a kiilonb6zé mddszerek egy
Osszehasonlito attekintését adjak.

Az alsé és felsé analitikai hatarértékek kiszamitasakor két kérdésre kerestiik a valaszt
vizsgalatainkban:

1. A kiértékelés soran kapott X csucsteriilet milyen minimalis értéke esetén
allithatjuk adott megbizhat6sagi szint mellett, hogy (S) adott als6 hatar f6lott
van?

2. A kiértékelés soran kapott X csucsteriilet milyen maximalis értéke esetén
allithatjuk adott megbizhatosagi szint mellett, hogy (S) adott felsé hatar alatt
van?

Jeloljiik L-lel a (fels6, vagy alsd) analitikai hatarértéket, L;-gyel, ill. L,-vel pedig X-nek a fenti
két kérdésnek eleget tevd szélsdértékeit L valamely konkrét értéke mellett. Képezzik a

P(<S > | X)inverz valdszinliségeket a kdvetkezé modon:

P(X|(S
P((S)] X) =w(—‘<>) . (3.8)

D PX1)
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A nevezdben szerepld 6sszeg tagjai J csucsteriilet varhato érték mellett X eredményre jutas
valdszintiségét jelentik. Valdjaban (S), ill. a J valtozoé nem csak egész értékeket vehet fel, de
nem jelent szamottevd elhanyagolast, ha a szamolasnal csak egész értékeiket vessziik
figyelembe. A 3.8 Osszefliggés a Bayes-tételbdl szarmazik, azon feltételezés felhasznalasaval,

hogy a P(J) valésziniiségek J minden értékére megegyeznek.

A P(<S> | X)értékek ismeretében nem jelent problémat a fent megfogalmazott két kérdésre

valaszt adni. L; X-nek az a legkisebb értéke, amelyre teljesiil, hogy
YPUIX)zy . (3.9)
J=L

L, pedig X-nek az a legnagyobb értéke, amelyre teljesiil, hogy

ZL:P(J\X)Zy , (3.10)

ahol y annak valdszinlisége, hogy helyes a dontés, miszerint <S> > [ az els6 esetben, ill.

<S> < L a masodikban.

Mennyiségi analizis

A mennyiségi meghatarozas alapkérdése a kovetkez6d: amennyiben X cstcstertiletet kaptunk a
kiértékelés soran, mi annak a valdszinlisége, hogy a vizsgalt mintadsszetevotdl szarmazd
beiitések szama Sy egy bizonyos kornyezetébe esik? (Sp a P(J | X) fiiggvény maximumhelyét
jeloli). Ezt a kornyezetet gyakran valasztjuk [S, —o,S, + o] -nak, ahol o a mért cstcstertilet
szorasa az adott koriilmények kozott.

A kérdést megint érdemes atfogalmazni: a szamolt X csucsteriilet milyen értéke mellett
mondhatjuk egy adott megbizhatdsaggal, hogy (S) Syp-nak egy bizonyos kdrnyezetébe esik?

A valaszt megint csak a P(<S> | X)értékek segitségével adhatjuk meg. Azokat az also, ill.

fels6 X1, X5 hatarokat keressiik, amelyekre teljesiil, hogy
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So+o

D PUIX) 2y, (3.11)

J=Sy-0

rrrrrr

Egy adott megbizhatosagi hatar mellett a 3.11 egyenldtlenségnek csak akkor Iétezik
megoldasa, ha Sy egy adott hatarértéket meghalad, amely hatar a mennyiségi analizis

lehetségességének also hataraként funkcional.
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3.2 Az analitikai hatarértékek meghatarozasa a teljes valosziniiségi modszerrel

Minden olyan esetben, amikor a keresett paraméter lehetséges értékeire kapott eloszlas
aszimmetrikus, a min6ségi, és mennyiségi analizis kérdéseire nehéz egzakt valaszt adni. Az
eléz6 alfejezet az inverz valdszinliség sokat vitatott fogalmat hasznalta fel erre a célra.
Amennyiben a teljes valoszinliségi modszert alkalmazzuk a csucsteriilet meghatarozasara,
ezek a kérdések joval egyszeriibben és korrektebben megvalaszolhatok.

A kimutatasi hatar definialasat viszont a teljes valdsziniiségi mdodszer hasznalata egyaltalan
nem konnyiti meg (viszont az értékét csokkenti, mint azt latni fogjuk). A problémat az
okozza, hogy mig a kimutatasi hatar mindig egy eljarast jellemez, addig a teljes valoszintségi
modszerrel konkrét spektrumrészletek kiértékelése végezhetd el. Mielétt azonban ezen

rrrrrr

egyszerlibben megvalaszolhatd kérdéseit.

Mindségi analizis
A mindségi analizisnek a teljes valoszinliségi mddszer esetére atfogalmazott két kérdése igy
hangzik:
1. Mi a valdszinlisége annak, hogy a vizsgalt mintadsszetevétdl szadrmazo
betitések szama kisebb, mint L?
2. Mi a valdszinlisége annak, hogy a vizsgélt mintadsszetevotdl szarmazd
betitések szdma nagyobb, mint L?

Erre a (két) kérdésre a modszer altal szolgaltatott P(X) eloszlds ismeretében konny(

valaszolni:
P =Y P(X), ill. (3.12)
X<L
P, =Y P(X) (3.13)

X=L

a keresett két valosziniiség.

Mennyiségi analizis

58



Ebben az esetben maga a P(X) eloszlés tekinthetd a mennyiségi analizis eredményének, mivel
kozvetleniil kiolvashato beldle egy adott intervallumba esés valoszintisége. Az el6z6 alfejezet

jeloléseivel az [S, — o, S, + o] intervallumba esés valdszinlisége

Spt+o

Y PX)zy . (3.14)

X=8y-c

Sy itt az az aktudlis csucsteriilet, amelyre a P(X) fliggvénynek maximuma van.
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Kimutatasi hatar

A jelolések néhany esetben el fognak térni a 3.1 alfejezet jeloléseitdl, pl.: az itt el6forduld
P<S> (X) mennyiség a 3.1 alfejezet P(X | <S>) mennyiségével analog. Az eltérd jelolést az

eltéré fogalmi hattér indokolja: mig a 3.1 alfejezetben a 3.1 egyenlet szoros Gsszefiiggést
allapit meg az (S) és X mennyiségek kozott, addig a teljes valoszinliségi modszer alkalmazasa
esetén ez az Osszefiiggés lazabb, és nem is fogalmazhaté meg ilyen explicit modon.
(Természetesen (S) €s X itt sem fliggetlenek egymadstdl, kiillonben a modszer nem volna

alkalmas csucsteriilet-meghatarozasra.)

Mint mar fentebb utaltam ra, a kimutatasi hatar kiszamitasa a teljes valoszintiségi modszer
alkalmazasa mellett nehézségekbe iitkozik. A teljes valoszinliségi modszerrel kapott
csucsteriilet-eloszlas ugyanis erdsen fiigg a konkrét spektrumrészlettél (a képletben szerepld
csatorndnkénti belitésszamértékeken keresztiil) igy nem alkalmas kozvetlentl a méro-
kiértékel6 modszer jellemzésére. A probléma athidalasara a kovetkezd eljarast
alkalmazhatjuk:

Nagy szamu olyan spektrumrészlet kiértékelését végezziik el, amelyeknél a hattér varhatod
értéke megegyezik, az aktudlis csucsteriilet pedig 0. Az eredménytil kapott Py(X) eloszlasokat
pedig atlagoljuk X minden egyes értéke esetén, azaz az 6sszes spektrumrészlet kiértékelésébdl

vessziik az ugyanazon X cstcsteriilethez tartozé valdszintiségeket, és ezek atlagat képezziik.
Ezt az eljarast elvégezve minden X csucsteriiletre, végeredményiil egy FO(X ) atlagos eloszlast

kapunk, amely megadja annak valdszintiségét, hogy a kiértékelés soran a csucsteriiletet X-nek
talaljuk, holott az valdjadban 0. Ez az eloszlas alkalmas a kritikus szint megallapitasara: azt a

legkisebb L értéket tekintjiik kritikus szintnek, amelyre teljesiil az alabbi 6sszefliggés:

iFo(X)Sa ; (3.15)

X=L¢

ahol o tovabbra is az els6faju hibanak a felhasznal¢ altal megszabhat6 értéke.
A kimutatasi hatar meghatarozasahoz ezutan az el6bbihez hasonlé modon Poss (X) atlagos

eloszlasokat szamolunk, adott hattér varhato érték €s adott (S) csucs varhatd érték mellett. Az
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a legkisebb (S) érték tekintheté kimutatdsi hatarnak (a 3.15 Osszefiiggésbdl nyert Lo érték

felhasznalasaval), amely esetén teljesiil a kovetkezd Osszefliggés:

Lc

YPH(N<B, (3.16)

X=0
ahol £ a masodfaju hiba valoszintisége.

A kimutatasi hatdr kiszdmitdsdhoz a fent leirt modszer szerint nagy mennyiségu
spektrumrészlet kiértékelésére volt sziikség. Miutan mind a hattér, mind a tényleges
csucsteriilet varhato értéke pontosan ismert, és altalunk megadhatd kellett legyen, ezért
szimulalt spektrumrészletek kiértékelését végeztiik el a teljes valdszinliségi modszerrel.

A szimulacié a 2.2 alfejezetben leirt altalanos elvek szerint tortént. Mind a cstcs, mind a
hattér Poisson-eloszlasu valdszinliségi valtozd konkrét értékeként adodott, az eloszlas varhatd
értékének megadasa utan. A csucs alakjat egy m =5 ¢és o=1 paraméterekkel rendelkezd
Gauss-gorbe irta le, a szimulalt spektrum-tartomany 10 csatorna szélességti volt.

Els6 1épésben 1000 darab hatteret szimuldltunk ¢&s értékeltiink ki a kritikus szint
meghatarozasa céljabdl. (Tekintve, hogy a Poisson-eloszlds varhato értéke és szorasa kozott
szoros Osszefliggés van, a cstcs varhato értékének 0 volta miatt az aktudlis érték is 0 volt.)

Ezutan a csucs varhato értékét egyesével novelve €s az igy létrehozott spektrumrészleteket
kiértékelve meghataroztuk a Pss (X) atlagos eloszlasokat, majd ezek segitségével a

kimutatasi hatart.

A kiilonb6z6 moddszerekkel szamolt kimutatdsi hatar értékeket a hattér varhatd értékének
fliggvényében a 3.1 dbra mutatja be. Folytonos vonal jel6li a Currie altal megadott 2,28
Osszefliggés alapjan szamolt értékeket. Az alsé gorbe esetén az els6- és masodfaju hiba értéke
0,05 volt, a felsénél pedig 0,005. (Az ezekhez tartozd k, = kg értékek 1,646 az elébbi esetben,
¢€s 2,575 az utobbiban.)
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3.1 abra. Kimutatasi hatar, a hattér nagysaganak fiiggvényében

A Gauss-eloszlas feltételezése nélkiil, de a csucsteriiletet tovabbra is a hattér egyszert
levonasaval meghatarozva a o -gel jelzett eredményeket kaptuk az elsé- és masodfaji hiba
0,05-nak ill. az x jeltieket a hibak 0,005-nek valasztott értéke mellett. A teljes valoszintiségi
moddszer hasznalataval kapott kimutatasi hatar értékeket a o ill. O jelek mutatjak az abran, az
els6- €s masodfaju hiba eldbbi értékei mellett.

A Poisson-eloszlas hasznalataval kapott eredményeink érdekes modon nem térnek el
jelentésen a Currie altal kapott eredményektdl. Az elsd- és masodfaju hibdk szokéasosan
hasznalt 0,05-os értéke mellett egyaltalan nem tapasztalhatd eltérés. Amennyiben nagy
megbizhatdsagra toreksziink, és a hibdknak ennél csak egy nagysagrenddel kisebb értéket
engediink meg, a Poisson-eloszlds hasznalataval szamitott kimutatasi hatar valamivel
alacsonyabb, mint a Currie sszefliggése altal meghatarozott érték.

A teljes valodszinliségi modszer alkalmazasaval viszont az elébbieknél joval alacsonyabb
kimutatési hatar értékekhez juthatunk az elsd- €s mésodfaju hibdk barmely értéke mellett. Ez
nem meglepd, miutdn ez a mddszer a spektrumban tarolt informaciomennyiségbdl joval

tobbet haszndl fel, mint a hattérlevonasos csucsteriilet-meghatarozo eljaras.
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4. Szimulalt spektrumok kiértékelése

A 2.2 alfejezetben leirt altalanos elveknek megfeleléen 1000 darab, 10 csatornabdl allo,
darabonként egy csucsot és hatteret tartalmazé spektrumrészletet hoztunk 1étre szamitogépes
szimulacidval. A hatteret €s a csticsot kiilon-kiilon szimulaltuk, majd a kapott eredményeket
csatornanként Osszeadva jutottunk a megfelelé spektrumrészletekhez. A szimulacidkban a
hattér a csatorndkban ugyanazon varhato érték koriil Poisson-eloszlas szerint szort, mig a
csucs betitésszama rogzitett volt, a betitések csatornakbeli eloszlasat pedig Gauss-eloszlas irta
le, a 2.2 alfejezetben leirtaknak megfelelden.

Az 1000 darab spektrumrészletben a hattér varhato értéke a 10 csatornabol allo tartomanyon
az esetek egyik felében 30, a masik felében 60 volt. Az 500-500 ilyen hattéren 0, 5, 10, 15, ill.
20 beiitésszamu csticsok helyezkedtek el. Igy a szimulalt spektrumok 100-anként voltak
egyformdk olyan értelemben, hogy azonos hattér varhato érték €s azonos csucs-beiitésszam
tartozott hozzajuk. Ez természetesen nem jelenti azt, hogy barmely kettd koziilik teljesen
megegyezett volna.

A kiértékelés megkezdése elott a szimulalt adatok ellenérzésére is sor keriilt. Ez egyrészt a
csatorndnkénti hattér-beiitésszamok valdszinliségeloszlasanak ellendrzésére, masrészt a csics-
betitésszamok csatornakba valo szétosztasanak ellendrzésére terjedt ki. A 2.2 alfejezetben
leirtaknak megfeleléen a csatorndkba egyenletesen szétosztott hattér-belitésszamok binomiélis
eloszlast kovetnek. 30-as Osszbeiitésszam és 10 csatorna esetén ez csatornanként 3 varhato
értékli binomidlis eloszlasnak felel meg. A 4.1 abrdn az 1000 darab csatornankénti beiitésszam
empirikus eloszlasa, az N =30 és p=0,1 paraméterii binomialis eloszlas, ill. a A =3

paraméterti Poisson-eloszlas képe lathato.

e Szimulalt
0,25 . .
[ ] = Binomialis
s A
0,2 a Poisson
2 i
‘@
& 015 (]
=
P
8 0,1 [
(3]
>
0,05 A
[ ]
0 ; ; ; . a2 .
0 2 4 6 8 10
beiitésszam

4.1 abra. A szimulalt adatok empirikus eloszlasanak 6sszehasonlitisa a binomialis és a Poisson-eloszlassal
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Az é4bra tanusaga szerint egyrészt a szimuldlt, ill. az elméletileg vart értékek jo egyezest
mutatnak, masrészt pedig a paraméterek ilyen értékei mellett a csatornankénti hattér-
betitésszamok jo kozelitéssel Poisson-eloszlastinak tekinthetdk.

A csucs-belitésszam csatornakba valo szétosztasanal a csucs alakjat m =5 varhato értékd, ¢s
o =1 szorasu Gauss-gorbe irta le. (A Neumann-féle céltdbla-modszernél hasznalt téglalapbol
ebben az esetben a Gauss-gorbe 6,82107-ed része hidnyzott, ami a szimulacioban
gyakorlatilag nem okozott torzulast.)

A 2.2 abran lathato a szimulécio ellenérzése. Folytonos vonal jeldli a megfelelé Gauss-gorbét,

pontok a szimulalt értékek csatornankénti 6sszegét 1000 darab szimulalt csics esetén.

Gauss
0,4 - o Szimulalt

0,3 -
z 0.2 |
0,1 -

0 - : : * . .

0 2 4 6 8 10

X

4.2 abra A szimulalt adatok empirikus eloszldsanak 6sszehasonlitdsa a Gauss-eloszlassal

4.1 A kiértékelés altalanos elvei

Az elézéekben leirt mdédon szimulalt spektrumokat a teljes valosziniségi modszernek, a

legkisebb négyzetek modszerének ¢és a maximum likelihood elvnek az Gsszehasonlitdsara

hasznaltuk, spektrumok kiértékelésénél mutatott hatékonysaguk szempontjabol.

4.1.1 Kiértékelés a legkisebb négyzetek modszerével

A hattérhez konstans fliggvényt, a csucsokhoz Gauss-gorbét illesztettiink, azaz a

modellfliggvény minden esetben
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alakua volt, ahol a Gauss-strtiségfliggvény m és o paraméterei megegyeztek a szimulacidénal
csucs-alaknak hasznalt Gauss-gorbe megfeleld paramétereivel, azaz m =5¢s o =1; A és B az
illesztendd paraméterek, 4 a csucsteriilet, B a hattér csatornankénti értéke, i pedig egész
értékeket vehetett fel 1 és 10 kozott, a csatornaknak megfelelden.

Meért spektrumok kiértékelésénél altaldban nem maga a csucstertilet az illesztendd paraméter,
hanem kiilon a csucs magassidga ¢s szélessége. Mivel azonban egyrészt a szimulalt
spektrumok kevésbé bonyolultak, mint a valédiak, masrészt pedig az 6sszehasonlitasban részt
vevo tobbi madszer is kozvetleniil a cstcsteriilet becsiilt értékét szolgaltatja eredményiil, ezért
ennél a modszernél is magat a csucstertiletet illesztettiik.

A minimalizaland6 y-fiiggvény alakja a szimulalt y; csatornatartalmakkal:
S f(l))
Z 4.2)

A y-fiiggvény minimumét az 4 és B paraméterek szerinti parcialis derivaltjaibol képzett

alabbi egyenletrendszer megoldasaként kerestiik:

%5290 4.6+ B-y,)=0

oa Sy,
S w o (4.3a-b)
Z =2 (4G + B-y,)=0

i=l1 i

ahol G(i) a Gauss-stirtiségfiiggvény értékét jeloli az i-edik csatorndban. Az egyenletrendszer
A-ra és B-re nézve linedris, igy az ritka, szerencsés eset all fenn, amikor a minimumkeresés

analitikusan elvégezhetd. Az egyenletrendszer megoldésa:
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Z Vi Z Vi
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A paraméterek hibdjanak meghatarozésa a szokésos mdodon, a masodik parcidlis derivaltakbol

(4.4a-b)

allo matrix invertalasaval tortént. A masodik parcialis derivaltak matrixa a kovetkezd:

*(x) o’(x)) 2G* (i) 2G(0)
0A* O0AOB | _ Z Vi Z Vi

0y 2 || 5260 22 *)

OBoA OB’ v Y

Az ebbdl invertalassal és 1/2-del vald szorzassal képzett kovariancia-matrix pedig:

1 560
( o) cov(A,B)jz 1 2 v, 2 | e
cov(4, B) o, 1 G2 (i oY | -5 6@ G |°
= HE TR

¥, ¥, ¥, i i

4.1.2 Kiértékelés a maximum likelihood médszerrel

A modszer Poisson-eloszlasra alkalmazott valtozatat hasznaltuk a spektrumrészletek
kiértékelésére. A likelihood-fiiggvény logaritmusa, melynek minimumhelyét kerestiik, a

kovetkez6 volt:

InL= i (- B— AG(i) + y, In(B + AG(i)) - In(,!)) . 4.7)
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A fenti fliggvénynek a két paraméter szerinti elsd parcidlis derivaltjaibol képzett egyenletek:

aln K~ B+AG(z) Yil_
_Z[ B+ AG(i) )_0’ -8

0

61n
Z,[ B+AG(Z)J

0, (4.9)

A legkisebb négyzetek modszerénél kapott egyenletektdl eltérden ez a két egyenlet nem
oldhat6 meg A-ra és B-re analitikusan, ezért az Excel tdblazatkezel6 Solver nevii
optimumkeresé algoritmusat hasznaltuk fel A4 és B optimalis értékének megkereséséhez.

Erdemes megjegyezni, hogy az A szerinti parcialis derivalt egyenlete nem tér el nagyon a
legkisebb négyzetek moddszerénél kapott megfeleld egyenlettél, mintha egy konstans
szorzofaktoron kiviil csak annyi kiilonbség lenne koztiik, hogy itt a mérési eredmények
szorasanak reciproka helyett az ismeretlen, meghatarozando érték szorasanak reciprokat
hasznalnank stlyozo tényezdnek. Bér itt nem errdl van szo, az egyenlet alakja mégis jelzi azt,
hogy az utdébbi modszer miért szolgaltat precizebb megoldasokat. Azt is jelzi viszont, hogy
ezzel a mddszerrel bonyolultabb a szdmolds, hiszen a legkisebb négyzetek modszerénél éppen
az egyszerliség miatt szokas a nevezdben a paraméterektol fiiggetlen mért értékek hibajaval
szdmolni. Ez az egyszertisités viszont a legkisebb négyzetek modszerénél az 1.2.1 alfejezetben
leirtak miatt szisztematikus hibdhoz vezet, ami a kis beiitésszamok tartomanyaban jelentdssé

valik.

A paraméterek hibdjanak becslési eljardsa ennél a moddszernél nem egyértelmi. A
szakirodalom — mint err6l mar korabban irtam — csak k6zelit6 megoldasokat emlit. Ennek oka
a paraméter Gauss-tol eltérd eloszldsa esetén az eloszlas aszimmetridja. A Gauss-eloszlasnal
egzakt moédon megadhato, kb. 68%-o0s megbizhatosaghoz tartozo A + o intervallum helyett itt
valasztanunk kell, hogy a meghatarozott intervallumunk vagy nem lesz szimmetrikus a
paraméter becsiilt értékére, vagy az ala- és folébecslés valoszintiségei fognak eltérni.

A kovarianciamatrix kiszamitésa a legkisebb négyzetek modszerénél leirtakkal analog modon
a maximum likelihood mddszer esetében is felmeriilt, azonban itt, (a legkisebb négyzetek
modszerétdl eltérden) a matrix-elemek nem fliggetlenek a paraméterektdl, igy az optimumban
vett értékiik nem jellemzi jol a paraméterek hibajat. Ezen probléma athidaldsara a 2.3.2

alfejezetben bemutatott két eljaras koziil a masodikat alkalmaztuk. Ennél a hibaintervallum
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hatarainak az InL fliggvény maximumanal 1/2-del kisebb értékeihez tartozd két csucstertilet-
értéket tekintettiik, az optimalis hattérérték mellett. Az ezzel a modszerrel kapott eredmények
csak kozelitik a 68%-0s megbizhatdsaghoz tartozd intervallumot. Az ald- és folé-becslés
valészinlisége azonos, viszont igy az eloszlds aszimmetridgja miatt az intervallum nem

szimmetrikus a becsiilt csucsteriilet-értékre.
4.1.3 Kiértékelés a teljes valosziniiségi modszerrel

A teljes valoszinliségi modszerrel a spektrumrészleteket a 2.4 alfejezetben leirt elv szerint
értékeltik ki. Az eredményeket a modszer mindkét matematikai megfogalmazasaval

kiszamitottuk.

A szamitdsok gyakorlati kivitelezése

A teljes valoszinliségi modszer — talan egyetlen — hatranya a gorbeillesztéses eljarasokkal
szemben a nagy mennyiségli elvégzendd matematikai miivelet, és igy a viszonylag nagy
id6igény. A 2.19 és a 2.22 6sszefiiggések mindegyike egy-egy Osszeg, amely k darab csatorna

esetén mn,..n,darab tagot tartalmaz (n; az i-edik csatorna tartalma). Az Osszeadandd

torteknek mind a szamlalojaban, mind a nevezdjében bonyolult, faktoridlisokat is tartalmazd
kifejezések szerepelnek, amelyek egyrészt szintén novelik a szdmolasi id6t, mésrészt olyan
extrém nagy szamokat tartalmazhatnak, amelyek ttlcsorduldst okozhatnak. A szamolasokat
végzo algoritmust ezeknek a szempontoknak a figyelembevételével kellett megirni.

Az algoritmus jelenlegi formdajaban egy 10 csatornabol allo, kb. 50 beiitést tartalmazd
spektrumrészletet egy 1000 MHz-en miik6dd, Pentium-III processzoros szamitdgépen futtatva
néhany perc alatt értékel ki. A programnyelvnek a jelenleginél célszeriibb megvalasztasaval a
modszer iddigénye valdszinlileg még jelentdsen csokkenthetd lenne.

A szamitasokat pillanatnyilag az Excel tablazatkezel6, és egy ehhez irt ,,makro” végzi a

kovetkez6é mddon: eldszor a

X

P,

x(n, —x,)! (4.10)

tényezok kiszdmitdsa torténik meg minden csatorndra és x; minden lehetséges értékére 0-tdl

ni-ig. A program ezutan az igy képzett matrix elemeibdl eléallithato
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,\',-

I‘[ '(n Y 4.11)

szorzatokat szamitja ki, az 6sszes lehetséges modon. Ezen részvaloszinliségek mindegyike egy

X csucsteriilethez tartozik, méghozza ahhoz, amelyre

isz. (4.12).

i=1

A kiilonboz6 csucsteriiletekhez tartozo rész-valosziniiségek gytjtése és dsszeadasa a program
futdsa kozben, egymassal parhuzamosan torténik. Végil az 0Osszes rész-valoszinliség

kiszamitasa utan az egyes csucsteriiletekhez tartozo valoszintiségeket megszorozzuk a

e—<B>_<B>N—X
kN—X

(4.13)

tényezovel. Ezzel az eljarassal elkeriilhetd az egyes rész-szorzatok tobbszori, feleslegesen
ismételt kiszamitasa.

A 2.22 képlettel valo szamolasnal hasonlé mddszer alkalmazhaté.

Egyes gyakorlati alkalmazasoknal sziikség lehet bizonyos egyszertisito feltételek bevezetésére
a szamolasi id6 csokkentése érdekében. A konkrét kiértékelési feladatok megoldasa soran két
ilyen egyszertsitési lehetdség kertilt szoba.

Az egyik a szomszédos csatorndk paronkénti Osszevondsa volt. Ez jelentdsen csokkentette
ugyan a szamoldsi iddt, viszont a teljes informacidomennyiség olyan nagy részének
elvesztésével jart, és emiatt az eredmények pontossagat olyan mértékben rontotta, hogy
alkalmazasat végiil elvetettiik. Az 6sszevont csatorndkkal a teljes valoszinliségi modszerrel
kapott eredmények nem voltak jelentdsen jobbak, mint a legkisebb négyzetes gorbeillesztéssel
kapottak, igy a teljes valoszinliségi modszer hasznalata indokolatlanna valt volna.

A masik egyszerlsitési lehetoség jobban bevalt; az 5.1 alfejezetben leirt kiértékelési feladatnal
is alkalmaztuk. Ez akkor hasznalhatd, ha elére — anélkiil, hogy kiszamitanank — biztosak
lehetiink abban, hogy valamelyik konfiguracio valdszinlisége elhanyagolhatéoan kicsi. Ez

megfelel azoknak az eseteknek, amikor a hattér csatornankénti varhatéd értéke a szorasahoz
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viszonyitva elegendden nagy. Ekkor csatornanként egy, vagy tobb belitést a valdsziniiségek
fent leirt szdmolasakor nem vesziink figyelembe: a 4.10 kifejezések értékének kiszamitasakor

x; értéke legfeljebb n, —1 lehet (csatornanként tobb betités szamitason kiviil hagyasa esetén ez

a -1 értelemszerGen modosul). Az ellenérzé vizsgalatok szerint ez az elhanyagolds a
végeredményiil kapott csucsteriilet-eloszlasban nem okoz észrevehetd valtozast; az eloszlas
alakjanak torzuldsat elkeriilendd azonban arra {igyelni kell, hogy minden csatorndban
ugyanannyi beiitést hagyjunk ki a szamitasbol.

Ezen elhanyagolas nélkiil a kiszamitando rész-valdsziniiségek szama

(n, +D)(n, +1)...(n, +1) . (4.14)

Mivel minden csatornaban 1 beiités figyelmen kiviil hagyasa (a fent leirt értelemben) az el6bbi
szorzat minden tényezdjének 1-gyel vald csokkenését eredményezi, ezért ez a tipusu

elhanyagolas az elvégzendé miiveletek szamanak jelentds csokkenését vonja maga utan.

Szimulalt spektrumaink kiértékelésekor a 60-as hattér-betitésszamu spektrumrészletek
tobbségénél csatornanként két, ill. egy beiitést eleve a hattérhez tartozonak tekintettiink, a fent
leirtaknak megfeleléen. Azokban az esetekben, ahol valamelyik csatorna tartalma nem érte el
a két, ill. az egy beiitést, természetesen nem alkalmaztuk ezt az egyszertsitést. (Az 500
spektrumrészlet kozott kb. 6-8 esetben fordult elé, hogy valamelyik csatorna egyaltalan nem
tartalmazott betitést, mig az 1 beiités kb. 30-40 esetben fordult eld).

A kiértékelések végeredményéiil a 2.1 abran bemutatotthoz hasonld csucsteriilet-eloszlasi

gorbéket kaptuk.

A teljes valoszinliségi modszer alapkoncepcidjaval ellentétes az eredmények becsiilt
érték * becsiilt hiba megadasi mddja. Eszerint a teljes csucsteriilet-eloszlasok felirdsa sokkal
arnyaltabb mddja a spektrumrészletek kiértékelésének, mivel a megadott hibaintervallumon
beliil nem azonos az egyes csucsteriiletek valoszinisége. Amennyiben Gauss-eloszlas helyett
valamilyen aszimmetrikus eloszlassal irhatok le a paraméterek, ez még fokozottabban igaz.

Arra a célra azonban, hogy a teljes valdsziniiségi mddszert Osszehasonlitsuk a legkisebb

négyzetek modszerével ill. a maximum likelihood mddszerrel, az eredményeket az ezekéhez

70



hasonlé modon kell megadnunk. A csucsteriiletnek a teljes valoszintiségi mddszerrel becsiilt
értékét ezért az eloszlasi gorbe maximumbhelyével azonositottuk.

A teljes valoszinliségi modszernél nem csak az el6bbiekben leirtak miatt volt nehéz a tobbi
modszerével Osszehasonlithatd hibabecslési eljarast talalni. Ennél a moédszernél a hattér
becslése is eltér a szokasostdl. A 2.4 alfejezetben leirt 2.19 képlet hasznalata esetén a hattér
varhato értéke a modszertdl fiiggetleniil keriil meghatarozasra, igy az eredmények a hattér
statisztikus hib4jat nem tartalmazzak teljes mértékben. A 2.22 §sszefliggés viszont implicite
tartalmazza a hattér varhato értékének meghatarozasat is, igy az ezzel kapott csucsteriiletek
hib4ja nem fiiggetlen a hattér bizonytalansagatol.

Az elobbi két mondat talan részletesebb magyarazatra szorul. A teljes valdszinliségi
modszernél a hattér és a csucsteriilet valojaban nem két paraméter, mivel a 2.16 feltétel miatt
a csucshoz rendelt csatornankénti beiitésszamok értéke egyértelmiien megszabja a hattérhez
rendelt csatornankénti belitésszamok értékét. Ezért, mig a legkisebb négyzetek mddszerénél €s
a maximum likelihood mddszernél a célfiiggvény kétdimenzids, addig a teljes valoszinlségi
modszerrel kapott csucsteriilet-eloszlas egydimenzios. Ezen eloszlds "szélessége", bar a
csucsteriilet hibajaval hozzuk 6sszefiiggésbe, tartalmazza a hattér meghatarozasanak hibgjat is
— legaldbbis a 2.22 6sszefliggés haszndlata esetében. A 2.19 Osszefiiggés alkalmazasa mellett
is igaz ez bizonyos mértékben, hiszen a hattérnek itt is csak a varhatd értéke rogzitett, az e
koriili ingadozds megengedett. Kétségtelen tény azonban, hogy a hattér varhatd értékének

meghatarozasakor jelenlevé bizonytalansagot a médszer ezen valtozata nem tartalmazza.

A csucsteriilet hibajanak szamitasanal a 3.2 alfejezetben leirt intervallumba esés
valdszintiségének meghatdrozasi modszerét hasznaltuk. Mivel az eredményiil kapott eloszlas
diszkrét értékekbdl all, nem lehetett pontosan a 68%-0s megbizhatosaghoz tartozd
intervallumot meghatéarozni, ezért az ezzel kapott eredmények csak kozelitd pontossaguiak.

A kb. 68%-0s konfidencidhoz tartozé intervallum-hatarokat a kovetkezoképpen allapitottuk
meg: a csucsteriilet-eloszlas ,.két végérdl” elindulva 6sszeadtuk az egyes csucsteriiletekhez
tartozd valdsziniiségeket addig, amig mindkét oldalon éppen meg nem haladta ez az érték a
0,16-ot. Az a két csucsteriilet, amelyhez az utolsoként hozzaadott két valdszinliség tartozott,
egy, a 68%-osnal kisebb megbizhatosagi intervallumot hatarozott meg, mig az alsé hatarnal
eggyel kisebb, a felsénél eggyel nagyobb cstcsteriiletértékek a 68%-osnal nagyobbat. A kettd

atlagat tekintettiik a 68%-0s megbizhatdsaghoz tartozo intervallum kozelitd értékének. Az igy
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megallapitott intervallumok természetesen nem voltak szimmetrikusak a csucstertilet becstilt

értékére.

4.2 Az eredmények értékelése

Mindharom moddszerrel kiszamitottuk az 1000 szimulalt csucs teriiletét. Ez egyediil a
legkisebb négyzetek moddszerénél iitkozott akadalyba az esetek egy részében: azokban az
esetekben, amikor a 10 csatornds spektrumrészlet valamelyik csatorndjanak tartalma 0 volt, a
csucsteriilet négyzetgyokének reciprokaval nem lehetett sulyozni. Felmeriilt a
csatornatartalom korrekcidjanak lehetosége ezekben az esetekben; az 1-gyel vald novelés
azonban a kis beiitésszamok miatt nagyon megmasitotta volna az eredményeket, az egy-két
tizeddel valo novelés pedig nem bizonyult elegenddnek a Zz-fﬁggvény megfeleld hatarok kozé
szoritasahoz. Emiatt a 0 csatornatartalmat tartalmazé spektrumrészleteket a legkisebb
négyzetek modszerével valo kiértékelésbdl kihagytuk. Az ilyen esetek szdma a 30-as Ossz
hattér-betitésszamu spektrumrészleteknél 150 volt, mig a 60-as hatterieknél mindossze 3.

Ezenkiviil egy probléma meriilt még fel a csucsteriiletek becsiilt értékének meghatarozasanal:
azokban az esetekben, amikor a hattérhez nem adtunk csucsot, azaz a valddi csucsteriilet 0
volt. Itt a hagyoméanyos modszerek é€s a teljes valdsziniiségi mddszer eltérd elvi allasfoglalast
képviseltek: mig az elédbbiek 0-nal kisebb csucsteriiletet is adhattak végeredményiil, addig az
utobbinal ez nem volt lehetséges. Igy a legkisebb négyzetek modszere és a maximum
likelihood modszer az esetek egy részében fizikailag lehetetlen eredményt adtak, viszont
atlagban az eredményeik viszonylag jol kozelitették a 0-t, mig a teljes valoszinliségi
modszerrel kapott eredmények atlaga kissé 0 folé esett. Azt, hogy e két hiba koziil melyik a

kevésbé kivant, a konkrét felhasznalas donti el.

Szemléltetésiil kovetkezzen harom abra harom szimulalt spektrumrészletrdl, ill. a kiillonbozo

moddszerekkel valo kiértékelésiik eredményérol.
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4.1a abra. 30-as hattér varhato értéki, és 5-0s csucsteriiletli szimulalt spektrumrészlet (baloldalt),

és kiértékelésének eredménye az egyes eljarasokkal (jobboldalt)

16 1 0,14 -

144 ] 012 - -,
£ 12 4 g 0,1 b ‘o°oA
g0 8 0,08 e
2 8- E y
2 5] S 0,06
S 0
2 4 | t_g 0,04 4

2 0,02 4

0 —— — 0

12 34567 8 910 0 10 20 30 40
csatorna beiitésszam

4.1b abra. 30-as hattér varhato értékii, és 20-as csucstertiletli szimulalt spektrumrészlet (baloldalt),

és kiértékelésének eredménye az egyes eljarasokkal (jobboldalt)
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4.1b abra. 60-as hattér varhato értékii, és 5-6s cstcstertiletli szimulalt spektrumrészlet (baloldalt),

és kiértékelésének eredménye az egyes eljarasokkal (jobboldalt)

A spektrumrészletek 100-anként voltak azonos csucsteriiletiiek és hattér varhato értéktiek. 100

elembdl all6 minta esetén még til nagyok a statisztikus fluktuacidok ahhoz, hogy messzemend
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kovetkeztetéseket lehessen levonni az eredményekbdl; a kovetkezo tablazat ezért inkébb csak
tajékoztatd jellegii, a részeredményeket kozli.

A 4.1 tdblazat az azonos csucsteriiletli spektrumrészletekre vonatkozik, igy az egyes celldkban
200-200 eredmény atlaga talalhaté. Az elsé oszlopban vannak feltlintetve a tényleges
csucsteriiletek. A 2-5. oszlopok tartalmazzdk az egyes mddszerekkel kapott becsiilt
csucsteriilet-értékek atlagat (LNM: legkisebb négyzetek moddszere, MLM: maximum
likelihood modszer, TVM-I: teljes valoszinliségi moddszer, 2.19 képlet, TVM-II: teljes
valoszinliségi mddszer, 2.22 képlet). A 6-7. oszlopban a 200 esetbdl azoknak a szama lathato,
amelyeknél a legkisebb négyzetek modszere, ill. a maximum likelihood modszer negativ
csucstertiletet szolgaltatott eredményiil (A becsiilt csucsteriiletek atlagaba ezek az eredmények
is beleszamitottak.) Az utolsé oszlop azon esetek szamat tartalmazza, amelyekben a legkisebb

négyzetek modszere (0 csatornatartalom miatt) nem volt hasznalhato.

LNM MLM TVM-| TVM-II LNM <0 MLM <0 LSM --
c=5 5,3453 4,7223 5,4450 5,3150 20 25 34
c=10 10,3613 10,2384 10,6100 10,5200 8 5 22
c=15 14,7978 14,6241 15,1100 14,8150 2 1 27
c=20 19,3534 19,4962 20,2000 19,6550 0 0 30
c=0 0,8832 0,0426 2,0550 2,0650 73 96 40

4.1 tablazat. A csucsteriilet-becslés eredménye az egyes mddszerekkel (atlagok)

A 0 csucstertiletet leszamitva a csucsteriilet-becslés szempontjabol nem mutatkozik 1ényeges
eltérés a kiértékelési mddszerek kozott. A tényleges csucsteriilet ala- vagy folébecslésében
nem lathato tendencia, az eltérések valoszintlileg csak a minta kis elemszdmabol adodé
statisztikus fluktuéciot tiikrozik.

A 0 csucstertilet soraban megfigyelhetd, hogy a teljes valoszinliségi mddszer a masik kettonél
jelentésebben feliilbecsli atlagban a csucsteriiletet, viszont a két masik mddszer az esetek igen

nagy hanyadaban ad fizikailag értelmezhetetlen, negativ cstcsteriiletet eredményiil.

A 4.2 tablazat az egyes mddszerek altal becsiilt csucsteriileteknek a valodi értéktdl vald relativ

eltérését mutatja be., azaz a
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Cbecsﬁlt - cvalédi (4 1 5)
Calodi

értékeket. Az elsd négy oszlop a 30-as, a méasodik négy a 60-as 0ssz hattér-belitésszamhoz
tartozik. A tablazat celldiban a relativ eltéréseknek az adott sornak megfelelé 100
spektrumrészletre vett atlaga taldlhato. A 4.15 Osszefiiggésbdl addéddéan a 0 csucsteriileti

spektrumrészleteket ebbe a vizsgalatba nem vontuk be.

LNM MLM TVM-| TVM-II

h=30 c=5 0,7443 0,6767 0,4980 0,6260
c=10 0,3871 0,3695 0,2320 0,3630

c=15 0,2703 0,2504 0,1933 0,2487

c=20 0,1876 0,1843 0,1235 0,1830

h=60 ¢c=5 0,8130 0,7265 0,6120 0,6680
c=10 0,5792 0,5342 0,4180 0,4990

c=15 0,3160 0,2746 0,2480 0,2613
c=20 0,2603 0,2450 0,1895 0,2325

4.2 tablazat. A becsiilt csucsteriiletek relativ eltérése a valodi értéktol.

A tablazat adataibdl egyértelml kovetkeztetések vonhatok le. Mieldtt azonban ezeket

megtennénk, az adatokbdl késziilt abrat is vegyiik szemiigyre.

75



0.8 - + LSM 0.9 4 * LSM
07 ¢ = MLM 08 - . = MLM
] = A TVMH a TVMH
° o TVMI 07 | " o TVMI
0,6 1 o
= = 06
% 0,5 1 A % M
@ @ .
5 o 5 0,5 o
© B ©
s ! * >
© 5 « 04 4
3 3
§ 03 § .
= * = (0,3 -
@ A ° @ 8
g 02 R E ] 8
3 A
A
0,14 0.1 -
0 T T T 1 0 T T T 1
0 5 10 15 20 0 5 10 15 20
cslcsteriilet cslcsteriilet

4.2 abra. A becsiilt cstcsteriiletek relativ eltérése a valddi értékt6l az egyes modszereknél.

A bal oldali 4bra a 30-as &ssz hattér-betitésszamhoz, a jobboldali a 60-ashoz tartozik.

Az egyes mddszerek pontossagi sorrendje egyértelmi. A legnagyobb relativ eltéréssel, azaz a
legpontatlanabbul a legkisebb négyzetek modszere becsiilte a csucsteriiletet. A kovetkezo a
maximum likelihood médszer volt. A legpontosabbnak pedig a teljes valoszintiségi modszer
bizonyult. A teljes valdsziniiségi mddszer két valtozata kozotti jelentds eltérés oka a hattér
eltérd becslésében rejlik. Mint kordbban mar szo6 volt rola, a TVM-I esetében a hattér varhatd
értékét a modszertdl fuggetlenil kell meghatarozni. Ebben az esetben a hattér varhatd
értékének az altalunk pontosan ismert 30-as, ill. 60-as értéket vettiikk. Ez természetesen ennek
a modszernek "sportszeriitlen" eldnyt biztositott a tobbi eljarassal szemben, ezért lettek a
TVM-I-gyel szdmolt eredmények jelentdsen jobbak a tobbinél. Azonban az ilyen jellegli
elénnyel nem bird6 TVM-II is jobb eredményeket szolgaltatott a két szokasos mddszernél.

Nem meglepé modon a kisebb csucsteriiletekhez nagyobb relativ hiba tartozik mindegyik
modszer esetében, mint ahogy a hattér varhatd értékének novelése a relativ hiba
novekedéséhez vezet. A teljes valdszinliségi modszer a gyakorlatban legelterjedtebb legkisebb
négyzetek modszerénél minden esetben jobb eredményt szolgaltat. Kiilondsen rossz statisztika

esetén, egészen kis betitésszamoknal, ill. nagy hattér mellett pedig a maximum likelihood
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modszernél is egyértelmiien jobban becsli a csucsteriiletet. (Kis eltérés a teljes valoszinliségi

moddszer javara pedig minden esetben megfigyelhet6 a 4.2 tablazat adatai alapjan).

Az el6z6 alfejezetben leirt megfontolasok alapjan elvégeztiik az egyes modszerekkel becsiilt
statisztikus hibak 6sszehasonlitasat is. Az itt kapott eredmények talan kisebb jelentdségliek,
mint a becsiilt csucsteriilet-értékek 0Osszehasonlitasaval kapottak, 1évén a hibabecslési
eljarasok az egyes modszereknél kiilonbozdek, igy kozvetlen Osszehasonlithatésaguk
megkérddjelezheto.

A 4.3 tablazat egyes sorai az azonos hattér varhatd értékii és csucsteriileti csucsot tartalmazd
spektrumrészletek esetében a cstcstertiletek becsiilt hibdjanak atlagait tartalmazzak. Az elsé
két oszlopban van feltiintetve a hattér varhaté értéke, ill. a valddi csucsteriilet. A tovabbi
oszlopok az egyes kiértékelé6 mddszerekkel meghatarozott hibaknak a megfelelé 100 cstcsra

szamitott 4tlagat tartalmazzak.

LNM MLM TVM-I TVM-II
h=30 c=0 3,7914 3,2420 2,5200 2,8700
h=30 c=5 4,4661 3,9785 3,4200 3,8800
h=30 c¢=10 5,0538 4,6910 3,8500 4,5450
h=30 c=15 5,6126 5,2300 3,9100 4,8900
h=30 c¢=20 6,0919 6,2775 3,9450 4,9950

h=60 c=0 5,4981 4,4495 3,2500 3,6250
h=60 c=5 6,0201 5,1160 4,1800 4,7900
h=60 c¢c=10 6,4768 5,6325 4,7200 5,3850
h=60 c=15 6,9265 6,1110 5,0850 5,9850
h=60 c¢=20 7,3764 6,5860 5,1350 6,3250

4.3 tablazat. Hibabecslés az egyes modszerekkel (atlagok)

A moddszerek hatékonysaganak sorrendje itt is egyértelmii: a legkisebb négyzetek
modszerének haszndlataval kapjuk a legnagyobb becsiilt hibat, utdna kovetkezik a maximum
likelihood mddszer, majd a teljes valoszinliségi mdodszer két valtozata. Itt is elmondhaté az,
ami a csucsteriilet becslésénél: a teljes valdszinliségi mddszer masodik valtozata azért
szolgaltat nagyobb hibaértékeket, mert ennél a hattér bizonytalansaga is teljes mértékben bele

van kalkuldlva az eredményekbe, mig az elsd valtozatnal csak részben. Ilyen értelemben a
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masodik valtozat az, amelyet ,.illendd” 6sszehasonlitani a két hagyomanyos modszerrel, de ez
is minden esetben kisebb hibat szolgaltat az elébbieknél.

Az elébbihez hasonloan a jobb attekinthetdség kedvéért a 4.3 tablazat adatait is dbrazoltuk
(4.3 éabra).
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4.3 abra. A hibabecslés eredménye az egyes modszerekkel (atlagok).

A bal oldali 4bra a 30-as &ssz hattér-betitésszamhoz, a jobb oldali a 60-ashoz tartozik.

Az eredményeken jol megfigyelhetd az is, hogy a hattér ill. a csucsteriilet nagysaga hogyan
befolyasolja a hibaértékeket. Az eredmény nem okoz meglepetést: nagyobb hattér varhatd
értékhez nagyobb statisztikus hiba tartozik, a csucsteriilet novekedésével viszont a hiba

relative csokken.

4.3 Az intervallumba esés valosziniisége
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A 3.2 alfejezetben szerepel egy olyan allitas, mely szerint a teljes valoszinliségi modszerrel a
kiértékelés eredményéiil kapott csucsteriilet — valdszinliség hozzéarendelés alkalmas azon
val6szinliség meghatarozasara, hogy a csucsteriilet valamilyen meghatarozott intervallumba
esik, vagy pl. a csucsteriilet egy meghatarozott kiiszobértéket nem halad meg. Mivel (mint a
2.4 fejezet végén mar utaltam rd) itt nem "valodi" valdszintiségekrdl van szé, felmeriilhet
annak a gyandja, hogy ez az allitds nem, vagy nem teljesen allja meg a helyét. A tovabbiakban
leirt vizsgalatban ennek jartam utdna a gyakorlat oldalarél, az 1000 darab szimulalt, kiértékelt
spektrumrészlet segitségével.

Amennyiben a fenti allitas igaz, 0-tol egy kivalasztott kiiszobértékig 6sszegezve egy eloszlas
valoszinliségeit, és az azonos p Osszeg-valoszinliséget mutatd spektrumrészleteket
megvizsgalva a tényleges csucsteriiletiik az esetek p-ed részében esik a kiiszobérték ala,
amennyiben elegendden nagy szdmu spektrumrészletet vizsgaltunk.

Ez az elgondolas ebben a formaban gyakorlatilag kivitelezhetetlen, mivel a cstcsteriiletekhez
tartozd valoszinliségek akarmilyen értéket felvehetnek 0 és 1 kozott, igy az 1000
spektrumrészlet kozott kett6t sem lehetett volna talalni, amelyeknél ugyanahhoz a
kiiszobértékhez ugyanaz az 0sszeg-valdszinliség tartozik. A vizsgalat elvégzéséhez azonban
nem feltétleniil sziikséges a kiiszobérték rogzitése, elegendd, ha a valdsziniiséget rogzitjiik. Ez
egy masik elénnyel is jar: a vizsgélatban részt vevd spektrumrészletek valodi cstcsteriilete
sem kell megegyezzen, igy a statisztikailag mar elegenddéen nagy elemszamunak (1000)
mindsiild mintaval dolgozhatunk.

A vizsgélat soran kovetett eljards a kovetkezd volt: egyenként egymas utdn véve a
spektrumrészleteket, és a hozzajuk tartozd eloszlast, megkerestem az elére meghatarozott
valoszinliséghez a konkrét esetben tartozo kiiszobértéket, majd 6sszehasonlitottam a tényleges
csucstertilettel. Végeredményiil azon esetek szamat kaptam meg, amelyekben az aktudlis
csucsteriilet nem haladta meg az aktualis kiiszobértéket.

A teljes valoszinliségi mddszer diszkrét jellegébdl adoddan (csak a csucsteriiletek egész
értékéhez rendel valosziniiséget) a kiiszobértékek egzakt meghatarozasa nem volt lehetséges:
a 0 csucstertilettdl felfelé haladva 6sszeadva a csucsteriiletekhez tartozé valoszintiségeket, egy
bizonyos csucsteriiletnél ez az 6sszeg-valoszinliség még nem érte el az elére megadott p
valdszintiséget, a kovetkezd valdszinliséget hozzdadva viszont mar meghaladta azt. Ezért nem
volt egyértelmi, hogy az igy meghatarozott két szomszédos csucsteriilet koziil melyiket

tekintsiik kiiszobértéknek. Az eldbbi a végeredmény alul- mig az utdbbi feliilbecslését
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eredményezte volna. Végeredménynek ezért az ezen két kiiszobértékkel kapott eredmények
atlagat vettem, ami kozelitd megoldasnak tekinthetd. (Két csucsteriilet kozott a
valdszintiségek linedris, vagy egyéb interpolacidval valdo meghatdrozasanak nem lett volna
értelme, 1€évén a valodi csucsteriiletek is egész szamok).

Az aldbbi tablazatok tartalmazzak az eredményeket.

0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,95
5/30 4 8 14 23 32 43 54 67 83 90 95
10/30 4 9 16 25 36 47 59 71 85 96 98
15/30 2 8 17 24 38 44 52 64 72 84 92
20/30 5 7 10 15 26 39 52 65 74 83 93
5/60 4 6 14 27 35 50 65 73 90 96 100
10/60 5 12 20 28 38 46 55 66 75 85 90
15/60 3 6 14 24 30 41 48 60 72 87 91
20/60 4 20 29 39 46 60 69 80 86 90

4.4a tablazat. Kiiszobértékek (alulbecslés)

0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,95
5/30 8 10 23 33 45 58 72 86 89 96 99
10/30 9 12 24 37 48 61 72 85 93 98 100
15/30 6 14 24 39 44 55 64 7 82 92 96
20/30 7 8 15 29 40 55 66 74 81 93 97

5/60 5 13 25 33 51 68 74 90 95 100 100
10/60 6 16 25 37 45 54 65 74 80 87 94
15/60 5 10 21 30 59 47 58 7 82 90 94
20/60 4 9 24 38 44 56 68 73 84 87 93

4.4b tablazat. Kiiszobértékek (feliilbecslés)

80



0,05 01 0,2 0,3 0,4 0,5 0,6 0,7 0,8 09 095
5/30 6 9 18,5 28 38,5 50,5 63 76,5 86 93 97
10/30 6,5 10,5 20 31 42 54 65,5 78 89 97 99
15/30 4 11 20,5 31,5 41 49,5 58 67,5 77 88 94
20/30 6 7,5 12,5 22 33 47 59 69,5 775 88 95
5/60 4,5 9,5 19,6 30 43 59 695 815 925 98 100
10/60 5,5 14 225 325 415 50 60 70 77,5 86 92
15/60 4 8 17,5 27 44,5 44 53 65,5 77 88,5 92,5
20/60 4 7 22 335 415 51 64 71 82 86,5 91,5

4.4c tablazat. Kiiszobértékek (atlag)

A vizsgalt minta valdjdban csak 800 elemi volt: ki kellett hagyni beldle a 200 darab 0
csucsteriiletli spektrumrészletet, amelyekre természetesen minden alkalommal teljesiilt, hogy a
csucstertiletiik nem haladta meg a kiiszobértéket. A tobbi esetben nem okozott problémat az
egyes spektrumrészleteknél a csucsteriiletek kiilonb6z6 volta, a 0 csucsteriiletnek ebben az
esetben kitiintetett szerepe van. Ugyanis kiilonb6z6 valodi csucsteriiletti spektrumrészleteknél
az eloszlas is mas és mas lesz, igy az adott valdszinliséghez megallapitott kiiszobérték is
nagyban kiilonbozhet. A mddszer viszont 0-ndl kisebb cstcsteriiletekhez nem rendel
valosziniiséget, igy eleve lehetetlen lett volna olyan kiiszobértéket megallapitani, amelyet a 0
csucsteriilet meghalad.

A 800 darab spektrumrészletet szazas csoportokban vizsgaltam (bar erre, mint az eredmények
is mutatjak, kiilonosebb sziikség nem volt), egy csoportba véve azokat, amelyek azonos
csucsteriiletiiek és hattér varhatd értéktek voltak. A tablazatok nyolc sora ezeknek a szazas
csoportoknak felel meg, a sor elején feltiintetve a csucsteriilet/hattér varhato érték adatot. A
tablazatok oszlopai egy-egy adott p valoszinliségnek felelnek meg. A tablazatokban szerepld
szdmadatok azt jelentik, hogy a 100 spektrumrészlet koziil hanyban nem haladta meg a
csucsteriilet a tdblazat oszlopanak megfelelé valoszinliséghez tartozo kiiszobértéket. A harom
tablazat a fent leirtaknak megfeleléen a feliil- ill. alulbecsiilt értékeket, ill. ezek atlagat
tartalmazza. A 4.4 é&bran pedig a végeredmény lathaté: pontok jelolik az adott
valdszinliséghez tartozo kiiszobértéket meg nem haladd csucsteriiletti csiucsok szamat
szazalékban (a 800 spektrum OGsszességére), folytonos vonal pedig ennek az elméletileg

varhato értékét.
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4.4 abra. A kiisz6b alatti csucsok szdma — elméleti €s szamitott érték

A pontok jol kovetik az elméletileg vart értékeket, a kis mértékii fluktuaciot valdszintileg a
szamadatok kozelit6 meghatarozasi modja okozza. Ezen eredmények alapjan kijelenthetd,
hogy a teljes valdszinliségi modszer végeredményéiil kapott csucsteriilet-eloszlasok
alkalmasak analitikai kiiszobértékek meghatarozasara, ill. segitségiikkel csucsteriilet-

intervallumokba esések valdsziniiségei meghatarozhatok.
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S. Mért spektrumok kiértékelése

5.1 A teljes valosziniiségi modszer tesztelése mért gamma-spektrumokon

Szimulacioinkban — mint az a 4. fejezetben olvashaté — torekedtiink arra, hogy a
spektrumrészleteket tényleges keletkezésiiket minél jobban koévetdé modon hozzuk Iétre;
foként azok a tulajdonsagaik, amelyek a kiértékeld eljarasok eredményét befolyasoljak, ne
térjenek el a valodiaktol. Masrészt a kereskedelmi forgalomban 1évo spektrumkiértékeld
szoftverek az eldz6 fejezetben leirt egyszerli gorbeillesztésen kiviil szamos olyan kiegészitd
szamitast alkalmaznak, amelyek a mért gamma-spektrumok kiértékelését pontosabba teszik.
Mindezek érdekében az alabbi két gamma-spektrum néhdny cstcsanak teriiletét hataroztuk
meg. Az 5.la., b., dbran a spektrumoknak az altalunk vizsgélt tartomanya lathato. A
spektrumok a budapesti [zotop- és Feliiletkémiai Intézetben, a Nuklearis Kutatasok Osztalyan
késziiltek Compton-elnyomasos nagy tisztasagu germanium-detektorral. A spektrumok
gytjtéséhez Canberra S100-as sokcsatornds analizatorkartyat hasznaltunk.

Az éabran lathatdé mindkét spektrum ugyanazzal a mintaval végzett mérés eredménye, a
kiilonbség kozottik az, hogy a fels6 az alsonal joval hosszabb ideig késziilt. A teljes
valészinliségi modszer tesztelésére csak a rovid ideig mért spektrum alkalmas. A hossza
mérési ideji spektrumot a TVM-rel meghatdrozandd csucsteriiletekhez referenciaérték
szamitasara hasznaltuk.

Mivel a két spektrum ugyanarrél a mintardl késziilt, azonos energidju csticsokat tartalmaznak.
Az a., spektrum csucsai a hosszi mérési id6 miatt jo statisztikgjuak, teriiletiik
gorbeillesztéssel kis statisztikus hibadval meghatarozhat6. Az a., jelt spektrum csucsteriileteit
a gamma-spektrometriai gyakorlatban jol bevalt Hypermet-PC szoftver segitségével
hataroztuk meg. A Hypermet-PC programot az Izotopkutatd Intézetben fejlesztették ki, €s a

vildg szamos neutronaktivacids analitikai laboratoriumaban alkalmazzak [Phi76], [Faz97].
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5.1a, b abra. **Co gamma-spektrumai (részletek).

Az a., (fels6) abra a hosszi mérési idejd, a b., (alsd) abra a rovid mérési idejli spektrum.
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A Hypermet a nemlinedris legkisebb négyzetek moddszerének segitségével illeszt
meghatarozott gorbét a spektrum csucsaihoz. Az illesztésnél alkalmazott fliggvénygorbe
viszonylag kis belitésszdmok esetén Gauss-gorbe, linedris, esetleg parabolikus hattéren.
Csucskeres6d funkcidja a csucsokat a spektrumon végigfutd kétszeres differencidlo és simito
algoritmussal taldlja meg; a hattér szorasanak hdromszorosit meghalad6 betitésszamu
csucsokat nagy biztonsaggal regisztralja. Az igy megtalalt csticsok magassagat és pontos
helyét illeszti, a csucs szélességét egy elére meghatarozott kalibracios fiiggvény szolgéltatja.
[Phi76], [Rév00].

A b., spektrum csucsteriileteit mind a teljes valdsziniiségi mddszerrel, mind a Hypermet
szoftverrel meghataroztuk.

Hat csucs bizonyult alkalmasnak a teljes valdszintliségi modszerrel valo kiértékelésre, ezeket
az 5.1 éabra aljan nyil jeloli. Az ezeknél kisebb csucsok teriilete nem éri el a kimutatasi hatart,
az ezeknél nagyobbakat pedig mar nem érdemes a teljes valoszinliségi modszerrel vizsgélni a
gorbeillesztéssel kapott eredményekkel valo j6 egyezés és a TVM nagy iddigénye miatt.

A vizsgdlt hat cstcs koziil az utolsé (az 1037,939 keV energiaji) 6Co fotocsticsa, a masik 6t
hattércsiucs. Ez utobbiak olyan, zommel kornyezeti tényezoktdl szarmaztak, melyek hatdsa
idében 4allandonak tekinthetd. Ahhoz, hogy az a., spektrum csucsainak teriilete a 5.,
spektrumbeli csucsteriiletek referenciaértékéiil szolgalhasson, a 6. csucs esetében harom, a
tobbinél két korrekcids tényezot kellett figyelembe venni.

A mérési idok hanyadosaval mind a hat esetben korrigdlni kellett a csucsteriileteket. A két
mérés kozotti, ill. a mérések alatti radioaktiv bomlasbol adodd eltérést csak a 6. csucsnal
kellett figyelembe venni. Hasonloképpen a harmadik korrekcios tényezot, amelyet a két
mérésnél kissé eltéré minta—detektor-tavolsag miatt kellett kiszdmitani (a hattércsucsokra ez
sem vonatkozott, mivel azok nem a mintabol szarmaztak). A harom korrekcios faktor értéke a
kovetkezd volt:

1) Az a., spektrum mérési ideje 233137 s volt, a b., spektrumé 1000 s, a holtidé
mindkét esetben elhanyagolhato volt. Az a., spektrum cstcsteriileteit ez alapjan
4.289107-mal kellett szorozni, hogy megkapjuk a b., spektrumbeli csucsteriiletek
varhat6 értékét.

2) A b., spektrum egy héttel az a., elott késziilt. A mérések ideje alatti lecsengés az
eddigiekhez képest olyan kis mértékben modositotta volna az eredményeket, hogy
elegendének pontosnak bizonyult egyszertien a hosszu mérés idejének felét

hozz4adni a két mérés kozott eltelt idohoz (7 + 1,35 nap), és erre az idétartamra
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végezni el a bomlasi korrekciot. A *°Co felezési idejét 77,3 napnak véve [TOI96]
ez 1,0777-es szorzdtényezot jelent.
3) A minta—detektor-tavolsag a két esetben kiilonb6z6 volt. Mivel az intenzitasokat a

tavolsagnégyzetek aranyaval kell osztani, a geometriai korrekcios faktor ebbdl

1,0152-nek adddott.

Minden cstcs teriiletének meghatarozasanal 10 csatorna szélességli tartomanyt vizsgaltunk.
A kiértékelés eredményét az 5.1 tablazat tartalmazza. A tabldzat oszlopai sorrendben a
csucsok helyét, az a., spektrum csucsteriileteit, az ezekbdl szamolt referenciaértékeket, végiil

pedig a Hypermet ill. a TVM altal szolgaltatott csucsteriilet-értékeket tartalmazzak.

Energia (keV) | Csucsteriilet Csucstertilet (rovid mérési ideju spektrum)
("j0" spektrum) |referenciaérték Hypermet TVM
1. 47,581 5171 22,2 22 24
2. 163,379 1065 4,6 (0,83) 2
3. 186,728 1253 5.4 (10) 5
4. 662,167 8401 36 39 40
5. 692,457 3754 16,1 20 21
6. 1037,939 4135 19.4 21 20

5.1 tablazat. A csucsteriilet-meghatarozas eredményei

A Hypermet beépitett csicskeresd algoritmusa két esetben meg sem talalta a vizsgalt csucsot.
a betitésértékekre. (Egészen pontosan: csak a csucskeresd algoritmus ,,tévedését” korrigaltuk,
az illesztés ugyanazon mechanizmus szerint tértént, mint a tobbi csucs esetén.) Ez két esetben
fordult eld, ezeket a tabldzatban zardjelbe tett értékkel jeleztik. Azokban az esetekben,
amikor a Hypermet ,megtalalta” a csicsot, mindkét moddszer hibahataron beliil egyezd
eredményt adott a referenciaértékkel. A két fennmaradd csucsnal mar jelentosebb az eltérés.
Az igazan szignifikans kiilonbség a két modszer szolgéltatta eredményekben azonban a
csucstertiletértékek becsiilt hibajaban van. Ezt szemlélteti az 5.2 abra. Ezen a pontozott
vonalak a teljes valoszinliségi moddszerrel szamolt valoszintiségeloszlasokat jelolik (a

pontokat Osszekotdé gorbeszakaszok nem birnak jelentéssel, csak a jobb attekinthetdséget
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szolgéljék). Folytonos vonallal abrazoltuk a Hypermet altal szolgaltatott eredményeket. A
gorbék olyan Gauss-gorbének felelnek meg, amelyek maximuma a becsiilt
csucstertiletértéknél van, szélességét pedig a csucsteriilet becsiilt hibdjanak megadésara
szokéasosan hasznalt o paraméter hatarozza meg. A gorbék alatti teriilet mindkét esetben 1-re

normalt (az elsd esetben diszkrét, a masodikban folytonos fiiggvényrdl van sz9).

5.2a-f dbra. A legkisebb négyzetek modszerével, ill. a teljes valdsziniliségi modszerrel szamolt

valdszintiségeloszlasok a hat vizsgalt cstcsra vonatkozdan
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A Gauss-gorbék mind a hat esetben szélesebbek, mint a TVM eredményfiiggvényei, amely a
gorbeillesztéssel szamolt csucsteriiletek nagyobb statisztikus hibajara utal. Ezenkiviil a Gauss-
gorbék két esetben atnyulnak a negativ csucsteriiletek tartoméanydba, ami fizikailag
értelmezhetetlen. A TVM eredményei a szamitdsi modbol adédoan eleve nem adnak 0-nal
kisebb cstcsteriiletekre pozitiv valoszintiséget. A harmadik Iényeges kiilonbség, hogy a TVM
eloszlasgorbéi egyértelmiien aszimmetrikusak, ellentétben a Gauss-gorbékkel. Ez is mutatja,
hogy kis beiitésszamok esetén a szokdsos o hibamegadasi mod pontatlan, hiszen a

csucsteriilet szdrasa pozitiv iranyban egészen mas lehet, mint negativ iranyban.

5.2 A teljes valosziniiségi modszer alkalmazasa radioaktiv szennyezdédés eredetének

meghatarozasara

Ebben a fejezetben a teljes valoszinliségi modszer egy valos alkalmazasat mutatjuk be, azaz
célunk az itt leirt vizsgalattal mar nem a moddszer tesztelése, hanem egy tényleges probléma

megoldasa volt.

A Paksi Atomerdmu kornyezetében végzett rutinmérések alkalmaval Bcs szennyezOdést
fedeztek fel egyes novényi mintdkban. Egynyari novények esetében a szennyezddés mértéke
kimutatdsi hatar alatt maradt, hosszabb életidejii novényi részeknél (fakéregnél, mohanal)
viszont jol detektalhatd volt. A feladat annak eldontése volt, hogy a szennyezddés paksi
eredetli-e, vagy az 1986-0s csernobili atomerdmii-baleset kvetkeztében keriilt a novényekre.

Ennek érdekében a **Cs és a *'Cs izotopok aktivitas-ardnyat vizsgaltuk. Csernobili eredet
esetén a szennyezoddés idején a Magyarorszagon jellemzo arany 0,48 volt [Che96], a két
nuklid felezési idejének ismeretében (ez 9,51'110% s a “'Cs-re, és 6,51'10’s a "**Cs-re)
kiszamithato volt az 1999-ben, a mintavétel idején vart arany. Ezen adatok szerint a **Cs
aktivitasa ekkor 0,0127-szerese, mig a " Cs-é 0,742-szorosa kellett legyen a kibocsataskori
értéknek. A csernobili eredet esetén vart *Cs/"*’Cs aktivitasarany ezek alapjan 8,22'107-ra
adddott. Ezt az adatot latva nem meglepd, hogy a szokasos elven miikodo spektrumkiértékeld

szoftver a mintdk "**Cs tartalmat nem is regisztralta.

" A méréseket s a kiértékelést Bodnar Robert (Paksi Atomerémii), ill. Somlai Janos (VE Radiokémia Tanszék)
végezték.
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Paksi eredet esetében a vart ardany 0,577 volt, ezt az értéket az éves paksi kibocsatasi

adatokbol [PAK86-99] kaptuk 1986 és 1999 kozott bomlasra korrigalva, majd 6sszegezve.

A tényleges aktivitasarany, és igy a szennyezOdés eredetének meghatdrozasahoz harom
mintardl késziiltek mérések. Ezek az eromiitdl 1,5-2,5 km-re levd, kiilonbozé ellendrzod
pontokon vett, 20 évnél idésebb fak torzsérdl szarmazd kéregmintdk voltak. A mintakat
105°C-0s hémérsékleten szaritottak, 6rolték, majd homogenizaltdk. A por alakd mintdkat
ezutan 500 cm’ térfogatt, Eurostandard C2 0540G tipusti Marinelli mintatartoba toltotték.

A mintdk gamma-spektrumat Canberra tipusu nagy tisztasagll germdanium detektorral, €s
Canberra IB sokcsatornas analizatorral vették fel. Adatgytjtésre, energiakalibracidra és
csucsazonositasra a Canberra Genie 2K szoftvert hasznaltdk. A kalibracids forras Amersham

QCY .48 tipusu zart forras volt.

Mindhdrom spektrumban két csucs képezte vizsgalat targyat: a 604,74 keV energigju **Cs
csucs, ill. a 661,64 keV-es 97Cs csucs. A detektor hatasfoka az el8bbi energian 1,289'10_2
volt, az utobbin 1,20910.

A 661,64 keV-es csucs terlilete j6l meghatarozhat6 volt mindharom esetben, a 604,74 keV-es
csucsot viszont a kiértékelésre hasznalt Genie PC szoftver csucskeresé algoritmusa egyik
esetben sem talalta meg, és a terliletét a paraméterek kézi bedllitasa esetén sem tudta
elfogadhaté megbizhatosaggal meghatarozni. Ez volt az ok, amiért a '**Cs-csucs teriiletének
meghatarozasdhoz a teljes valoszinliségi modszert vettiik igénybe. Az 5.3 dbran az egyik
minta spektrumanak a 604,74 keV-es cstcsot tartalmazd része lathatdé (a harom minta
spektruma annyira hasonld volt egyméshoz, hogy a tovabbiakban koziilik csak az egyik
kiértékelését mutatjuk be abrakon keresztiil, a masik kettére csak a végeredményeket
kozoljiik). A **Cs-csucs mellett levd nagyobb csics a 2'*Bi izotép 609,31 keV-es csucsa,
amely a mintat koriilvevd szerkezeti anyagokbdl szarmazik. A bizmut-cstcs nem fed at a

134Cs csucsaval, igy a kiértékelést nem befolyésolja.

Szamitasainkhoz sziikségiink volt egy etalon mérésére is, egyrészt a csucs alakjat leird
valészinliségek meghatarozasahoz, masrészt ahhoz, hogy beiitésszamok helyett aktivitasok
valdszintiségeloszlasat tudjuk meghatarozni. Az etalon 0,631 Bg/kg aktivitasa BiCs-ot, és

137 Bg/kg aktivitasa '*’Cs-ot tartalmazott. Az etalon spektruméanak felvétele azonos mérési
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kortilmények kozott tortént az ismeretlen aktivitdsu mintdkéval, beleértve ebbe a minta-

geometriat és az elektronika beallitasait is, mint ahogy a kiértékelés modja is megegyezett.
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5.3 4bra. "**Cs-tartalmi minta gamma-spektruma (részlet).

A P'Cs csucs 604,74 keV energianal talalhato, a 609,31 keV-nél lathaté nagyobb cstcs a *'*Bi csticsa.

A teljes valdszinliségi modszer alkalmazdsa egyik esetben sem iitk6zott kiilonosebb
nehézségbe; a 2.4 fejezetben leirt eljarast kovettiik. A vizsgalt spektrumtartomany minden
esetben 10 csatornabdl allt. Az egyetlen egyszerUsitést a viszonylag nagy hattérértékek miatt
alkalmaztuk: két beiitést minden csatornaban automatikusan a hattérhez rendeltiink, a 4.1.3
alfejezetben részletesen leirt eljaras szerint. Ez az egyszer(sités elhanyagolhaté mértékben
moédositotta csak az eredményiil kapott valdszinliségeloszlast, a szamitasba veendd

lehetdségek szamat, és igy a szdmolési id6t viszont jelentdsen csokkentette.

Az 5.3 4bran bemutatott spektrumra ill. az etalonra kapott valdszinliségeloszlasokat az 5.4a,
b., abra tartalmazza. A harom mintanal az eloszlasok maximuma 16, 21, ill. 38 volt és egyik
esetben sem elhanyagolhaté mértékii annak valoszintisége, hogy a '**Cs a mintaban nem is
volt jelen. Az etalon eloszlasdinak maximuma 109 beiitésnél van, és itt a 0 csucsteriilet
valdszinlisége a varakozasnak megfeleléen elhanyagolhato.

Az eddigiekkel ellentétben a csucsteriiletek valdszinliségeloszlasainak megaddsa még nem
jelenti a feladat megoldasat. A P45 ¢s a 7Cs csticsok teriiletének aranya nem egyezik meg a
B¥4Cs/P*7Cs  aktivitasarannyal, mivel kiilonboz6 energidju csucsok esetében a detektor
hatasfoka is kiilonb6z6. Ahhoz, hogy aktivitasaranyt, ill. a teljes valdsziniiségi modszer

alapkoncepcidjanak megfeleléen az aktivitasarany valoszinlségeloszlasat tudjuk szamitani,

90



eldszor az egyes izotdpok aktivitasainak eloszlasat kell meghatdrozni. A harom mintdban a
134 . o .
(s aktivitasanak valoszintiségeloszlasat az etalon ugyanezen cstcsaval valo dsszehasonlités

alapjan szamitottuk ki, a kovetkez6é mddon:

5.4a, b abra. Az ismeretlen minta (felsd abra) és az etalon (alsé abra) teljes valoszinliségi mddszerrel vald

kiértékelésének eredménye.

Az ismeretlen aktivitasi minta és az etalon csuacsteriilet-eloszlasabdl indultunk ki.

Szamparokat képeztiink, amelyek egy-egy csucsteriilet-aranyt jelentettek, pl. az 1:2
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csucsteriiletarany valdszinliségének kiszamitdsadhoz az [1.,2], [2,4], [3.6], ... szdmpdarokat
vettiik alapul. A szampar elsé tagjahoz, mint csucsteriilethez megkerestiik az ismeretlen
aktivitasi minta eloszlasaban tartozé valoszintiséget, a szampar masodik tagjadhoz pedig az
etalon eloszlasabol vettiik az ott hozzd tartozo valdszinliséget. A szadmparhoz, mint
csucsteriiletaranyhoz ezen két valdszinliség szorzatat rendeltiik. Végil az azonos
csucsteriiletaranyt reprezentalé szamparokhoz rendelt valdsziniiségeket dsszeadtuk, és ezt az
Osszeg-valoszintiséget rendeltiik az adott csucsteriilet-aranyhoz. Ez az ardny mar aktivitas-
aranynak is tekinthetd, hiszen azonos koriilmények kozott felvett, azonos energiaju csucsokat
hasonlitottunk Sssze. Az etalon **Cs aktivitdsanak ismeretében pedig ez az aktivitdsarany-
eloszlas, abszolut aktivitas-eloszlassa szamolhato at.

Mivel a csucsteriilet-eloszlasoknal csak egész  beiitésszamértékekhez  tartoztak
valoszinliségértékek, ezért az aranyok pontosabb kiszamitasdhoz linearis interpoléacioval
hataroztunk meg tort-belitésszdmokhoz tartozd valoszintiségeket is. Amennyiben példaul
célunk ahhoz tartoz6 valoszinliség kiszamitasa, hogy az etalon éppen 2,5-sz6r annyi " 'Cs-ot
tartalmaz, mint az ismeretlen minta, a [1, 2,5], [2, 5], ..., [19, 47.5], [20, 50]... csucsteriilet-
aranyokhoz tartozé valdszintiségeket kell 6sszeadnunk.

Ezzel a szamitdsi modddal élesebb maximummal rendelkezd valdszintliségeloszlasokat
kaphatunk, mintha egyszeriien a becsiilt csucsteriiletek aranyat vennénk, és az arany hibajat a

hibaterjedés szabalyanak megfelel6en szamitanank az eredeti cstcsteriiletértékek hib4jabol.

Mivel a *’Cs csticsok teriiletét a szokasos gorbeillesztéses eljarassal, gyari szoftverrel
hataroztuk meg, az aktivitast is az elobb emlitett, szokasos modon szamoltuk az etalon
segitségével. Mivel itt jo statisztik4ju csticsokrdl volt szd, a teljes valoszinliségi modszerrel,
¢és az elobbiekben leirt aktivitasmeghatarozé szamitassal sem kaptunk volna jelentésen jobb

eredményeket.

Az elézbekben leirt szamitasok elvégzeése utdn mar rendelkezésiinkre allt a hdrom mintdban a
13Cs aktivitasa (aktivitas-valoszintiségeloszlas formajaban), ill. a *’Cs aktivitasa (a szokésos
"érték + hiba" formaban). Ezek utan a **Cs/"*’Cs aktivitdsarany az egyes mintékban, ill. az
chhez tartoz6 valoszintiségeloszlas meghatarozasa mar egyszerlien, a **Cs aktivitas-eloszlas
minden egyes aktivitasértékének a *’Cs aktivitasaval valo elosztasaval tortént. Ennél a

szamitasnal nem vettiik figyelembe a '*’Cs aktivitasdnak becsiilt hibajat, mivel ez
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elhanyagolhat6 volt a P4Cs aktivitasanak hibaja mellett. Az aktivitisaranyok eloszlasat

mutatja be az 5.5 abra.

5.5 abra. A harom minta **Cs/"*’Cs aktivitasarany-valésziniiségeloszlasa.

A nyil a csernobili eredet esetében vart aktivitasaranyt jelzi.
A harom mintahoz tartozo eloszlasokat egy grafikonon abrazoltuk, nyil jelzi a csernobili

eredet esetén vart aktivitas-aranyt. Paksi eredet esetén ez az arany joval nagyobb, 0,577 lett

volna, igy a kiértékelés egyértelmiien igazolta a szennyezddés csernobili eredetét.
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Osszefoglalas

A nukledris spektroszkopiai eljarasok eredményeit jelentds mértékben befolydsolhatja az
alkalmazott spektrumkiértékeld algoritmus, ill. ennek részeként a csucsteriilet-meghatarozas
modszere.

A dolgozat els6 részében attekintést adtunk a gyakorlatban eléforduld csucsteriilet-
meghataroz6 moddszerekrél. A leggyakrabban haszndlt ezek koziil a sulyozott legkisebb
négyzetek moddszere. Szé esett ezen kivil a maximum likelihood modszerrél, és a kis
betitésszamu  spektrumtartomanyok kiértékelésére a kozelmultban kifejlesztett teljes
val6szinliségi modszerr6l. A dolgozat targyat elsGsorban ez utdbbi moédszer vizsgalata
képezte.

Elséként a spektroszkdpiai alkalmazasok néhany alapvetd fogalmat: a kimutatasi hatart, és
mas analitikai hatarértékeket vettiink vizsgalat ala. Ezzel kapcsolatos szamitasainkban a L.
Currie altal bevezetett definiciokat vettiik alapul. Currie a kritikus szintre és a kimutatasi
hatarra adott definicidjdban a csucsteriilet valdszintiségeloszlasat Gauss-eloszlassal
kozelitette. ElsOként arra végeztiink szamitasokat, hogy miként befolyasolja az analitikai
kiiszobértékeket, ha ettdl a kozelitéstol eltekintiink. Eredményiil azt kaptuk, hogy a kimutatasi
hatart egészen csekély mértékben csokkenti csak, ha nem alkalmazunk kozelitést.

Masodik Iépésben a teljes valdszinliségi modszer egy ilyen iranyu alkalmazasat dolgoztuk ki.
Azonos mérési koriilmények, és a fenti definiciok alapkoncepciojanak valtozatlanul hagyasa
mellett pusztan a csucsteriilet-meghatarozasra a teljes valoszinliségi mddszer hasznalatatol a
kimutatdsi hatar jelentds csokkenését vartuk. Szimuldcios szamitasaink ezt a feltételezést
egyértelmiien alatamasztottak.

A tovabbiakban a teljes valdszinliségi moddszernek a sulyozott legkisebb négyzetek
modszerével és a maximum likelihood modszerrel valo részletes 6sszehasonlitasara kertilt sor.
Az 0Osszehasonlitast szimulalt spektrumrészletek kiértékelésénél mutatott hatékonysaguk
alapjan végeztiik. Mivel a szamitogépes szimuldcié lehetdvé tette a tényleges csucstertiilet- €s
hattérértékek pontos ismeretét és tetszéleges értékre valo beallitasat, az egyes modszerek altal
szolgéltatott eredmények pontossidga jol nyomon kovethetd volt. Vizsgaltuk a becstilt
csucsteriiletek atlagos eltérését a tényleges <éErtéktdl, a becslésnél esetlegesen fellépd
szisztematikus hibdkat, és az egyes modszerek 4ltal a csucstertiiletek statisztikus hibajara adott

becsléseket. Az eredmények egyértelmilen igazoltak a teljes valoszinliségi modszer
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1étjogosultsagat, és legjobb voltat az egészen kis (20 koriili, vagy kisebb) beiitésszdmok
tartomanyaban.

Végiil két gyakorlati alkalmazason keresztiil igazoltuk, hogy a teljes valoszintiségi modszer a
valds spektroszkopiai gyakorlatban is megallja a helyét. Az elsé alkalmazas *°Co izotop
gamma-spektrumdnak kiértékelése volt, melyet a teljes valdszinliségi mddszer mellett a
Hypermet markanevii gyari spektrumkiértékeld szoftverrel is elvégeztiink. Az eredmények itt
is a teljes valdszinliségi modszer hatékonyabb voltat igazoltdk a rossz statisztikdju csucsok
kiértékelésében.

Végiil a masik gyakorlati alkalmazds célja mar nem a modszer tesztelése, vagy mas
eljarasokkal vald Osszehasonlitasa volt, hanem egy valos spektroszképiai probléma
megoldasa, amely a szokéasos kiértékeld rutinnal nem bizonyult megoldhatonak. A teljes

valoszinliségi modszerrel a feladat megoldasa nem titk6zott akadalyba.

A fenti vizsgalatok eredménye egyértelmiien igazolta a teljes valdszinliségi modszer
alkalmazhatdsagat, és kijelolte helyét a nukledris spektroszkopiai gyakorlatban. A szerzd
meggy6zodése, hogy a moddszer, esetleg csekély, szamitastechnikai jellegt tokéletesités utan

részévé valhat a szokdasos spektrumkiértékeld algoritmusoknak.
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elvallalta, és a munka befejezését maximalis odaadéssal segitette.

K6szonom Molnar Gabornak, az IKI Nuklearis Kutatasok Osztalya vezetdjének a gyors és
hatékony intézkedését a rendkiviili helyzetben, mellyel eldsegitette a munka zokkenémentes
folytatasat.

K6szonom tanszékiink vezetdjének, Szalai Istvannak, hogy a szamitasok elvégzéséhez a targyi

¢és iddbeli feltételeket biztositotta.
Ko6szonom tovabba a spektrumokat és a veliik kapcsolatos segitséget Somlai Janosnak (VE

Radiokémia Tanszék), valamint a matematikai konzultaciot Koltay Laszlonak (VE

Matematika Tanszék).
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