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KIVONAT

Matematikai statisztikai modszerek alkalmazasa adszorpcios miiveletek

matematikai leirasaban

A dolgozat a sztochasztikus folyamatokra kidolgozott — valdszintiségelméleti
Osszefiiggéseket alkalmazza az adszorpcios miveletek matematikai leirasa, illetve

tervezese kapcsan.

A szerz6 bemutatja, hogy egy tokéletesen kevert Ustben lejatsz6dd adszorpcié Marvov
folyamatkeént is felfoghato, igy az adszorpcids kinetika leirhat6 a Chapman-Kolmogorov
egyenletek segitségével. Ugyan ez a matematikai apparatus alkalmas az adszorberekben
mérhetd tartdézkodasi id6 eloszlasfiiggvényének jellemzésére is. Az adszorpcios kinetikara
és a tartozkodasi idore vonatkozd valdszinliségek Osszekapcsoldsaval lehetdség nyilik
adszorberekben, kromatografias oszlopokban zajlé folyamatok valdsziniiségi matematikai
modszerekkel — torténd  analizisére, illetve  attorési  gorbék, kromatogrammok
val6szintiségelméleti szamitasara. A szerz6 megmutatja, milyen kapcsolat van a
valosziniiségi modell paraméterei és a mar ismert fizikai allandok kozott, illetve a hianyzo
paramétereket milyen mddszerekkel lehet meghatarozni. A matematikai modell

hasznalhatdsagat trikloretan vizes kozegbdl térténd adszorpcidja kapcsan mutatja be.

ABSTRACT

Sochastic Mathematical Approach for M odeling of Adsor ption Processes

This work uses the stochastic mathematical method in modeling and planning of adsorption

processes.

The author shows that the adsorption taking place in a well stirred tank reactor can be

regarded as a Markov process, thus the adsorption kinetic can be followed by the help of



the Chapman-Kolmogorov equations. The same method suitable to characterize the
residence time distributions measured in a packed bed adsorption column. Connecting the
probabilities referring both the adsorption kinetic and residence time distribution we have
the possibility to calculate the adsorption in a column, that is to calculate the breakthrough
curve or a chromatogram. The author also shoes how to determine the model parameters
from the physical properties or experimental data gained of the adsorption of CCI3;CH3 by

active charcoa from aqueous solution.

AUSZUG

Anwendung mathematischer statistischer = Methoden fir die

Beschreibung der Adsorptionsverfahren

Der Autor vorfiihrt, dass in einem Rihrkessel abgerollte Adsorption auch als Markov
Prozess kann erfassen werden, deshalb kann die Adsorptionskinetik mit Anwendung der
Chapman-Kolmogorov  Gleichungen beschrieben werden. Dieselbe mathematische
Methode ist verwendbar fiir Beschreibung die Verteilungsfunktion der Verweilzeit, die in
Adsorber gemessen werden kann. Mit Verbindung der Wahrscheinlichkeit der
Adsorbtionskinetik und der Verweilzeit gibt es die Maoglichkeit,
Adsorptionsdurchbruchkurven und die Kromatogrammen zu berechnen. Der Autor vorfuhrt
die Verbindung, die zwischen den Parameters und den bekannten physischen
Eigenschaften besteht, bzw. die Methoden, die verwendbar flr Bestimmung der fehlenden
Parameters sind. Das experimentelle Unterlegen des mathematischen Modelles wird im

Trichlorethan-Wasser-Aktivkohle System untersucht.



1. BEVEZETES

Ha egy fluid fazis kis koncentracidoban tartalmaz szennyezé vagy értékes komponenseket,
akkor a fazist 6sszehozva egy, az adott komponensekhez a fluid fazis tébbi komponensénél
nagyobb adszorpcioés aktivitast mutaté szilard anyaggal, az adszorbenssel, akkor
lehetdségiink van a kis koncentracioban jelenlévd komponensek gazdasdgos kinyerésére.
Ha ezt a miuveletet egy tokéletesen kevert iistben szakaszosan valdsitjuk meg, deritésrol
beszéliink, mig ha a fluid fazist mintegy atsziirjiik egy adszorbensboél allo rétegen, akkor

alléagyas, frontalis adszorpciérdl van szé.

Az alléagyas adszorpciés technika a preparalasi illetve tisztitasi célokon tal analitikai
célokra is felhasznéalhat6. Ha az elemezni kivant folyadék vagy géazelegy kis adagjat egy
rosszul adszorbeal6dd gazba vagy folyadékba injektaljuk és igy vezetjik at egy adszorpcios
oszlopon, akkor kromatografiarél beszélink. A minta egyes komponensei az adszorpcios
affinitasuktol fuggd sebességgel sodrddnak at kromatografias oszlopon. A komponensek
tartozkodasi ideje, a retenciés id6 az anyagi mindségre jellemzod érték. Elemezve a
kromatografids oszlopot elhagyé fluidum koncentricidjat, min6ségi és mennyiségi

megallapitasokat tehetlink a minta dsszetételére vonatkozolag.

Mivel a kromatografias technika szétvalogatja a minta komponenseit, igen draga, Kis
koncentracioban jelenlévd komponensek kinyerését preparativ kromatografias technikaval
is megvaldsithatjuk. A preparativ kromatografia pont ugy miksdik, mint az analitikai, csak

az oszlopméret és a feldolgozott mintamennyiségek nagysagrendje killénbozik.

lgen kozeli adszorpciés tulajdonsdgokat mutatd anyagok adszorpcids elvalasztasara
kifinomult adszorpcids technikdk alakultak ki. Ezek koziil legjelentésebb az SMB
(Simulating Moving Bed) technika. Ennek Iényege, hogy minimum négy adszorpcios
oszlop van hurokba kétve. A kdrbe folyamatosan taplaljak be a nyersanyagot és az eluenst,
és folyamatosan veszik el a raffinatumot (legkevésbé adszorbeal6dd komponenst) és az
extraktumot (lasd 1. &bra). A kiilonb6z6 pozicioban 1évé oszlopokban a kovetkezd

feladatokat kell megvaldsitani:



1. pozicio:

2. pozicio:
3. pozicié:

4. pozicio:

Az itt 1évé oszlopbol el kell tavolitani az esetlegesen bennmaradt 6sszes
szennyezeést.

Ki kell 6bliteni az oszlopbdl a jol adszorbeal6dd komponenseket.

A 2. poziciobdl érkezé és a betaplalasban 1évé komponensek elvalasztasa.

A tovabbvezetett folyadékaram megtisztitdsa az eluensben maradt

nyersanyag komponensektol

A betaplalast kovetd oszlopban a komponens frontok kiilonb6z6 sebességgel mozognak és

igy az els6 két front kozotti idoben a kevésbé adszorbedlddd komponens tisztan kinyerheto.

Amikor a betaplalast kovetd oszlopbdl mar nem megfeleld mindségli termék jon ki, az

oszlopok helyét az aramlasi irdnnyal szemben rotaljak. Ez azt jelenti, hogy a 3. oszlop

helyére a majdnem tiszta 4. oszlop kerll. A 2. helyére kerul a jobban adszorbeal6édd

komponenseket tartalmaz6 3. oszlop, mig a 2. oszlopbdl az 1. pozicidban eltavolitjak az

oblités utdan még bennmaradt komponenseket. A teljesen tiszta 1. oszlop a 4. poziciéba

keril, hogy megfogja a cirkulaltatott &ramban maradt mintakomponenseket.

Eluens Extrakt

Raffinat ) Betaplalas

1. é&bra

SMB berendezés miukodése

Mennél bonyolultabb adszorpciés technikdt haszndlunk, anndl nehezebb és annal

koltségesebb  Kkisérleti (ton megallapitani a folyamat optimalis paramétereit. Az



optimalizalas id6 és koltségesokkentésének sziikséglete megbizhat6 szamitési algoritmusok

kidolgozasat koveteli meg.

Az adszorpcio természeténél fogva kétfazisu instacionarius miivelet. Hagyomanyos maddon

felirva a fazisok komponens mérlegeit a kovetkez6 6sszefliggésekhez jutunk.

oc, _
ot

grad(v,c,) +(1-) 2+ =0 %)

oq; _ e
o =Bol -c@) @

Az egyenletekben c¢; az i. komponens koncentracidja a fluid fazisban, mig q; ugyanezen
komponens térfogategységre vonatkoztatott koncentracidja az adszorbens fazisban. q az
adszorbens fazisban mérhetd koncentraciok vektora. Az alkalmazott ¢ (q) egyensUlyi
Osszefliggéstol fiiggden a fenti differencialegyenlet rendszer megoldasa igen nehézkessé

valhat.

Ebben a disszertacioban az adszorpcios miveletek matematikai modellezésének egy Uj
lehetdségével foglalkozunk, amennyiben az adszorpciot Markov folyamatként fogjuk fel,
¢és az adszorpcidés miivelet soran bekovetkezd események valosziniiségét a matematikai

statisztika mddszereivel értékeljik Ki.



2. ELMELETI OSSZEFOGLALO

Az elméleti tsszefoglaldban harom témateriiletet szeretnénk érinteni. Ezek az adszorpcios
egyensulyok, az adszorpcios miiveletek matematikai modellezése €s a Markov folyamatok

elmélete.

2.1 Adszorpcio

Az adszorpcid leirasaval foglalkoz6 miivek szinte konyvtarakat toltenek meg. Az
adszorpcidé soran a megkotott komponens molekulai adhézids vagy gyenge kémiai erdok
révén kotddnek az adszorbenshez. Mi az aktivalt adszorpcidval, a kemoszorpcidval jelen
munkaban nem foglalkozunk. A diszperzios erdk hatasara bekovetkezéd adszorpciot fizikai

adszorpcidnak, vagy egyszertien adszorpcionak nevezzik.

2.1.1 Fizikai adszorpcié

Adszorpcidérdl akkor beszéliink, amikor hatarfeliilettel elkiiloniilé szilard-fluid vagy fluid-
fluid fazis érintkeztetésénél az adhézios erdk kovetkeztében az egyik fazis molekuldi a
hatérfeliilet kizelében koncentralddnak. Altalaban, amikor adszorpciordl hallunk szilard-
fluid hatarfeluletre gondolunk. Ezen az adszorpcié annak kdvetkeztében valdsul meg, hogy
a szilard fazis strtin, rogzitett centrummal elhelyezett molekuldi diszperzios erdkkel hatnak
a fluid fazis statisztikus mozgast végzé molekulaira, ezért a szilard fazis kdzvetlen
kornyezete a fluid fazis molekuldira nézve alacsonyabb potenciallal bir, mint a fazis
belseje. Statisztikus értelmezésben azt is mondhatnank, hogy a fluidum molekuldinak
atlagos tartézkodasi ideje egy, a hatarfeliilethez illeszkedd néhany molekula méretre
kiterjed® térfogatrészben nagyobb, mint az ugyanilyen méretii térrészben, a fazis
belsejében. Ha a fluid fazis tobb komponensbdl all, akkor a diszperzios erdk
kiilonboz6ségébol eredéen azon molekuldk, melyekhez a szilard fazis nagyobb affinitast

mutat a hatarfeluleti rétegben jobban koncentralédnak, mint a fluidum tobbi részében. Ez
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azt eredményezi, hogy e komponensek a szilard fazis fellletén, illetve annak kozelében
nagyobb aranyban lesznek jelen, mint a fluidumban, igy a szilard és fluid fazis
elkuilonitésével lehetdség nyilik arra, hogy a fent emlitett komponenseket a fluid fazisbol
kinyerjik, ha azok értékes anyagok, illetve, hogy a fluidumot megszabaditsuk a szilard
fazishoz nagy affinitdst mutatdé komponensektdl, amennyiben azok a fluid fazis
szennyezéseként vannak jelen. A szilard fazist ebben a relacidéban adszorbensnek, mig a
fluidum azon komponenseit melyekkel az adszorpcié soran elszdmolunk adszorptivumnak

nevezzuk.

Ha egy adszorbenst 6sszehozunk egy adszorptivumot is tartalmazo fluid fazissal, akkor az
adszorptivum koncentrécioja a fluid fazis belsejében valtozni fog €s elég hosszu id6 eltelte
utan egy hatéarértékre, az egyensulyi koncentraciéra all be. Egyensulyban, noha az egyes
adszorptivum molekuléak statisztikusan cserélddhetnek a hatarfeliileti réteg és a fluid fazis
belseje kdzott, a koncentracido mégsem valtozik észrevehetéen, mert hosszabb tavon az
adszorbeal6dd és deszorbeal6dd molekuldk szama megegyezik. Ami a koncentracio
statisztikus ingadozasat illeti, az térben és idoben az atlagértékhez képest elhanyagolhat6.
Az adszorpcio folyaman a fazisérintkeztetés el6tti molekula eloszlasokhoz képest egy
rendezettebb allapot alakul ki, a rendszer energetikailag stabilabb allapotba jut, ezért az
adszorpcid midig pozitiv hoszinezetii, exoterm, entropia csokkenéssel jaro folyamat. A
hatarfellleti rétegben az egyes molekulafajtdk koncentralodasa a szilard és fluid fazis
molekulai kozott kialakulé potencialis energiagddor mélységétol fiigg. Ha a diszperzios
er6k altal végzett munka, vagy ami ezzel egyenértékii, az adszorpcios hé egy adszorptivum
molekulara jutd atlag értékét Ae-al jelsljiik, akkor a Boltzmann tétel szerint az illetd
molekula cs siiriisége a potencidl minimum kornyezetében a fazis belsejében mérhet6 c;
stiriiséghez képest a kdvetkezd dsszefliggés szerint alakul:

ne/kT

c.=c le

. gmol/m?, (3)

E szerint az adszorpcié annal nagyobb mértékii, minél nagyobb a szilard és fluidum
molekulak kozotti kolcsonhatds energidja és minél alacsonyabb a hdémérséklet. Az
Osszefliggés adott hdmérsékleten linearis kapcsolatot teremt a fluid fazisu koncentracio és a

szorbeatum hatarfellleti koncentracidja kozott (Henry térvény). Az itt bemutatott kép
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természetesen egy homogén potencialteret implikal, amelyben az adszorptivum molekulak
egymasra gyakorolt kdlcsdnhatasa zérus, ami Kis adszorptivum koncentracidk esetén igaz
is. Ezzel szemben az adszorpcios hé egy molekulara jutd atlaga az inhomogenitasok miatt
figg az adszorpcids centrumok foglaltsagi viszonyaitdl is, eldszor ugyanis az aktivabb

centrumok telitddnek.

Az adszopcid kovetkeztében kialakult siiriség inhomogenitds miatt indokolt a siirlibb
hatérfellleti réteget termodinamikailag kulon fazisnak tekinteni, noha igen komoly
nehézségek merilnének fel, ha meg kivannank hatérozni a fazis fizikai Kiterjedését.
Tekintettel azonban a kohézids erdk kis hatétavolsagara, annyi mindenesetre igaz, hogy a
hatarfeliileti réteg fazishatara a fluidum felé legfeljebb néhany molekula d&tmérdényire lehet

a szilard-fluid hatarfeliiletto].

Tulajdonképpen makroszkopikusan érzékelhet6 effektus a szilard és fluid fazis kozott csak
akkor alakulhat ki, ha a szilard fazis megfeleléen nagy feliilettel rendelkezik ahhoz, hogy a
néhany molekula méretre Kiterjedé hatarfeliileti réteg kapacitasa osszemérhetd legyen a
fluid fazis kapacitasaval. Az adszorbensek ennek kovetkeztében mindig nagy fajlagos
feliiletii anyagok. A nagy fajlagos feliilet kovetkezhet az adszorbens igen finom kolloidalis
eloszlasabdl (korom), de legtobbszor a feliilet az adszorbens belsé pdrusszerkezetének
kovetkezménye. A feliilet aktivitasa (potencial godor mélysége) alapvetéen az adszorbens
geometriajatol fligg. Ha a nagy fajlagos feliiletet hevitéssel az eredeti szilard anyag ho-
bontasaval és a hasadasi bomlastermékek eltavolitasaval (aktiv szenek), vagy duzzadt
gélbol az olddszer elparologtatidsaval (szilikagél) hoztdk létre, akkor a visszamarado
porusszerkezet heterogén eloszlasu, ami egyben heterogén eloszlasi adszorpcids aktivitast
is jelent. Persze vannak olyan adszorbensek is, amelyeket kristalyos anyagok (zeolitok)
kotott nedvességtartalmanak részben vagy egészben torténd eltavolitasaval allitanak el6.
Ilyen anyagok esetében a visszamaradd kristdlyos vaz rendezett, igy rendezett az
adszorbenst jellemz6 potencialtér, illetve az adszorpcids aktivitds eloszldsa vagy

mondhatjuk ugy, hogy az adszorpcids centrumok térbeli eloszlasa is.

Ami az adszorpcié mérését illeti, a fluid fazis mennyiségének, tovabba a fluid fazis eredeti

és egyensulyi koncentraciojanak ismeretében megallapithatdé az az adszorptivum
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mennyiség, amely a fluid fazisbol hianyzik, vagy ami ezzel egyenértékii, az a mennyiség,
amelyet az adszorbens a feluleti rétegben magahoz kotétt. Szigortan véve az adszorpcids
hatarrétegben csak a fluid fazishoz képest jelen 1év6 tobblet anyagmennyiség az, amelyet
az adhézids er6k kovetkezményeképpen a szilard fazishoz hozzarendelhetiink (Gibbs

hipotézis).

c.-c, =c [ -1) gmol/m® (4)
A fenti Osszefliggés az adszorptivum tébblet koncentracidjat adja a fellleti rétegben. A
gond csupan az, hogy nem ismerjik sem a fellleti réteg térfogatat, sem a potencialgodor
mélységét, ezért konnyebb, ha gy definidljuk az adszorbealdddé komponens
koncentréaciojat, hogy a fluidumbol hidnyz6 adszorptivum mennyiséget az adszorbens
megfeleld extenziv jellemzdjére (tomeg, feliilet, térfogat, porustérfogat stb.)

vonatkoztatjuk.

A fluid fazisra vonatkozo mérleg alapjan legyen N gmol az m kg tomegii adszorbens altal
megkotott adszorptivum komponens mennyiség és legyen o az adszorbens m?%kg-ban
kifejezett fajlagos felllete. Ekkor a w gmol/kg koncentracid egységben Kkifejezett
szilardfazisra vonatkozé és a I' gmol/mben kifejezett felileti koncentracit a

kovetkezOképpen szarmaztathatjuk le.

w=N/m gmol/kg (5)

A=m-o m? (6)

F=N_ N _w gmol /m? (7
A mlew w

Ahol A, az m tomegili adszorbens felulete. Az igy definialt koncentraciok szellemiikben
megfelelnek az el6z6 Gibbs féle definicionak, hiszen csak a fluidumban észlelhet6 hianyt,

vagy ami ezzel egyenértékii, a hatarrétegbeli tobbletet rendelik az adszorbenshez
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adszorbealt mennyiségként. Egy adott hdmérsékleten az 0sszetartozd egyensulyi szilard és

fluid fazist koncentraciok adjak az illetd komponens egyensulyi adszorpcids izotermajat.

2.1.2. Az adszorpci6 energetikaja

Emlitettik az elézéekben, hogy az adszorpcio entropia csokkenéssel jard, pozitiv
hoszinezetli folyamat. Jeloljiik Q-val az m tomegili adszorbensen N gmol komponens
adszorpcidja soran folszabaduldo hdmennyiséget és most a fogalmak tisztazasa érdekében
csak egyetlen komponens adszorpcidjat vizsgaljuk. Nyilvanvalo, hogy a Q hdé N
novekedtével monoton né. Viszont, ha a felszabaduld hét az N molra atlagoljuk, akkor az
esetek tobbségében egy q (J/gmol) monoton csokkend fliggvényt kapunk. Ha qw-val (J/kg)
azt a hOmennyiséget jeloljuk, amely lkg tomegli adszorbensen w gmol komponens
adszorpcidja soran tehat w gmol/kg koncentracié kialakuldsaig izoterm korilmények
kozott felszabadul, akkor m tomegili szorbens €s N gmol adszorptivum adszorpcioja esetén

a viszonyok a kdvetkezoképpen alakulnak
g=Q/N=(mgy)/(mw) J/igmol (8)

igy g nyilvan a w koncentracio kialakulasaig molonként atlagosan felszabaduld
hémennyiséget jelenti, és mint ilyent integralis molaris adszorpcids hoének nevezik.
Ténylegesen egy mél adszorpci6ja soran a w koncentracional felszabadulé q” differenciélis

molaris adszorpcids ho a

A(qu) - |imAqW =q+ wa—q J/igmol 9)
A(mw) Aw ow

qD:Iim%ﬂim

kifejezéssel adhaté meg, mely Kkifejezés egyben kapcsolatot teremt a szilard fazis
telitettsége, a differenciélis és integralis molaris adszorpciés hok kozott. A q differencialis
adszorpcids ho tulajdonképpen az adszorbedlt molekuldk w telitettségének megfeleld usy
hatarréteg- és a fluid fazisbeli us differencialis molaris belsd energidjanak kiilsnbségeként
adodik. Ezert
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Usv=0 +Us Jgmol (10)
Hipotetikusan elfogadva, hogy az adszorpciés hatarrétegben az adszorptivum parcialis
moléaris térfogata a w telitettségnél vs,, meghatarozhatjuk a hatarfelileti rétegben az
adszorptivum parcialis molaris entalpiajat

hsyv=Usy+PVsw Jigmol. (11)

Az adszorpcios molaris entalpiavaltozas egy mol adszorptivum adszorpcidja esetén w

telitettségnél

Ahy=hgy-h¢ J/igmol (12)

Beirva a megfelel6 entalpia értékeket

Ahy, =Ugy+pVsy-Us-pvs  J/gmol (13)

tovabba az adszorpcios hatarrétegben az adszorptivum adszorpcios héjével kifejezett ugy

molaris belsd energiajat

Ahw=q +UrHp(Ven-Ve)-U=q +p(Vsu-vr)  Jigmol (14)

kifejezést kapjuk. Idealis gazok adszorpcioja esetén vy, altalaban elhanyagolhaté a vi-hez

képest, ezért

Ahw=q -pvi=q -RT Jigmol. (15)

Folyadék fazisbol torténd adszorpcional viszont nincs lényeges killénbség a moltérfogatok

kdzott ezért az entalpiavaltozas gyakorlatilag az adszorpcids h6vel azonosnak tekintheto.

Hasonlo osszefliggések vezetheték le a parcidlis molaris szabadenergidra és a

szabadentalpiara is.
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Afy=f o1 Jgmol. (16)
Afy=Usy-Us - T(SonS) Jgmol. (a7
AQw=0sw-0F Jgmal. (18)
Agw=Ahy, - T(Ssv-S) Jgmol. (29)

2.1.3. Az adszorpcios egyensuly

Adszorpcités eljarasok matematikai modellezésénél alapvetd fontossaghi az egyébként

spontan lejatszodo folyamat hatarhelyzetének, az adszorpcids egyensulynak az ismerete.
Egyensulyban a szabadenergianak széls6 értéke van, ezért a (16) egyenletbdl fg, = fr. Az
adszorbealt fazis szabadenergidjanak valtozasa konstans hdmérsékleten viszont a kémiai
potencialvaltozasbdl és abbol a ténybdl tevodik 6ssze, hogy az adszorptivum molekulak
megvaltoztatjak a feliileten 1évd adszorbens molekuldk energetikai allapotat, ami a feliileti
fesziltség csokkenését eredményezi. Ez az energiavaltozas a szétteriilési munkaval is
kifejezhet6, igy

fsw = Haw Ns— T A. (21)
Differencialva a (21) kifejezést majd levonva (20)-b6l

dpsy Ns= dm A. (22)

Egyensulyban a kémiai potencialok megegyeznek
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Msw= =G0 + RT-Inp (23)

A Usy kémiai potencidl megvaltozasa a nyomassal

dug, = F;po (24)

Ezt beirva a (22) egyenletbe

Ille n 25
" p %E 2

A (25) egyenlet gyakorlatilag a szilard és fluid fazisi koncentracidok kozotti egyensulyi
osszefuiggés elvi megfogalmazasa, a Gibbs egyenlet. Ha a (25) egyenlet mindkét oldalat
osztjuk a monomolekularis adszorptivum réteggel boritott adszorbens ngn kapacitasaval és
az Alngn héanyadost ¢m-el az ndngn, hanyadost ©-val jeloljuk, akkor a © fellleti

boritottsagra vonatkoz6 Gibbs egyenletet kapjuk,

RT Tt
o = 26
o.p %@% 29)

melynek O-ra rendezett alakja a kovetkez6

RT (PInp

A Gibbs féle izoterma a szétteriilési nyomason keresztiil dsszefliggést teremt a I' = ndA
feltleti koncentracio illetve a © fellleti boritottsag és a fluid fazis aktivitasa kdzott, vagy
forditva az adszorbealt mennyiség a fajlagos felllet és a fluid koncentracié vagy aktivitas
ismeretében lehetéséget ad arra, hogy megallapitsuk az adszorptivum hatérfellleti rétegre

vonatkozo kétdimenzids allapot egyenletét.
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Ha a széttertilési nyomas linearisan valtozik a nyomassal, akkor a (25) egyenlet a Henry

torvényt eredményezi

s =" =K’ 27
A op (27)
N _KP_ e (28)
A RT

Az egyenletben a nJA koncentrécid helyett T'-t is irhatunk, hiszen a feluleti koncentracio

adott adszorbens esetén aradnyos az adszorbens témegére vonatkoztatott adszorptivum
koncentracioval.

Az adszorbealt réteg 71U szétterllési nyomasa lényegében az adszorptivum

szabadenergiajanak megvaltozasa a feliiletvaltozas eredményeképpen az alabbiak szerint:

Fs= Us—TSs (29)
dFs=dUs— TdSs— ST (30)
dUs = TdSs— PdVs + pgdng — TdA (31)

(29)-t beirva (28)-ba konstans hémérsékleten, térfogaton és feliileti boritottsagnal

n=-FRH (32)

[OA [

A Gibbs izoterma termodinamikailag korrekt, a gyakorlatban azonban szémos egyensulyi
izoterma ismert, melynek korrektsége a levezetéstdl fliggetleniil annak alapjan dontheto el,
hogy hogyan viselkedik az izoterma a zérus, illetve teljes boritottsdg kdzében (T6th Jozsef
utan). Zérus boritottsagnal a ATvAp hatéarértéknek, mig teljes boritottsagnal az izoterma

egyenlet alapjan szamithat6 szabadenergianak kell véges értéket felvenni. Ha valamelyik
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feltétel nem telesl az izotermaegyenletet szemi korrektnek, ha egyik sem teljesdl

inkorrektnek nevezzik.

A mérési adatok alapjan 0sszetartozé egyensulyi koncentracidkat, vagyis a w(p) vagy ha a
fajlagos felllet ismert a I'(p) vagy ©(p) fliggvényeket empirikus, félempirikus illetve elvi
Gton szarmaztatott egyenletekkel irhatjuk le. Az egyensilyi izoterméak a tapasztalat szerint
alakilag 6t tipusba sorolhatok (lasd 2. abra). A leird egyenletek formailag nagymértékben
fliggnek attél a koncentracié tartomanytdl, ahol azok érvényesek. Egy bonyolult
adszorpciés eljaras matematikai modellezésében a szamithatosag érdekében sokszor igen
komoly engedményeket tesziink a termodinamikai korrektség rovasara. Célszerii a vizsgalt
koncentracié tartomanyban a megfelelé pontossagot add, lehetd legegyszeriibb izoterma
egyenletet alkalmazni. Elképzelhetd hogy az V. tipusu izotermaval jellemezhetd
adszorpcids folyamatot olyan alacsony koncentracid tartomanyban vezetjik, hogy leirasara

az |. tipusnak megfeleld egyenlet is elegendd.

w w
// 1

0 a 0 a
w w

n v
0 a 0 a

w

\%
0 a
2. abra.

A fizikai adszorpci6s izotermak tipusai.
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2.2. Adszorpcios miiveletek

Az adszorpcios miivelet soran az adszorbenst 0sszehozzuk az adszorptivumot tartalmazo
fluid fazissal. Az adszorbens, mint azt lattuk, a fellletén megkoti az adszorptivumot. Az
adszorbens Kkimerllése utan a fazisokat elkulonitve az adszorptivum a fluid fazistol

elvélaszthato.

A modellezés szempontjabdl, amennyiben a megkdtott adszorptivumot az adszorbens
tdmegegységére vonatkoztatjuk, a folyamat ugy is felfoghatd, hogy az adszorpcié soran a
fluid fazisbol a fazisok makroszkopikusan észlelhet6 hatarfelliletén komponens megy at a
szilard fazisba. A szilard fazis rendszerint pdrusos struktlrat mutatd anyag, ezért a
belsejében 1évéd adszorpcids centrumok kevésbé hozzaférhetéek, mint a felszinhez
kozeliek, igy az adszorptivum koncentrécidja a szilard fazisban nem egyenletes. A
koncentracié kiegyenlitésérél a diffuzio gondoskodik. A diffuzi6 mechanizmusa az
alkalmazott koncentraci6 és nyomas viszonytdl, illetve az adszorbens fizikai
tulajdonsagaitdl fiigg. A pérusban 1évé fluidum és az adszorbens fellileti, Gibbs féle
hatarrétege, egyszdéval az adszorbens kdzoétt az egyensily iranyaba mutaté folyamatok
jatszodnak le, igy mind a porusban, mind az adszorbens hatarrétegében koncentracio
gradiens épul ki. A két koncentracié gradiens két fajta diffizios aramot indit el, melyeket
az egyensuly elérésére iranyuld torekvés kot dssze. A Gibbs féle feluleti rétegben zajlé
komponensvandorlast migracionak, mig a porusokban megnyilvanuld kiegyenlitodési
folyamatot molekularis, vagy ha a nyomasviszonyok olyanok, Knudsen diffziénak

nevezzuk.

Az elézdekben bemutatott finomsagu fizikai kép figyelembe vételére a diffiizios miiveletek
szamitasanal az esetek tobbségében nincs sziikség. A pdrusokban és a Gibbs féle rétegben
1évé adszorptivumot 6sszevonva egy q (gmol adszorptivum)/(kg adszorbens), vagy ezzel
egyenértékli koncentracioval az adszorbenshez rendelik hozza, és az adszorbensben
lejatszodd difflzios folyamatokat ha sziikséges, egy effektiv diffuzidval helyettesitik,

melynek hajtéereje a szilard fazisu koncentraciogradiens.
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Az adszorpcios miveletet megvalosithatjuk iist alak berendezésben (autoklavban), ahol az
adszorbens szemcséket keveréssel lebegésben tartjuk, vagy oszlopszerii berendezésben,
melyben az adszorbens nyugvo réteget képez. Ustben a fluid fazis koncentracioja az egész
berendezésben azonos, mig oszlopban a fluid fazist atsziirik az adszorbens rétegen, igy

annak koncentracidja pontrdl pontra valtozik.

2.2.1. Adszorpci6 Ustben

Ustben adszorpcidt alapvetden harom féle képen valosithatnak meg.

1. Derités

A tokéletesen kevert Ustbe bejuttatjadk a friss adszorbenst, majd az egyensulyi allapot
megkozelitése utan a fazisokat elvalasztjak egymastol. Ebben az esetben minden egyes
adszorbens részecske azonos, de iddben valtozd koncentracioji gaz vagy folyadék
koncentracioju fluidummal van korilvéve. A véges kapacitasu homogén koncentréacioju
fluid fazisbol atadodott adszorptivum diffGziéval hatol az ugyancsak véges kapacitasu

adszorbens fazisha. A folyamatot az alabbi differencialegyenlet rendszerrel jellemezhetjuk.

dc 0q
V—=-4R*mD_, —(R,t 33
ot i ar( ) (33)
a(ar) _ 9°(rq)
=D 34
ot " or? (34)

Ahol q a szilard fazisi koncentracié gmol/m3-ben, V a fluid fazis térfogata m3-ben, ¢ az
adszorptivum koncentracidja gmol/m>-ben, R az adszorbens részecske atméréje m-ben, De
a diffaziés allandé m?h-ban, t az id6, r pedig a hely koordinita. Az egyenlethez a

kovetkez6 perem €s kezdeti feltételek tartoznak.

‘3? (©.1)=0 a(R,t)="f[c(t)] (35)
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q(r.0)=4, c(0)=c, (36)

Ahol qo az adszorbens, ¢y a fluid fazis eredeti adszorptivum tartalma, q = f[c] az
adszorpciés folyamatra jellemz6d adszorpcids egyensulyt leird egyenlet. Az itt folirt
egyenletrendszer lényegében a belsé diffizidval kontrolalt adszorpcios mivelet leird
egyenlet rendszere, ahol a belsé diffuzio poérus diffuzio, vagy feliileti migracié
kovetkezménye, és a porusokban 1évd fluidum és ugyanott a szilard fézis kvazi

egyensllyban van egymassal.

Linearis adszorpcios izoterma egyenlet esetén, vagy ami ezzel egyenértékli a kis
koncentraciok tartomanyaban ismeretes ezen egyenletrendszer analitikus megoldasa is, mi-

szerint a fluid fazisu c(t) koncentracid idébeli valtozasa a kovetkezo:

1
a2 (wR) +9Ka +9K?

3
C(t)z 3VC0 +4R T,

37
3V +4R°TK (37)

+6a(Kc, - qo)i g Darcit

Itt a a szilard és fluid fazis térfogataranya, wiR a (39) egyenlet megfelelé gydke, K pedig a

g = Kc izoterma egyenlet meredeksége.

4R
a=— (38)
_ 3KwR
tg(wu R)_ (X((x), R)z +3K (39)

A (37) egyenlet analizisével megallapithatd, hogy egy deritési folyamathoz mennyi

adszorbensre, és mennyi idore van sziikség.

2. Adszorbens preparélas, vagy regeneralas

Ha egy o kezdeti koncentracioju adszorbenst egy nagy térfogatd lstben folyamatosan co

=z
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koncentracionak megfeleld egyensulyi koncentraciora allnak be. Az adszorbens belsejében
az adszorptivum mozgéasa az el6zéekhez hasonldan diffizios mechanizmussal zajlik, a
fluidum koncentracidja azonban nemcsak a hely szerint, hanem idében is gyakorlatilag
allando. A folyamat id6beliségét a belsd diffuzids gatlas szabja meg. A telitési vagy

regeneraldsi folyamatot leird differencidlegyenlet a kovetkezo:

o) _p, 0°(ra) (40)
ot «or?

Az egyenlethez az alabbi perem és kezdeti feltételek tartoznak
0
a—?(o,t)= 0 qR.)=f(c,) (41)

q(r.0)=q, (42)

A miiveletet leir6 differencidlegyenlet megoldéasa az adszorbens ¢ atlagkoncentracidjara a

kovetkezoképen alakul.

2

q=f (co)-fz[f (co)-qo]CZI(—lzéfDe"th (44)

Az egyenlet analizisével megallapithatjuk a telitési vagy kimosasi miivelet iddsziikségletét.

3. Teljesen kevert tank, folyamatos lizem

Ez esetben egy V m? térfogatl teljesen kevert (istbe B m%h térfogatarammal folyamatosan

viszik be a co gmol/m® adszorptivum koncentraci6ju fluidumot és S m/h térfogatarammal

=z

térfogataram elemeinek tartézkodasi id6 stiriségfliggvénye
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_B+S
ol)=" e V' (45)

Stacionarius &llapotban, az Ustben cg koncentracio alakul ki. A kilépd aramban 1évo
adszorbens szemcsék kozll Sig(t) dt térfogat kora esik a (t,t+dt) id6intervallumba. A t koru

szemcsék atlagkoncentracidja belso diffiizios gatlas esetén

2

a=1e.)- 2C)-aly oo e

Ez a koncentraci6 a kilépd adszorbens aramban g(t)[dt sullyal van jelen. A kilépd aram

valamennyi koru térfogatelemét dsszegezve az S-re atlagolt koncentrécio

2 B+S
7_‘”7 3 _ 6 B B+S°° °°1 'E)eﬂkR2+T
0= farma=r(e.)- 2 le.)-ail® 55 [ e « @
~ 6 1B+S& 1 RV
=flea ) 1Iflea)- o 4
Q f(CS[) 2 [f (CS[) 0ol v Zlkz VDeﬁszfz +R2(B+S) ( 8)
Ezen atlagkoncentracidval szamolva a tartaly komponensmérlege
5@_(:10): B(Co _Csl)
0 6 <B+S RV O
fcy)- - =B(c, - 4
S[ (Cst) QO]% 2 Z VK2 VDeff K212 +R2(B+S)E (Co Cst) ( 9)

Ahol f(c) a megfeleld izoterma egyenlet. A (49) egyenlet alapjan megallapithatd, hogy

adott tartaly térfogatban milyen fluidum koncentracio érhet6 el.



24

2.2.2. Adszorpci6 oszlopban

Egy adszorbenssel toltott oszlopon atvezetve egy adszorptivumot is tartalmazo fluidumot a
belépés pillanatatdl a kilépésig komponens csere jatszodik le a szilardfazisd adszorbens és
a fluidum kozoétt. Tébb adszorptivum komponens esetén a kialakuld koncentraciomenetek
a komponensek adszorpcids izotermditol, a belépd aram koncentraciojanak iddbeli
alakulasatol és a komponens csere sebességét befolyasold tényezoktdl fliggnek. Egy
oszlopban lejatsz6dd folyamatok preciz leirasdban el kell szémolni a fluid fazisd
koncentraciovaltozasokkal, az adszorbens részecskék makro pérusaiban lezajlé transzport
folyamatokkal és az adszorbensen halmoz6dd komponens mennyiségekkel. Ezen
mennyiségek valtozasait a kovetkez6 differencidlegyenletek segitségével fogalmazhatjuk

meg.

differencialegyenlettel jellemezheto,

"9z2 0z R ot

0°c_o(ve) _3(-¢),, _oc (50)

ahol N; az R sugaru, gombnek tekintett adszorbens részecske felszinén észlelhetd
atadasi komponens aramstrtség, Dy a fluid fazisbeli axialis diffzioés allandd, v a
fluidum aramléasi sebessége, € pedig az agy Ures-térfogati hanyadosa. A vc komponens
adramsiraség kifejezést azért kell egyiitt kezelni, mert gazfazisbdl torténd adszorpcio
esetén, az adszorpciés zonaban az adszorbealddd komponensek a gaz aramlasi
sebességének megvaltozasat eredményezik. Gaz adszorpcid esetén, ha sziikséges, a

valtozo v kezelésére Schay G. munkassaga nyoman kiilén megfontolasokat kell tenni.
Ni =B [c - cp(R)] (51)

2. A makro porusok c, adszorptivum koncentracidjara az alabbi differencialegyenletet

lehet felirni,
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’c 26c
D P+ 52
of ar2 roor EL & at (52)

ahol D« a porusokban észlelheto diffuzid diffuzids koefficiense, és €, az adszorbens

részecske belsd porozitasa.

3. Az adszorbensre vonatkoz6 komponens mérleg
- q
N p _(*)po[f (C ) CI] : (53)

Az egyenletoen ¢ az adszorptivum koncentracidja az adszorbensen, B, a

komponensatadasi tényezd, wy az adszorbens belsd fajlagos feliilete.

Persze nem mindig sziikséges ilyen részletekbe mend modell felallitdsa. Ha az egyensuly
irdnyaba mutatd folyamatok elég gyorsak, akkor a fluid és adszorbens fazis kozotti
egyensuly feltételezésével minddssze egy differencidlegyenlet is elég a folyamat

jellemzésére, és ez a kovetkezo:

o’c avc ac
Died 2 -e2 - 1-g) 70 -

— 54
0z° t ot (4)
A q adszorptivum koncentracié ez esetben mindig g = f(c) egyensulyban van a c¢ fluid

fazist koncentracidval.

Ha jelentds kinetikai gatlas 1ép fel a komponensatmenettel szemben, akkor egy
egyszertsitett kétfazisu modell kiépitése a célszerii. Ez Iényegében egy fluid fazisra és egy
az adszorbens fazisra vonatkozd mérlegegyenletbdl all 6ssze. A két egyenlet kozotti

kapcsolatot a fazisok kdzétti komponensatmenet biztositja.

" 922 0z

p, e 20 el )] ©
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;B[f (©)-q)= 9q (56)

Az egyenletben q az adszorbens atlagkoncentraciojat jeloli, f(c) ismét az adszorpcids

egyensulyt leiro fliggvény.

Hogy mikor melyik modell haszndalata a célszerti, a részfolyamatok sebességének viszonya,

illetve a szamitassal szemben tdmasztott pontossagi kévetelmények dontik el.

Oszlopban vezetett adszorpciondl alapvetden két esetet kiilonboztetiink meg. Az egyik, az
analitikai céllal vezetett adszorpcid (kromatografia), amikor az adszorbenssel toltott
oszlopon egy inert fluidum aramot vezetink at, és ebbe injektaljuk be az adszorptivumokat
tartalmazé fluidum mintat. Az oszlop ilyenkor szeparélja az adszorptivum komponenseket
egymastol, ezért az oszlop kimenetén mérve a kilép6 fluidum adszorptivum koncentracioit
az eredeti minta 0sszetétele meghatarozhatd. A masik esetben tisztitasi vagy szeparalasi
céllal adjuk ol az adszorpcids oszlopra az ipari mennyiségii folyadék vagy gz elegyet és

addig hasznaljuk az adszorbert, amig az ki nem mertdil.

1. Kromatogréfia

A kromatografia analitikai célokat szolgalé adszorpciés eljaras. Kivitelét tekintve

beszélhetiink frontalis vagy el6hivo, elcios €s kiszoritdsos kromatografiarol.

A frontalis kromatografianal a kisérlet megkezdésekor a kromatografias oszlopon az
analizis szempontjabol kozombos gaz aramlik at. Meghatarozott iddpillanatban atvaltunk
egy masik, ugyancsak allandé gazaramra, amely a vizsgalt gazelegyet tartalmazza,
mégpedig kisebb nagyobb mértékben higitva a k6zémbds gazzal, amely a tovabbiakban a

vivogdz szerepét tolti be. Az adszorpcié miatt az egyes komponensek kiilonbdzo
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sebességgel haladnak az oszlopban, ezért az oszlopbol tavozd gazt elemezve a vizsgalt

gazelegy koncentracioi fokozatosan meghatarozhatok.

A kiszoritasos kromatografiaban az oszlopon ataramlo vivogazba dugdszeriien beadjak az
elemezni kivant mintat, majd a vivégazt olyan komponenssel dusitjak, mely a minta
valamennyi 0sszetevdjénél jobban adszorbealodik. A vivogazban 1€vo leszoritd6 komponens
feltolti az adszorpcids kapacitést, leszoritja a mintakomponenseket az adszorbensrol. A

mintakomponensek 1épcsds koncentracio fliggvény szerint hagyjak el az oszlopot.

Az analitikai alkalmazasok z6mét az ellciés kromatografia teszi ki. Ebben az eljarasban is
elészor kozombos vivogaz aramlik at az oszlopon, de adott idodpillanatban a vizsgalt
gazelegy csak egy kis mintdjat bocsatjuk be az oszlopba, és a tiszta vivégaz meg nem
szakitott arama ezt a mintat obliti tovabb az oszlop mentén. A kis mintamennyiség miatt
még gazfazisu adszorpcié esetén sem kell sebességvaltozassal szamolni. Ugyanakkor a
minta felhiguldsa miatti kis koncentraciok kdvetkeztében, a szilard és gz fazis kozotti

egyensulyi viszonyok lineéris adszorpcids izotermaval is kielégitd pontossaggal irhatok le.

Ha az oszlopbol a z = L helyen kilép6 gaz c(L.,t) adszorptivum koncentraciojat cyi-vel
jeloljuk, akkor a fliggvény analizisét a fliggvény momentumainak elemzésével is

elvégezhetjik. A fliggvény n-edik momentuma definicié szerint
m, =Itncki (t)ot (57)
0
Az n-edik abszolut momentum

fteq (t)at
mn =0

M, = (58)

™ fe,

Az n-edik centralis momentum
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*

Hn

[ty e, O

(59)

[ Ot

Ezeket a momentumokat a cy; fliggvény Laplace transzformaltjabol kdzvetlendl is elé lehet
allitani. Az (50, 52, 53) egyenletek id6 szerinti Laplace transzformaltjai k&zonséges
differencial egyenletekké degradalodnak, melyek az eldzdekben vézolt egyszertsitésekkel
(v = konstans q = Kc) Dirac &(t) gerjesztd fiiggvény mellett — s6t négyszog hullam bemenet
esetén is — megoldhatok. A L[c(L)] ismeretében egyetlen adszorptivum esetén a

négyszoghullam bemenetre adott valaszfliggvény els6 momentuma

L 1-¢ [1 T
= A+T (g, +K ). 60
ul VB € (ep )P 2 ( )

Ahol K az egyensulyi izoterma kezdeti meredeksége, T pedig a beadott négyszég hullam

hossza. A vélasz fliggvény masodik centralis momentuma a kdvetkezo:

. 2L T°
==, +6 +0,+0_ )+ — 61
H, v (ax f T Oy w) 12 (61)

Ahol

5, =D;B+H(sp+|<)g (62)

5 =1;‘°'3F;(sp +KY (63)
5,= 8 R ik} (64)
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e (65)

Egy nem adszorbeal6dd komponens esetén az elsé momentum
L 1-¢ Ot
p*l,inert - B‘-'-s P 2 (66)
A két elsérendi momentum kiilonbsége
Ay, =—=—K. (67)

Lathat6, hogy az els6 abszolit momentumok kiilonbsége csupan az adszorpcios
izotermaegyenlet induld meredekségétdl, az oszlophossztdl, az aramlasi sebességtol és az
adszorbens agy porozitds adataitol fligg, vagyis a miikodési paraméterek és az oszlop
adatok ismeretében a kromatografia nemcsak a mennyiségi viszonyok, hanem az

adszorpcids tulajdonsagok meghatarozasara is alkalmas.

A masodik centralis momentum elemzésével lehetdség nyilik az adszorpcios hullam

szétteriiléséért felelds hatasok kiértékelésére.

2. Ipari adszorpcios eljarasok

Adszorberrel toltott oszlopokat az iparban vagy néhany komponenst 0sszemérhetd
koncentracioban tartalmaz6 elegyek elvalasztasara, vagy sok komponenst Kkis
koncentracioban tartalmazd elegyek feldolgozasara hasznalnak. A folyamatot leird
egyenletek lényegében azonosak a kromatografianal bemutatott egyenletekkel, azzal a
kildnbséggel, hogy az oszlop bemenetén megjelend jel nem Dirac impulzus vagy négyszog
hulldm, hanem egy lépcsd fliggvény. Az oszlopban a koncentracio egyetlen adszorptivum

esetén a belépd koncentraciotdl a kilépd koncentracidig fokozatosan csokken. A kialakulo
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koncentracio profilt koncentracié frontnak nevezziik. A koncentracié front alakja
elsdsorban az adszorpcids izoterma alakjatol fligg. A kimeneten megjelend valasz
fuggvényt attorési gorbének nevezzik. Linearis izoterma egyenlet és egyetlen komponens
adszorpcidja esetén az (50, 52, 53) egyenletek 1épcsé fliggvény bemeneti koncentracioval
megoldhatok. Nagy koncentracioval jelenlévd komponens adszorpcids izoterméaja azonban
szinte biztos, hogy nem irhatd le a Henry térvény segitségével, ezért az emlitett egyenletek
analitikus megoldasa szinte reménytelenné valik. Az adszorpcids front alakjardl és annak
haladasi sebességérél azonban néhany egyszeriisitd feltételezés utan mégis mondhatunk

valamit.

Tegyiik fel eldszor is, hogy a fluid fazis kapacitasa elenyészé a szilard fazis kapacitasahoz
képest, vagy azt, hogy a fluid fazis minden iddpillanatban egyensiulyban van az
adszorbenssel, tovabba azt is, hogy az axialis diffGzi6 a konvektiv aramhoz képest
elhanyagolhatd. Ez esetben, az oszlopban lejatszodé folyamat az alabbi parcialis

differencialegyenlettel jellemezheto:
ac aq
v—+({1-¢g)—= 68
5, Te) s (68)

Egy konstans ¢ koncentracioju hely u utazasi sebessége az oszlopban ilyenkor

_dz _ Vv dc

u=— =
dt |c=Konst 1-¢ dq\c:KonS

(69)

A g-t és c-t az atviteli folyamatok sebessége és az egyensulyi 6sszefliggés koti Ossze.
Egyenstlyi adszorpcio esetén q = f(c). Kedvezd adszorpcids izotermaval, példaul Langmuir
izotermaval rendelkez6 rendszer esetén az izoterma alakja konkav, igy mennél nagyobb a
koncentréacio, annal kisebb az izoterma dg/dc meredeksége. Ezt a tényt beépitve a (69)
egyenletbe, a nagyobb koncentracidju helyek utazasi sebessége az oszlopban nagyobb, mint
a kis koncentracioju helyeké. Ez a jelenség az adszorpciés front élesedését, illetve a
1épcsofiiggvény alakjanak megmaradasat jelentené. Ugyanakkor a diffizid és a fazisok

kozotti komponensatmenettel szemben tandsitott ellenéllasok a koncentrécio szétteruilését
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eredményezik. A két ellentétes folyamat eredményeként konstans alakd adszorpcids front
alakul ki, melynek minden pontja, ha egyszer a front mar kialakult, allandé sebességgel

mozog.

Tobbkomponensii adszorpcio esetén az attorési gorbe viselkedése bonyolultabb, mint amit
egyetlen adszorptivum jelenlétében tapasztaltunk. Ha két vagy tébb komponens
elvalasztasa a cél, akkor a lehetd legprecizebben kell leirni a komponensek viselkedését az
oszlopban. Ha viszont sokkomponensli ismeretlen szennyezést tartalmazo fluidum

tisztitasa a cél, akkor az oszlop globalis viselkedésének a megjdsléasa a feladat.

Kezdeti allagpot

Fejlods zona

I zona 11 z6na 11 z6na IV z6na  Kifejlett zona

Egyensulyi modell

[3S)

Relativ koncentracio: 2 jol k6tddd komponens, 1 kevésbé kotddd komponens

Oszlop hossz
3. &bra
A koncentracié frontok fejlodése két

komponens adszorpcioja esetén.

Vizsgaljuk eloszor azt az esetet, amikor egy fluid fazis két fajta adszorbtivum molekulat

tartalmaz. A gyengébben kot6do 1. komponens eleve gyorsabban utazik végig az oszlopon,
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mint a masik, igy frontja megel6zi a jobban ko6t6dd 2. komponens frontjat. A késébb
érkez6, de erésebben kotddd komponens viszont leszoritja az adszorbensrol a gyengébben
kotédot, igy annak koncentracidja a fluid fazisban megnd. A koncentracid profilok
fejlodését a 3. abran kovethetjilk nyomon. Kifejlett adszorpciés front esetén az oszlopban
négy zonat kuldnboztetink meg. Az I. zénaban a fluid fazis koncentracidja megegyezik a
fluidum belép6 koncentraciojaval, a szilard fazis telitett a két komponensre nézve ezért az
adszorbens koncentraciokat az egyensulyi 0sszefliggés hatarozza meg. Mivel az adszorbens
a 2. komponensbdl tobbet kit meg, az 1. komponens a fluid fazisban relativ talstlyba jut,
és elore siet a 2. komponenshez képest. Az eldére sietdé 1. komponensbdl megkotott
mennyiségbOl a 2. komponens egy részt visszaszorit a fluid fazisba, mialtal annak
koncentréacidja a Il. zonaban tovabb ndvekszik. A 1ll. zonaban méar csak a gyengébben

kotédé komponens jut el, melynek adszorpcids frontja a IV. zonéban cseng le.

Egyenstlyi modell alapjan megbecsiilhetd az az oszlop hossz, amelyben a gyengébben
kotédd komponens viszonylag tisztan fordul el6. Tegyiik fel, hogy az egyensuly jol leirhatd

a Markham-Benton egyenlettel. Ekkor

K.
q10 — ql 1~10 (70)
1+ chlo + KZCZO

K,C
U = A2 020 - (71)
1+ K€y + K Cy

Az oszlop elején a cio as Cyo betaplalasi koncentraciok g0 és gz adszorbens-
koncentraciokat alakitanak ki, mig az oszlop azon részében, ahol gyakorlatilag csak
kevésbé kotddd komponens van, cie illetve gie koncentraciok figyelhetok meg. A
helyettesitési zonaban adott dV térfogatl adszorbensen megkotott 2. komponens magaval

egyenértékii 1. komponenst szabadit fel.

dVIg2o = dVI[{1e — q10) (72)

Ugyanakkor, ez dt id6 alatt a fluid fazisban egy koncentraciovaltozast hoz létre.
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dv mzo = Bldt mzo (73)
dV[{Oe — 010) = BIAT(C1e — C10) (74)
Osztva egymassal e két egyenletet a kdvetkez6 Osszefliggéshez jutunk:

Q20 _ %e “Gio (75)

Ha figyelembe vesszilk a cye €5 (1 kdzott fennall6 egyensulyi 6sszefiiggeést,

— qloo K 1cle (76)

qle - 1+ chle

akkor a két ismeretlen cie, Qie koncentracié meghatarozasara két egyenlet (75,76) all
rendelkezésre. A koncentraciok ismeretében az oszlop adott szegmenseinek hossza a
komponens mérlegekb6l hatdrozhaté meg. Az oszlopban 1évé fluid fazis kapacitdsanak

elhanyagolédsaval T miikodési id6 utan a komponensmérlegek
B@Gy = L1[Al-€)[G2o, (77)
B@lG,g = Li[Al—€)[G10 + Lo AL—€)[G1e . (78)

Itt L, az 1. komponenssel kitoltott oszlop hossz, L; annak az oszloprésznek a hossza,
melyben mindkét komponens az eredeti koncentracidjaval van egyensulyban az
adszorbenssel. € az adszorbens agy iires térfogati tényezdje, ,,A” pedig az oszlop
keresztmetszet. Ha 11-¢l jelolom azt az id6t, amikor a két L, L, szegmens hossza eléri az L
oszlophosszt, és t-vel amikor L, Kibujik az oszlopbol, akkor 11 és T, kozotti iddben tiszta

1. komponenst gyijthetiink az oszlop kimenetén.



Ha sokkomponensii adszorbealhatdé komponenssel szennyezett fluidum tisztitdsa a cél,
akkor a totalszennyezésre vonatkozé attorési id6 megallapitasa a feladat. Lényegében
kiszoritasos kromatografia zajlik. Az erdsebben kotodd komponensek maguk elétt toljak a
gyengébben kotodd komponenseket. Az attorési idot a leggyengébben kotdédd komponens
még elviselhetd kilépd koncentracidja hatarozza meg. A leggyengébben kotédd komponens
attorési koncentraciojanak utazasi sebességébol hatarozhaté meg az oszlop miikddési ideje.
Ha barmely komponens nagyobb sebességgel utazik, mint a leggyengébben ktddod, akkor

annak a sebessége lesz a meghatarozé a gyengébben ktddd komponensek utazasaban.

Természetesen léteznek mas elven mikodd adszorpcids eljarasok is, mint példaul a
nyomadslengetéses adszorpcio, amely dinamikusan feltoltott és leiiritett adszorberekbdl
kilépd gazaram koncentraciovaltozasan alapul. Komponenseket szét lehet valasztani az
adszorpcids kinetikdban mutatkozo kiilonbségek alapjan is. Molekulaszitaként miik6do
adszorbensekkel fluidumok finom tisztitasa is lehetévé vélik. Mi ezen eljarasokat itt azért
nem ismertetjiik, mert a bemutatni kivant matematikai apparatusrol csupan azt szeretnénk
megmutatni, hogy alkalmas az adszorpcids miiveletek modellezésére, és 6sszehasonlitasra

az eddig bemutatott eljarasok ismerete is elégséges.

2.3. A Markov folyamatok elmélete

Foglalkozzunk most egy kicsit a matematikai apparatussal. Az adszorpcids miiveletek
matematikai leirasa szinte mindig determinisztikus modellekkel torténik. Mi az adszorpciét
egy Véletlen folyamatnak fogjuk fel. Matematikai szempontbdl egy véletlen sztochasztikus
folyamatban valamely & valtozo az id6é fuggvénye, és a fliggetlen valtozdo minden szdba
j6hetd értékére az &(t)-nek kiilonb6zé lehetséges értékei vannak. A sztochasztikus folyamat
minden realizacioja egy x(t) mintafliggvényt eredményez, vagyis a lehetséges minta-
fiiggvényekbol kivalaszt egyet. Mas értelmezes szerint az &(t) sztochasztikus folyamat, ha
minden lehetséges t idoponthoz tartozik egy &(t) valdszinliségi valtozd, €s az idépontok
barmely véges [t to, ...t] halmaza esetén adott az &(ty), &(t2), ... valosziniliségi valtozok

egylttes eloszlasa. A sztochasztikus folyamatot diszkrétnek vagy folytonosnak nevezik
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attol fliggden, hogy az &(t1), &(t2), ... valosziniiségi valtozok egyiittes eloszlasa diszkrét
vagy folytonos a t értékek minden lehetséges, [t1, t», ...t)] véges halmazara. Egy
sztochasztikus folyamatra 4ltaldban tobb valtozo egyiittes idébeli eloszlasa jellemzd. Az

ilyen folyamatok tobbdimenzids sztochasztikus folyamatok.

Egy sztochasztikus folyamatot &(t;) eloszlasa, valamint a [E(t1), &(t2)], [E(t), &(t2), &(t3)],
. egylttes eloszlasai hataroznak meg. Ezeket az eloszlasokat elsdrendii, masodrendd,
harmadrendi stb. eloszlasoknak nevezik. Ezen eloszlasokat definicioszerlien a

kovetkezoképen irhatjuk fel.
R Gt )=plE )< x,] (79
F, (X0t %5, t,) = PlEQ, )< x,, &, )< %, ] (80)
F (Xt X0t X5, 1) = PIE G, )< X, E(t, ) < X, E(ts) < X5 (81)

Diszkrét illetdleg folytonos sztochasztikus folyamatra a megfelel6 p; valdszintiségek illetve

fi stiriség fliggvények a kovetkezok:

pa(xats) = PLE(tY) = xa] ft)= o0, (82)

1

0°F,

pz(letlixz’tz)zp[&(tl):xlva(tz)z)(Z] f2(x1’tl;xz’t2)=6x ox,
10X;

(83)

Az elozéekben definialt eloszlasfliggvény sorozatok mindegyike részletesebben irja le a
sztochasztikus folyamatot, mint az el6z6 tagok, hiszen az F, n-ed rendi

eloszlasfliggvénynek a megel6z6 fliggvények peremeloszlas fliggvényei.

Egy sztochasztikus folyamatot jellemz6 feltételes valoszintiségeket az n-ed rendii eloszlas

fliggvények segitségével a kovetkezOképpen 4llithatjuk eld.
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p(xmﬂ’tmﬂi---ixmtnxl,tl;...xm,tm):g" (84)
f(Xm+1atm+1;-..;xn1tn‘X1,t1;...Xm,tm): ::n (85)

m

A sztochasztikus folyamatot stacionariusnak nevezzik, ha a folyamathoz tartoz6 eloszlasok
egyike sem valtozik meg, ha a t helyébe t + ty 1ép. Ez azt jelenti, hogy az n-ed rend

eloszlasok csupan n — 1 szamu
T1=t—t, To=t3—-1ty, ..., Tpa=th—t1
kiilonbségtol fliggnek.
Egy sztochasztikus folyamat n-ed rendi sztochasztikus folyamat, ha a folyamatot az F,, n-

ed rendil eloszlas fliggvények egyértelmiilen meghatarozzak, de a z n-1-ed rendiek még

nem.

Tisztan sztochasztikus folyamatrdl akkor beszéliink, amikor az &(t1), &(t2), ... valosziniiségi
valtozok barmely véges ti, to, ... halmazra teljesen fiiggetlenek. A tisztan sztochasztikus
folyamat leirdsara elég az Fi(xa,t1) eloszlas, vagy fi(xy,t1) striiség fliggvény ismerete, ha
folytonos, vagy a pi(xi,t;) valoszinliségi fliggvény ismerete, ha diszkrét folyamatr6l van

sz0. llyen folyamatot képez példaul a pénzfeldobasok sorozata is.

Egy sztochasztikus folyamatot Markov folyamatnak nevezzik, ha a t; < t; <tz < ... t,

minden véges halmazara igaz, hogy
p(xn,tn\xl,tl;xz,tz;...;xn_l,tn_l)z p(xn,tn\xn_l,tn_l) , (86)

ha diszkrét, vagy
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f (Xn’tn‘Xl’tl;X21t2;"';xn—l’tn—l):f(Xn’tn‘xn—litn—l) ! (87)

ha folytonos folyamatrdl van sz6. Tehat, ha &(tn.1)) = Xn1 ismert, akkor a megel6z6
idopontokra vonatkozd fliggvényértékek ismerete &(t,) szempontjabol semmiféle (j
informaciét nem jelent. Egy Markov folyamat egyértelmiien megadhaté a masodrendii

eloszlasokkal, vagy az elsérendii eloszlassal és a
p(xz,tz\xl,tl), vagy f(xz,tz\xl,tl) (88)

feltételes valdszinliségekkel, az ugynevezett atmenet valdszinlségekkel. A feladatok
jelentos részében a (89) Chapman-Kolmogorov egyenlet segitségével a (88) egyenletben
megadott fliggvényeket kell meghatérozni a t; idépontban megadott kezdeti érték és az

atmenet valoszintiségek ismeretében.

x,t,) t <ts<t, (89)

x,t)px,t

p(X21t2‘X11t1): Z}p(xwtz
x(t

x, ) (x,t

X, t)dx t<tst, (90)

f(XZ’IZ‘Xl’tl): If (XZ’tZ

A Markov folyamatok elméletének részletesebb kifejtését az adszorpcid, mint Markov

folyamat targyalasanal adjuk meg.
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3. AZ ADSZORPCIO STATISZTIKAI MODELLEZESE

Az adszorpcids miveleteket nem csak a megmaradasi tételek megfogalmazasaval, hanem a
statisztikus termodinamika szemlélete alapjan is jellemezhetjlk. llyenkor egyenleteinket
nem anyagmennyiségekre, hanem valdszintiségekre, illetve azok megvaltozasaira irjuk fel.
Ezek a valdsziniiségek a molekuldk helyzetére, illetve a fazisvaltas esélyeire vonatkoznak.
Az egyedi valoszinliségek ismeretében a molekuldk fazisok kozotti megoszlasanak
valosziniisége, sot az eloszlasok varhatd értéke is kiszdmithatd. Ez utobbi, pedig kozvetlen

kapcsolatban van a koncentracidval.

Jelen fejezetben eldszor egy tokéletesen kevert iistben lejatszodo adszorpcid matematikai
statisztikai modelljét épitjik ki, majd meghatarozzuk a modell paramétereit abban az
esetben, amikor a folyamat inditdsakor valamennyi adszorptivum molekula a fluid fazisban

van, a berendezés szakaszos miikddési, és az adszorpcids izoterma linedris.

A munka masodik részében egy inaktiv, por6zus adszorbenst tartalmazé all6agyas
adszorberben vizsgaljuk meg, hogy a sebesség és a porustérfogat milyen hatast gyakorol az
egyedi molekuldk mozgasara, és ez hogyan jelenik meg a tartézkodasi id6 eloszlasanak
stiriiség-fliggvényében. A gyakorlatilag mérhet6 tartozkodasi id6 eloszlast Gsszevetve az

elméletivel meghatarozhatok a kifejlesztett valosziniiségi modell paraméterei.

A munka harmadik részében a fenti egymastdl fuggetlentl nyert informéacidkat
felhasznalva attorési gorbét hatarozunk meg olyan esetben, amikor az adszorpcios izoterma
linearis, és a komponens egy toltott agyas adszorberben adszorbealddik. Ezt kovetden egy
nagyobb méretli adszorber szamitdsaval bemutatjuk a modell méretnovelési célra valo

alkalmazhat6sagat is.

Tekintve, hogy nagyobb koncentraciok esetén az adszorpcids izoterma mar nem tekinthetd
linearisnak, matematikai modelliinket tovabbfejlesztjik olyan esetek leirasara, amikor az
adszorbealandé komponens adszorpcios egyensulya Langmuir izotermaval még kielégitd

pontossaggal leirhato.
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A kifgjlesztett modellek viszonylag kevés paramétert tartalmaznak, mégis rugalmasak, és
igy a szamitott és mért gorbék nagyfoku illeszkedését teszik lehetové. A modszer
eredményességét az is alatamasztja, hogy egy adott paraméter egyittes megvaltozott
korulmények kozott is biztositja a mért és szamitott attérési gorbék kozotti jo egyezést.
Tovabbi eldny, hogy a modellek kénnyen bovithetdk egy-egy Uj elemmel, mert a tényleges

molekulamozgasok alapjan dolgoztuk ki azokat.

3.1. Az adszorpcid, mint Markov folyamat

Ha egy adszorbens fazist és egy homogén fluid fazist tartalmazd tokéletesen kevert Ustot

vizsgalunk, akkor egy egyedi molekula sorsat tekintve a kdvetkezd kérdéseket tehetjiik fel.

* Mi a valdszintisége annak, hogy egy a tn.1 idépontban a fluid fazisban 1évé molekulat a

t, idopontban is a fluid fazisban talaljuk?

* Mi a valoszinlisége, hogy a tn1 idopontban a szildrd fazisban lévé molekula a t,

iddpillanatban a fluid fazisban lesz fellelhet6?

Nyilvanvald, hogy a molekula a (tn1,tn) id6 intervallumban akar tobbszor is valthat fazist,
vagyis a feltételes valdszinliségek fliggnek az intervallum hosszatdl (az intervallum
rovidiilésével a fazisvaltas, kiilonGsen a tobbszori fazisvaltas valdszinlisége csokken), de
nem fiiggnek attdl, hogyan keriilt a molekula a tn.; idépillanatra éppen az adott fazisba,
vagy hanyszor valtott fazist a t,.; idépillanat elétt. Képletesen szélva: a molekula csak azt
»tudja”, hogy a tn.1 idopillanatban melyik fazisban van, de nem ,,emlékszik”, hogyan keriilt
oda. Viselkedését csupan a t,.; idépontbeli helyzet hatarozza meg, az elééletnek semmiféle

befolyasa nincs a molekula tovabbi sorsara vonatkozdlag.

Ilyen értelemben az adszorpcié egy diszkrét Markov folyamatot alkot.

Legyen a § valdszinliségi valtozo értéke 1, ha a molekula a fluid fazisban, és 2, ha a szilard

fazisban van egy adott t idopillanatban.
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ha a molekula a fluid fazisban van

e (91)
haamolekulaaszilard fazisban van

S|
E—E(t)—g2

A & valosziniiségi valtozd adott t idépontbeli realizacidjat X-el jeloljuk. & legyen a &

val6sziniiségi valtozo tj idopontbeli értéke:
i
S =¢&(t ) = 92
& =&(t) 5 (92)

Ennek egy adott realizacidjat Xi-vel jeldljiik. Annak valdsziniisége, hogy a thi
idopillanatban a folyadékfazisban levd molekula a t, iddpillanatban is a folyadékfazisban

lesz:
ple, =1,/ =1t,.) (93)
rovidebben irva:
plL,t, L t,:)vagy pu(t,, o) (94)

Analég modon, annak valdsziniisége, hogy a folyadék fazisban 1évé molekulat a t,

idépontban a szilardfazisban talaljuk:
p(zn = 2’ tn|En—l :l' tn—1)= p(2, tn|:L tn—l) = plZ (tn ’ tn—1) (95)

Természetesen p11 €S pi2 jelen esetben komplementer valdszinliségek, de ez nem lesz

mindig igy.

A t,1 iddpillanatban a szilardfazisban 1évé molekulara vonatkozo feltételes

valosziniiségeket a kdvetkezoképpen jeloljiik:
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p(an =:Ltn|En—l :27tn—1)= p(ltn|2'tn—l) = p21(tn’tn—l) (96)
illetve
p(En :27tn|£n—1 = 2’tn—1): p(27tn|27tn—1) = p22(tn’tn—1) (97)

A folyamat Markov jellegébol kovetkezik:

Pt L) =Pt Lt X o i Xy ty) (98)
P2t [Lt, ) =Pt [Lt, s X ot 5 Xputy) (99)
pLt, (2t ) =pLt, |2t i X ot i Xputy) (100)
P(2,t,[2,t, 1) = P2t (2.t i X o tyaie X y) (101)

Egy Markov folyamat egyértelmiilen megadhatd a p(Xn,tn|X,t) Ugynevezett atmenet

valdszinliségekkel €s az ugynevezett elsdrendii eloszlasokkal.
Az eddig elmondottakat vizsgaljuk egy kicsit részletesebben.

Legyen t=t, —At. Egy a t,; idSpillanatban a fluid fazisban 1évé molekula akkor talalhato
meg a t, idopillanatban a fluid fazisban, ha a t idOpontban is ott volt, és a At
iddintervallumban ott is marad, vagy akkor, ha a t idépontban a szilardfazisban lelhet6 fel,
dea At iddintervallumban fazist valt, és atmegy a folyadékfazisba. Mindez egyenlettel:

P t, 1L t,) =L t, L 1) DL tLt, )+ pLt,[2,t) 2. tLt, ). (102)
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A (95, 96, 97) egyenletekkel jellemzett valdszintiségek analog modon a kdvetkezoképpen

fejezhetok ki:
P2t Lt,,) =2t LY PELLLL,, )+ p2t, 2. B tLt,,) (103)
PLt,[2,t,,) =pLt, L L2, )+ pLt, 2t DR t2t,,) (104)
P2.t,[2,t,) = p2t, Lt L2t )+ pt,2t DR 2t,,) (105)

A At id6 alatt bekovetkezd fazisvaltasi valosziniiségrol altalaban elmondhatd, hogy At
novekedésével nd. Elég kis iddintervallum esetén a valdszinliség kifejezhet a figgvény
zérus idOpillanatbeli meredekségének és az idodintervallum hosszanak szorzataval. Ez a

kovetkezOképpen formuldzhato:
p(2.t,[Lt)= m,At +o(at) (106)

A komplementer valdszinliség, vagyis hogy a t iddpillanatban a fluid fazisban 1évo

molekula ott is marad a At idéintervallum alatt a (107) kifejezéssel irhato le:
pLt, [Lt)=1-m,,At +o(At) (107)

A szilardfazisbol a (108) egyenlettel jellemzett valoszintiséggel 1ép at egy molekula a fluid

fazisba:
plLt,[2.t)=m,At +o(at) (108)

A komplementer valdsziniiség, vagyis hogy a molekula a szilardfazisban marad a

kovetkez6 lesz:

p2.t,[2,t)=1-m,At + o(at) (109)
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A (107, 108) egyenleteket behelyettesitve a (102) egyenletbe:
plLt+AtLt, )= @-m,At +o(at)pLtLt,, )+ (m,at+o@t)bR Lt ,)  (110)
Atrendezve (110)-et:

plLt+ At\],tn_l)— o, t\ltn—l) = ~myplL I\Ltn_l)+ o(At) p(lt\ltn-l)

At (AY) (111)
rm,pR.tLt,, )+ o((AAt;) p(2.t1t,,)
A At zérushoz tartasaval o(At) masodrendiien tart zérushoz ezért
%p(], {Lt,,)=-m,pLtLlt, )+ m,p(2 tLt, ) (112)
vagy mas jeloléssel
% py(tt, )=—m,p,(t.t, )+ m,p,tt, ) (113)
A (103, 104, 105) egyenleteket a (113) egyenlet alakjara hozva kapjuk, hogy
Pa(tt)=mapy Lt ) maps (), (114)
P 0t)=Map 1 ) - Mo (6t,). (115)
P t02)= Myt ) = Mapin(1,) (116

dt



Mivel a folyamat iddinvarians, a vizsgalat tetszésszerinti idépontjat (t,-1) tekinthetjik
zérusnak is. A (113,...,116) egyenletek ekkor azt fejezik ki, hogy a pi;(t,th-1)
valosziniiségek hogyan valtoznak a vizsgalat kezdete ota. Ilyenkor t természetesen a
vizsgalat kezdetétol eltelt id6t méri, és a pj valdsziniiségekben a t,.1 = O Kiirasa el is

hagyhat6, vagyis:

Pij(t,0)=pij(t) (117)

Az egyenleteket matrixos formaba tdmorithetjik:

g Upy  PUO=0Py PpO00-mM, my, [
t [ O O Od _ i (118)
0Pz PO 0OPa P00 My m,, [0
illetve
d—P =PM (119)
dt

Ahol P az atmenet-valdszintiségek, M pedig az intenzitas fiiggvények matrixa.

Tekintve, hogy pjj(t) annak a valdszinliségét jelenti, hogy a vizsgalt molekula a (0,t)
iddintervallum alatt az i fazisbol a j fazisba kertil, a (118, vagy 119) differencialegyenlet
megoldasa a t = 0 idOpillanatban az egységmatrixszal azonos, hiszen a zérus hosszisagu

(0,0) idéintervallumban minden molekula a helyén marad:

p,;(0) =0, ha i Z ]
pi,j(o)zl ha =]

azaz roviden

P(0) = E (120)
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Ezek utan a megoldas

P=exp(Mt)=U exp ALV (121)
1
P e my o el O OO Ml (122)
2 M 4 om,He etemiH1 -a1f

A (121) egyenletben U az M matrix baloldali sajatvektoraibol, V pedig a jobboldali
sajatvektorokbdl képzett matrix. [A;Caz M matrix sajatértékeibol alkotott diagonalmatrixot

jeloli.

Példaul annak valoszintsége, hogy egy eredetileg a folyadékfazisban 1évé molekulat a t

idépontban még a folyadékfazisban talaljuk meg, a kovetkezo:

1 _
pll = (le + m12 e (my, +m21)t) (123)
m12 + m21

Ha pa(t)-vel jeldljiik annak a valoszinliségét, hogy egy molekula a folyadékfazisban és
p2(t)-vel, hogy a szilard fazisban van a t idépillanatban fliggetleniil att6l, hol volt a vizsgalt
kezdetekor, akkor ez a valosziniiség a p;; atmenet valdszinliségekkel és a p1(0) illetve p2(0)

valdszinliségekkel a kovetkezOképpen fejezheto ki:

P1(t)= p11(t) p2(0)+ p2u(t) p2(0) (124)

Hasonloképpen annak valdszinlisége, hogy egy molekula a szilardfazisban van a t

idépontban:

P2(t)= p12(t)-p2(0)+ p22(t) p2(0) (125)

A (124 és 125) egyenleteket vektorialisan is kifejezhetjlk:
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p'(H)=p"(0)P() (126)

Természetesen, ha a t = 0 idOpontban csak a fluid féazis tartalmazott adszorbealandd

molekulakat, akkor

p(0) =010

o (127)

és p(t) az atmenet-valoszintségekkel lesz egyenlo:

p(t) = Opy(t) O
3.0 02
Eddig egyedi molekuldkra vonatkozé valoszinliségeket hataroztunk meg, most
vizsgalatainkat kiterjesztjik egy No molekulat tartalmazd populaciora is. Jeloljuk vq
valdsziniiségi valtozoéval a molekuldk szamat a fluid fazisban, és legyen n; ennek egy
realizacidja. Ugyanakkor v, a molekula szam a szilardfazisban. Ennek realizéacidja

természetesen n,=Ng-n;.

Annak valdszintisége, hogy egy t id6pillanatban éppen n; molekula lesz a fluid fazisban,

binomialis eloszlast kovet:

p(v, =n )—,(NN—'_nl), n (1) I, ()™ (129)

A fluid fazisban fellelhetd molekulak szamanak varhato értéke ez esetben

No
M(v,) = Z n, p(v, =n;) =Ngp, = Ngpy,. (130)
n, =0
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Ezt az értéket osztva az Avogadro szammal és a fluidum térfogataval, a koncentraci
varhato értékét kapjuk. Ha a t = 0 iddpillanatban csak a fluid fazis tartalmazott

adszorbeélandd molekulakat:

N
M(c) = ﬁ P11 = CoP1y (131)

Ha a szilardfazis is tartalmazott aktiv molekulakat, akkor
M
M (C) = Cop11 + V QQp21 (132)

Itt co a fluid, qo a szilardfazis kezdeti koncentracidja.

3.2. Az aramlas és a molekulamozgasok kozotti kapcsolat egy iires csében

Eddig egy homogén kétfazisu zart rendszerben lejatszédd adszorpcid példajan mutattuk be,
hogyan lehet a valészinliségszamitas modszereit alkalmazni az adszorpcid soran lezajld

folyamatok, molekulamozgasok leirasara.

A probléma targyalasat azért kezdtiik az el6z6 fejezetben bemutatott viszonylag egyszer
példan, hogy az adszorpcio leirdsan til bemutassuk a matematikai modellezés valdszinliség
szamitasi modszereit, és hogy az olvasé egy példahoz kapcsolva ismerje meg a

tovabbiakban is alkalmazasra keriil6 matematikai apparatust.

Egy toltott adszorpcids oszlop miikodése folyaman egy molekula az eddig megismert
fazisvaltason kivil, a rendszer nyitott volta miatt, mas mozgasokban is részt vesz. Az
aramlas miatt a kozeg elére viszi az adszorptivumot, mig az aramlasban bekdvetkezd

egyenlotlenségek teritik azt az oszlop hossza mentén.
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Az &ramlas szerepének tisztazasara vizsgaljuk meg a molekulamozgéasokat egyelére toltet

nélkiili csdben.

Osszuk fel a V térfogatu csévet a hossz mentén n egyenld részre. A molekuldk az els6
kaszkadelemen keresztiil 1épnek be a rendszerbe, és az utolsé elemen keresztiil tdvoznak. A
benniinket érdekld molekuldk az F térfogatdrami kozegben eldére sodrodnak, de ez a
sodrodas a kozeg lokalis aramlasi sebességében észlelhetd kiillonbségek miatt nem
egyenletes, s6t a kozeg orvénylése bizonyos molekuldkat még abszolut értelemben is
visszafelé szallithat. [ly médon egy adott kaszkadelemben kiszemelt molekula egy késébbi
idopontban akarmelyik kaszkadelemben el6fordulhat. A tovabbiakban p;j(t,t)-val jel6ljik
azt a valosziniiséget, hogy egy a t idépontban az i-edik kaszkadelemben lévé molekula a t

idopontra a j-edik kaszk&delembe ker(l. Természetesen t nagyobb, mint t.

A molekulak mozgasa fliggetlen az eldélettdl, azt csak a pillanatnyi allapot befolyasolja.
Ilyen értelemben a molekuldk sodrodasat jellemzd valoszinlségi valtozok Markov

folyamatot alkotnak.

A molekuldk mozgasaval kapcsolatban feltételezziik, hogy kell6en rovid iddintervallumot
tekintve egy molekula legfeljebb egy kaszkadelemmel keriilhet elére vagy hatra, és ennek
valosziniisége aranyos az iddintervallum hosszéaval.

A molekula mozgasok szempontjabol az elsé és utolsd kaszkadelem Kkitiintetett helyzetben
van, hiszen az utolsé elemet elhagyd molekulak mar nem kertlhetnek vissza a rendszerbe,

és hasonloképpen az els6 elembe belépd molekula nem mozoghat visszafelé.

Ezek utén feltételezziik, hogy a (t,t+At) iddintervallumban bekdvetkezé molekulamozgasok

és azok valoszintisége a kovetkezo:

* Egy molekula az i-edik kaszkadelembdl az i+1-edikbe jut. Ennek valdszintisége

P (t+ ALY =(m, + my)At +o(At) i=1..,n-1 (133)
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 Egy molekula az utols6 kaszkadelembdl kilépve elhagyja a rendszert. Ennek

valészintlisége:

Ppne (T + AL 1) = m At + o(At) (134)

 Egy molekula az i-edik kaszkadelembdl visszafelé az i-1-edikbe jut. Ennek

valészintlisége:

pa(t+ALt) =m,At+0(At) i=2,.,n (135)

* Egy az i-edik kaszkadelemben lévé molekula a At id6 alatt ott is marad. Ennek

valészintlisége:

P, (t+At,t) =1-(m, +2m,)At +o(At) i=2,..,n-1 (136)

e Az elsé elemben 1évé molekula pj 1(t+At,t) valdszinliséggel a helyszinen marad:

Py, (t+At, 1) =1-(m, +m,)At + o(At) (137)

e Végiil az utolsé elemben 1évé molekuldk helyszinen maradasanak valdsziniisége

P, (t+At 1) =1-(m, +m,)At +o(At) (138)

A (133,...,138) Osszefliggések o(At) hibdja At zérushoz tartasaval masodrendiien kozelit a
nullahoz. Az egyes kaszkadelemek kapcsolatat és a molekulamozgasok intenzitasat az 4.
abran mutatjuk be. A molekulak visszafelé m; intenzitassal mozognak, mig az eléremozgas

intenzitasat egy 6sszeggel (m;+m,) jellemezzik.

Ez utébbiban azért kezeltlik killon a visszadramlas intenzitasat, mert az érvények nemcsak

hatra, hanem ugyanolyan intenzitassal elére is széllitjdk az anyagot, igy a teljes
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eléremozgas intenzitasabol elkiilonitve az oOrvények hatdsat, az 4aramlési sebességre

jellemzd m; intenzitést kapjuk.

m,+m, m,+m, m,

4. abra
A kaszkadelemek kapcsolata és a molekulamozgasok

intenzitasa egy nyitott &ramlasu rendszerben.

Most fogalmazzuk meg, mi a valoszinilisége annak, hogy egy, a t = 0 idépontban az i-edik
elemben 1évé molekula a t+At idépontban a j-edik kaszkadelemben lesz. Ez az esemény
ugy kovetkezhet be, hogy mar a t idépontban bekovetkezik, és a At idd alatt mar nem
torténik semmi, de bekdvetkezhet tigy is, hogy a t iddpontban a kérdéses molekula a j-edik
kaszkadelemet megeldz6 vagy az azt kovetd cellaban van, €s a At id6 alatt atmegy a j-edik

kaszkadelembe. Mindez egyenlettel a kvetkezOképpen fogalmazhat6 meg:

p;; (t+At0) =p; ,(1,0){m, +m,}At +
p,; (LO)f1-(m, +2m,)At}+ (139)
P2 (£0){m, }At + a(At)

A tovabbiakban a p;(t,t) atmenet-valdsziniiségben a =0 jel6lését elhagyjuk, igy pi; csupan
a vizsgalat kezdetétdl eltelt id6tol fiigg. Ezek utan az (139) egyenlet At zérushoz tartasaval

igy alakul:

dp, |

at =(m, + mz)pi,j—l = (m, + Zmz)pi,j T M,P; (140)
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Haa pi; atmenet-valdsziniiségeket egy matrix elemeinek tekintjiik, akkor az (140) egyenlet

matrixos formaban is megjelenithetd:
d
aP(t) =P(t)M (141)

Itt M, az Ugynevezett intenzitasfiiggvények matrixa:

Gm-m, m+m, 0 0 O

ang m, -m-2m, m,+m, B

O O m -m, —2m O
0 ? T, 0o (142)

§ m, +m, 0 0

U m, —-m,—2m m, +m, U

|:| 2 1 2 1 2 D

o O 0 m, -m—m,

A kezdeti feltétel

P(0)=E (143)

A (141) kozonséges homogén linedris differencidlegyenlet tetszéleges méretre vonatkozo

analitikus megoldasat a fliggelékben kdzoljuk. Itt csupan a végeredményt mutatjuk be.

P(t) — eM nt — BW @—(m1+mz)(1+[52—2[50039k)t|]/ B—l' (144)
ahol
B =[p° ; = m,
B m, +m,

(145)

MOO0O00O
=)
N

i o o o e
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W az M, métrix baloldali wy sajat oszlopvektoraibdl alkotott n-ed rendli matrix, ahol

w, = /;22 0 sin16, -psn06, 0O
"B O sn2e, -psnie, U
0 sn36, -psin26, O (146)
0 M 0
0 0
$inn®B, -Bsin(n-1) 6,4

V az M, métrix jobboldali vi" sajat sor vektoraibél alkotott n-ed rend{i matrix, ahol

-2

v, = o O snnB, -Bsin(n-1)6, 0O
" Hin(n-1e, -psin(n-2)6,7
O M O (147)
0 . . [
0 sin26, —3sin16, 5
H sinlB, -Bsin06, H
D2 :[EH EEEcos(n +1 06, —2Bcosnb, +[EL—1[H32 cos(n -1) 8, (148)
n n

és 0, a karakterisztikus egyenlet k-adik gyoke. A karakterisztikus egyenlet:

sm(n+1)6)_285|nn9+[32 sm(n—l)e=0

- - - (149)
sno sinb sin@

A (144) egyenletben a [l..[0zardjelek egy diagonal-matrixot jeldlnek, melynek k-adik

atléeleme:

_ 2_
e (my+my)(1+B 2l30059k)t. (150)

Minket azonban nem a molekulamozgasokkal kapcsolatos p;; valosziniiségek érdekelnek,

hanem az, hogy milyen val6szintiséggel talalunk meg egy molekulat egy adott
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kaszkadelemben. Ha a kezdeti poziciotol fuggetlentl pj(t)-vel jeldljik  annak
valoszintségét, hogy a vizsgalt molekula a j-edik kaszkadelemben van, akkor ez a
valoszinliség a kezdeti eloszlas és az atmenet-valOszintiségek segitségével a

kovetkezoképpen fejezheto ki:
P; (1) = Z p; (0) Pi; (t) (151)

Ha a nulla idépontban N molekula van az els6é kaszkadelemben, €és sehol masutt nincs a

vizsgalat ala vont molekulakbol, akkor

p(0) =1, ha i=1

152
0, ha i1 (152)

és természetesen
p;(t) =py,; (D). (153)

Az eredetileg az els6 kaszkadelemben 1évd No molekula fokozatosan kiiiriil a rendszerbdl.
Egy adott idopillanatban a rendszerben maradt molekuldk megoszlanak az egyes
kaszkadelemek kozétt. Jeloljik vj(t) valosziniiségi valtozoval a molekulak szamat a j-edik
kaszkadelemben. Ennek realizacioja nj(t). A kaszkadelemek molekula szamat egy v(t)
valdszinliségi vektorvaltozoba foglalhatjuk 6ssze, melynek egy konkrét megvaldsulasat

n(t)-vel jeloljuk.

OO0 N =m0
$.008 O (154
0 MO 0M0O
V.01 (1)1

Annak valosziniisége, hogy v(t) éppen n(t)-vel egyenld, multinomidlis eloszlast kdvet.
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A j-edik kaszkadelemben 1évé molekulak szaménak vérhato értéke
M[v;j(t)]=No pj = No pu(t) (156)

Az (144,...,150) egyenletek segitségével ez részletesen kifejtve

Mp, (n]=-2Ne s sin@,{sin(n+1- )8, —Bsin(n- j)8, }e™ - as7)

oy B
n ;BJ [EH:]'[B:os(n +1)8, - 2Bcosné, +[32[Et—i[EcOS(n—1)9k

ahol

N, =m, +2m, —2,/m,(m, + m,) cos6, . (158)
A rendszert elhagy6 fluidum koncentracidja ezek utan az A Avogadro szam és a V/n
kaszkadelem térfogat figyelembevételével az utolsdé kaszkadelemben [évé molekulak

varhat6 szamabol kiszamithato.

- M[Vn] - NOpl,n(t)
" AV/n AV/n

(159)

Masfelodl egy molekula a (t, t+At) iddintervallumban gy hagyhatja el a rendszert, hogy a t
idopontban az utolsd kaszkadelemben van, és a At id6 alatt tavozd FAt térfogatl

fluidummal kilép a rendszerbdl. Ennek valoszintisége a kovetkezo:

Po e (t+ALT) =py , (1,0) IM,At = p, (1) [m,At. (160)
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Jeloljik vpea(t)-vel (valdsziniiségi valtozd) a rendszerbdl a (t,t+At) iddintervallumban

kilépd molekulak szamat. Ennek varhato értéke No indulé molekula esetén

M[Vn+1(t)]=N0 pl,n(t) mlAt (161)

Osztva a megfeleld FAt fluidum térfogattal és az Avogadrd szammal, ismét a kilépd

koncentraciot kapjuk:

N t) m,At
c, = M . (162)
A [FAt

A (159, 162) egyenletek 3sszevetésébol kitlinik, hogy az m; intenzitasfliggvény a térfogat,

az aramlasi sebesség és a kaszkad elemszéam fliggvénye:

m, = (163)

Vagyis a modell alapjan szamolt kilép6 koncentracié csupan két paraméter, a kaszkad

elemszam és az m; intenzitas fiiggvénye. Ezt a fiigg6séget a 5. abran mutatjuk be.

Lathato, hogy egy adott kaszkad elemszam esetén névekvd mo-vel a gorbék az egyetlen
kaszkadelemet tartalmazé rendszer exponencialis gorbéjéhez kozelednek. Ez a viselkedés
annak tulajdonithatd, hogy a nagy visszakeveredés Kkiegyenliti a koncentracid
kilonbségeket az egyes kaszkadelemek kozott, és ennek kovetkeztében a rendszer Ugy

viselkedik, mintha egyetlen kaszkadelemet tartalmazna.

Még egy kérdés maradt nyitott a cs6 aramlasterének leirdsdra megalkotott modellel
kapcsolatban, nevezetesen az, hogy a modell milyen tartézkodési idéspektrumot
eredményez, ¢€s ez hogyan viszonyul a tartozkodasi iddspektrumrél mar meglévd korabbi

tapasztalatainkhoz.
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A tartozkodasi idOspektrum leszarmaztatdsahoz vezessiik be a T valdsziniiségi valtozot,
amely méri, hogy egy adott molekula mennyi id6t toltott el a berendezésben. A
tartdzkodasi id6 eloszlasfiiggvénye tetszOleges t-re megadja annak valdsziniiségét, hogy
egy molekula t-nél révidebb ideig tartozkodik a berendezésben. Ez az esemény viszont Ugy
kodvetkezhet be, hogy a molekula t-nél mar nincs a rendszerben, aminek valdsziniiségét

egyenletben a kdvetkezOképpen fejezhetjiik ki.

1 2 tF/V

5. abra.
A Kkilép6 aram koncentracioja a kaszkadelem-szam és az m; intenzitas fliggvényében.

Az arnyékolt teruleten belill m; valtozik nullatél mi-ig.

F(0) = plr< ) =1- py; (9 (164)
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A tartozkodasi id6 siiriségfiiggvénye eldéllithatd, mint a (164) fiiggvény derivaltja, de

leszarmaztathatjuk logikai modszerekkel is.

Nevezetesen, az az esemény, hogy a tartozkodasi id6 a (t, t+At) intervallumba esik, csak
ugy kovetkezhet be, hogy a molekula a t idopillanatban méar az utolsé kaszkadelemben van,
és a At id6 alatt elhagyja a rendszert. Mindez egyenlettel

f(tylat=plt<t<t+at)=p,, (1) (m,At, (165)

azaz

F&o . s€sn?0, .
fy=—2—Y p*" kg™t (166)
v Z D2
A tartdzkodasi 1d6 varhato6 értéke:
n _n2 s 2 1-n
M[T]:_ZVZ (-p*fsn’e, B 2 -V (167)
F & nZQL+[32—2[3cosek)2 D, F

és ez 6sszhangban van korabbi tapasztalatainkkal is.

3.3. Az aramléasi modell javitasa pordzus adszorbenssel toltott csé esetén

Toltott csovek, oszlopok esetén az el6zo fejezetben kifejlesztett modell nem ad elfogadhatd
eredményt a tartozkodasi idd spektrumra, ami érthetd is, hiszen a pdrusokba behatolt
molekulakat csak nagyon lassan lehet kidbliteni a rendszerbdl. A tartdzkodasi idé atlaga

Iényegesen nagyobb, mint a térfogatarambdl és az Ures térfogatbdl szamithatd érték.

llyen esetben valamennyi kaszké&delemet ki kell egésziteni a vizsgalt molekuldk szdméra

hozzaférhetd porustérfogattal. A rendszer igy a kaszkadelembdl és minden elemben két
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fazisbol all. Ha egy molekula az i-edik kaszkadelemben a folyadék fazisban van, akkor azt
mondjuk, hogy az S; allapotban van, mig ha ugyanazon kaszkadelemben Iéve toltet

porusaiban bukkanunk ra, akkor allapota Spi.

Rovid At id6 alatt egy molekula mzAt valdsziniiséggel hatol be a kaszkadelemben 1évo
porusokba, 1és my/p-At valdszinliséggel szabadul ki onnan. A 2n molekula allapot kozotti

kapcsolatot és a molekula mozgasok intenzitasat a 6. abran mutatjuk be.

ml + m2 ml + m2 ml
1 2 n
m2 m2
m, m3/|-l m, ms/l'l m, ms/l-l
n+1 n+2 2n
6. abra

A molekulék lehetséges allapotai kdzotti kapcsolat

és a molekulamozgasok intenzitasa

Egy molekula természetesen adott valosziniiséggel tetszdleges allapotabol barmely
allapotba atmehet. Ez tulajdonképpen 2nx2n atmenet-valdsziniiség meghatarozasat teszi

szlikségesse.

Kulonosebb  részletezes nélkal a pij(t) atmenet-valdszintiségekre — vonatkozo

differencialegyenletek j = 2, 3,..., n-1 esetén:

dpi,j _

m
dt (ml + mZ)pi,j—l - (ml + 2m2 + m3)pi,j + mzpi,j+1 + 73 pi,n+j ’ (168)
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mig j =n+1, n+2,..., 2n-re
- m
—=M3P; ., _Us Pi;- (169)

Az S; és S, allapotba vald atmenet a kapcsolddasi séma alapjan is kiilonbozik a tobbitol,

ezért az erre vonatkozo differencialegyenleteket kulon irjuk fel:

dp;,
dt

m
==(m, +m, + my)p;; +myp;, +_3pi,n+1 (170)

dpi,n
dt

m
=(m, + mz)pi,n—l =(m, +m, + ms)pi,n + Ts Pi 2n (171)

Ha a pi; atmenet-valoszintiségeket egy matrix elemeinek tekintjiik, akkor a (168,...,171)

egyenletek egyetlen matrix differencialegyenletté foglalhatok 6ssze:

dP _

E—PEMZH, (172)

ahol M, az intenzitas fliggvények matrixa:

M, = M
2n DNlll 128 (173)
2 My
M2, tulajdonképpen egy 2x2 hipermatrixnak tekinthet6, melynek nxn-es blokkjait a

kovetkezdkben adjuk meg.

Legyen
a=mp+my+ms, (174)

b=mi+2my+ms, (175)
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c=ma/p (176)
d=mi+my, (177)
akkor
M,=0a d 00 M, =m,E
O
S“z ~b d 0
O m, -—b O
O o 0 (178)
O O
O -b dU
0 0
0o m, -—af
M, =cE M,, =—-CcE

A (172) differencidlegyenlet megoldasat a fuggelék mésodik fejezetében kozoljuk. Itt

csupan az eredményt, illetve annak a tovabbiak szempontjabol fontos részét mutatjuk be.

Ha a P atmenet-valdszinliségi matrixot az M2, matrixnak megfelelden blokkokra bontjuk,

azaz

P = Ij:,11 P12 D

0 (179)
2 P[]
akkor a Py; blokkot a kvetkezoképpen adhatjuk meg:
P,=B W v B™ (180)

A kifejezés szinte teljesen megegyezik az (144) egyenlettel, a B, W, V maétrixok jelentése
is azonos. Az egyetlen kilonbség a [OCzardjelekkel hatarolt diagonalis matrix elemeiben

van.
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—_ —bi—‘ _b‘+\B
fi_qI Clet2 ™o Ai*G 50 (181)
29, 20
ahol
b. =\, +m, +c, (182)
Ci :b_zi_c, (183)

q = |2H xe, (184)

N, =m, +2m, - 2,/(m, + m, )m, cos8,, (185)
0, pedig a(159) egyenlet i-edik gyoke.

Tekintve, hogy a koncentraciot csak a kilépd folyadékban tudjuk mérni, és ez azonos az

utolsd kaszkadelem koncentraciéjaval, minket csupan a P11 blokk p1 , eleme érdekel.

2 B &sn’o,
P o 3 S (186)
np" & D
A modell szerinti kilép6 koncentracio
N
C, = np,,. 187
n A V pl,n ( )

A tartézkodasi id6 striiségfliggvénye
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"sme
DZ

f()=mp,, = fi- (188)

A tartozkodasi id6 varhato értéke

xgﬁ sn’8,  (1-B%)*@A+p)  _ \
M[T]=- Fri DT @+ B ~2B00s0, )’ NS (189)

Lathat6, hogy a (189) egyenlettel szamolt tartézkodasi id6 mindossze egy I+u
szorzotényezovel tér el a (167) egyenlettel adott, az {iires térfogatbol és az aramlasi

sebességbol is szamithatd id6tol. Ez a tény lehetdséget ad p egyszerii meghatarozasara.

3.4. Adszorpcio tokeletesen kevert tstben szilard oldali ellenallassal

Az eldzbekben kiépitettiink egy modellt, amely leirja az adszorpciot egy tokéletesen kevert
Ustben az esetben, ha nem csak a fluid fazis, hanem a szilardfazis koncentracidja is
homogén. Altaldban azonban a szilardfazis nem tekintheté homogénnek, kiilondsen akkor

nem, ha nagyobb méretii adszorbens szemcséken valo adszorpcidt vizsgalunk.

A szilardfazisban észlelhet6 koncentraciévaltozast a tovabbiakban ugy vessziik figyelembe,
hogy a szilardfazist két nem egyenld kapacitasu részre osztjuk fel: egy kiilsé feliileti

kapacitésra és egy bels6 ,,mag” kapacitasra.

Egy molekula ezek szerint tartézkodhat a fluid fazisban, ilyenkor azt mondjuk, hogy az S;
allapotban van, a fellleti kapacitasban (S, allapot), illetve a szorbens belsé magjaban (S3
allapot). Barmelyik allapotban a koncentracio csupéan az id6 fuggvénye. Természetesen, ha
a szilardfazist tobb részre osztanank, akkor a folyamat pontosabb leirasat kapnank. Az
elény azonban, amit a szamitds nagyobb pontossidga jelent, nem szamottevd a modell

megoldasaban mutatkozd nehézségekhez képest.
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Egy rovid At idointervallumot tekintve a rendszerben a kovetkezd eseményeket

figyelhetjik meg:

* Egy a t idépontban a fluid fazisban 1évé molekula atmegy a feliileti rétegbe. Ennek

valosziniisége
p(2,t + AtlL t) = p,, (t + At,t) = m,At + o(At) (190)

* Egy at idépontban a fluid fazisban 1évé molekula At ideig a helyszinen marad. Ennek

valosziniisége
p(Lt +Atflt) = p,, (t + At, t) =1- m,At + o(At) (191)

» Egyatid6pontban a feliileti rétegben 1évé molekula At id6 alatt 4&tmegy a fluid fazisba.

Ennek valdszintisége

P(Lt +At2,t) = p,, (t + At, 1) = m, At + o(At) (192)

* Egy at idopontban a feliileti rétegben 1évé molekula At id6 alatt mélyebbre hatol az

adszorbens magjaba. Ennek valoszintisége

P(3 t+At2,t) = pyg(t + At t) =1- (m,, + My, )At + o(At) (193)

* A tidépontban a feliileti rétegben 1évé molekula At ideig a helyszinen marad. A leiro

valésziniliség

P(2,t + At[2,t) = p,, (t + At, 1) =1 (M, + M)At + o(At) (194)



* Egy az adszorbens magjaban 1évd molekula At id6 alatt atkeriil a feliileti rétegbe.

Ennek valdszintisége

P(2,t + At3 t) = py, (t + At, 1) = m,At + o(At) (195)

e Végil a t idépontban a magban 1évé molekula At ideig a magban marad. A leird

valésziniliség
(3t + At[3,1) = py (t + At, t) =1- m,At + o(At) (196)

Ezekre az intenzitas fliggvényekre tdmaszkodva az atmeneti valosziniiségekre vonatkozo

differencialegyenlet matrix alakban:

P PM (197)
dt
ahol az intenzitas fuggvények matrixa
M=GFm, m,, 0 O
0 0
n My My —Myy My n (198)
@ 0 Mg, -ms @

és a kezdeti feltétel P(0) = E. A P matrix p;; elemeire igaz a kdvetkezo egyenldség
P ; (1) = Pi; (,0). (199)

Vagyis a P matrix annak valoszinliségét adja, hogy egy molekula a (0,t) idéintervallumban

az S; allapotbol az S; allapotba kerul. A (111) differencialegyenlet megoldasa

3
P=3L,e" (200)
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ahol A; a karakterisztikus egyenlet i-edik gyoke, L; pedig az ugynevezett Lagrange féle

matrix polinom. A karakterisztikus egyenlet pedig

>\3 + (m12 + le + m23 + m32)>\2 + (m12m23 + m12m32 + m21m32)A = 0 (201)

Megoldva ezt az egyenletet a gyokok rendre

A, =0, (202)
A = —(my, +my +my +my,) *5, (203)
2 2 ’
A = =(My, + My + My +my,) =, (204)
3 2 ’
S \/(m12 My + My + My, )2 - 4(m12m23 tmp,mg, + m21m32) - (205)

Az L; Lagrange féle matrix polinomokat a kovetkezoképpen irhatjuk fel:

T 1
Ll - m;,m, +m,m,, +m, m,, My My, MMy, mzlmszg
12Ma  MpMy, My, Mg, 7 (206)
ENpMy; MMy MMy
=t
7\28q M, (A, + My +my,) My (A, +My,) Mg My, 0
0 M, (A, +My,) = (Mg + M)A, —my,My —mymy, My (A, +Myy) B
= UEPULP My (A, +My,) My (A, +my, + mm)@
L=+
)\35q -mp(A g+ My +my,) My (A +my,) Mg, My 0
0 My, (A5 +my,) = (M, +Myg)Ay —my,My —m,m,, My (A +my,) B
B m;, My, My(A s +my,) Mg (A +my, +my)H

Ezek utan példaul a p;i(t) atmenetvaldszinliség
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M3 M, _ M (A, +my +my, et + My, (A5 + My +My,) gt
My, M3 + My, My, + My My, A, Sq As S

Py (t) =

Ha valamennyi eredetileg jelenlévé No molekula a fluid fazisban volt a vizsgélat

kezdetekor, akkor a fluid fazisban 1évé molekulaszam M]v,] varhat6 értéke
M[Vl]: No Pu(t) (210)

Az Avogadrd szam és a fazis V térfogatanak figyelembevételével a koncentracio varhatd

értéket kapjuk

N
M [C] = ﬁ P = Copn (211)

3.5. Adszorpcio6 egy alléagyas adszorberben, attoresi gorbe szamitasa

Az el6zo fejezetben kifejlesztettiink egy modellt, amely alkalmas arra, hogy leirja a
molekulamozgasokat egy alloagyas toltott oszlopban. Tovabba ettol fliggetlenll egy

masikat, amely egy tokéletesen kevert listben képes leirni az adszorpcids kinetikat.

Most probaljunk meg a két modell egyittes alkalmazasaval leirni egy all6agyas adszorbert.
Ennek érdekében a V, Ures térfogatl és M, tomegli adszorbenst tartalmazé adszorbert a
hossz mentén n egyenld részre osztjuk. Ha az adszorpcio kinetikai vizsgalatainkat egy Vj
térfogat fluidumot és My tomegii adszorbenst tartalmazd iistben végeztiik, és az igy nyert
adatokat fel kivanjuk hasznalni az all6agyas adszorber leirdsdhoz, akkor elészor a vizsgalt
adszorber keresztmetszetét gondolatban — az aramlasi sebesség megtartasa mellett —
akkorara noveljik, hogy egy kaszkadelem éppen annyi fluid fazist tartalmazzon, mint
amennyi a tokéletesen kevert Ustben volt. Ez a keresztmetszet n Vy/V ,-szoros megnévelését
jelenti. Ilyenkor természetesen M MVy/V, adszorbens lesz egy kaszkadelemben, ami k-

szor tdbb, mint amennyi eredetileg az listben volt
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k=nvs Ms (212)
V, M,

A térfogataram (nVy/V,)-F lesz. Hogy megtarthassuk az aramlas leirasara kifejlesztett
modell paramétereit, most nem N molekulat tételeziink fel a nulla idépontban az elsé

kaszkadelemben 1év6 fluidumban, hanem (n-Vy/V,)-No-t.

Egy-egy kaszkadelem ezek utan V; térfogatu fluidumot, egy felileti adszorpcids kapacitast
és egy belsd adszorpcids kapacitast tartalmaz. Ez utobbi kettd k-szor akkora, mint

amekkora az Ustben volt.

ml + m2 ml + m2 ml + mZ ml + mZ ml
— — — — —
| i-1 i i+1 n
l—— <] |l — -]
m2 m2 mZ m2
km,
km,
m, m,
n+i
mﬁ m6
- 2n+i
1 2 k
7. bra.

A fazisok kozotti kapcsolat és a molekula mozgéasok intenzitésai.

Az i-edik kaszkadelem fluid fazisadban tartdzkoddé molekularél azt mondjuk, hogy S;

allapotban van. Ha a molekula ugyanebben a kaszkadelemben a fellileti réteg k-ad részében
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tartozkodik, akkor &llapota Sp+, mig ha a belsé adszorpcids kapacitas k-ad részében lelhetd

fel, akkor az Sy allapotban van.

A molekulak mozgasat illetéen az S; allapotban 1évé molekula atmehet az Si4q, az Si-1 és a
k darab egyenértékii S, allapot barmelyikébe, mig az Sy allapothol az S;, illetve az Sons

allapotokba kerilhet.

A belsé kapacitasbol (Son+i allapot) azonban csak a fellileti kapacitas iranyaba van szabad
mozgas. A molekula egyes allapotai kozotti kapcsolatokat és a molekulamozgasok

intenzitasat a 7. abran mutatjuk be.

A molekulak az els6 kaszkadelemen keresztiil 1épnek be a rendszerbe, €s az utolsd elemen

keresztul tavoznak.

A molekulamozgdsok egy rovid (t,t+At) iddintervallum alatt a kovetkezd

valosziniiségekkel mennek végbe:

* Egy az S; allapotban 1évé molekula pjj+1 valdsziniiséggel megy at az Sii; allapotba
i=1,2,...,n-1
Pii+1(t + At,t) = (m1 + M)At + o(At). (213)

Itt m; és m; jelentése ugyanaz, mint a 3.2. és 3.3. fejezetekben.
* Egyaz S, allapotban 1év6 molekula pnan+1 valosziniiséggel hagyja el a rendszert:
Pn an+1(tHAL)=miAt+oAt. (214)

* Egy az S; allapotban 1évé molekula pjj.; valoszinliséggel megy at az Si., (i=2,...,n)
allapotba
pi i+1(tHAL)=moAt+o(At). (215)

* Egy az S; éllapotban 1évé molekula pin+i valdszintiséggel megy 4t a k darab (egymastol

nem megkullonboztetett) Sp.i (i=1,2,...,n) allapotok valamelyikébe.

Pin+i(t+AL,t)=m3 At+o(At). (216)
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ahol mg jelentése ugyanaz, mint a 3.4. fejezetben az m»-é.

Egy molekula p;; valdszinliséggel marad At ideig az S; allapotban. Mivel ehhez az is
szlikséges, hogy ne keriiljon a k darab Sp.i (i=2,3,...,n-1) allapot egyikébe sem, az m3 a

kifejezésben k-szoros sullyal fog szerepelni.
pii(tHAt)=1-(m1+2my+kms)At+o(At)=1-bAt+ o(At), (217)
illetve, hai =1 vagy i = n, akkor
pi.i(tHALH=1-(M1+mo+kms) At+o(At)=1-aAt+ o(At). (218)

Egy Snsi allapotban 1évé molekula pnsi; valoszinliséggel megy at az S; allapotba.
i=1,2,...,n.

Prsii(tHALH)=m4 At+ o(At), (219)
ahol my jelentése ugyanaz, mint az mp;-é.

Egy molekula az Sy allapotbol ppeion+i valosziniiséggel megy at az Spnsi (i=1,2,...,n)

allapotba.
pn+i,2n+i(t+At,t):m5 At+ G(At), (220)
ahol ms jelentése megegyezik az my3 jelentésével.

Egy molekula pp+in+i valoszinliséggel marad az Sps (i=1,2,...,n) allapotban a At
idGintervallum alatt.
Dy s (1 AL,) =1 (m, + M)At + (A1) =

(221)
=1-CAt + o(At)

Egy molekula pon+insi valoszinliséggel megy at az Sonsi (i=1,2,...,n) allapotbdl az Sp.i
allapotba..
Pznsin+i(tHAL t)=meAt+o(At). (222)

ahol mg jelentése ugyanaz, mint mzy-é.
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» Vegul egy molekula pansi 2n+i valosziniiséggel marad az Sonsi (1=1,2,...,n) allapotban.

P2n+i 2n+i(tHAL t)=1-meAt+o(At). (223)

Jeloljik pij(t)-vel azt a valoszinliséget, hogy egy molekula, amely a zérus idépontban az S;

allapotban volt a t idépontban az S; allapotban lesz.

Ezek utan az az esemény, hogy egy molekula a (0,t+At) id6intervallumban az S; allapotbol

az S; allapotba kerl, j-t6] fliggéen a kovetkezOképpen torténhet meg.
1) j=1

A vizsgalt molekula a t idopontra mar az els¢ kaszkédelem folyadékfazisaba keriil (S1
allapot), és a tovabbiakban ott is marad, vagy a vizsgalt molekula az S, allapotba keril a t
idopontra, és a hatralévd At id6 alatt atmegy az S; allapotba, de elképzelhet6 az is, hogy a
vizsgalt molekula a t id6pontra valamelyik Sp.; allapotba keril, és onnan megy at az S;
allapotba. Tekintve, hogy k darab Sp.1 &llapot van, ez utdbbi eseménynek k-szoros sullyal

kell szerepelnie. Mindez egyenlettel kifejezve:

p.a(t+At) =p,, (Oft-adth+p, ,(m,At +KIp, ., (1) M, At +O(AL) (224)

2)  j=23,...n-1

Egy molekula gy kerulhet a t+At iddpontra az S; allapotbdl az S; allapotba, hogy a t
iddpontra az S;.1 allapotba ker(il, aztan atmegy az S; allapotba. De odakertilhet ugy is, hogy
a t idépontra mar az S; allapotba ker(lt, és At ideig ott is marad, vagy az Spsj allapotok
valamelyikébol megy 4t az S; allapotba, vagy — végul — a t idopontra az Sj+1 allapotba kerdil,

és onnan visszalép az S; allapotba. Mindez egyenlettel:
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P, (t+At) =p, 4 (t)(m, +m,)At+p, (L~ bAth+

. (225)
Py (1) BN, AL+ K T, Db, . (8) T+ O(At)

i,n+j

3) n

—
1

Egy molekula gy kertlhet a t+At idépillanatra a Sy, allapotba, hogy a t idépontban éppen
az Sp. allapotba jut, és onnan atmegy az S, allapotba, vagy a t idépillanatra mar az Sy,
allapotba keril, és At ideig ott is marad, vagy az Sy, allapot valamelyikébe Kkerdl, és onnan

megy at az Sy, allapotba. Egyenlettel:

P (t+AY) =p,,, (D(M, +m,)At+p,  (){1-ant }+

KD, ,, (1) [, At + o(A) (220)

4) j=n+1,n+2,...,n+n, illetve j=n+l, ahol 1 = 1,2,...,n

Egy molekula ugy keril a t+At idére az S;=Sp+ allapotok valamelyikébe, hogy a t
idopontban a S; Aallapotba van, és onnan atmegy az Sp+ Aallapotba, vagy mar a t
idopillanatban a helyszinen van, és At ideig ott is marad, vagy a magb0l (San+ allapot)

megy at a felllleti kapacitasba. Mindez egyenlettel kifejezve:

Pi o+ (t + At) =P (t) m3At + | (t){l— cAt }+

(227)
pi,2n+| (t) Hne‘) mt + 0-(At)

5.) j=2n+1,2n+2,...,2n+n, illetve j=2n+l, ahol 1=1,2,...,n
Végul egy molekulat akkor talalunk a t+At idében a ,,magban”, ha a t idépontban a feliileti
kapacitasban van, és onnan At id6 alatt atmegy a magba, vagy a t idépillanatban mar a

magban van, és At ideig még ott is marad. Egyenlettel ez:

Py ot (L+A) = P, 1y () M AL+, o (D{1- meAt}+ o(AY). (228)
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A At zérushoz tartasaval a (224,...,228) egyenletek a kdvetkezd alakot 6ltik:

‘% =—ap,+m, p,+km, p,,... (229)

dgt =B Ip,, + (M, +M,)P, 1 + NP, + K, (230)
dzt = —alp,,, +(M, +m,)p,,, +KN,D, . (231)
dp(;,tnﬂ =MDy, + MP, gt = C P, oot (232)

dp;;nﬂ = Mgy~ Mg g (233)

A (229,...,233) egyenleteket megjelenithetjiik matrixos formaban is:

dP_P

e M, My, 0 BzPMsn
%’I n My M 23[] . (234)
HO M, MgH

Az Mg, hipermatrix egyes blokkjai nxn-es matrixokat reprezentalnak. A (234) egyenlet
részletesebben a kdvetkezOképpen irhatd. (Az my+m, 6sszeget, ahogy azt a 2. fliggelékben

is tettuk, d-vel jeloljuk!)
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dP _ pxO-a d m, 0 0

dt Bmz -1 m, 0 E
H O d o o U
B m, -a m, 0 B
[km, -C my 0
B km, -C m, E
0 o o o 0 (235)
B km, —C ms B
B 0 m, -m, B
0 0 mg -mq O
= 0 0 0 .
g 0 Mg —Mg[

Kiemelve —3d tényez6t és a B hipermatrixot, illetve ennek inverzét, a (235) egyenletet igy

is irhatjuk:
dP _ d PB M * B—l * * =
E__B B =-BdPB,, M, M, 0 OB} O
D B * M * M * D:' B_l D
0 22 21 22 23[ 1] 22 W
@ Ba3§0 M32 MssEP B;:ls
(236)
ahol
By=By=Byx= °
Bl
(237)

Bn—l

i o o s e ¥ =
™
N
MOoOLO00
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* * m *
M, =@* -1 0o M,=—-—2E, M., =0E;
11 |:|_ 1 b* D 12 Bd 13
U 0
O 0 0 (238)
- b -1
B -1 a*g
. km . c R m
M, Bd4 E; M, =—@E; M, =—B—5E; (239)
. \ m . m
M, = 0E; M32=—B—(;E; M33=—B—§E; (240)
és
= =l gz M (241)
Bd Bd m, +m,
E pedig az nxn-es egységmatrix.
A (236) egyenlet megoldasa formalisan a kdvetkezo:
P=Bexp(-BdM;, t)B™. (242)

Ez a megoldas kielégiti a P(0)=E3, kezdeti feltételt is.

Ugyanakkor az M7, hipermatrix M, elemét felirhatjuk a sajatvektorok és sajatértékek

segitségével a kovetkezoképpen:

ML=y wyiN =y LA, (243)
ahol

N = B_ld(ml +2m, +km,)- 2cos6, (244)
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és 6; a (149) egyenlet i-edik gyoke.

Tudva azt, hogy az L; matrixpolinomok 0sszege az egységmatrixot adja, a (242) megoldast

megjelenithetjiik a kovetkezd modon is.

P=B "L . 1
exp{t[DD}de)\,L, m,y L, 0 B}B
ka“zl“ —CZLi mSZLi 0 (245)
P 0 mszLi _mezLiP

A matrixok direkt szorzatara vonatkoz6 szabalyokat folhasznalva

P=Bexp -pyd m, 0 k@M, [B™
30 CBd m, 0 KL (B
0 okm, -¢ mg7 O (246)
E H O ms —mH E
n ] _1
P:BEEeXp{tAi}XmiFB : (247)
=1
ahol
A, =Fa +km, m; 0 O, a =m, +2m, - 2Bdcos6, .
B km, -m,—-mg mg E (248)
i 0 Mg —msH
Az A; matrix karakterisztikus egyenlete
EiS-l_(ai +km3+m4+m5+m6)zi2 (249)

+{ai (m4 +mg + m6)+ kms(ms + me)"' m4m6}ai +a;m,mg =0

Ha a karakterisztikus egyenlet gyokeit &1, &2 €s &jz-mal jeloljiik, akkor a megfelelé matrix-

polinomok:
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(A & E)A, ~&E)
L- - i i i i , 250
. (Eil_EiZ)(Eil_EiS) ( )

_(A -&E)NA, -&.E)
le — i i i i , 251
| (Eiz _E'il)(EiZ _Ei3) ( )

= (Ai _EilE)(Ai _EiZE)
? (Ei3_Ei1)(Ei3_Ei2) .

(252)

Felhasznalva a sajatértékeket és a Lagrange-féle matrix-polinomokat, a (247) megoldas a

kovetkez6 alakban irhato fel:

P=B E e 'L, +e¥'L,, +e 'L 4 XL, EB'l. (253)

Minket azonban nem az 6sszes atmenet-valdsziniiség érdekel, hanem csak az, hogy egy
molekula milyen p;(t) valoszintséggel lelhetd fel egy adott S; allapotban, feltéve, ha a zérus
idopontban a molekuldk az egyes S; allapotokban pi(0) valdszintiséggel fordultak el6.

Tudjuk, hogy

LICRTSLICETSYACES (254)

A (254) osszefuggésben minden kaszkadelemben k darab egyforma fellleti és k darab

egyforma magkapacitast kiilénboztetiink meg.

A Kkezdeti eloszlas és az atmenet-valosziniiségek ismeretében pj(t) a kovetkezoképpen

adhat6 meg:

P; (t) = i PiPi 0+ ki Pn+ijPn+i 0+ ki P2n+i jPan+i ). (255)
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Ha a zérus iddpillanatban valamennyi molekula az S; allapotban volt, akkor:

p2(0) =1
(256)
pi(0)=0 il
és a (255) osszefliggés az alabbi egyszer(i alakra redukalodik:
Pi(t) = po(t). (257)

Az (nlVy/Va)No darab indulé molekulat tekintve a v, molekula szam vérhato értéke az Sy

allapotban
MI[vn]=(n Vi/Va) No pin(t). (258)

A koncentracié varhato értéke az utolsé kaszkadelem fluid fazisaban pedig az A Avogadro

szam és V; fazistérfogat figyelembevételével:

M[Ck]=ﬁ NoPy, (1), (259)

a
ami egyben a kilép6 koncentracio is.

Ezek utan latszik, hogy a (253) megoldas: P hipermatrixabol a P1; blokk p1n eleme a fontos

a kilépo koncentracio meghatarozasahoz.

A P1; blokk meghatérozdsadhoz azonban elég ismernink az Lij, Lip, Liz matrixok (1,1)

elemét. Jeldljiik ezeket rendre iy, Iz és liz-al.

|2 (B kmg)” +mymk + (€, + & )a +kmy )+ €8
! Eizl_(Ei2+Ei3)Eil+EiZEi3

, (260)
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_ (@ tkmg ) +mymk + (£, + &5 )ay +kmy)+E,E

! , (261)
’ E'IZZ _(Eil"'Eis)Elz +Eilzi3
[ = (ai + km3)2 + m3m4k + (E'il + Eiz)(ai + km3)+ Ei1£i2 (262)
N Efs_(éiz +Eil)£i3+EiZEil
igy
P, = Bllgz(lileiilt +1,65 +1,,e5)L, EBl_ll (263)
[|:l [
és
- 2 B - S.nz ei i i2 i3
P, __HB_"ZD—?(IHEE : +|i2e€ : +Ii3e€ t): (264)

ahol ©; és D? jelentése ugyanaz, mint az eléz6 fejezetekben.

Az adszorber leirasara eddig kifejlesztett modell legfeljebb egyetlen kromatogréfias csucsot
képes leirni, hiszen minden szamunkra érdekes molekula Dirac impulzusszeriien a zérus

idépontban kertiilt az els6¢ kaszkadelemben 1évo fluid fazisba.

Folytonos betaplalas esetén a (t,1+dt) idGintervallumban az elsé kaszkadelembe
(nV, /V,)Fc, [Adt molekula Iép be. Ezen molekulakbdl barmelyik csak gy hagyhatja

el a (t,t+dt) idéintervallumban a rendszert, ha az a t idoben az utolsé kaszkadelemben 1€vd

folyadékban van, és aztin tavozik. Ennek valdszintsége p,,(t—1)[0mdt. A (T,T+d1)

iddintervallumban belépett molekuldk koziil a (t,t+dt) intervallum alatt varhatdan

(nV,/V,)Fc,Adtip, (t-1)[m, dt

tavozik. Ugyanezen id6 alatt a tavozé fluidum térfogata
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NV, /V,)F dt

igy a kilépd dram koncentracidjahoz a T idében dt iddintervallumban belépé adszorbedtum
molekulak c,m, dtp,,(t—1) értékkel jarul hozza. Minden 1 id6t figyelembe véve a

koncentracio folytonos betaplalas esetén varhatoan

! sin?0. _ _ _
C__Co_[m Bl— = i Quem D] g8 4] gfit T))d‘[,
" sn 9
c=-c,m I i e*‘kt 265
om, = g "o Z - - (265)

lesz. A (265) Osszefiliggés Iényegében az attorési gorbe egyenlete.

3.6. Az intenzitas figgvények meghatarozasa

Az el6z6 fejezetekben levezetett matematikai modellt modellek paraméterei, az intenzitas
fuggvények egyeldre ismeretlenek. Ebben a fejezetben megvizsgaljuk, hogy ezek milyen
kapcsolatban vannak az adszorberek ismert fizikai jellemzdivel, és bemutatjuk, miként kell
meghatarozni azokat az intenzitasfuggvényeket, amelyek nem kapcsolédnak mar ismert

fizikai-kémiai tulajdonsagokhoz.

Foglalkozzunk el6szor a legegyszeriibb esettel, amikor egy homogén szilard szorbens
érintkezik egy ugyancsak homogén fluid fazissal (3.1. fejezet). Ilyenkor, ha a szorbens
eredetileg nem tartalmazott adszorbedtumot a fluid fazis koncentrécidjanak véarhatd értéke

a (131) egyenlet szerint alakul, azaz

{m21 +m,, e'(”‘ﬂ*”‘ﬂ’t}. (266)
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A co kezdeti koncentraciot ismertnek feltételezve, az egyenlet két ismeretlen paramétert
tartalmaz, az mi, és my; intenzitasfliggvényt. Ezek meghatarozasahoz vizsgaljuk meg a

t=co idében kialakuld egyensulyi folyadék koncentraciot. A modell paramétereivel ez:

c,m c
c,=——9o2& =_ 0 (267)
my, + My 1+ my,
My,

Ugyanezt a koncentraciot kiszamithatjuk az adszorpcids izoterma ismeretében is. Linearis

adszorpcids izoterma esetén egyfelol

q. =Kc,, (268)

masfeldl viszont a komponens mérleg szerint

V¢, =Vc, +Mq,,. (269)
It
\Y a fluid fazis térfogata, dm?
Co a kezdeti koncentracio, mmol/I
Coo az egyensulyi koncentracid, mmol/I|
M az adszorbens témege, ¢
(o8 az adszorbens fazis egyensulyi koncentracioja, mmol/g
K az egyensulyi izoterma meredeksége, dm®/g
A (268) és (269) alapjan
c. = —?\(h (270)
1+—K
\Y

(267) és (270) egyenletet 6sszehasonlitva azt kapjuk, hogy
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m, M
m, V

K. (271)
A (271) egyenlet meghatarozza az intenzitasfliggvények aranyat. A két intenzitasfiiggvény
meghatarozasahoz sziikséglink van még egy egyenletre. Ez lehet példaul az adszorpcid

kezdeti sebességére vonatkozo kifejezés is.
A (266) egyenlet derivalasaval azt kapjuk, hogy

1 dc
——0)=-m,,. 272
o dt() 12 (272)

Vagyis az adszorpcié soran mért fluidum koncentracié kezdeti irdnytangensébdl
kdzvetlenil meghatarozhatd az mi, intenzitdas. A (271) és (272) egyenletekkel adott
intenzitasfiiggvényekkel szamolva a (266) egyenlet helyesen irja le az adszorpcid kezdeti
szakaszat ¢s az egyensulyi allapotot. A koztes allapotokban azonban jelentos eltéréseket is
észlelhetiink, mivel ez a modell nyilvdnvaléan nem képes leirni a szilard fazisban

egyébként meglévd koncentracioeloszlast.

A matematikai modell finomitasara a szilard fazist két — nem egyenl6 — kapacitasra
osztottuk (3.4. fejezet). llyenkor, kezdetben (res adszorber esetén a folyadékfazis

koncentraciojat leird egyenlet

c=c m21m32 _ mlz()\Z + m23 + m32) e)\zt + le()\S + m23 + m32) e)\3t E
0
ElemZS + m12m32 + m21m32 )\ZSq )\SSq

(273)
ahol

)\2 - - (m12 My +2mzs + m32)+sq ’ (274)
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- - (mlz My My, + msz)_sq

A
8 2

: (275)

2
Sq = \/(le + m21 + m23 + m32) _4(m12m23 + m12m32 + m21m32) : (276)

Tegyiik fel, hogy a kiilsé feliileti réteg kapacitasa a szilard fazis teljes kapacitasanak j-ed
része. Ha Q.-nel jelsljiik a szilard fazisban 1évé osszes molekuldk szamanak varhato

értékét egyensulyban, akkor ebbdl a feliileti rétegben tartdézkodik

Q=2 = Nypy (=), (217)
a szilard fazis belsejében pedig
Q. =1220, = Nopy () (278)
Ez ut6bbi két egyenletbol
P13(0) = (J=Dpy (). (279)

A (200) megoldashol az L, és L 3 Lagrange féle matrix polinomok az id6vel elenyésznek, a
maradék L1 megfeleld elemeinek felhasznalasaval a (279) egyenlet a kovetkezd megkotést
eredményezi az intenzitasfliggvényekre nézve:

My =(j=1my,. (280)

A (270) egyenlet a jelenlegi korulmények kozott is igaz. A (270), a (280) és a (273)
egyenletekbol egy tjabb megkotéshez jutunk, ami

(281)
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Tovabbi korlatozast jelent, ha eldirjuk, hogy a modell koncentracio véltozasanak sebessége

azérus idopontban egyezzen meg a tényleges sebességgel. Ez egyenlettel kifejezve

1d
——c(0)=-m,,. 282
o o 0) 12 (282)

igy az 6t paraméterre (j, M1z, Ma1, Ma3, Maz) harom egyenletiink van, ez azt jelenti, hogy két
paraméter (példaul a j és msy) megvalasztasaval valamennyi paraméter adotta valik. A két

szabad paramétert célszeriien mérési adatokbol becsiilhetjilk a legkisebb hibanégyzetek

madszerével.
*
q
mg/g
L)
12
*
8 IS
*
*
q=16¢
4 *
. ¢ mérési pontok
. *
0,2 0,4 0,6 0,8 ¢ mg/dm’

8. abra

CHs-CClzadszorpcids izotermaja aktiv szénen 20 °C-on

A modell hasznéalhatdsaganak illusztralasara megvizsgaltuk a CHs-CCls adszorpciojat
vizes kozegbdl aktiv szénen. A trikloretdn adszorpcios izotermédja a vizsgalt

koncentracidtartomanyban lineéris (8. dbra). Az izoterma egyenlete 20 °C-on



0 [mg/g] = 16 [dm*/g] c.. [mg/dm®]. (283)
Az izotermat Lee [22] mérte a Kansas State University Civil Engineering intézetében.

Ugyancsak Lee mérte a CH3-CCl; vizes oldatanak koncentraciovaltozasat egy 4.4 dm?®
folyadékfazist és 3 g aktiv szenet tartalmazé tokéletesen kevert tstben. Az lstben a kezdeti

folyadékkoncentracié 1 mg/dm® volt (9. 4&bra). A koncentraciovéltozas kezdeti

meredeksége

190y =—00328- 1
dt

Co min

volt. A legkisebb négyzetek elve alapjan meghataroztuk j és ms, optimalis értékét. igy

j=4,3 és m3,=1,68310-3 1/perc.

c
CO

. mérési pontok
0,8

—— szamitott gorbe
0,6
*
0,4
&

0,2

20 40 60 80 100 t  perc

9. dbra
A mért és szamitott koncentraciok egy tokéletesen kevert Ustben.
V=4,4 dm* M=3 g, Co=1 mg/dm* K=16 dm*/g
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A tdbbi paraméter a (282, 281, 280) egyenletek alapjan

m,, =0,0328— (284)
perc
1
m,, =0,01293— (285)
perc
m,. =5554 —3_~ (286)
23 ’ 10 perC .

A 9. abra tanusitja, hogy a mért és szamitott értékek igen jo egyezést mutatnak. A modell
hasznalhatdsagat az is alatamasztja, hogy ezeket a paramétereket megvaltozott

kortlmények kozatt is felhasznaltuk, és ott is jO egyezést tapasztaltunk.

A tovabbiakban foglalkozzunk az dramlasi modellekkel (3.2. 3.3. fejezet).

Ures cs6ében a molekulamozgéasokat mind6ssze két paraméterrel, az m; és m;
intenzitasfiiggvénnyel jellemeztiik. Ehhez jarult még egy adat, a kaszkadelemek szdma. Az
Osszesen harom jellemzébol my-r6l kimutattuk, hogy az a csétérfogat, az aramlasi sebesség
és a kaszkadelemszam fliggvénye (Id. (163) egyenlet). A kaszkadelemszam és m, a
legkisebb négyzetek modszerével allapithaté meg olymddon, hogy a (166) elméleti
tartozkodasi id6 sziiriiség fliggvényt illesztjilk a mért gérbéhez. Mas lehetdség, hogy az

elméleti gorbe masodik és harmadik momentumat illesztjuk a mért értékekhez.

Itt az iires csovet jellemzd paraméterek meghatarozasanak csupan elvi modszereit adtuk
meg, hiszen a végsdé cél az attorési gorbe leirasa, illetve egy alldagyas adszorber

modellezése, ott pedig az aramlas a 3.3. fejezetben bemutatott modell szerint térténik.

Porbzus toltott agyon keresztili aramlas jellemzéséhez 6t paraméter szilkséges. Ezek mj,
my, M3, p és a kaszkadelemszam. mj-et ismételten az agy ures térfogata, az aramlasi

sebesség és a kaszkadelem szam segitségével hatarozzuk meg. A tovabbiakban a legkisebb
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négyzetek elve alapjan minden egyes n-hez megkeressiik a legjobb illeszkedést biztositd
my, M3 és p ertékkészletet. Azt az n-t tekintjlik optimalisnak, amely a legjobb illeszkedést

biztositja.

A 10. dbran bemutatunk egy elméleti és egy mért tartozkodasi ido siiriségfiiggvényt. A
tartozkodasi idé elméleti siirliségfliggvényét a (188) 0Osszefiiggéssel szamoltuk. A
gyakorlati siiriiségfiiggvényt egy olyan adszorberen mértik, melynek dres térfogata 13,85
cm®, az éaramlas sebessége pedig 200 cm®lperc volt. Az elméleti gorbe optimalis

paraméterei a kovetkezok:

n=10, m3z=4,332 1/sec,
m;=2,407 1/sec, u=1,184,
m»=1,296 1/sec.

—— mérés
0,4

_ szamolas

0,2

2 4 6 8 10 F/Vt

10. &bra.
Tartézkodasi idospektrum egy 17 g aktiv szén adszorbenst tartalmazd

adszorberben. Ures térfogat 13,85 cm® aramlasi sebesség 200 cm*/perc volt.
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Végul az eddig birtokunkban 1évé adatok segitségével szamitsuk ki az attorési gorbét
ugyanebben az adszorberben. A szamitashoz a (265) dsszefliggést hasznaljuk fel a

kovetkez6 paraméterekkel.

Vi  fluidum térfogata az Ustben: 4400 cm?,
V, az adszorber Ures térfogata: 13,85 cm?,
My adszorbens tdmege az Ustben: 3 g,

M, adszorbens tdmege az adszorberben: 17 g,

k= M, £=1800,24,
M,V

k a
n kaszkadelem szam: 10,

F  aramlasi sebesség: 210 cm?/perc,

m, =n 5 =151,61/ perc,

R2=035=—"12
ml+m2
m2=8L6i.
perc
C
Co

0,6

0,4

mérés
0,2
szamolas

400 800 1200 1600 2000 t min

11. abra.

Meért és szamitott attdrési gorbe
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Az atadasi kinetikara vonatkozé adatok

m3=m1,=0,0328 1/perc,
m4=m>;=0,0129 1/perc,
meg=m3,=0,00168 1/perc,
ms=(j-1) mg=0,00555 1/perc,

j=4.3.
c,
0,6
0,4
mérés
0,2
szamolas
400 800 1200 1600 2000 t min

12. 4bra.

Szamitott attorési gorbe maddositott adatok esetén.

Ezek ismeretében szamitottuk az attorési gorbét, és 0sszehasonlitottuk a Lee altal mért

gorbével (11. abra).

A jobb illeszkedés érdekében megvaltoztattunk két paramétert a hétbol. A kinetikai
vizsgalat rovid id6tartama miatt a j és me paraméterek értékét célszerii modositani. Az Uj j

és mg értékek
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Me=7,210-4 1/min, és j=3,1.

A javitott illeszkedés lathat6 a 12. abran.

Az igy mddositott adatrendszert félhasznaltuk egy 50 g szorbenst tartalmaz6 adszorber

szamitasara is. A mért és szamitott gorbéket a 13. dbran mutatjuk be.

mg
dm’
L4 mérés
e szamolas
0,4
0,2

400 800 1200 1600 t min

13. &bra.
Szamitott és mért attdrési gorbe egy 50 g aktivszén
adszorbenst tartalmazé adszorberben.
F =200 cm*min V = 40,74 cm®

A szémitott gorbe jol illeszkedik a mért adatokhoz, ami a modell méretndvelésre vald

alkalmassagat mutatja.
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4. OSSZEFOGLALAS

Ebben a munkéban az adszorpcié folyamatanak valdszinliségi modelljét épitettiik ki. Ez a
szakirodalomban eddig 4ltalanosan alkalmazott szemlélettdl alapjaiban is eltér. A
folyamatot egy emlékezet nélkili, Markov folyamatnak tekintettiik. Lineéris adszorpcios
egyensuly esetében definialtuk a rendszerben lezajlé elemi eseményeket, és felirtuk az

atmenet valoszintiségekre vonatkozo Kolgomorov egyenleteket.

Tokéletesen kevert Ustben lejatsz6d6 adszorpciot tekintve megallapitottuk, hogy a pontos
leirds érdekében a szilard fazis kapacitasat két részre kell osztani. Ezek sorosan
kapcsolddnak egymashoz. A fluid kapacitasok ismeretében meghataroztuk a kifejlesztett

modell paramétereit.

Az adszorpcids kinetika leirasa utan, az itt nyert ismereteket felhasznaltuk egy all6 agyban
lejatsz6d6 adszorpcio leirdsara is. Az agyat elemi celldkra osztottuk, és megadtuk a
molekulamozgasok, atmenetek valosziniiségét. A tokéletesen kevert {isthdz képest a
molekuldk itt nem csak a fazisok kozott, hanem az egyes celldk kozott is mozoghatnak. A
fazisok kozotti mozgés jellemzésére megtartottuk a tokéletesen kevert Ustben hasznalt
paramétereket. A cellak kozotti kapesolat leirasara eldszor megvizsgaltuk, hogy egy Dirac-
impulzus szerien beadott inaktiv jelzOanyag hogyan iiriill ki az adszorberbdl.
Meghataroztuk, hogy a jelzéanyag molekuldi milyen intenzitassal mozognak az egyik
cellabol a masikba elére és vissza. Megallapitottuk, hogy a pordzus dgyon valo ataramlas
helyes leirasahoz meg kell adnunk azt is, hogy a molekulak milyen intenzitassal képesek
behatolni a pdrusokba, és milyen intenzitissal szabadulnak ki onnan. A tartézkodasi id6

spektrum alapjan megallapitottuk a rendszer adekvat leirasahoz sziikséges cellaszamot is.

Az é&ramléasra vonatkoz6 és az adszorpciora mar meglévd ismereteink birtokdban a két
modell egyesitésével meghataroztuk egy adszorber attorési gorbéjét. Tekintve, hogy az
intenzitas fliggvények értékét egymastol flggetlenul hataroztuk meg a 8. abran bemutatott

egyezés jonak tekinthetd.
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A modell hasznalhatdsagat mutatja az is, hogy két (legnagyobb kisérleti hibaval terhelt)
paraméter valtoztatasaval az egyezés nagymértékben javithatd, és az (j paraméter egyuttes

egy nagyobb adszorber leirasara is alkalmas.

Valamennyi &ltalunk Kiépitett modellt analitikusan oldottuk meg. A megoldashoz a

matrixszamitas és a determinanselmélet 6sszefliggéseit hasznaltuk fel.

A valosziniiségi alapon kifejlesztett modellek elénye, hogy kis szamua paramétert
tartalmaznak. Tovabbi el6nye, hogy a valdés molekulamozgasok alapjan fejlesztettiik ki

azokat, a szemlélet megtartasa mellett konnyen tovabb fejleszthetok mas koriilményekre is.

Uj tudomanyos eredmények

1. Megéllapitottam, hogy az adszorpcids folyamatok a Chapman-Kolgomorov féle

sztochasztikus differencialegyenletekkel is leirhatok.

2. A vizsgélt koncentracitartomanyban linearis adszorpcios izoterméval jellemzett
trikloretan esetében az adszorpcios kinetika leirdsdhoz az 1. pontban meghatéarozott
modszer esetében elegendd, ha a rendszert harom részre osztjuk: egy folyadékfazisra, egy

feliileti adszorbens kapacitasra és egy ugynevezett belsd, vagy mag kapacitasra.

3. Modszert adtam arra, hogyan kell egymastdl fiiggetleniil viselkedé molekuldk esetében

leirni egy molekula el6fordulasi valosziniiségét az egyes allapotok kdzott.

4. Megallapitottam az el6forduldsi valdsziniiségfliggvény paramétereit, az intenzités-
fliggvényeket. Meghataroztam az intenzitasfliggvények és a folyamatot befolyasolo
klasszikus paraméterek (mint példaul az egyensulyi izoterma meredeksége, vagy a folyamat

induld sebessége) kozotti kapcsolatokat.

5. All6agyas adszorberek leirasara kaszkadmodellt dolgoztam ki. Ha az adszorber olyan

koncentraciotartomanyban dolgozik, ahol az adszorpcios izoterma linearis, akkor a
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molekuldk viselkedése egymastol fliggetlennek tekinthetd, és a hossztengely mentén n
egyenld részre felosztott adszorberben a 2. pont alapjan a molekuldk 3n lehetséges

allapotban fordulhatnak el6.

6. A molekula mozgasok intenzitasfliggvényeib6l az aramlassal illetve a vissza-
keveredéssel kapcsolatos intenzitasfiggvényeket, valamint a sziikséges kaszkadelem
szdmot a tartozkodasi id6 eloszlasfuggvénye segitségével az adszorpciés mérésektdl

fuggetlendl hidrodinamikai vizsgalat alapjan hataroztam meg.

7. A Kkinetikai valamint a hidrodinamikai vizsgalatban meghatarozott paraméterek

szintézisével modellt épitettem ki attorési gorbe szamitasra.

8. Megmutattam hogy a modell méretndvelési célokra is alkalmas.
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A felllet, keresztmetszet

A Avogadrd szdm

A matrix

Aj matrix

B folyadék térfogataram

B diagonal matrix

Bjj diagonal submatrix

Ci i-ik komponens koncentracioja a folyadék fazisban
D diffazios allando

e i elemii vektor, a j-edik elem 1 a tébbi 0
E egység matrix

f fajlagos szabadenergia

f stirtiségfliggvény

f(c)  egyensulyi 6sszefiiggés

F szabadenergia

F eloszlas fuggvény

F folyadék térfogataram

g fajlagos szabad entalpia

g(t) tartdzkodasi ido siirliségfiiggvénye

h fajlagos entalpia

Kk Boltzman allandé

K izoterma meredekség
Ki izoterma konstans

lj Lagrange féle métrix polinom elem

L oszlophossz

Li Lagrange féle matrix polinom
m tomeg

m; intenzitas fuggvény

m;; intenzitas fuggvény

mn n-edik momentum

m/s

gmol/dm?®

m?/s

J/igmol

gmol/m®
J

m/s

J/igmol

J/igmol
J/(db K)
m, —

m>/gmol

kg
1/s
1/s

s™Ygmol/m?
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n-ed rendii determinans

varhato érték

tomeg

intenzitasfliggvenyek matrixa
intenzitasfliggvények submatrixa
molszam

kaszkadelemszam

molekulak eloszlasanak vektora
i-edik allapotban 1évé molekulak szama
molszam

Komponens aramsuriiség
nyomas

valosziniiség

valosziniiség

kg

gmol

gmol

gmol/m?

el6fordulasi valosziniiség vagy i-ed rendii valdszinliség

valosziniiségi vektor
atmenetvaldszinliség

az atmenetvaloszintiségek matrixa

az atmenetvalosziniiségek submatrixa
adszorpcios hd

i-ik komponens koncentracioja az adszorbensen
hémennyiség

molekula szam a szilard fazisban
sugar

sugar

univerzalis gazallando

entrdpia

adszorbens térfogataram

ido

abszolut hdmérséklet

fajlagos belsé energia

utazasi sebesség

J/igmol
gmol/dm®
J

m
m
J/igmol K
JIK
m®/s
S
K
J/igmol

m/s
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U belsd energia J

U sajatvektorokbdl alkotott matrix

Unz  (n-2)x(n-2) matrix

v fajlagos mol térfogat m3gmol

Vi sajatvektor

Vo Ureskeresztmetszeti sebesség m/s

\Y térfogat m?®

Vv sajatvektorokbdl alkotott matrix

w koncentracio gmol/kg

Wi sajatvektor
w sajatvektorokbdl alkotott matrix

z helykoordinata m

Gorog betlk

a térfogathanyad -

B w/mz /(m1+m2) -

Bi komponensatadasi tényezo m/s

dm molekulék feliiletigénye m?/gmol
r feliileti koncentrécié gmol/m?
£ iireskeresztmetszeti tényezo -

Ag energia kiilonbség J/db

Ai sajatérték

N sajatérték

u kémiai potencial J/igmol
K aranyossagi tényezo

Hn n-edik abszolit momentum s"

™ n-edik centélis momentum s"

Vi molekula szam valosziniiségi valtozd
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molekulak eloszlasanak valosziniiségi vektora
fajlagos felulet

karakterisztikus egyenlet gytke

szétteruilési nyomas

3.141...

ordd

ido

feluleti boritottsag

atmeneti valtozo

diszkrét valdszinliségi valtozo

karakterisztikus egyenlet gytke

1/m, m%kg
1/m
N/m
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FUGGELEK I.

A ﬁzPMn differencialegyenlet megoldasa

dt

Az (141) differencialegyenletben szerepld

M,=C0Fm;,-m, m,+m, U
E m, m,-2m, m,+m, E
O m, 0 (F1)
E m,-2m, m + ng
E m, m, —m,H

matrixot felirhatjuk diagonalis, illetve szimmetrikus matrixok szorzataként is a kovetkezd

modon:
M,=—/m,(m,+m,)BM B™ (F2)
ahol
B :HBO 0 B: m2
0 1 O m, +m,
o P 0
O B? O (F3)
O [l
0 O 0
H B"H
és
ol 0
EE g
M; = 1 O
U1 =+ U
g g
0 0 0 (F4)
0 1 0
O ~+B -10
0 B . 0
g g
_1 -
H B P
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Ezek utan az (141) differencialegyenlet (143) kezdeti feltételt kielégité6 megoldasa
P=expf-/m,(m,+m,)BM; Bt} (F5)
illetve a megoldas Taylor sora

-B./m,(m, +m, tM;B‘l}k_“’ {— m,(m, +m, tM’;}k

p:Z{ . =58 y B (F6)

Visszairva a modositott Taylor sort exponencialis fuggvénnyé, a megoldas egy masik

alakjat kapjuk:
P=Bexpf-./m,(m,+m,)tm; }B (F7)

Az M’ matrix tetszdleges fliggvényét eldallithatjuk a sajat vektorok és sajatértékek

segitségével a kovetkezé modon:
f(M})=W F(A,) DV (F9)

Ahol W a baloldali, V pedig a jobboldali sajat vektorokbol alkotott matrix, A; pedig az M
matrix i-edik sajatértéke. A [zardjelek egy diagonalis matrixot jeldlnek, melynek i-edik

atloeleme f(A)).

Ezek utan a P explicit kifejezéséhez meg kell keresni az M|, matrix A; sajatértékeit. Ehhez

meg kell oldani az M, matrix karakterisztikus egyenletét, ami nem mas mint
Deth\E-M:|=0 (F9)

Ez az egyenlet A-ban n-ed fok( algebrai egyenlet. Uj valtozoként vezessiik be cos ©-t. Ezt

A-val a kovetkezOképpen definialhatjuk.
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—2c056=)\—8—é (F10)

Ezzel a karakterisztikus egyenletet a kovetkezd alakra hozhatjuk:

Det[)\E—M’;jz B —2cosO 1 0 [E=O
O _ O
0 1 2coso 1 0
O 1 —2cosO 1 O (F11)
B 1 —2c0s0 1 B
0 1 B —2cosB]
Ez méasképpen irva
Det[)\E—M;]z Det %—Zcose e 0 Ezo
0 e” U, e 0 (F12)
O 2T o _ O
0 0 e, B 2cos(9D
ahol
e;-z = 10 eﬂjﬁ = [0 U,., = [+2cosH 1 O
O 0 O
1 —2c0s0
U a\% 0 U (F13)
(M oo 0 0] 1 O
or zla 2 1 -2cos07
Azonban
Det[U, ,]=u,,=-2cosbu, ;-u, , =(-1)"> M (F14)
sn@
Az (F14) azonossag felhasznalasaval kifejthetjik az (F12) determinanst:
Deth\E-M’ |=m, =B%u,_, +2Bu,, = (-1)"? +u, (F15)

Behelyettesitve az (F14) kifejezés jobboldalat (F15)-be, a karakterisztikus egyenlet

trigonometrikus alakjéat kapjuk:
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sin(n +1)[(9_2[3 shn[6+stn(n—1)[6 -0

sno sno sno

(F16)

Ez az egyenlet aO0<6<mintervallumban pontosan n gyokkel bir. Ezek utdn az M, matrix k-

adik sajatértéke
1
)\,(=[3+E—Zcosek (F17)

Az M| matrix Lagrange féle matrix polinomjait és sajatvektorait a [)\kE—M*n] matrix

adjungaltja segitségével hatarozhatjuk meg:

L 0)=wyvy = AdRE- ] (F18)
amn()\k)

Az adjungalt matrix felirdsahoz ismernunk kell a ‘)\kE—M; determinéns i,j eleméhez

tartoz6 eldjeles aldeterminanst. Jeldljiik ezt a; j-vel i<j esetén

au:Det{ BzcosQ 1 G G, }
oszlop  oszlop
1 -2c0sQ 1 ¢ l
1 -2c0sQ 1
1 -2cosQ| 1 -<«—— (i-1). sor
1 -2cos@ 1 <«— (i+1). sor
1 -2cosQ 1
i-1 !
1
1 -2cosQ 1
1 -2cos@,
1 1
-2c0sQ 1
o) 1 -2cosQ 1
i 1 B2cosQ)
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ST TR S

(_1)n+15ts|.n|9k _Bsn(f—l)ek%%Sn(nfrl—j)ek SN
[ SinB, snB, [ sinB, sin@,

Ugyanerre az eredményre jutunk, ha az a;; elemet akarjuk kiszamitani (i<j):

sin(n- )0, ]

a; = Det { | p2cos@ 1
1 -2cos@ 1
i-1
1 -2cosQ 1
1 -2cosQ
1 1
-2c0sQ, 1
1 -2cosQ 1
1
1
o
1 -2cosQ 1
(-1). sor —— 1 -2cosQ 1
(j+1). sor ——» 1 |-2cosQ 1
T T 1 -2cosQ 1
(i-1).  (i+1).
oszlop oszlop 1 B2cos@)

q;; = (B U+ ui—l)(B Upjg FU AL = (_1)n+1

[sini6 sin(i-1)6, Osin(n+1-)6 sn(n-j)6, 0
NI _psin(i-1)8, tsn(n+1-))8, _gsin(n=j)8 -
[ SinB, snB, [ sinB, sing,

is kovetkezik.

i>] esetén az a;; elemet a kdvetkezdképpen kell eldallitani:

(F20)

(F22)

= sz
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(F23)

CEn . . y e D
a, = (1) 1%5'_”19;( ~ sm(.J 16, [Sm(n.+1 )8, _Bsm(rl )0, 0
Csin®, sn, [C sing, sin@,

Ahhoz azonban, hogy az adjungéalt matrixot felbonthassuk két vektor diadikus szorzatéra,
és igy modunk legyen a sajatvektorok meghatarozasara, még be kell latnunk, hogy az (F20)

és (F23) kifejezésekben az indexek egymassal felcserélhetok.

A bizonyitashoz felhasznaljuk a determinans elmélet 6sszefiiggését, miszerint egy (n+2)-ed
rendii determinans (n+1)-ed rendii minoraibdl képzett D;iD;;—D;iDji kifejezés eldallithato két

tényez6 szorzataként:

DiiDjj—DiijiZ D i D (F24)
ij

Itt D; egy n-ed rendii determindnst jeldl, amely gy keletkezett az eredeti (n+2)-ed rendii
i

D determinansbdl, hogy két sort (i,j) és két oszlopot (i,j) toroltink.

Ha a D determinans azonosan egyenlé a my, = ‘AKE— M| determinanssal, akkor az (F24)

kifejezést a kovetkezdképpen irhatjuk fel:

Detl)\kE—M;]aij =a,a, —a,a, =m. g, (F25)
ij ij

i ij G
ij

Tudjuk azonban, hogy m, a 6« helyen zérus, ezért igaz, hogy
dij &jj = ajj aji (F26)
illetve felhasznalva az (F20) dsszefliggést

(_ 1)2(i+j) (Bui—z + ui—l)(Bun—i—l + ur1—i )@uj—z + uj—l)(Bun—j—l + un—j )=
(_ 1)2(i+j) (Bui—z + ui—1)2 @un—j—l + un—j

(F27)
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az (F27) azonossagot kapjuk, amely egyszeriisités utan a kovetkezd alakra redukélhato:
(Bui—Z + ui—l)(Bun—j—l + un-j ):(Buj—Z + uj—l)(Bun—i—l + un—i ) (F28)

és ez az, amit bizonyitani akartunk. Eliminalva u-kat az (F28) kifejezésbol, a kovetkezo

azonossaghoz jutunk:

Eksiniek _,8n(i-1)6, OENn(n+1-))86, _Bsin(n—j)ek E_
sinB sin® sinB sinB
O K kU k k O (F29)
[(kinjB, sn(j-1)6, OCsin(n+1-i)6, sn(n-i)6, O
3 - : . -B— 0
[SinB, sne, [ sinB, sné,

Felhasznalva ezt az egyenletet mar fel tudjuk bontani az adjungalt matrixot két vektor

diadikus szorzatara amivel a k-ik Lagrange féle méatrixpolinom

D™ oa 1
d sin? e
—m,(A k
d)\ n( k)

L (M) = (F30)

ahol

sinl6, -Bsin06,
sin26, —3sin1B,

w, =0 0 v,=0 sinnB -Bsin(n-1)6, 0O
0 (]
0 (]
0 sin36, -psin20, O
0 (]
0 (]
£ B

%in(n—l)ek—Bsin(n—Z)ekB
0 M 0
o sin20,-Bsinl8, o
H sn16,-psn08, H

M
nnd, —-Bsin(n-1)06

A % m, (A, ) meghatérozasahoz fejezzuk ki az m, determinénst, mint a 0 fuggvényét:

[Ein(n+1)0

mn:mn(e):(_l)n E ZBSinn9+Bz Sn(n—l)eg

sin® sin® sinB

(F31)

ahol
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ezwccos%%+i—7\% (F32)
[ B
Mivel
dm, _ (=1)" (n+1)cos(n+1)Bsin®-cosBsin(n+1)8 _
de sin’@
(-1)"28 ncosnean;cosesnne N (F33)
sin“0
(-1)"B (n—1)cos(n—1)6sinB—cosBsin(n—1)6
sin’0
és
®_ 1 (F34)
dA» 2sn®@
ezért
dm, dm, do _ (-1)"n
()= - ED N (F35)
dA dd d\» 2sin°0,
ahol
D: = [EH EEEcos(n +1)6, —2BcosnB, + [B_—EEHBZ cos(n-1)8, (F36)
n n

Az M’ matrix k-adik bal és jobboldali sajatvektora

_2 * _2 *
W, = [—— W Vv, = \Y; F37
k nDﬁ k k nDi k ( )

Az (F7, F8) és (F37) egyenletek alapjan differencidlegyenlet megoldésa
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PBwW [b‘w/mz(mﬁmz)(B"'%‘zcosek)t

v B™ (F38)
Ez utébbi egyenlet igy is irhatd:

P - B W [b—(m1+m2)([52+1—20039k)t W B—l (F39)
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FUGGELEK II.
dP_ . . .
A di- PM,, differencialegyenlet megoldasa

A (172) differencialegyenletet felirhatjuk az alabbi formaban is:

F40
dt %21 P22 H %21 P22 B H/I 21 M 22 B ( )

illetve —3[d kiemelése utan

éjl})ll PlZ D = - B m Dl?ll PlZ Dm OD@\H Alz DEB_l 0 B (F41)
t M O [l -
o Porl] %)21 P, DB) BB%‘& A,0g0 B lD

B és B definiciojat az (F3) egyenlettel adtuk meg, d jelentését a (177) egyenlet hatarozza
meg. Legyen

o*=— és oa=— (F42)

ekkor Aji-et megadhatjuk a kvetkezd formaban:

A,=m@* -1 0 00O
5—1 a -1 B
0o -1 a O
0 O (F43)
0 0
O a -10
FO -1 G*F
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Az Ay matrix struktGrdja azonos az M|, matrix struktirajaval, ezért (j valtozo a cos®

bevezetésével

—2cos9=)\—0(=)\—[3—l—ﬂ (F44)
B dB

(F44) alapjan az (F16)-al azonos karakterisztikus egyenlethez jutunk.

S|n(lrl+1)9_ZBS|I.‘ln9+BzSln(Ijl—l)Bzo (F45)
sin® sin® sin®
igy az A11 matrix i-edik sajatértéke
1. m,
A, =B+—-+——2cos6, (F46)
B dB

a sajatvektorok pedig megegyeznek az M, matrix sajatvektoraival. Ezek utan az Aj;

matrix eldallithato a sajatvektorok és sajatértékek segitségével is.

Ap=WINDV =S Awy, = S AL, (F47)

Figyelembe véve, hogy a Lagrange féle matrix polinomok 0sszege az egysegmatrixszal

azonos, felirhatjuk az A1z, Az, Az, matrixokat a kovetkezé modon is:

n n m
Aun= )AL A,=)-2L,

L C _ C
AZl:Z_dTSLi Ay = ) dTBLi

Felhasznalva két matrix direkt szorzatat és bevezetve a
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m, . c
2=y lletve — = F49
ad 8 it (F49)

(j véltozokat, a (172) differencialegyenletet igy is irhatjuk:

d [

—P=-prmr B ODD -VOx, olB 00O

dt ! O .0 (F50)
D BH™ H—u ud  Pgo Big

Az (F50) egyenlet megoldasa az el6z6 fejezetben latottakhoz hasonldan

P= $ ODexpEZ Bmmm —VOx [, EEB‘l 00

O O (F51)
- Fu wg  Ygo B'g

Az exponencidlis fliggvényt Taylor sorba fejtve, valamint kihasznalva a Lagrange féle

matrix polinomok ortogonalitasat, a direkt szorzatok szorzasi szabalya alapjan irhatjuk
- (CRLAt)” BEDIDI) Sz ~viixm, gHB* 00
H’ ] 5Ho .0 (F52)
HoH 00 B[O

(BUEmM* ) _yiixn Emr oC
i F53
EZ; k! H—u HH 0 _1% (F53)

P=[B OOHY exp(-d O\ ‘V?xﬂ_i 5B 00
O

boedm B C

Legyen

A, =m, +2m, - 2dB cos6, (F55)
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akkor

D, =—BWON -vI=G-\,-m, m,O
il oo g (F56)
L uHg Qo ¢ —C[

Ez utobbi matrix a sajatvektorok és sajatértékek segitségével

-m; O O m; O
q-¢ g 1 SDDb +q 0 ot —oO
DI - ai —- D 2 O g — G
20, O b OO . O (F57)
o~ 0 —J—q_ 0= 1 O
E0; — ¢ H 2 IHEqi —G H
ahol
b, =\, +m, +c (F58)
b
c=—-c¢ F59
=5 (F59)
b?
a = 7'—7\*#3 (F60)
A (F54) kifejezésbol viszont
exp(-BLAI® CA, -vO)=Q, =exp(D;t
p(-BLdi oA, 0) =Q; =exp(D;t) (F61)
Tl
ugyancsak kifejezhetd a sajatértékek és sajatvektorok segitségével.
-m; O O m; 0O
_4-¢ gl ool oo L = O
Q= g —¢-e O g —¢
29, U c g & O (F62)
LR = -Eﬂqﬂ 0~-¢ 10
E0; — ¢ E quu —G Bl

Ahhoz azonban, hogy a megoldasbol elballitsuk a Py; blokkot, elég a Q; matrix (1,1)

elemének ismerete. Jeloljik ezt fi-vel
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—-C. - bi_ \B -+ C. _Bli+ \B
T Bl PN TIPS (F63)
29; 29
akkor
P,=B %ZfiLEB'lzBWEfi ovB™ (F64)
K=

Az utolso kaszkéadelemet leiré atmenet-valdsziniiség ebbdl

in 2

2 B
P === D
np e [EHi[Epos(n +1)8, - 2Bcosn®, "‘F’>2[B-+i[Ecos(n—1)9i



114

PUBLIKACIOK

10.

11.

Argyelan J., Horvath G., Kotsis L., Szanya T., Szolcsanyi P.: Zartter(i Kromatografias
Eljaradsok, Magyar Kémikusok Lapja, XXXV, 11, 580-586, 1980

Kotsis L., Argyelan J.: Transfer Processes upon Pressure Swing Adsorption I.,

Hungarian Journal of Industrial Chemistry, 9, 73-88, 1981

Kotsis L. Argyelan J. : Transfer Processes upon Pressure Swing Adsorption Il, Kinetic

Examination, Hungarian Journal of Industrial Chemistry, 10, 143-154, 1982

Argyelan J. Kotsis L.: Transfer Processes upon Pressure Swing Adsorption Ill., The
Role of Pore Structure and Surface Resistance of Cristallites, Hungarian Journal of
Industrial Chemistry, 10, 155-168, 1982

Kotsis L. Argyelan J. : Transfer Processes upon Pressure Swing Adsorption IV. The

problem of Scale-up, Hungarian Journal of Industrial Chemistry, 11, 417-423, 1983

Kotsis L., Argyelan J., Szocsanyi P., Pataki K.: Application of Natural Zeolites for Air
Separation, Reaction Kinetics and Catalysis Letters, 18, 1-2, 149-153, 1981

Kotsis L., Argyelan J., Szolcsanyi P.: Levegd Szétvalasztas Egylépéses Nyomdasvalto
Szorpcids Eljarassal-Méretndvelés Kérdései, Mgyar Kémikusok Lapja, XXXVIII, 6,
240-244, 1983

Kutics K., Kotsis L., Szolcsanyi P., Argyelan J.: Production of Activated Carbon from
Walnut Shell 1. Hungarian Journal of Industrial Chemistry, 12, 319-328, 1984

Kutics K. Kotsis L. Argyelan J. Szolcsanyi P.: Production of Activat ed Carbon from
Walnut Shell 1. Pore Structure Investigation, Hungarian Journal of Industrial
Chemistry, 14, 353-362, 1986

Kotsis L., Szolcsanyi P., Kutics K., Argyelan J., Hanak L.: Aplication of Hungarian
Zeolites for the Adsorption of Solvent Vapors, Epitéanyag, 37, 214-216, 1984

Kotsis L. Argyelan J., Szolcsanyi P., Kutics K.,: Modification of the Sorption Kinetic
Characteristics of Natural Zeolit Adsorbents Used in Pressure Swing Adsorption
Operations, Reaction Kinetics an Catalysis Letters, 27,1, 143-146, 1985



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

115

Kutics K., Kotsis L., Argyelan J., Szolcsanyi P.: Study of the Adsorption
Characteristics and pore Structure of Activated Carbons, Surface Technology, 25, 87-
96, 1985

Kotsis L., Argyelan J., Szolcsanyi P., Kutics K.: Some Aspects of Calculation of
Short-cyclic Adsorption Separation (PSA), Zhurnal Prikladnoi Khimii, 59, 2141-2146,
1986

Schollner,R.;  Franke,T.; HoffmannJ.; Kotsisl.; Argyelan J.; Kutics K.:
Untersuchungen zur Kurzzeitkinetik der Adsorption an Zeolithen: Chemische Technik,
42, 6, 260-263, 1990

Kotsis L.; Argyelan J.; Pataki K.: Hazai Tremészetes Zeolitbazisu Adszorbensek
Alkalmazhatosaga Levegd Szeparacidjara; Hazai Természetes Zeolitok Kutatasa ¢€s

Felhasznalasa, MTA VEAB Veszprém, 187-194, 1982

Kotsis L.; Argyelan J.:Mass Transfer Processes upon Pressure Swing
Adsorption;Proceedings of the 3rd Austrian-Italian-Yugoslav Chem. Eng.Conference,
Sept14-16, 1982, Graz,Vol.I1,191-198, 1982

Kotsis L., Szolcsanyi P., Argyelan J., Kutics K.: Processing of Hydrogen Containing
Industrial Waste Gases by Pressure Swing Adsorption, Proceedings of the 6th
Conference on Adsorption, June 10-14, 1985, Liplice, Czechosl., pp 189-192

J. Argyelan: Solution of the Differential Equation of the Dispersion Type Tube
Reaktor, Hungarian Journal of Industrial Chemistry Veszprém Vol. 5 pp.203-208 1977

R. Mohilla, J. Argyelan, P. szolcsanyi: Rapid Method for the Calculation of the
Breakthrough Curves of gas Adsorbers, Hungarian Journal of Industrial Chemistry
Veszprém Vol. 12 pp. 307-318 1984

J. Argyelan: Solution of the Differential Equation set Used to Describe the component
transfer between a Solid and Fluid phase. Error analysis of the Solution..., Hungarian
Journal of Industrial Chemistry Veszprém Vol. 14 pp. 353-362 1986

R. Mohilla, B. Ferencz, J. Argyelan: Temperature Distribution in a Fluid Transporting
Tube Made of Heat Conducting Material Heated over a Certain Length, Hungarian
Journal of Industrial Chemistry Veszprém Vol. 7 pp. 215-220 1979



22.

23.

24,

25.

26.

217.

28.

29.

30.

31.

32.

33.

116

Mohilla R., Argyelan J., Szolcsanyi P.: Gyors mddszer gaztisztitd adszorberek attoresi

gorbéjének szamitasara, Magyar Kémikusok Lapja XLI. 2. szam55-60 old. 1986

J. Argyelén, K. Kutics: Determination of Pore Distribution from Adsorption Isoterms
in Micropore Region, Adsorption in Microporous Adsorbent. Workshop I11. Vol 11/79
1987

R. Mohilla, J. Argyelan, P. Szolcsanyi: Rapid Method for the Calculation of the
Breakthrough Curves of gas Adsorbers, Intern. Chem. Eng. Trans. of the Best of
Chem. Eng. Vol. 27 No. 4 723-729 1987

J. Argyelan, R. Nassar: A Stochastic Model for Adsorption in an Open Flow System,
Environmetrics, 1992 3 (4) 431-445

J. Argyelan, A. P. Methews, R Nassar, S. M. Lee: A Non-Linear Stochastic Model for
Adsorption in Batch Reactors. Wat. Sci. Techn. Vol. 24 No. 6 49-56 1991.

Kutics K., Kotsis L., Szolcsanyi P., Argyelan J.: Production of Activated Carbon from
Walnut Shell I. Hungarian Journal of Industrial Chemistry, 12, 319-328, 1984

Kutics K., Kotsis L., Argyelan J., Szolcsanyi P.: Production of Activated Carbon from
Walnut Shell Il. Hungarian Journal of Industrial Chemistry, 14, 353-362, 1986

Kutics K., Kotsis L., Argyelan J., Szolcsanyi P.. Study of the Adsorption
Characteristics and pore Structure of Activated Carbons, Surface Technology, 25, 87-
96, 1985

Kotsis L., Argyelan J., Szolcsanyi P., Kutics K.: Some Aspects of Calculation of
Short-cyclic Adsorption Separation (PSA), Zhurnal Prikladnoi Khimii, 59, 2141-2146,
1986

Schoéllner,R.; Franke,T.; Hoffmann,J.; Kotsis L.; Argyelan J.; Kutics K.:
Untersuchungen zur Kurzzeitkinetik der Adsorption an Zeolithen: Chemische Technik,
42, 6, 260-263, 1990

J. Argyelan: Fenol all6agyas adszorpcidjanak matematikai statisztikai modszerekkel

val6 modellezése, 11l. Masodnyersanyag Hasznositd Konferencia, Sopron, (1992).

J. Argyelén, R. Nassar: A Stochastic Model for Adsorption 42. Canadien Chem. Eng.
Conf. Oct. 18-21. 1992. Toronto Canada. Prociding



34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

117

R. Mohilla, B.Ferencz: Chemical Process Dynamics, Akadémiai Kiad6, Budapest:

Elsevier Scientific Publishing Company Amsterdam (1982) Appendix 3.

M. Miron, T.Szénya, L. Handk, J.Argyelan, Gy. Marton: Mathematical Modelling of
Displacement Chromatography, Hungarian Journal of Industrial Chemistry VVeszprém
Vol. 23 pp.293-298 (1995).

Szanya T., Hanak L., Simon G., Argyelan J., ...Purification of Radioactive
Decontamination Liquids from Nuclear Power Plant Paks with Adsorption and lon-
Exchange Processes, 2nd International Seminar on Primary and Secondary Side Water

Chemistry of Nuclear Power Plant, 19-23 September, 1995. Balatonfiired, Hungary

Kovacs S., Argyelan J., Syanya T., Hanak L: Tulterheléses preparativ kromatografia
kristalykivalassal a folyadék fayisban, Miszaki Kémiai Napok, Veszprém, 1999
aprilis. 27-29

G Horvath, J. Argyelan, M. Suzuki: Engineering tools for the Solution of Large
Capacity Emitted Gas Separation, Regional Course of Trilaterial Cooperation Austria,

Hungary and Slovakia, Brtislava, Nov. 29- Dec. 3, 1998

Szanya T., Handk L., Argyelan J., ...Mathematical Modelling of Displacement
Chromatography, Symp. On Prep. Ind. Chrom. And Allied Technics, 23-25
September, 1998 Straspourg, France

J. Argyelan, R. Nassar: Stochastic Model for Adsorption, ISSHAC |11, Torun, Polland,
Aug. 9-16, 1998

J. Argyelan: Adsorption as a Markovien Process, Meiji University, Meiji, Japan, Nov.
10, 1998.

Ujhidy A., Argyelan J.. Aramlasi tér vizsgalata allohengeres tartalyban
hémérséklettranziens analizis segitségével, Miiszaki Kémiai Napok, Veszprém,

2000.04.25-27.

Szanya T., Argyelan J., Kovacs S., Hanak L.: Separation of steroid compounds by
overloaded preparative chomatography with precipitation in the fluid phase, PREP’
2000 Washington D.C. 2000 majus 13-16, USA



44,

45,

46.

47.

48.

49.

118

T. Szanya, J. Argyelan, S. Kovats, L. Hanak: Separation of steroid compounds by
overloaded preparative chomatography with precipitation in the fluid phase, Journal of
Chromatography A, 908 (2001) 265-272.

Szanya T., Aranyi A., Kovats S., Argyelan J., Mika L., Hanak L., Fejes R.:
Mathematical Modelling of the Simulating Moving Bed Liquid Chromatography,
PREP’ 2001 Washington D.C. 2001 majus 13-16, USA

J Argyelan: A Method of the Estimation of the Adsorption Isotherm from Integral Data,
Adsorption and Nanostructures, Third International Conference of the Deutsche
Kolloidgesellschaft, Colloid Science Group of the Hungarian Chemical Society and the
Colloid committe of the Hungarian Academy of Sciences. From Theory to Application
25-28 September, 2000 Budapest, Hungary.

J. Argyelan, ...: Investigation of the flow pattern in a stem generator by tracing
tecnics. 5-th International Seminar on Primary and Secondary Side Water Chemistry

of Nuclear Power Plant, 17-20 September, 2001. Eger, Hungary

T. Szanya, J. Argyelan, ...: Mathematical modelling of simulated moving bed
chromatography, SPICA 2002 9™ International Syimposium on Preparative and
Industrial Chromatography and Allied Technics, October 6-9, 2002 Heidelberg,

Germany

J. Argyelan and K. Kotsis: The cristalline size effect ont he adsorption kinetics of
granule, 8" Conference on Colloid Chemistry, September 18-20, 2002 Keszthely,
Hungary



