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Kivonat
A dolgozat szilárd mintákról visszaszórt keV-os elektronok mért energiaveszteségi

spektrumát vizsgálja a 0-70 eV-os tartományban. Kísérleti eredmények kiértékelésére a

jelölt kidolgozott egy Monte Carlo modellt, mely alapján számítógépes, szimulációs

programot készített. Mérések szimulációja során polySi, amorfGe és mikrokristályos Sn

minták energiaveszteségi függvényeit, valamint a polySi és az amorfGe mintákra felületi

gerjesztési paraméter értékeket határozott meg. A jelölt a SiO2 és Si3N4 rétegeken mért

rugalmas csúcs intenzitásokat felületi gerjesztésre korrigálta, és meghatározta a SiO2 és

Si3N4 átlagos rugalmatlan szabad úthossz értékeit. A jelölt multiréteg szerkezetű Ge-Si

minták rugalmas csúcs mélységi feltérképezésének számítógépes szimulációját végezte

különböző elektronenergián és mérési geometrián. Számított eredményei alapján

inhomogén (rétegsoros) Ge-Si minta mélységi feltérképezésére optimális elektronenergiát

és mérési geometriát határozott meg.

Monte Carlo simulation
of reflection electron energy loss spectra

Ph. D. Thesis
by

Gábor Tamás Orosz

Abstract
The thesis investigates reflected electon energy loss spectra (REELS) measured on solid

samples in the loss range of 0-70 eV. A Monte Carlo model, and accordingly a software

had been developed for evaluating measurements. Measured spectra of polySi, amorphous-

Ge and microcrystalline Sn samples had been simulated. Energy loss functions of polySi,

amorphous-Ge and microcrystalline Sn samples and also the surface excitation parameter

(SEP) values of polySi and amorphous-Ge samples were determined. Surface corrections

were made to elastic peak data measured on SiO2 and Si3N4 thin layers. Applying these

corrected elastic peak values the author determined inelastic mean free paths values of

SiO2 and Si3N4, using his Monte Carlo program. The author simulated elastic peak depth

profiling measurements on Ge-Si inhomogeneous (multilayer) samples. Optimum electron

energy and measurement geomerty for elastic peak depth profiling in an inhomogeneous

sample were determined.
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Monte Carlo Simulation von Energieverlustspektren
von rückgestreuten Elektronen

Dissertation
von

Gábor Tamás Orosz

Zusammenfassung
Die Dissertation behandelt die Energieverlustspektren von KeV Elektronen, rückgestreut

an Festkörperoberflaechen. Der Kandidat hat ein Monte Carlo Modell und Komputer

Simulationsverfahren (Software) entwickelt zur Auswertung von experimentellen

Ergebnissen. Mittels Simulation der Experimenten wurden die Energieverlustfunktionen

von Si, Ge und Sn, sowie die Obeflaechen -anregungsparameter von polySi und amorfGe

Proben bestimmt. Der Kandidat hat die elastische Piek Intensitaeten von SiO2, Si3N4

Schichten, sowie von Polyethylen Proben für Oberflaechenaregung korriegiert und die

mittlere freie Weglenge derselben bestimmt. Die Dissertation darstellt die Simulation die

mit EPES (Elektronenspektroskopie der elastischen Piek) gemessene Tiefienprofile von

Ge-Si Multischichten. Die Effekte der Messgeometrie und der Elektronenenergie wurden

mit der Simulation nachgewiesen.
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Bevezetés

Felületek, vékony rétegek és rétegátmenetek fontos szerepet játszanak a modern

technológiában, melyek sokoldalú vizsgálata szükséges. Egy lehetséges vizsgálati módszer

az, hogy a felületet keV-os elektronokkal bombázzuk, és a visszaszórt elektronok

energiaspektrumát analizáljuk, amiből a bombázott mintáról nyerhetünk információt. Ezen

az elven alapul a felületérzékeny elektron spektroszkópiai módszerek közül például az

Auger elektron spektroszkópia (AES - Auger Electron Spectroscopy) [1] és a visszaszórt

elektronok veszteségi spektroszkópiája (REELS - Reflection Electron Energy Loss

Spectroscopy) [2]. Az 1. ábra egy tipikus mért visszaszórt spektrumot mutat be a teljes

energiatartományban.

1. ábra Visszaszórt elektron

Ilyen spektrumnak szokásosan csa

elektronspektroszkópiai módszerekkel vég

fizikai folyamatok összességeként áll elő. 

elektronoknak a rugalmas csúcs (EP - Ela

tartományával a rugalmas csúcs elektron s

Spectroscopy) [3] foglalkozik. Azt meg

ionizációs csúcsok és az Auger csúcsok. A 

háttéren ülnek. Az EPES-REELS módszer 

(~0-100 eV-os) részt, AES az Auger csúcsok

A mérésekben egy elektronforrásból me

éri a mintát. Az elektronok a mintán belü

részt. A mintát elhagyó elektronok egy részé

Energia 

Auger csúcsok

rugalmas csúcs
háttér

S
REEL
ionizációs küszöb
ok energiaveszteségi spektruma

k egy részét vizsgálják a különböző

zett mérések. A teljes spektrum különböző

A veszteség nélkül (rugalmasan) visszaszórt

stic Peak) felel meg. A spektrumnak ezzel a

pektroszkópia (EPES - Elastic Peak Electron

előzik a kis energiaveszteségi csúcsok, az

spektrumban észlelt csúcsok általában jelentős

a rugalmas csúcsot és a kis energiaveszteségi

at vizsgálja.

gközelítőleg monoenergetikus elektronnyaláb

l rugalmas és rugalmatlan szórásban vesznek

t szög és energia szerint detektálhatjuk. Mérési

[eV]    EP
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eredmények kiértékeléséhez elektron transzport leírásra van szükség, hogy a rugalmas és

rugalmatlan szórások együttes hatását értelmezzük. Elektron transzport sokféleképpen

leírható, például elektromágneses elmélet, Boltzmann-egyenlet numerikus megoldása,

dielektromos elmélet [4-10], stb. keretén belül. Ezek az eljárások részletes számításokat

alkalmaznak a rugalmas és a rugalmatlan szórások leírására. A transzport folyamatokban

sok jelenség megoldása analitikusan nem ismert. Ezért nagyon sok elmélet alkalmaz Monte

Carlo (MC) szimulációs módszert [11-14], amely igen kényelmes eszköz a változó mérési

körülmények viszonylag könnyű kezelésére.

Célom egy egyszerű, hatékony eljárás kidolgozása, mellyel kísérleti

elektronspektroszkópiai eredményeket tudok kiértékelni.

Kifejlesztettem egy MC szimulációs modellt, amely keV-os elektronok transzportját

képes leírni egy- és többkomponensű, homogén és inhomogén mintákban.

EPES-REELS kísérletek készültek az MFA-ban a DESA 100 [15] és az ATOMKI-ban

az ESA 31 [16] spektrométerekkel. polySi, amorfGe és mikrokristályos Sn minták [17]

EPES-REELS mért spektrumait szimuláltam. polySi és amorfGe minták felületi gerjesztési

paraméter (SEP - Surface Excitation Parameter) értékeit határoztam meg. Ezeket a SEP

adatokat összehasonlítottam Gergely [18] és Werner [19] adataival, és jó egyezést találtam.

Werner, valamint Chen SEP képletei és anyagi paraméter adatai [20], továbbá Kwei SEP

adatai [21] alpján felületi korrekciót végeztem a mért rugalmas csúcs intenzitásokra. A

korrigált értékekkel meghatároztam SiO2 és Si3N4 minták tényleges IMFP adatait a 300-

2000 eV-os tartományban. Kétkomponensű Ge-Si réteges szerkezetű minták mélységi

eloszlásának EPES méréseit szimuláltam. Megvizsgáltam a többszörös rugalmas szórás

szerepét és megmutattam azt, hogy egy inhomogén (rétegsoros) minta esetén milyen

mérési körülményeket célszerű választani.

Az első fejezetben irodalmi áttekintést adok, melyben ismertetem a különböző

módszerek alapelveit és eredményeit. A második fejezetben saját módszeremet és annak

alkalmazásait mutatom be. A harmadik fejezetben összefoglalom eddigi eredményeimet.
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I. Irodalmi áttekintés

I. A. Rugalmas szórás

I. A. 1. Differenciális rugalmas szórás hatáskeresztmetszetek

Amikor szilárd mintában egy E energiájú elektron rugalmas szórásban vesz részt,

eredeti haladási iránya megváltozik. Az irányváltozást jellemezhetjük a ϑ szórási szöggel.

Azt, hogy az elektron eredeti irányához képest más, tetszőleges irányba milyen

valószínűséggel térül el, a rugalmas szórásra vonatkozó differenciális hatáskeresztmetszet

(EDCS - Elastic Differential Cross Section), dσ/dΩ határozza meg. Ez egy folytonos, szög

szerinti eloszlásfüggvény. Az elektron haladási irányának megváltozását leírhatjuk egy, az

elektronhoz rögzített koordináta-rendszerben. Polár koordináta-rendszerben a

hatáskeresztmetszet megadja, hogy az elektron milyen valószínűséggel térül el dΩ= dϑdϕ

elemi térszöggel a ϑsz, ϕsz szórási szögekkel jellemzett irányban. Egy egyszerű modellben

az elektron a mintában az izoláltnak tekintett atomok magpotenciálján szóródik

rugalmasan. Nagy elektron energiáknál (E > 200 eV) jól alkalmazható Born első közelítése

[22], és a szilárdtest hatásokat, az atomi elektronok árnyékoló hatását gyakorlatilag

elegendő ennél alacsonyabb energiákon figyelembe venni [3,11]. Rugalmas szórásra a

legegyszerűbb közelítést a dσR/dΩ Rutherford hatáskeresztmetszet szolgáltatja a

Rutherford szórási egyenlet alapján [23-24]:

Ωd
d Rσ  ~ 









2
sin 42

2

ϑE

Z . (I.A.1.1)

A rugalmas hatáskeresztmetszet ϑ-n kívül látható módon függvénye még a Z

rendszámnak és az E energiának is. Bauer és Browne úttörő munkáját követően [25] Fink

és munkatársai [26-28], majd  Riley és MacCallum [29] több elemre publikáltak

hatáskeresztmetszeti adatokat. Megbízható differenciális hatáskeresztmetszeti adatokat

kvantummechanikai számítások útján nyerhetünk. Mott megbízható eljárást közölt a

hatáskeresztmetszetek számítására [30]. Ichimura és munkatársai nagy

energiatartományban számították ki a Mott-féle hatáskeresztmetszetet, dσM/dΩ-t, melyeket

táblázati formában is közöltek [31]. Bevezették a Mott-együtthatót, RM-et:



9

( )
Ω

=
Ω d

dR
d

ZEd R
M

M σϑσ ,, , (I.A.1.2)

ahol az egyenlet jobb oldalán szereplő differenciális hatáskeresztmetszetet az (I.A.1) képlet

definiálja. Reimer és Loedding [24] a relativisztikus Dirac-egyenlet megoldásával

számították ki a Mott-féle hatáskeresztmetszeteket. Hatáskeresztmetszet számításokat,

táblázati adatokat több átfogó munka publikált [32-34]. NIST (National Institute of

Standards and Technology) által közzétett legújabb adatbázisban [35] a rugalmas

hatáskeresztmetszeti adatokat Salvat és Mayol algoritmusa alapján [36] Jablonski

számította ki a parciális hullámok módszerével [34].

I.A.2. Kölcsönhatási potenciálok

A szórás leírására használt atomi potenciál megválasztása befolyásolhatja a visszaszórt

elektronok szögeloszlását. Jablonski és Powell megmutatta, hogy szokásos mérési

körülmények között az irodalomban használt potenciál okozta eltérések elhanyagolhatók

[37]. Nem szokványos mérési körülmények esetén azonban a potenciál megválasztása

lényeges lehet. Jelenleg Salvat hatáskeresztmetszet adatait tartom a legmegbízhatóbbnak

[35]. Ebben a munkában a hely függvényében a kölcsönhatási potenciál [35]:

( ) ( ) ( )rVrerV exc+Φ−= , (I.A.2.1)

ahol r a helyzeti koordináta, Φ(r) pedig az atom elektrosztatikus potenciálja:

( ) ( ) ( ) 







+−=Φ ∫∫

∞

r
e

r

e drrrdrrr
r

e
r

Zer ''4'''4'1

0

2 πρπρ . (I.A.2.2)

ρe(r) az elektronsűrűség, Vexc(r) pedig az atomi és a bombázó elektron közötti lokális

kölcsönhatást írja le:

( ) ( )[ ] ( )[ ] ( )
222

2 4
2
1

2
1









++−+= r
m
ereEreErV eexc ρπϕϕ

h . (I.A.2.3)
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Az (I.A.2.1) egyenlettel leírt kölcsönhatási potenciált tehát teljesen meghatározza a ρe(r)

elektronsűrűség.

I.B. Rugalmatlan szórás

I.B.1. A dielektromos függvény

Amikor egy E energiájú, v sebességű elektron szilárd testben halad, azzal

kölcsönhatásba lép. Ennek következtében az elektron energiát veszíthet, a szilárd testet

gerjesztheti. A dielektromos elmélet keretén belül elektron és szilárd test kölcsönhatásának

leírására legegyszerűbb közelítés a jellium modell. E modell pozitív töltések egyenletes

hátterében mozgó szabad elektronokat tételez fel, elhanyagolva a valós szilárd testek

sávszerkezetét. A dielektromos elméletben az elektronok és a szilárd test közötti energia-

és impulzuscsere felfogható a szilárd test dielektromos válaszaként, amely a dielektromos

függvénnyel, ε(q,ω)-val tökéletesen leírható. Jellium modell alapján elsőként Lindhard

határozott meg ε(q,ω)-t [6]. Ebben a modellben ún. plazmonveszteségek történnek, mely

veszteség egyetlen plazmonfrekvenciával, ωp-vel jellemezhető. Ez a plazmonfrekvencia a

szabad elektronok legnagyobb intenzitású gerjesztése és egyben a különböző gerjesztések

frekvenciájának átlagos értéke. A plazmongerjesztés frekvenciája [38]:

*
4 2

2
m
ne

p
π

ω = , (I.B.1.1)

ahol n az elektronsűrűséget, m* az elektron effektív tömegét, e az elektron töltését jelölik.

A dielektromos függvény kifejezhető az ωp plazmonfrekvenciával [39-41]:

( ) ( )iγωωωω
ω

1ωq, 2
p

2
q

2
p

+−−
+=ε , (I.B.1.2)

ahol

2
0

4222
F2

p
2
q

4m
q

5
q3v

ωω h
++= , (I.B.1.3)
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vF  pedig a Fermi sebesség.

q azt az impulzust jelöli, melyet a külső töltés a szilárd test elektronjainak ad át, h/T=ω

pedig azt a frekvenciát, amely az elektron T energiaveszteségét írja le. γ a csillapodási

állandó, m0 pedig az elektron nyugalmi tömege.

I.B.2. Energiaveszteségi függvény

Jelölje K(E,T)dTδR kifejezés azt a valószínűséget, hogy egy E energiájú elektron,

miközben δR távolságot tesz meg, rugalmatlan szórásban vesz részt és a [T,T+dT]

intervallumba eső energiaveszteséget szenved. K(E,T) az energiaveszteségi függvény. Ez

egy energia szerinti eloszlásfüggvény, mely meghatározza, hogy egy E energiájú elektron

milyen valószínűséggel veszít T energiát. K(E,T) T-től többnyire erősen, míg E-től gyengén

függ. Így amikor az elektron relatív energiavesztesége kicsi, K(E,T) E-től való függése első

közelítésben elhanyagolható [8]. A dielektromos függvény ismeretében a veszteségi

függvényt meghatározhatjuk. Egységnyi út megtétele során annak a valószínűsége, hogy

egy E energiájú elektron T energiát veszít [42-43]:

( ) ( )∫
+

− 







−=

q

q
0 ωq,ε

1Im
q
1dq

πEa
1TE,K , (I.B.2.1)

ahol a0 a  Bohr sugár. Egyszerű plazmonveszteség esetén (I.B.1.2) egyenletből:

( ) ( ) 2222
q

2

2
p

γωωω

ωγω
ωq,ε

1m
+−

=







−I . (I.B.2.2)

Optikai mérések alapján, ahol nincs impulzusátadás (q=0), sok anyagra ismert a

dielektromos függvény [44]. Ezért a következő jelölést használjuk: ( ) ( )0εωε ≡ . A

dielektromos függvény a következő kapcsolatban van az optikailag mérhető n(ω)

törésmutatóval és a k(ω) extinciós tényezővel:

( ) ( ) 21
2 εεωε iikn +=+= , (I.B.2.3)

ahol
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22
1 kn −=ε , (I.B.2.4)

nk22 =ε . (I.B.2.5)

A veszteségi függvény ezekből kifejezve:

( ) ( )2222
2

2
1

2 2
,

1Im),(
kn

nk
q

TEK
+

=
+

=







−=

εε
ε

ωε
. (I.B.2.6)

A Drude modell szerint [45] a dielektromos függvény a plazmonfrekvenciával a

következőképpen fejezhető ki:

( ) ( )γωω
ω

ε
i

p

+
−=

2

10 . (I.B.2.7)

Valós szilárd testek energiavesztesége bonyolult folyamat. Ennek leírására szokásos

eljárás, hogy első lépésben az optikai mérésekből származó dielektromos függvényt

D(γ,ωj.ω) Drude-típusú függvények összegeként állítjuk elő [7]:

( ) ( )ωωγ
ε

,,
0

1Im
1

jj
n

j
j DA∑

=
=








− , (I.B.2.8)

a q≠0 tartományban pedig ez a kifejezés a következőképpen extrapolálható [7]:

( ) ( ) ( )( )∑
=

=







−

n

j
jjj qqDA

q 1
,,

,
1Im ωωγ

ωε
, (I.B.2.9)

ahol

( )
( ) 22222

,,
ωγωω

γω
ωωγ

+−
=

j
jjD . (I.B.2.10)
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Az ε(q,ω) dielektromos függvény meghatározására különböző számítások ismertek.

Több szerző alkalmazta a jellium modellt és tanulmányozta szabad elektronok

dielektromos válaszát Lindhard típusú dielektromos függvénnyel [46-52]. A számítások azt

mutatják, hogy néhány anyag, pl. Al vagy Si esetén a jellium modell kiválóan alkalmazható

[51,53], egyszerű sávszerkezetű fémek és félvezetők veszteségei a jellium modell kis

korrekciójával elvégezhetők [54-55].

I.B.3. Az átlagos rugalmatlan szabad úthossz

A mozgó elektron energiaveszteségének vizsgálatakor fontos annak az ismerete, hogy

az adott közegben milyen gyakran fordulnak elő rugalmatlan szórások. Ezt a gyakoriságot

az átlagos rugalmatlan szabad úthossz, az IMFP (Inelastic Mean Free Path) fizikai

paraméterrel tudjuk számszerűsíteni, amely az az átlagos távolság, amit egy E energiájú

elektron egy szilárd testben megtesz két rugalmatlan szórás között. Az energiaveszteségi

függvényből meghatározható az IMFP. Adott K(E,T) energiaveszteségi függvény esetén az

átlagos rugalmatlan szabad úthossz (IMFP), λi(E) [42-43]:

( )
( )∫

= Ei
dTTEK

E

0
,

1
λ . (I.B.3.1)

I.B.4. IMFP számítások

Az irodalomban különböző modellek alapján számítottak IMFP adatokat, melyeket

táblázati formában is publikáltak. A számítások szokásosan homogén közeget

feltételeznek, és a szabad úthossz irányfüggésétől eltekintenek. Lundquist részletesen

tanulmányozta a bombázó elektron és szabad elektron gáz kölcsönhatását [47], mely

számítások alapján később Shelton [50] IMFP értékeket határozott meg. Hasonlóan, Quinn

is meghatározott IMFP értékeket jellium modellt feltételezve [46]. Quinn és Shelton IMFP

adatai elfogadhatók olyan anyagokra, melyre a jellium modell alkalmazható (pl. homogén,

egyelemű szilárd testekre, melyek nem átmeneti fémek vagy nemesfémek), melyekben a

rugalmatlan gerjesztések dominánsan plazmongerjesztések. Quinn IMFP értékeire Penn

korrekciókat végzett [51]. Figyelembe vett elektron-kicserélődést és korrelációt, és azt

találta, hogy ezek az IMFP értékeket mintegy 10-20%-kal megnövelték. A Lundquist-

Shelton [47,50] számításokat magasabb energiákon is elvégezte, egészen 4000 eV-ig, és azt

találta, hogy az IMFP-k 200 eV felett 10-25%-al kisebbek voltak, mint a Quinn elméletből

származók. Penn ezután kombinálta eljárását a Lundqvist-Shelton elmélettel; a Quinn
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elmélethez képest az IMFP-k tipikusan kb. 5%-kal kisebbek voltak. Végül Penn korrekciót

végzett az IMFP-re, figyelembe véve a törzselektronok hatását, melyet a jellium modell

figyelmen kívül hagy.

1987-ben Penn az IMFP meghatározására kifejlesztett egy algoritmust [54], amely

modell dielektromos függvényre [6] épült, és figyelembe vette a rugalmatlan szórás

momentum-függését is. Az így meghatározott dielektromos függvény megbízhatóan

alkalmazható olyan anyagokra is, melyeknél a jellium modell már nem megfelelő [55].

Megjegyzendő azonban, hogy az IMFP értékekben a momentum-függés csak kis

korrekciót okoz. Tanuma és munkatársai alkalmazták Penn algoritmusát, és 50-2000 eV-ig

56 anyagra (elemekre, szerves és szervetlen vegyületekre) optikai adatokból IMFP

értékeket határoztak meg [56-60]. Ezen számításokat alapul véve egy interpolációs

egyenletet is meghatároztak, amivel az eredeti Bethe egyenletet [61] a következőre

cserélték:

( ) ( ) ( )[ ]22 //ln EDECEE
E

p
i

+−
=

γβ
λ , (I.B.4.1)

ahol 
M

N
E v

p
ρ

8.28=  jellium modellben a plazmon energia eV-ban, Nv atomonként a

valencia elektronok száma, M az atomtömeg, ρ a sűrűség és E az elektron energiája. A β, γ,

C és D paramétereket a szerzők a számított IMFP értékekhez illesztették. Az IMFP

számítások eredményei alapján β, γ, C és D paraméterekre a következő összefüggést adták

meg:

ρβ 4

22
1039.7944.00216.0 −×+

+
+−=

gp EE
, (I.B.4.2)

50.0191.0 −= ργ , (I.B.4.3)

UC 91.097.1 −= , (I.B.4.4)

UD 8.204.53 −= , (I.B.4.5)
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M
N

U v ρ
= . (I.B.4.6)

Az (I.B.4.1)-(I.B.4.6) egyenleteket TPP-2M formulának hívjuk [62]. Ezekből az

egyenletekből az IMFP jó közelítéssel meghatározható bármely anyagra. Közvetlen mérés

hiányában ez a valódi IMFP-hez közeli érték a legmegbízhatóbb a jelenlegi szakirodalom

szerint.

I.C. Energiaveszteségek a felület közelében

A dielektromos elméletben az elektron energiát veszít, miközben a mintát

(dielektrikumot) gerjeszti. Lindhard egyenletébe [6] helyettesítve az elektron töltését,

megkapjuk a v sebességű elektron egységnyi dx távolság megtétele során W energia

veszteségét:

( )∫ ∫
∞









−=

0 0
2

4

,
1Im2

qv

q
d

q
dq

v
e

dx
dW

ωε
ωω

π
. (I.C.1)

Ez a kifejezés egy végtelen mintában, egyenes vonalú pályán mozgó elektronra érvényes,

és az elektron irányváltozását, valamint a minta felületének létezését nem képes leírni.

Homogén, félvégtelen anyagban tetszőleges pályán mozgó elektron rugalmatlan

szórásának részletes tárgyalását több munkában megtalálhatjuk [42,63-65]. E munkák

figyelmen kívül hagyják, hogy a felület közelében a gerjesztések eltérnek a térfogati

energiaveszteségektől. Plazmongerjesztés a felület mindkét oldalán történik. Jelölje ε1 a

dielektromos függvény valós részét a mintán belül, mely a Drude modell alapján:

( ) 2

2

1 1Re
ω
ω

ωεε p−== . (I.C.2)

Maxwell egyenlete alapján a minta határán a dielektromos függvény előjelet vált, ε1’ = - ε1,

ahol ε1’ jelöli a mintán kívül a dielektromos függvény valós részét, amely az (I.C.2)

egyenlet alapján
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1' 2

2

1 −=
ω
ω

ε p . (I.C.3)

Ebből az egyenletből ωs  = ω, a felületi plazmongerjesztés frekvenciája kifejezhető:

'1 1ε

ω
ωω

+
== p

s . (I.C.4)

Ha a mintán kívül vákuum van, mely dielektromos állandója ε1'=1, megkapjuk a felületi

plazmonfrekvenciát [66]:

2
p

s
ω

ω = . (I.C.5)

Ezt a frekvenciaértéket olyan feltételezések mellett kaptuk, hogy a felület végtelen

kiterjedésű, tökéletesen sima, a minta dielektromos válaszát pedig Drude modellel írtuk le.

Ha a felületen kis gömböket tételezünk fel, és a felületi plazmonfrekvenciát így határozzuk

meg [67], akkor 3/pωω = . Ha a minta dielektromos válaszát nem Drude modellel írjuk

le, a felületi plazmonfrekvencia egy általánosabb alakját kapjuk meg [68]:

B

p
R ε

ω
ω

+
=

2
, (I.C.6)

ahol εB a vezetési sáv dielektromos tényezőjének valós része:

( ) ( )
2

2

1 1
ω

ω
ωεωε p

B −+= . (I.C.7)

A felületi plazmon tulajdonságai közül annak diszperziós relációjára vonatkozó

összefüggéseket több szerző közölt. E munkák szerint a felületi plazmongerjesztésnek

nemcsak az energiája, hanem diszperziós relációja is eltér a tömbitől. Bontsuk fel a
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momentumot a felülettel párhuzamos (q||) és rá merőleges (q⊥) komponensekre! A felületi

plazmonok diszperziós relációját leíró első tag q||-tól lineárisan függ [69]:

( ) ( )|||| 1 qq SRsp αωω += , (I.C.8)

ahol αS az elektronsűrűségtől függő állandó. A térfogati plazmonok diszperziós relációja

ugyanakkor q||-tól négyzetesen függ. Fémek felületének vizsgálata a felületi plazmon

negatív diszperziós relációjának, továbbá magasabb rendű felületi gerjesztési módusok

kimutatását eredményezte [70].

Az 1970-es évektől a felületi gerjesztések kvantummechanikai tárgyalása hozott

jelentős eredményeket. Ezekből a számításokból az derült ki, hogy a felületi plazmon

energiát a tömbi dielektromos állandó határozza meg, és nem valamilyen felületi

tulajdonság. Az elméleti számításokat kísérleti eredmények igazolták [71-74]. Fontos

megjegyeznünk, hogy egyszerű fémek esetén a jellium modellel a felületi gerjesztés jól

leírható. Ag diszperziós relációnak vizsgálata azonban kvadratikus összefüggésre vezetett

[75].

A felületi gerjesztések vizsgálata az 1990-es évek utolsó felében újra előtérbe került. A

felületi gerjesztések leírását több módszerrel megtehetjük, pédául a lokális, a

hidrodinamikai, az SRM (Specular Reflection Model - tükörszerűen visszaverődő)

modellekkel. Összehasonlításukat megtalálhatjuk Nagatomi és munkatársai átfogó

munkájában [76]. További eljárást közölt Werner, mely a parciális veszteségeken alapul

[77]. Ezeknek az elméleteknek egyike sem kitüntetett.

Az elektron energiaveszteségét szétválaszthatjuk térfogati és felületi részekre:

sBt WWW += . (I.C.9)

Tougaard és Yubero a dielektromos elmélet keretén belül egyetlen elektron pályáját

írták le, és felületi és térfogati veszteségi függvényeket  határoztak meg [9].

Chen irányfüggő IMFP-t határozott meg, melyet szétválasztott λB térfogati és λS felületi

IMFP-re [20]:
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( ) ( ) ( )zEzEzE SB ,,
1
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1
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1

αλαλαλ
+= , (I.C.10)

ahol λB(E,α,z) és λS(E,α,z) IMFP-k a felület közelében változnak. A 2.a. ábra, melyet

Chen cikkéből  [78] illesztettem be, az (I.C.10) egyenlet bal oldalán látható λ(E,α,z)

reciprokának változását mutatja be Au esetén néhány elektron energiára (ezért az y tengely

felirata helyesen 1/IMFP volna):

2.a. ábra Au inverz IMFP értékének változása a felület közelében Chen számítása alapján

Hasonlóképpen, Au-ra Ding is meghatározott mélység szerint változó inverz IMFP

értékét [79], melyet a 2.b. ábrán láthatunk. Az ábrán, melyet Ding cikkéből [79]

illesztettem be, az inverz IMFP értékek három különböző detektálási szögre láthatók. Chen

ábráján a pozitív z tartomány jelöli a vákuum oldalt, míg Dingnél fordítva, a negatív z

jelenti a vákuumot.
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2.b. ábra Au inverz IMFP értékének változása a felület közelében Ding számítása alapján

Chen és Ding számításai hasonló menetű függvényekre vezetnek. A két modell alapján

nyert számszerű értékek azonban eltérnek egymástól. Ding inverz IMFP értékei Chen

adataihoz képest a mintán belül nagyobbak, a vákuumban kisebbek. Ding adatai a mintán

kívül gyorsabban csökkennek. A szerzők hasonló modellt alkalmaznak, számításuk mégis

eltérő eredményekre vezet. Ezért az ilyen részletes számítások alkalmazhatósága mérések

kiértékelésekor kérdésessé válik.

I.D. EPES-REELS spektrumok kialakulása

Elektronspektroszkópiai mérésekben egy forrásból adott αi beesési szöggel jellemzett

irányban, E0 primer energiájú elektronok bombázzák a mintát. A mintában az elektron

irányt változtathat, és energiát veszíthet. Végül, bizonyos valószínűséggel αd detektálási

szögben, E energiával elhagyja a mintát, melyet szög és energia szerint detektálhatunk. Az

irány- és az energiaváltozásokat rendre a rugalmas és a rugalmatlan szórások határozzák

meg. Az, hogy a detektált elektronok mekkora távolságot tesznek meg a mintán belül,

bonyolult transzport folyamatok eredménye. Ha azt vizsgáljuk például, hogy a bombázó

elektronoknak a 2π radián fél térszögben mekkora hányada hagyja el a mintát

energiaveszteség nélkül, az IMFP kiemelkedő szerepet játszik. Két szélső esetben: 1./

amikor az IMFP nulla körüli érték, akkor nagy valószínűséggel minden egyes elektron
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veszteséget szenved, mielőtt a mintát elhagyná. 2./ ha az IMFP értéke nagyon nagy, akkor

nagyon sok elektron hagyja el a mintát energiaveszteség nélkül. A valós IMFP értékek

természetesen a két szélső érték között vannak. Az IMFP mellett fontos szerepe van a

rugalmas szórásnak is. Az anyagra jellemző rugalmas differenciális hatáskeresztmet(ek)

meghatározzák, hogy mely szögre erősebb a szórás intenzitása. A 3. ábrán néhány energián

látható Ge hatáskeresztmetszete.

3. ábra Ge differenciális hatáskeresztmetszete

Látható, hogy a nagyszögű visszaszórásnak 100 eV elektron energiánál ϑ=110°-nál van

a legnagyobb valószínűsége. Ha a mintát elhagyó elektronokat más irányban detektáljuk,

akkor feltehető, hogy a detektált elektronok nagyobb utat tesznek meg a mintán belül, és

útjuk során több rugalmatlan szórásban vesznek részt.

Visszaszórt elektronok energiaveszteségi spektrumában a legnagyobb intenzitású csúcs

a rugalmas csúcs, EP, mely azokat az elektronokat tartalmazza, melyek a mintát közel

primer (Ep) energiával hagyták el. A spektrum rugalmas csúcsot megelőző része egy- és

többszörös plazmongerjesztéseket tartalmaz. A 4. ábrán Si spektrumot láthatunk. Si-nál a

plazmonveszteségek a dominánsak, és jól megfigyelhetők az egyszeres, kétszeres és

háromszoros térfogati plazmoncsúcsok (1t, 2t, 3t), valamint az egyszeres felületi
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plazmoncsúcs (1f). Néhány további (kétszeres felületi: 2f, egyszeres felületi + egyszeres

térfogati: 1t+1f, illetve egyszeres felületi+kétszeres térfogati: 1f+2t) plazmongerjesztés

helyét is feltüntettem az ábrán. Ez utóbbi gerjesztések helyét a spektrumban kiszámítottam,

és a várható energiáknál berajzoltam.

4. ábra ESA 31 elektron spektrométeren mért Si 2.0 keV spektrum

Ha ránézünk egy ilyen spektrumra, többnyire nehézséget jelent az egyes gerjesztések

szétválasztása. A veszteségi spektrum egésze háttéren ül, ezért például szükséges a

háttérlevonás alkalmazása [63]. Fontos, hogy EPES-REELS spektrumok vizsgálatakor a

rugalmas és rugalmatlan szórásokat megbízhatóan leírjuk.

I.E. EPES-módszer

Gergely György nevéhez fűződik a rugalmas csúcs elektron spektroszkópiai (EPES)

módszer [80], amely rugalmas csúcs méréseket végez, és ennek segítségével határoz meg

IMFP értékeket. Gergely úttörő munkájában  egyszeres rugalmas elektron visszaszórást

tételezett fel, és azt találta, hogy a rugalmasan visszaszórt elektronok intenzitása arányos a

minta IMFP-jével. Eszerint egy adott mérésben, a rugalmas visszaszórási tényező, re, mely

a rugalmasan visszaszórt elektronok és a belépő elektronok hányadosa, a következőképpen

adható meg [80]:
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ahol NA a mintában az atomi sűrűség, σB a teljes rugalmas hatáskeresztmetszet, αd a

detektálási szög és λ az IMFP. Mivel NA, σB, αd és re ismertek, λ elvileg meghatározható.

A rugalmas szórás leírásakor feltételezzük, hogy az elektron az izoláltnak tekintett

atomok magpotenciálján szóródik. A közelítés akkor alkalmazható, amikor a minta felületi

rétege megfelelően rendezetlen, amorf. Az EPES módszer alkalmazható például akkor,

amikor a mérés olyan mikrokristályos mintákon történik, melyre teljesül, hogy a kristályok

mérete az elektronnyaláb átmérőjénél jóval kisebb. Ekkor az elektronok átlagolják a

mikrokristályok orientációit. A másik általánosan alkalmazott eljárás, hogy a mintát

ionnyalábbal porlasztják, mely a felületi réteg amorfizálását idézi elő. Gondosan kell

eljárni, hogy az amorfizálás megfelelő legyen, mert az EPES-ben az orientációs hatások a

rugalmas csúcs intenzitását megnövelhetik [81]. A modell koherens rugalmas szórásra és

diffrakcióra nem érvényes.

I.E.1. IMFP meghatározása összehasonlító mintával

A rugalmas visszaszórási tényező abszolut mérése igen bonyolult feladat, és csak egy

laboratóriumban sikerült azt megvalósítani [82]. Azonban ha megmérjük két minta

rugalmas csúcsát, az (I.E.1) egyenlet alapján a mért intenzitások arányából az IMFP

arányok kifejezhetők:

2

1

22
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1 *
λ
λ

σ
σ

N
N

I
I

= , (I.E.1.1)

ahol az egyes mintákat 1 és 2 indexekkel különböztetjük meg. Jelölje 1 index azt az

anyagot, amelyiknek IMFP értékét meg akarjuk határozni (minta), és 2 azt, amelyiknek az

IMFP értékét ismerjük (referencia minta). I1 és I2 a mért értékek, N1 és N2 ismert atomi

sűrűségek, σ1 és σ2 pedig (az irodalomból vehető) teljes rugalmas hatáskeresztmetszetek.

A meghatározandó IMFP érték, λ2 így:
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Tehát ha λ1 értékét ismerjük, az (I.E.12) egyenlet alapján λ2 meghatározható. Fontos

hangsúlyozni, hogy ahhoz, hogy a módszer alkalmazható legyen, mindkét minta felületi

rétegének megfelelően rendezetlennek (amorfnak) kell lennie. Ugyanakkor megjegyzendő,

hogy EPES mérésekben a diffrakciós hatások jelentősen függnek a mintától, az elektron-

és ionenergiától, továbbá a mérési elrendezéstől is [3].

Rugalmas csúcs mérésekből először Gergely Jablonskival és munkatársaival határozott

meg IMFP értékeket [83]. Az elektron többszörös rugalmas szórását Jablonski vette

figyelembe először, és határozott meg rugalmas csúcs mérésekből IMFP értéket, MC

modellel [84]. Jablonski MC algoritmusa alapján az EPES módszerrel, a szokásos

Jablonski eljárással több elemre, polimerre határoztak meg IMFP értékeket [85-88]. A

relatív IMFP kísérleti meghatározásának a mai napig a legmegbízhatóbb módszere Gergely

György által javasolt eljárás az EPES módszerrel [89].

I.E.2. A módszer korlátai

Meg kell jegyeznünk, hogy ha EPES módszerrel határozunk meg IMFP-t, a kapott

értékek különböző fizikai folyamatok okozta bizonytalanságot is tartalmazhatnak. A Monte

Carlo eljárás alkalmazásakor szükségünk van a rugalmas visszaszórási tényező értékére.

Ha ez alapján határozzuk meg az átlagos rugalmatlan szabad úthossz értékét, a mért és a

számított IMFP adatok között magasabb energiákon jó egyezést, míg alacsonyabb

energiákon eltérést tapasztalunk [90]. Egyik oka ennek az eltérésnek a jelentősebb

szennyeződés és a felületi gerjesztés hatása lehet [91]. Nem megfelelő energiafelbontás

esetén a rugalmas csúcs és a rugalmatlan veszteségek átlapolnak. Olyan esetben viszont,

amikor az energiafelbontás megfelelően jó, EPES mérésekben ez nem szokott problémát

okozni [87]; ekkor a rugalmas csúcs alatti területet (integrált) mérjük [92]. Amikor az

IMFP értékét referencia minták segítségével határozzuk meg, a meghatározott érték

természetesen erősen függ a referencia IMFP adatok megbízhatóságától. Korábban

referencia anyagok szokásosan Ni és Ag voltak, csak az utóbbi időben merült fel, hogy

ezeknek az anyagoknak szabad úthossz adatai nem megbízhatók, elsősorban a felületi

gerjesztés hatása miatt [17].

A minta felületi durvasága miatt a visszaszórási tényező csökken, ezért az IMFP-t

alulbecsüljük [89]. Ugyanígy, a felület durvulása a felületi gerjesztés valószínűségét is

módosítja [93]. Ezek együttes hatása kiszámíthatatlan. A felületi durvaság hatását
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minimalizálhatjuk, ha olyan referencia minta segítségével határozzuk meg az IMFP-t,

amely felületi durvasága hasonló a mintáéhoz. Szennyezett felületi réteg befolyásolhatja a

rugalmas visszaszórási tényezőt, mely hatás alacsony energián (50-100 eV) jelentős lehet

[89]. A szennyeződést ezért célszerű AES és XPS (X-ray Photoelectron Spectroscopy -

fotoemissziós spektroszkópia) mérésekkel ellenőrizni. Ha kristályhatásokat észlelünk

EPES mérés során, a visszaszórási tényezőben ez szintén bizonytalanságot okozhat [3]. Az

elektronnyaláb áramának stabilnak kell lennie a mérés során. Ha ez megváltozik, az IMFP

értékét jelentősen befolyásolhatja [89].

I.F. Monte Carlo szimuláció

A Monte Carlo (MC) módszert Neumann János dolgozta ki 1945-ben, amely egy

matematikai eszköz, és alkalmas arra, hogy véletlen események sorozatával oldjunk meg

determinisztikus problémákat. Manapság a fizika csaknem összes területén széleskörű

alkalmazása van a determinisztikus és statisztikus problémák megoldásának. Ilyen

statisztikus probléma az elektron transzportja is szilárd anyagban. E módszer alkalmas

arra, hogy olyan fizikai paramétereket származtassunk, melyeket más módszerekkel

különösen nehezen határozhatunk meg (például rugalmas visszaszórási tényező).

I.F.1. Jablonski-módszer

A relatív IMFP meghatározására Jablonski MC modellje a következő feltétevéseket

alkalmazza:

(1) A rugalmas szóróközpontok jól közelíthetők izolált atomok potenciáljával.

(2) Az elektron az anyagban pályája mentén irányt változtat a rugalmas szórás

során.

(3) A sokszoros rugalmas szórást a Poisson eloszlás írja le.

A rugalmas szórást jellemző polárszögek eloszlását a rugalmas szórás differenciális

hatáskeresztmetszete (EDCS) határozza meg, az azimutális szögek pedig egyenletes

eloszlásúak. Az MC kód szórásonként számítja a ϑsz és ϕsz szórási szögeket. Az

elektronpályákat nyomon követi mindaddig, míg az elektron a mintát el nem hagyja. A

szimuláció meghatározza az egyes elektronok által megtett teljes úthosszakat. A rugalmas
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visszaszórási áram a megtett s úthosszal exp(-s/IMFP) szerint gyengül [84]. exp(-s/IMFP)

egyenlő a detektált elektronok parciális visszaszórási tényezőjével. Nagyszámú (N)

elektronra nyert parciális rugalmas visszaszórási tényező átlagolásával a rugalmas

visszaszórási tényező kiszámítható:

( )∑
=

−=
N

i
ie IMFPs

N
r

1
/exp1 . (I.F.1.1)

Az MC modell tökéletesen sima felületet és rendezetlen (amorf) mintát feltételez, és

nem érvényes koherens rugalmas szórás esetén.

A módszer a rugalmas szórást írja le részletesen, míg az energiaveszteségek részleteit

figyelmen kívül hagyja. A gerjesztéseknek csak a gyakoriságát veszi figyelembe az IMFP

segítségével, a felületi effektusokat (beleértve a felületi veszteségeket is) nem számítja.

I.F.2. EPES-REELS spektrumok szimulálása

Tougaard javaslatot tett arra, hogy EPES-REELS spektrumok alapján hogyan

határozzuk meg az energiaveszteségi függvényt [42]. Az elektron transzportot linearizált

Boltzmann-egyenlettel írta le. Az elektronok pontszerű, egymással kapcsolatban nem álló

ütközésekben vesznek részt, melyek közt az elektron a félvégtelen, homogén mintában

kölcsönhatás nélkül teszi meg a (repülési) távolságokat. A számításban Tofterup munkája

nyomán [94] egy egyszerűsítő feltételezést tartalmaz, melyben az úthosszra vonatkozó

valószínűségi eloszlásfüggvény exponenciális. Későbbi munkájában [43] Tougaard

egyszerű, könnyen alkalmazható képleteket javasolt a veszteségi függvények

meghatározására. Tougaard eljárása a mért spektrumból közvetlenül kiszámítja az

energiaveszteségi függvényt. A módszer hátránya, hogy nem tartalmaz felületi veszteségi

járulékot, ezért csak olyan valódi spektrumokra használható, amelyeknél a felületi szórás

elhanyagolható.

Pázsit és Chakarova EPES-REELS spektrumokat Monte Carlo szimulációval számolt, és

kimutatta, hogy általánosságban a visszaszórt elektronok úthosszának valószínűségi

eloszlásfüggvénye nem modellezhető exponenciális függvénnyel [95] A legtöbb esetben,

különösen könnyű elemekre és nagy energiákon az úthosszeloszlás maximumot mutat a

rugalmas szórás hatáskeresztmetszetében az előreszórás nagy valószínűsége miatt. Ebben a

munkában a Monte Carlo szimulációval származtatott úthossz eloszlási statisztika mellett
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megtalálhatjuk rugalmas és rugalmatlan szórásszám statisztikákat is. Vicanek elméleti

számítást végzett az ilyen statisztikák összefüggésére vonatkozóan, és kimutatta, hogy

milyen egy-egyértelmű kapcsolat van az úthossz és a szórásszám statisztikák között [96].

Megmutatta, hogy Tougaard durva modellje ellenére is a számítások elfogadható

eredményeket adnak. Chen és Ding a dielektromos elmélet keretében végzett részletes

számításaikat alkalmazták Monte Carlo szimulációs eljárásaikban, mellyel visszaszórt

elektronspektrumokat értékeltek ki [20,79].

A Monte Carlo szimulációk sok esetben elhanyagolják a felületi veszteségeket [5,84].

Ez nagy energián, E > 5 keV-on többnyire jó közelítés. A szokásosan detektált Auger

elektronok energiája azonban 50-1000 eV között van, tehát az IMFP-t ebben az energia

tartományban kell leginkább ismerni.

 A felületi és a térfogati gerjesztések külön választása természetesen megtörténik,

amikor egy mélység szerint változó felületi és tömbi energiaveszteségi függvényt

alkalmazunk. A térfogati energia veszteségek: plazmonveszteségek, sávok közti és sávon

belüli gerjesztések, ionizációs veszteségek leírására alkalmazhatunk analitikus képleteket

[97-99]. A felületi veszteségeket a dielektromos függvény alapján is kiszámíthatjuk [65]. A

mélység szerint változó energiaveszteségi függvény helyett találhatunk olyan Monte Carlo

szimulációkat is, melyek egyszerű modellek alkalmazásával is jól közelítik a visszaszórt

elektronok veszteségi spektrumát. Tőkési Károly a gerjesztések vizsgálatára a

háromréteges modellt alkalmazta [13,100-102], melyben tömbi és felületi részekre osztotta

fel a mintát, és ezeket a tartományokat a vákuumtól elkülönítette. Ilyen elméleti számítások

bevezetése az MC szimulációba lehetővé teszi, hogy még olyan bonyolult

elektronszerkezetű anyag, mint Ag felületi veszteségei is vizsgálhatók [13,100]. A

számítások elsősorban tökéletesen sima, tiszta felületű homogén anyagok mért spektrumait

képesek jól leírni.

I.F.3. Inhomogén minta mélységi összetételének mérése

Az előzőek alapján látható, hogy a rugalmas csúcs viszonylag könnyen számítható.

Konkol Attila és Menyhárd Miklós olyan MC modellt dolgoztak ki [97], amellyel EPES

mélységi eloszlás mérést (mélységi feltérképezést) szimulált rétegszerkezetű Mo/Si

mintában.
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Ilyen mérésekben a mintát szokásosan Ar+ ionnyaláb porlasztja, amely a minta

amorfizálását okozza. A porlasztás a felületi réteget folyamatosan távolítja el, és az

aktuális felület a mérés során az idővel változik. A porlasztás hatásaként egy

többkomponensű minta összetétele a felület közelében az idővel folytonosan változik. Az

EPES mélységi feltérképezés a porlasztás során folytonosan méri a rugalmas csúcs

intenzitást, amely a változó komponens eloszlás miatt változik. A rugalmas szórás erősen

függ a Z rendszámtól, és emiatt egy EPES mélységi profilban minimumokat,

maximumokat találhatunk. A Z függésen túlmenően érdekes lehet az EPES mélységi

feltérképezés energiafüggése is. E munkában [97] a szerzők megmutatták, hogy

inhomogén minták esetén a primer energia megválasztása meglepő eredményekre vezethet.

Adott primer energiánál egy EPES mélységi profilírozás olyan felületi rétegben

eredményezett maximumot, amikor a Mo-nak volt nagy a koncentrációja, míg más primer

energiánál éppen fordítva, Si koncentráció maximumnál. Az MC modell a mintát rétegekre

osztja fel, a rétegekben a koncentráció eloszlását bemeneti adatként kezeli. A számítás

további bemeneti adatai a sűrűség adatok. A szimuláció a soron következő szórást a teljes

rugalmas és rugalmatlan hatáskeresztmetszetek alapján határozta meg. Az

energiaveszteségi függvény a számításban állandó volt.

MC modellükkel Menyhárd és munkatársai megmutatták, hogy bizonyos speciális

esetekben az EPES mélységi profilírozás szokásos felületanalitikai eszközök mellett (AES,

XPS) kiválóan alkalmazható nagyon vékony inhomogén rétegek vizsgálatára. Ennek a

számításnak az előnye, hogy amikor olyan réteges szerkezetű, inhomogén mintákat írunk

le, amelyben a koncentrációváltozások élesek, ezek a változások könnyebben követhetők

az EPES módszerrel az elektron primer energiájának változtatásával, mint AES vagy XPS

módszerekkel.
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II. SAJÁT EREDMÉNYEK

II.A. Monte Carlo modell

Kidolgoztam egy MC modellt, amely képes több rétegből álló, rétegenként

többkomponensű minták EPES-REELS spektrumának számítógépes szimulálására a keV-os

energiatartományban előforduló hatások figyelembe vételével. A modell alapja az, hogy

minden egyes elektront követünk a forrástól addig, míg a mintát el nem hagyja. Ha

nagyszámú elektron transzportját írjuk le, kísérletileg mérhető fizikai paramétereket

származtathatunk.

Főbb feltevéseim a következők:

(1) A minta tökéletesen rendezetlen, melyben a kölcsönhatás helye véletlenszerű.

(2) A kölcsönhatások pontszerűek.

(3) A kölcsönhatások között az elektron egyenes pályán mozog.

(4) A szórási statisztika mind rugalmas, mind rugalmatlan szórás esetén Poisson

eloszlást követ.

(5) Rugalmas szórás során a visszalökődés hatását és a fonongerjesztés figyelmen

kívül hagyható.

Az első feltétel jó közelítés mikrokristályos vagy amorf anyagmintákra. Még abban az

esetben is, amikor nem rendezetlen minták mérése történik, szokásos EPES-REELS

mérések ionporlasztást alkalmaznak, amely megváltoztatja, amorfizálja a minták

felületközeli tartományát.

A második és a harmadik feltétel jelenti az elektron transzport lokális leírását, amely

Vicanek munkája alapján [96] ekvivalens a dielektromos képpel.

A negyedik feltételben szereplő rugalmas és rugalmatlan kölcsönhatásokat független

eseményekként írom le, és  független események leírására Poisson statisztika a megfelelő.

Az 5. feltétel a keV-os energia tartományba alkalmazható.
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Az ötödik ábra illusztrálja, hogy egy ilyen számítás a mintában mozgó elektron

transzportját hogyan írja le.

5. ábra Monte Carlo szimulációban alkalmazott szimulációs elrendezés

A rugalmas szórást a differenciális hatáskeresztmetszet (EDCS) írja le. A rugalmas

szórás gyakoriságát meghatározza az átlagos rugalmas szabad úthossz, λe (EMFP-Elastic

Mean Free Path), amely a rugalmas hatáskeresztmetszettel és a minta sűrűségével

kifejezhető [3]:

∫== ϕϑ
ϕϑ
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ρσ

λ dd
dd

d
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T
e

2
sin,1 , (II.A.1)

ahol ρ az atomi sűrűséget, σT pedig a teljes rugalmas hatáskeresztmetszet jelöli. A polár és

az azimutális szórásszögeket véletlen számokkal generálom, mégpedig úgy, hogy a

véletlen számokkal előállított azimutális szögek a [0,2π] intervallumban folytonos

eloszlást, a polár szögek pedig a rugalmas hatáskeresztmetszeteknek megfelelő eloszlást
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követnek. A polár-, valamint az azimutális szögek a következő egyenletek alapján

számíthatók ki:

[ ] ∫=
sz

d
d
dR e

T

ϑ

ϑ
ϑ
σσ

0

1
0 * , (II.A.2)

[ ] szR ϕπ =2*1
0 , (II.A.3)

ahol [ ]10R  0 és 1 között egyenletes eloszlású véletlen szám sorozatot aktuális értéke, dσe/dϑ

a rugalmas szórás differenciális hatáskeresztmetszete, σT pedig a rugalmas szórás teljes

hatáskeresztmetszete, amely rugalmas szórás differenciális hatáskeresztmetszetéből a

következőképpen számítható:
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A melléklet tartalmazza azt az algoritmust, amivel a számítógépes programban hatékonyan

lehet adott eloszlású véletlenszám sorozatot generálni.

A rugalmatlan szórás során az elektron energiája csökken, az energiaveszteségeket az

energiaveszteségi függvény írja le. Mivel a a vizsgált keV-os tartományban a szórás során

elveszített energia az elektron saját energiájánál jóval kisebb, K(E,T) E-függése

elhanyagolható. Ezért az energiaveszteségi függvényt meghatározom E0 primer energiára,

és a későbbiekben ez konstans: K(E,T) = K(E0,T). Jelölje Esz azt az energiaveszteséget,

melyet az E energiájú elektron egy adott rugalmatlan szóráskor veszít. Ezt az

energiaveszteséget szintén véletlenszámokkal generálom, mégpedig úgy, hogy nagyszámú

véletlen szám előállításakor a számított energiaveszteségek az energiaveszteségi függvény

eloszlását kövessék. Esz a következő képlet alapján számítható:

[ ] ( )∫=
szE

dEEKR
0

1
0 * λ . (II.A.5)

Esz számítására szintén a mellékletben leírt algoritmust használtam.
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A rugalmas és a rugalmatlan szórások között megtett utakat a szokásos statisztikus

módszerrel számítom ki:

[ ]10ln Rs ee λ−=                               rugalmas szórás, és (II.A.6)

[ ]10ln Rs ii λ−= ,                              rugalmatlan szórás esetén. (II.A.7)

se a rugalmas, si pedig a rugalmatlan szórás esetén megtett úthossz két egymást követő

rugalmas (rugalmatlan) szórás között. A szimulációt addig folytatom, amíg az elektron a

mintát el nem hagyja.

Rugalmas szórás előtt az elektron új ( )1111 ˆ,ˆ,ˆˆ ++++ = kkkk zyxn  haladási irányát polár

koordináta-rendszerben meghatározzák a ϑ0 polár- és a ϕ0 azimutális szögek. Descartes

koordináta-rendszerben az elektron új iránya kifejezhető a ϑk és a ϕk szórási szögekkel [2]:
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Homogén, többkomponensű minta esetén a rugalmas szórás különböző

szórócentrumokon valósulhat meg. Míg az átlagos rugalmas szabad úthosszat egy

komponens esetén a minta atomi sűrűsége és teljes hatáskeresztmetszete meghatározza -

(II.A.1) egyenlet-, több komponens esetén

∑=
i

i
T

i

e
c σρ

λ
1 , (II.A.9)

ahol ci jelöli az i-dik komponens koncentrációját, σT
i pedig az i-dik komponens teljes

rugalmas hatáskeresztmetszetét.

Az A komponens, amely cA koncentrációval szerepel a mintában, az atomi szórásban

σT
A szerint súlyozottan vesz részt, azaz A atommal való ütközés valószínűsége PA:
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A rugalmatlan szórás leírásakor energiaveszteségeket számítok. Homogén mintában a

rugalmatlan szórást a veszteségi függvénnyel írom le, mely az adott összetételre jellemző.

Többkomponensű minta veszteségi függvénye természetesen tükrözi a különböző

komponensek megjelenését.

Réteges, az egyes rétegen belül homogén mintában egy rétegen belül mind a rugalmas,

mind a rugalmatlan szórás leírása a homogén esetnek felel meg. Ha az elektron két

rugalmas vagy rugalmatlan szórás között réteghatár(oka)t keresztez, a megtett utat a

következőképpen számítom. Jelölje s~ a szabad úthosszakkal (λ -val) normált távolságokat

(mind a rugalmas, mind a rugalmatlan esetben):

[ ]10Rln
λ
ss~ −=≡ . (II.A.11)

Az [ ]10R  véletlenszámmal kisorsolt, normált úthosszat az elektron az egyes rétegekben

megtett távolságok összegeként teszi meg a következőképp:

∑∑ =
j j

j

j
j

s
s

λ
~ , (II.A.12)

ahol js jelöli az elektron j-dik rétegben megtett útját. Ez azt jelenti, hogy a modellben

feltételezem, hogy rétegváltáskor a λ értékek hirtelen (ugrásszerűen) változnak meg.

A rétegváltások kezelése természetesen másképp is leírható [98,103-104]. A (II.11-

II.12) egyenletekkel leírt módszer a rétegeken belül az úthosszak kiszámítására egy

lehetséges, egyszerű formalizmust biztosított.

Réteges mintában a rugalmatlan szórás leíráshoz minden egyes j-dik rétegben szükségünk

van a Kj(E) energiaveszteségi függvényre.

Összefoglalásul az elektron transzport szimulációja abból áll, hogy nagyszámú

elektronra egyenként kiszámolom a két szórás között megtett távolságot az aktuális
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véletlenszám érték és a szabad úthosszak segítségével, a (II.A.6)-(II.A.7) egyenletek

alkalmazásával. Rugalmas szórásnál szórási szögeket, rugalmatlan szórásnál

energiaveszteségeket számítok. Az elektron mozgását addig követem, amíg az elektron el

nem nyelődik vagy a mintát el nem hagyja. Végül megvizsgálom, hogy a mintát elhagyó

elektronok detektálhatók-e, az észlelt elektronok különböző jellemzői (energia csatornák,

szög, szórásszám, stb.) alapján statisztikát készítek.

II.B. Si, Ge és Sn EPES-REELS spektrumok szimulációja

Mind a rugalmas, mind a rugalmatlan szórás függ a mintától és a mérési feltételektől.

Különböző berendezésekkel, illetve ugyanazon berendezéssel különböző paraméterekkel

felvett visszaszórt spektrumok intenzitásukban és jellegükben erősen különböznek. Lássuk,

sikerül-e ezeket a jelentősen különböző spektrumokat módszeremmel szimulálni.

Mért EPES-REELS spektrumokat kaptam kiértékelésre. A spektrumok a rugalmas

csúcsot és az azt megelőző kis, kb. 50 eV-os veszteségi részt tartalmazzák. A méréseket

Debrecenben, az ATOMKI-ban az ESA 31 spektométerrel [16] Tóth József, valamint

Budapesten, az MFA-ban a DESA 100 (Staib) spektrométerrel [15] Menyhárd Miklós

végezte. A debreceni mérésekben a beeső elektronnyaláb a felület normálisával 50o-ot zárt

be, a detektálás szöge pedig a felületre merőleges, a normálishoz képest kb. 0-5o

detektornyílással. A budapesti mérésekben két elektronforrást használtak. Az egyikben a

beeső sugár a felület normálisához képest 0o-ban, a másikban 55o-ban érte a mintát. A

DESA 100 spektrométer detektornyílása a felület normálisához képesti 19-31o-os kúpszög.

Az ESA 31 spektrométer energiafelbontása 50-150 meV, a DESA 100 spektométeré jóval

nagyobb, 2.2 eV.

polySi, amorfGe, és mikrokritályos Sn mintákon, különböző (0.2 keV, 0.5 keV, 1.0 keV,

1.5 keV, 2.0 keV, 3.0 keV és 5.0 keV) primer elektron energiákon végzett debreceni,

valamint budapesti méréseinek szimulációit végeztem el. A 6. ábrán három mért debreceni

Si spektrumot láthatunk.
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6. ábra ESA 31 elektron spektrométeren mért 200 eV-os, 1000 eV-os és 5000 eV-os Si kísérleti spektrumok

Ahhoz, hogy a spektrumokat össze tudjuk hasonlítani, a rugalmas csúcsokat azonos

nagyságúra normáltam. Az egyes normálási tényezőkkel természetesen a teljes

spektrumokat megszoroztam, hogy a spektrumok alakja ne változzon. Az ábrán a rugalmas

csúcsokat is feltüntettem, eredeti intenzitásuk egytizedével.

Az egyszeres felületi plazmonveszteség mindhárom spektrumban megkülönböztethető

az egyszeres tömbi plazmongerjesztésektől. Jól látható, hogy az elvárásnak megfelelően a

felületi plazmoncsúcs a tömbi plazmonhoz képest közelítőleg az ωS = ωB / 2 helyen van,

ahol ωS a felületi plazmonfrekvenciát, ωB a tömbi plazmonfrekvenciát jelöli. Minél

nagyobb az elektron primer energiája, a felületi gerjesztés relatív intenzitása annél kisebb,

hiszen az energia növekedtével az IMFP is megnő, ezért az elektronok a minta

felületközeli tartományában ritkábban vesznek részt gerjesztési folyamatokban.

II.B.1. Veszteségi spektrum szimulációja

A rugalmatlan szórás leírásakor az elektron irányváltozását elhanyagolom. A

plazmongerjesztések, valamint a sávok közti és sávon belüli gerjesztések kis

impulzusváltozást okoznak. Nagy impulzusváltozást az atomok belső elektronhéjának

gerjesztése idéz elő, de ilyen típusú kölcsönhatások a keV-os tartományban ritkán

fordulnak elő más típusú gerjesztésekhez képest. A felületi és a térfogati gerjesztéseket
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független eseményekként írom le, felületi-, illetve térfogati energiaveszteségi

függvényekkel.

Mivel felületi gerjesztések legnagyobb valószínűséggel a felülethez közeli

tartományban történnek, a 7. ábrának megfelelően egy felületi réteget definiálok, melyben

térfogati gerjesztés nem történik, és a rugalmas szórástól eltekintek. A rugalmas szórás

elhanyagolása azon alapszik, hogy a  felületi rétegen belül számítom mind a mintán belül,

mind a vákuum oldalon történt felületi gerjesztéseket. A vákuumban rugalmas szórás nem

történik. A mintán belül a szimulált mérési energiáknak megfelelően a felületi gerjesztések

néhány atomsorban történnek, melyen belül a rugalmas szórást elhanyagoltam.

7. ábra A minta tömbi és felületi tartományokra osztása a Monte Carlo modellben

Ezzel a modellel az ESA 31 és a DESA 100 spektrométerekkel végzett mérések

szimulációjakor a 2.a-2.b ábrán látott tömbi és felületi gerjesztések valószínűségének

mélység szerinti változását konstans felületi és térfogati energiaveszteségi függvényekkel

helyettesítettem.

A felületi és a térfogati veszteségi függvényeket Drude típusú függvények összegeként

állítom elő:

Felületi réteg

Tömb
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A rugalmas szórást (melyet a tömbi tartományban számítok) a NIST 64 adatbázisból

[105] vett rugalmas szórás differenciális hatáskeresztmetszeti adatokkal, a térfogati

veszteségek intenzitását pedig a NIST 71 IMFP adatbázisból [57-58] vett IMFP adatokkal

írtam le. A mérések szimulálásakor a felületi gerjesztések intenzitása illesztési paraméter

volt, melyet két paraméterrel változtattam. Bevezettem egy felületi IMFP-t, mellyel a

szimulációkban adott vastagságú felületi rétegen belül írtam le a felületi gerjesztések

gyakoriságát. E két szabad paraméter (vegyis nem fizikai paraméterek) együttes

megválasztásával változtattam a felületi gerjesztés intenzitását. A felületi réteg alatt, a

térfogati tartományban a felületi gerjesztés valószínűségét elhanyagoltam, nullának vettem.

Olyan Monte Carlo szimulációs eljárásokkal szemben, melyek a felületi gerjesztés

leírását a mintára korlátozták [13,106-110], modellem a minta-, valamint a vákuum-

oldalon történt felületi gerjesztéseket a felületi rétegen belül számítja.

II.B.2. A veszteségi függvény meghatározása

A veszteségi függvény elvileg a nulla energiaveszteségtől tart a primer energiáig, hiszen

ha csekély valószínűséggel is, de minden energián van energiaveszteség. Azonban az is

világos, hogy a szimulált energiatartományon kívüli veszteségek pontos energiája nem

érdekes, csak teljes intenzitásuk. Ezért a szimulált tartományon kívüli veszteségeket

integrálom és így veszem figyelembe. A számításban ezt a farokrészt, mely a spektrumban

nem mért nagy energiaveszteségeket jelöli, egy lépcsőfüggvény helyettesíti. A felületi

veszteségi függvényt egy egyszerű Drude-típusú függvény írja le. A mérések

szimulációjakor kiválasztottam egy tetszőleges mérést (pl. 1.0 keV-os debreceni mérést), és

próbálgatással addig változtattam a Drude függvényben levő szabad paramétereket, a

farokrészt és a felületi gerjesztés intenzitását, míg a szimulált veszteségi spektrum jól nem

egyezett a mérttel. A származtatott veszteségi függvények alkalmazhatók a más

körülmények (szög és energia) között mért spektrumok szimulációjára. Akkor érem el

célomat, ha egy veszteségi függvénnyel az összes rendelkezésre álló mérési eredményt

illeszteni tudom. Az ilyen módon, kísérletileg megtalált energiaveszteségi függvénnyel

közelítem a mintára jellemző energiaveszteségi függvényt. Lássuk, milyen eredményre
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vezetett ez a polySi, az amorfGe és a mikrokristályos Sn mintákon mért veszteségi

spektrumok szimulációjakor. A szimulált kísérleti spektrumok közel 50 eV-os

energiaveszteségi részt tartalmaztak, ezért a méréseknek megfelelő szimulációkat is ezen a

tartományon végeztem.

II.B.3. Si szimuláció

8.a ábra ESA 31 elektron spektrométeren mért polySi 0.5 keV spektrum és annak megfelelő szimuláció

A 8.a. ábrán polySi minta debreceni 0.5 keV-os mért spektruma és az ennek megfelelő

szimuláció látható. A szimulációban 108 db elektron pályáját számítottam, ezért az

eredmény statisztikai bizonytalanságot tartalmaz. A mérés és a szimuláció ábrázolásakor a

rugalmas csúcsokat egyforma nagyságúra (1-re) normáltam. A mért adatok 0.05 eV-

onként, a szimulációban a számított értékek 0.5 eV-onként követik egymást. Az ESA 31

spektrométerrel mért rugalmas csúcs szélessége (0.45 eV) kisebb volt, mint a

szimulációban az energiafelbontás, így a rugalmas csúcsot saját energiánál delta-

függvénnyel közelítettem. Az ábra a rugalmas csúcsokat nem mutatja, melynek energiája

501.3 eV. Az első felületi plazmonveszteség energiája 490 eV-nál, a rugalmas csúcshoz

képest 11.3 eV-nál, az első térfogati plazmonveszteség energiája 484.3 eV-nál, a rugalmas

csúcshoz képest 17 eV-nál látható. A kétszeres térfogati plazmonveszteség energiája 467.3

eV-nál látható. A spektrum a mért tartományban a két-, három- és négyszeres felületi

gerjesztéseket is tartalmazza, de ezeket nem látjuk, intenzitásuk már csekély. Térfogati és
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felületi gerjesztések összegéből egyedül az egyszeres térfogati és az egyszeres felületi

gerjesztések összege látszik a spektrumban, de ez is csak kis mértékben különböztethető

meg a statisztikai zajtól. A mérés és a szimuláció illeszkedése itt kiváló. A mért és a

szimulált első térfogati és felületi plazmoncsúcsok, plazmonvölgyek jól illeszkednek. A

második térfogati plazmonvölgynél látható kis eltérés a mérés és a szimuláció között, a

teljes tartományra elmondható azonban, hogy a mérési hibán belül a szimuláció kiválóan

illeszkedik a mért spektrumhoz.

8.b ábra ESA 31 elektron spektrométeren mért polySi 1.0 keV spektrum és annak megfelelő szimuláció

A 8.b. ábrán ugyanazon a polySi mintán látunk 1.0 keV-os debreceni mérést. Az ábrán

nem látszó rugalmas csúcsok 1000.6 eV energiánál vannak. Az első térfogati és az első

felületi plazmonok szimulációja tökéletesen illeszkedik a méréshez. A második térfogati

plazmoncsúcsnál és plazmonvölgynél kis eltérések láthatók, melyek azonban szintén a

mérési bizonytalanságon belül vannak. A szimuláció és a mérés illeszkedése az egész

energiatartományon megfelelő.
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8.c. ábra DESA 100 elektron spektrométeren mért polySi 1.0 keV spektrum és annak megfelelő szimuláció

A 8.c. ábrán a polySi minta budapesti, a DESA 100 spektrométerrel végzett 1.0 keV-es

mérése és szimulációja látható. A mérés nagyobb, 70 eV-os tartományon készült, a

rugalmas csúcs energiája 1001.3 eV. Az ábrán jól láthatók az egyszeres, kétszeres és

háromszoros térfogati plazmonveszteségek, a mérés és a szimuláció ezeken a helyeken jól

illeszkednek. Jelentős eltérés a szimuláció és a mérés közt a rugalmas csúcs és az első

térfogati plazmonveszteség között látható. Ezen a tartományon a szimuláció úgy néz ki,

mintha a mérést eltolnánk a rugalmas csúcs irányába. A DESA 100 spektrométer energia

felbontása változtatható, mely ebben a mérésben jóval nagyobb (2.2 eV) volt, mint a

megfelelő ESA 31 mérésben. A rugalmas csúcs mért félérték szélessége sokkal nagyobb,

mint a szimulációban használt energia felbontás, ezért a DESA 100 átviteli függvényének

jelentős hatása van a mért spektrumban. Ezt a hatást Gauss-konvolúcióval modelleztem,

mely az ábrán látható módon nem eredményezett megfelelő egyezést a rugalmas csúcs

környezetében. Ebben a szimulációban ugyanazokat a tömbi és felületi energiaveszteségi

függvényeket használtam, mint a 8.a és a 8.b. ábrán.

Menyhárd Miklós és Sulyok Attila későbbi munkájukban [111] a DESA 100

spektrométer átviteli függvény hatását a mérésben nem Gauss konvolúcióval, hanem a

mért rugalmas csúcs alapján precízebb eljárással modellezte, és ezzel a módszerrel a

szimuláció a mért spektrummal a rugalmas csúcs közvetlen környezetében is kiválóan

illeszkedett.
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8.d. ábra ESA 31 elektron spektrométeren mért polySi 1.5 keV spektrum és annak megfelelő szimuláció

A 8.d. ábrán polySi (debreceni minta) debreceni mérése látható 1.5 keV-on. Az első, a

második térfogati plazmoncsúcsok, a második térfogati plazmonvölgy szimulációja jól

illeszkedik a mérési spektrumhoz. A rugalmas csúcs közvetlen környezetében is megfelelő

az illeszkedés. A szimuláció és a mérési adatok között jelentősebb eltérések az első felületi

plazmonnál és az első térfogati plazmonvölgynél találhatók, de ezeket figyelembe véve is a

szimuláció jól illeszkedik a méréshez.

Összegzésül a 8.a.-8.b. és a 8.d. ábra alapján látható, hogy az debreceni spektrumokat

modellemmel jól tudtam szimulálni. A 8.c. ábra alapján látható, hogy a polySi minta

budapesti mérésének 1.0 keV-os szimulációja is jól illeszkedik a méréshez, a rugalmas

csúcs környezetétől eltekintve.

A 9. ábrán látható az a térfogati veszteségi függvény, melyet eljárásommal határoztam

meg a polySi spektrumok szimulálása során, továbbá a Si optikai adatok alapján

kiszámított veszteségi függvény is.
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9. ábra Si térfogati energiaveszteségi függvénye optikai adatok alapján és a Monte Carlo szimulációban

Látható, hogy az optikai adatokból számított veszteségi függvény keskenyebb. Ezt azzal

magyarázhatjuk, hogy az optikai mérésekkel szemben az elektron szórásban a diszperziós

reláció q≠0 része nem hagyható el, és ezért a plazmongerjesztés alakja szélesebb lesz (lsd.

(I.C.8) egyenlet). Ezen kívül egy bombázott minta térfogati tartományában hibahelyek

keletkezhetnek, ami a veszteségi csúcsok alakját szintén megváltoztatja [112].

A debreceni és a budapesti polySi mérések különböző mérési körülményeit (ESA 31 és

DESA 100 spektrométerek) ugyanazokkal a tömbi- és felületi energiaveszteségi

függvénnyel tudtam szimulálni. Ez azt mutatja, hogy az energiaveszteségi függvénynek

valós fizikai jelentése van. Az MC modell képes tényleges mérések tömbi- és felületi

veszteségeinek leírására.

II.B.4. Ge szimuláció

amorfGe minta mért debreceni spektrumait a polySi mintához teljesen egyező módon

szimuláltam. A rugalmas hatáskeresztmetszeti adatokat a NIST 64 adatbázisból [105]

vettem, a térfogati veszteségek intenzitását a NIST 71 adatbázis IMFP adatai alapján

határoztam meg [57], a felületi veszteségek intenzitása pedig illesztési paraméter volt. A

térfogati és a felületi veszteségi függvények alakját addig változtattam, míg az összes
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primer energián az illesztéseket ugyanazzal a térfogati, és felületi veszteségi

függvényekkel tudtam végrehajtani.

Az amorfGe szimulációban alkalmazott tömbi és felületi veszteségi függvények:
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10.a. ábra amorfGe minta MC szimulációban használt térfogati energiaveszteségi függvénye
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10.b. ábra amorfGe minta MC szimulációban használt felületi energiaveszteségi függvény

A 10.c.-10.e. ábrán látható három primer elektronenergián végzett szimulációs
eredmény.
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10.c. ábra ESA 31 elektron spektrométeren mért amorfGe 0.5 keV spektrum és annak megfelelő szimuláció

A 10.c. ábrán amorfGe minta 0.5 keV-os debreceni, ESA 31 spektrométerrel végzett

mérése és megfelelő szimulációja látható. A rugalmas csúcsok 502.3 eV-nál vannak,

melyeket az ábra nem tartalmaz. Az első térfogati és az első felületi plazmonok jól

illeszkednek, eltérést a rugalmas csúcs közvetlen közelében láthatunk. Ezek az eltérések

azonban a mérési bizonytalansággal összemérhetők, az egyezés megfelelő.
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10.d. ábra ESA 31 elektron spektrométeren mért amorfGe 1.0 keV spektrum és annak megfelelő szimuláció



44

A 10.d. ábrán amorfGe 1.0 keV-os debreceni mérést és a megfelelő szimulációt

láthatjuk. A rugalmas csúcsok energiája 1000.15 eV, amiket az ábra nem tartalmaz. A

statisztikai hiba az előző ábrákhoz képest nagyobb, a szimulációt kevesebb (3*107 db)

elekronpálya számításával végeztem. Ettől függetlenül az első térfogati és felületi

plazmoncsúcsok, a második plazmoncsúcs, valamint az első térfogati és első felületi

veszteségek összege jól illeszkednek. Eltérés a számítások és a mérések között a rugalmas

csúcs közvetlen közelében látható. Ezen kívül az illeszkedés megfelelő.

10.e. ábra ESA 31 elektron spektrométeren mért amorfGe 1.5 keV spektrum és annak megfelelő szimuláció

A 10.e. ábrán amorfGe 1.5 keV-os debreceni, ESA 31 spektrométerrel végzett mérése és

a megfelelő szimuláció látható. Az első térfogati és felületi plazmoncsúcsok, a második

térfogati plazmoncsúcs szimulációja jól illeszkedik a méréshez. Különbségek a rugalmas

csúcs közvetlen közelében, valamint 1456 eV alatt láthatók. A rugalmas csúcs közelében

látható eltérésen kívül az illeszkedés megfelelő.

A 10.c.-10.e. ábrák mindegyikén látszódik a szimulációk szisztematikus eltérése a

mérésektől a rugalmas csúcs közvetlen közelében. Ennek lehetséges oka, hogy egyetlen

megfelelő Drude alakú veszteségi függvényt használtam a felületi, illetve a térfogati

veszteségek leírására. A rugalmas csúcs közvetlen környezetében valószínűleg sávok közti

vagy sávon belüli gerjesztések hatása látható, amit a Drude-függvények nem írnak le.
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Összefoglalásul az ESA 31 spektrométeren végzett debreceni amorfGe mérések a
megfelelő szimulációkhoz a rugalmas csúcs közvetlen közelében látható eltérésektől
eltekintve nagyon jól illeszkednek.

II.B.5.Sn szimuláció

Mikrokristályos Sn végzett debreceni méréseket szimuláltam a fentiekben bemutatott

módszerrel. A 11.a. ábrán Sn optikai adatok [44] alapján számított veszteségi függvény

látható.
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11.a. ábra Sn térfogati energiaveszteségi függvénye optikai adatok alapján

Az Sn debreceni spektrumok szimulálásakor a térfogati energiaveszteségi függvény:

11.b. ábra Sn térfogati energiaveszteségi függvénye a Monte Carlo szimulációban
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A 11.c.-11.e. ábrákon Sn méréseket és szimulációit mutatom be 500, 1000 és 1500 eV

primer elektron energiákon.
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11.c. ábra mikrokristályos Sn ESA 31 elektron spektrométeren mért 0.5 keV-os spektruma és az annak

megfelelő szimuláció

A 11.c. ábrán Sn minta ESA 31 spektrométerrel 0.5 keV-on mért debreceni spektruma és

az annak megfelelő szimuláció látható. A rugalmas csúcs 502.3 eV-nál van, melyet az ábra

nem tartalmaz. A rugalmas csúcs közvetlen közelében a szimuláció a méréshez képest

alacsonyabb értékeket mutat. 488 eV-nál és 484 eV-nál az első és a második veszteségi

csúcsok szimulációinak értéke nagyobb, mint a mérésé, a veszteségi völgyeké pedig 487

eV-on és 483 eV-on kisebbek. 455 eV és 483 eV között a szimuláció értéke kisebb, mint a

mérésé, de ezen a tartományon az eltérés szisztematikus, a szimuláció és a mérés

intenzitása szorzófaktorban tér el egymástól. A szimuláció és a mérés illeszkedése a polySi

és az amorfGe minták szimulációjához képest rosszabb, de a szimulációval kapott görbe

menete az egész mért tartományon jól követi a kísérleti görbét.
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11.d. ábra mikrokristályos Sn ESA 31 elektron spektrométeren mért 1.0 keV-os spektruma és az annak

megfelelő szimuláció

A 11.d. ábrán Sn minta debreceni 1.0 keV-os mérése és az ennek megfelelő szimuláció

látható. A rugalmas csúcsok 1000.15 eV-nál vannak, melyeket az ábra nem tartalmaz. A

rugalmas csúcs közvetlen környezetében a szimuláció a méréshez képest alacsonyabb

értéket mutat. A veszteségi csúcsok szimulációja jól illeszkedik a méréshez. A második és

a harmadik völgynél a szimuláció alacsonyabb értéket mutat, mint a mérés. A szimuláció

és a mérés közötti eltérésekkel együtt az illeszkedés megfelelő.
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11.e. ábra mikrokristályos Sn ESA 31 elektron spektrométeren mért 1.5 keV-os spektruma és annak

megfelelő szimuláció
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A 11.e. ábrán Sn 1.5 keV-os debreceni mérése és szimulációja látható. A rugalmas

csúcsok 1500.1 eV-on találhatók, melyeket az ábra nem tartalmaz. A rugalmas csúcs

közvetlen környezetében, valamint az első veszteségi csúcsnál a szimuláció a mérés alatt

van. Nagyobb energiaveszteségek szimulációja a méréshez képest kissé magasabb értéket

eredményezett.

A 11.c.-11.e. ábrákon a rugalmas csúcs közvetlen környezetében a szimulációk

szisztematikusan eltérnek a mérésektől. Ennek oka, hogy plazmonveszteségek mellett

sávok közti vagy sávon belüli gerjesztések is történnek az Sn mintában. A 11.a és a 11.b

ábrák hasonlítanak egymásra. A 11.a ábrán látható, optikai adatokból a (I.B.2.6) egyenlet

alapján számított veszteségi függvény a plazmonveszteségeken kívül egyéb gerjesztéseket

is leír, míg a 11.b. ábrán látható, a szimulációban alkalmazott  veszteségi függvényt három

Drude-függvény összegeként állítottam elő. Ez a nem plazmon-típusú gerjesztések

leírására pontatlan eljárásnak bizonyult.

Mind a polySi, az amorfGe és a mikrokristályos Sn minták 200 eV-os mérésekre igaz,

hogy amikor ezeket szimuláltam, a szimulációk és a mérések közt nagyobb eltéréseket

tapasztaltam. Ennek egyik lehetséges magyarázata, hogy konstans energiaveszteségi

függvényt alkalmaztam, pedig 200 eV-on az energiaveszteségek nagysága már jelentős a

primer energiához képest. Alacsony elektron energián a felületi veszteségek hatása

jelentős. Másrészt ezen az alacsony elektron energián az IMFP összemérhető a felületi

réteg vastagságával, emiatt a felületi és térfogati veszteségek szétválasztása nem tehető

meg csupán egy felületi réteg definiálásával, ahol a rugalmas szórást is elhanyagoltam.

Alacsony energiákon ezért a transzport leírására célszerű részletesebb fizikai modellt

alkalmazni.

II.C. Felületi gerjesztési paraméterek meghatározása Ge és Si mintákra

Bár Ritchie cikke a felületi plazmon keltéséről már 1957-ben megjelent [66], és attól

kezdve igen sok cikk foglalkozott a felületi plazmonok különböző tulajdonságaival [20,

67-77], elektronspektroszkópiai mérések kiértékelésekor ezt csak az utóbbi években

kezdték számításba venni. Ennek egy lehetséges oka, hogy a felületi gerjesztések

figyelmen kívül hagyásával is jó eredmények születtek, ami nagyobb energiákon (2.0 keV

felett) érthető. Hozzá kell tenni, hogy valami hasonló történt a többszörös szórás

figyelembe vételével is. Azt is tudtuk, hogy többszörös szórás van, mégis elég lassan
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készült el az általános formalizmus, ami annak leírását lehetővé teszi. Persze ha a

bevezetésben részletezett elméleteket nézzük, akkor nyilvánvaló, hogy a felületi gerjesztés

hatásának beillesztése az MC kiértékelésben távolról sem triviális, a felületi gerjesztéseket

leírhatjuk egyszerű [13] és bonyolult modellekel [78-79] is.

Ha fémeket elektronokkal gerjesztünk, a mintában felületi és tömbi gerjesztések

keletkeznek. A transzport elmélet, amit MC modellek szokásosan alkalmaznak, ezeket a

gerjesztéseket többnyire nem választja külön, és leírásukra csak egy helytől független

energiaveszteségi függvényt használ, míg a dielektromos elmélet külön-külön megadja a

dielektromos függvény felületi és tömbi részét. Egy másik különbség, hogy a transzport

elméletben egy energiaveszteség valószínűsége csak az elektron energiájától függ, míg az

elektron korábbi kölcsönhatásaitól nem. Ez a lényege a valószínűségi, markovi

folyamatoknak, mely értelemben a transzport elmélet egy lokális modell mind a tér, mind

az idő szerint. A dielektromos elméletben viszont az elektron minden pillanatban úgy lép

kölcsönhatásba az anyaggal, hogy ez a kölcsönhatás függ a saját maga keltette tértől. A

kölcsönhatás így természetesen függ az elektron pályájától is, azaz e kép nem markovi

folyamatot ír le. Vicanek 1999-ben összehasonlította a dielektromos és a transzport elmélet

segítségével leírt elektron transzport eredményeit [96], és azt találta, hogy a dielektromos

és a lokális leírás egymással mérési hibán belül ekvivalens.

Olyan EPES-REELS spektrumokban, melyekben a plazmongerjesztések erősek, jól

láthatók és megkülönböztethetők a felületi és a tömbi veszteségek. Ugyanakkor az is igaz,

hogy ezek a csúcsok egy háttéren ülnek, és szétválasztásuk nem egyszerű. Gergely György

munkatársaival erre dolgozott ki módszert [17-18], melyben a mért spektrumok alapján a

tömbi és a felületi gerjesztéseket szétválasztotta. Ezzel a felületi veszteségek teljes

intenzitása meghatározható és SEP kiszámítható. Gergely és Werner modellje szerint a

SEP számítható az egyszeres felületi plazmon csúcs és a rugalmas csúcs arányának

hányadosaként  [18-19,113].

Ugyanezt a SEP-et Werner elméleti úton is meghatározta. Oswald munkája nyomán

analitikus formulát adott [19], amely energia- és szögfüggő SEP-et határoz meg megfelelő

aH-val anyagi paraméterrel:

( )
1cos

1
1cos

1
+

+
+

=
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ESEP
αα

, (II.C.1)
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ahol E az elektron energiáját, αi és αd pedig a be- és kilépő elektronoknak a minta felületi

normálisával bezárt szögét jelölik. Ez a kifejezés a teljes SEP-et adja meg. A jobb oldal

első tagja a belépő, a második tag pedig a kilépő elektronok átlagos felületi gerjesztéseit

adja meg. Az aH paraméter csak az anyagra jellemző, az elektron energiájától és a mérés

geometriájától független.

Mivel az MC modell a felületi és a tömbi gerjesztéseket független eseményekként,

külön kezeli, a felületi gerjesztést könnyen számszerűsíthetem. A szimuláció során az

egyszeres felületi gerjesztéseket és a rugalmas (energiaveszteséget nem szenvedett)

elektronokat összeszámolom, és a SEP értékeket kiszámítom. A 12. ábra a Debrecenben

mért polySi és amorfGe minták (teljes) SEP adatait mutatják, melyeket a a mérések

szimulációja során számítottam. Az ábra tartalmazza Gergely és Werner adatait is. A

három különböző módszerrel meghatározott SEP értékek jól egyeznek.
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12. ábra Si és Ge SEP értékek Gergely és Werner módszere, valamint az MC szimuláció alapján

Gergely módszerében és szimulációs eljárásomban alkalmazott felületi és térfogati

energiaveszteségi függvényeket hasonlítja össze a 13. ábra.
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13. ábra Energiaveszteségi függvények Gergely eljárásában és az MC szimulációban

Vizsgáljuk meg a 12. ábrán látott SEP értékeket. A teljes felületi gerjesztést tehát mind

kísérleti, mind elméleti úton számszerűsíthetjük a SEP paraméterekkel.

Nézzük meg, miért is kell ismernünk a felületi gerjesztést a rugalmas csúcs elektron

spektroszkópia szempontjából. Leginkább azért, mert ha a mérések során a detektált

elektronok felületi veszteséget szenvednek, ezek módosítják a mért rugalmas csúcs

intenzitást, tehát az EPES mérési eredményekre korrekciót kell végezni. Célom, hogy a

felületi gerjesztések számszerűsítését EPES mérések kiértékelésére alkalmazzam; a mért

rugalmas csúcs intenzitásokat a felületi gerjesztések hatása miatt korrigáljam. Tekintsük a

dielektromos leírást. Chen jellium modellel mélységfüggő felületi- és térfogati

plazmonkeltés valószínűséget határozott meg (lsd. 2.a. ábra). Ez az eredmény azt mutatja,

hogy felületi gerjesztések történhetnek a mintán belül és kívül is. Igen fontos az, hogy a

térfogati veszteség valószínűsége a felület közelében helyfüggővé válik [20,79]. Chen

kimutatta, hogy a mintán belül a rugalmatlan szórás hatáskeresztmetszete közel állandó

[114]. Ez az eredmény az EPES mérések kiértékelésére olyan hatással van, hogy a

rugalmas csúcs intenzitását a felületi gerjesztéssel ugyan korrigálni kell, de első

közelítésben a felületi gerjesztéseknek csak azon részével, amik a mintán kívül esnek.

A felületi gerjesztések valószínűségi eloszlásfüggvénye Poisson eloszlást mutat [114].

Ezért annak a valószínűsége, hogy egy elektron felületi gerjesztésben nem vesz részt:
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fs=fSEP=exp(-SEP), ahol a mintán kívüli felületi gerjesztéseket leíró teljes SEP szerepel. Ha

egy EPES mérés alapján az IMC elektronáramból a szokásos MC szimulációs módszerrel

határozunk meg IMFP-t, a felületi gerjesztéseket teljesen figyelmen kívül hagyjuk [115]. A

felületi gerjesztésekre korrekciót végezhetünk, mellyel az IMC elektronáramot módosítjuk.

Így a korrigált ICorr elektronáram [82]:

SEPMCCorr fII *. = , (II.C.2)

mely értékkel a felületi gerjesztéseket a szokásos MC módszer is számítja. Megjegyzendő,

hogy ha EPES módszerrel relatív IMFP értéket határozunk meg, akkor sok esetben anélkül

is megbízható IMFP adatokat kapunk, hogy a felületi gerjesztésre korrekciót végeznénk.

Ennek oka az, hogy ha például a referencia és a vizsgált minta is hasonló

elektronszerkezetű anyag, például átmeneti fém, a felületi gerjesztések sok esetben közel

azonosak.

Relatív IMFP számításkor a szokásos MC szimulációban az elektronáramok

hányadosait a következőképpen kell korrigálni:
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vagyis a szimuláció korrigálásakor csak a két minta SEP értékének a különbsége számít:
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A (III.C.4)-(III.C.5) egyenletekből érthető, hogy ha a referencia és a minta SEP értékei

csak kissé térnek el (ami fémek esetén gyakori), akkor relatív IMFP meghatározásakor a

két rugalmas csúcs mérés felületi gerjesztésekből fakadó hibája kompenzálják egymást. Ez

a tény nagy előnye az EPES módszernek.

Ha a vizsgált minta szigetelő, akkor a referencia és a minta SEP értékei jelentősen

eltérnek, a szimulációban a mért rugalmas csúcs intenzitásokra korrekciót kell végeznünk.
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II.D. Si3N4 és SiO2 IMFP meghatározása EPES módszerrel

Rétegszerkezetek vizsgálatakor széleskörűen alkalmazott analitikai eszköz az Auger

mélységi profilírozás. Ez a módszer úgy működik, hogy ionporlasztással folyamatosan

vékonyítjuk a mintát, és az aktuális felületről Auger jeleket gyűjtünk. Az Auger jelek attól

függően, hogy milyen energiájú Auger elektronról van szó, különböző vastagságú

rétegekből származnak. A mért Auger intenzitás a következőképpen adható meg:

I~ ∫
−

dzezNI d

z

A
αλ cos

0 )( , (II.D.1)

ahol z azt a mélységet jelöli, ahonnan a mintából Auger elektronok lépnek ki αd irányban.

Az Auger intenzitások jellemzők a minta vizsgált tartományának z mélység szerint változó

NA(z) anyagi (koncentráció) eloszlására. A fenti képlet alapján az intenzitás

kiszámításához, azaz az ebből származtatható koncentráció meghatározásához szükség van

λ (IMFP) értékére.

A mérések kiértékelésére szokásosan olyan IMFP adatokat [65] használnak, melyeket

optikai adatokból határoznak meg. Ezekből vagy az IMFP értékekhez jól illeszkedő TPP-

2M formula alapján kiszámíthatunk IMFP adatokat. Ezek az IMFP adatok a felületi

gerjesztésekre nem érzékenyek, mivel optikai mérések során a felületi gerjesztések hatása

elhanyagolható. További problémát jelent, hogy a vizsgált minta térfogati ideális

elrendezéshez képest felületközeli tartománya, és így IMFP-je is megváltozhat. Ha az

EPES módszerrel a mintára jellemző tényleges IMFP értéket akarunk meghatározni, meg

kell azt vizsgálni, hogy az adott mérési körülmények mellett az irodalmi IMFP értékekre

milyen korrekciók elvégzése szükséges.

Réteges szerkezetű, SiO2-Si3N4-SiO2-Si minta vizsgálatát kellett elvégezni

Osztályunknak Auger mélységi profilírozással, melyben Ar+-ion porlasztást alkalmaztak. A

mérések kiértékeléséhez szükségünk volt a SiO2 és Si3N4 rétegekre vonatkozó IMFP

adatokra, amiket EPES módszerrel határoztam meg. A mért rugalmas csúcsokat felületi

gerjesztésre korrigáltam az (II.C.2)-(II.C.4) egyenletek alapján. Erre azért volt szükség,

mert a referenciának használt Si felületi korrekciós tényezője nagy, a szigetelő anyagok
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(SiO2 és Si3N4) megfelelő felületi korrekciós tényezője pedig kicsi, és ezek hatása az IMFP

értékek meghatározásakor nem oltják ki egymást.

II.D.1. Kísérlet
A vizsgált SiO2-Si3N4-SiO2-Si vékony rétegek  60nm-60nm-20nm-100nm vastagságúak

voltak. Mélységi profilírozás történt, amely különböző energiájú (300 eV-1000 eV) Ar+

ionporlasztást alkalmazott, és a profilírozás során rugalmas csúcs intenzitások, valamint

veszteségi spektrumok mérése történt. Az egyes rétegekről (SiO2, Si3N4, illetve Si)

különböző energiákon felvett mérések történtek. A mért rugalmas csúcs intenzitások nem

függtek a porlasztási feltételektől. A felvett EPES-REELS spektrumok a rugalmas csúcsot

és az azt megelőző 50 eV-os veszteségi részt tartalmazzák. Az összes spektrum mérése

ugyanazzal az energiafelbontással (1.2 eV) történt. A Si, SiO2 és Si3N4 rétegek rugalmas

csúcs alakjai megegyeztek, ezért az EPES módszerben csak rugalmas csúcs maximumok

mérése történt, és ezeket hasonlítottam össze. Az LVV Auger csúcsok alakja és intenzitása

nem változott a SiO2, valamint a Si3N4 rétegek mérése során, ami azt jelenti, hogy a minta

ion- és elektron bombázása nem okozott kémiai változást.

Az 1. Táblázat, valamint a 14. ábra az elektron energiájának függvényében mutatja a SiO2

és Si3N4 rétegeken mért relatív rugalmas csúcs értékeket a Si rugalmas csúcshoz képest, két

gerjesztési szög esetén.

1.Táblázat
Rugalmas csúcs arányok (Si-hoz képest)

energia

(eV)

SiO2/Si

αbe=0o

SiO2/Si

αbe=55o

Si3N4/Si

αbe=0o

Si3N4/Si

αbe=55o

300 1.48 0.87
500 1.14 1.38 1.14 0.82
1000 1.11 1.21 1.01 1.02
1500 1.02 1.13 1.00
2000 1.02 1.09 0.96 0.95
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14. ábra DESA 100 elektron spektrométer szembe-, valamint oldalágyúján mért SiO2 és Si3N4 rugalmas

csúcs arányai a Si rugalmas csúcshoz képest

Az IMFP adatokat szimulációs programommal határoztam meg. A minta olyan vastag

rétegekből állt, hogy a mérések szimulációjakor elegendő volt egyetlen (Si, SiO2 vagy

Si3N4) félvégtelen réteget feltételezni. A számításokban a Si referencia mintára vonatkozó

IMFP adatokat a NIST 71 adatbázisból vettem [57]. Ennek segítségével a megfelelő

elektron energia és geometriai elrendezés mellett kiszámítottam a Si rugalmas csúcs

intenzitásokat. A mért rugalmas csúcs hányadosok alapján pedig SiO2 és Si3N4 rétegek

IMFP-jét addig változtattam a számításban, míg a számított rugalmas csúcs arányok meg

nem egyeztek a mért arányokkal. Az így számított IMFP értékeket egy egyszerű

visszakeresési algoritmussal határoztam meg, melyeket ezentúl nem-korrigált IMFP

adatoknak hívok. Az MC szimuláció bemenő adatai a következők:

- DESA 100 mérési geometriája; az elektron beesési szöge 0 o és 55 o, a detektálás

szög tartománya 19o-31o.

- A rugalmas szórás differenciális hatáskeresztmetszeti adatai, melyeket a NIST 64

adatbázisból [105] vettem.
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- A referencia (Si) minta IMFP adatai, melyeket a NIST IMFP adatbázisából vettem

[57].

- Si, SiO2 és Si3N4 sűrűség adatai, melyek 2.32 g/cm3, 2.33 g/cm3 és 3.44 g/cm3.

A három különböző anyag rugalmatlan gerjesztései különböznek egymástól. A 15. ábra

alapján, mely a három anyag EPES-REELS spektrumát tartalmazza, képet kaphatunk a

veszteségi folyamatokról. Az ábrán a rugalmas csúcs intenzitásokat összenormáltuk, hogy

a veszteségi csúcsok relatív nagysága jobban látszódjék.

15. ábra Si, SiO2 és Si3N4 rétegeken mért REELS spektrumok

Az EPES-REELS spektrumok SiO2 esetén mutatják a tiltott sávot, mely azonban Si3N4

esetén a várakozás ellenére eltűnt. Ez azt jelenti, hogy Si3N4 esetén a tömbi és a felületi

tartományok különböznek egymástól.

A veszteségi intenzitások fordítottan arányosak az IMFP-vel, és az ábrából látszik, hogy

veszteségi intenzitások Si esetén a legnagyobbak míg SiO2-nél a legkisebbek. A felületi

plazmon intenzitása is durva közelítést ad a  felületi gerjesztések hatásáról. Si esetén egy

jól definiált felületi plazmon látható. Ezzel szemben a SiO2 és Si3N4 spektrumok nem
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mutatnak felületi plazmonra utaló jeleket. Az EPES-REELS spektrumok mérése 0.5 keV-on

és 2.0 keV-on is megtörtént. Az elektron energiájának változásával a felületi / tömbi

veszteségek aránya módosul, és emiatt a mérhető spektrum alakja is megváltozik. Mivel a

mérésekben ilyen változást nem láttunk, ezért a felületi veszteséget elhanyagoltuk.

Így, mivel referencia (Si) minta felületi gerjesztésének valószínűsége jelentősen

különbözik a szigetelő anyagokétól (Si3N4 és SiO2), Si esetén a mért rugalmas csúcs

értékekre felületi korrekciót kellett végeznem. Nyilvánvaló, hogy a szimulációs

programban használt rugalmas csúcs intenzitásokat módosítani kell, melyeket

megszoroztam az fs felületi korrekciós tényezővel. Ezen korrekció elvégzéséhez ismernem

kellett a SEP értéket az elektron energiája és a szög függvényében. Si-ra az fs felületi

korrekciós tényezőt Chen [20] és Werner [19] képletei, valamint Kwei adatai [21] alapján,

különböző mérési geometriákra és energiákra számítottam ki a (II.C.2-II.C.4)

egyenletekből. A korábbiakban tárgyaltak alapján nem meglepő, hogy Chen képletével

nyert SEP értékek nagyobbak, mint Werner képletével, amiből az következik, hogy a

számított  IMFP értékek Werner SEP adatai alapján alacsonyabbak, mint Chen SEP

adataival.

SiO2

SiO2-re az egyes elektron energiának és geometriai elrendezésnek megfelelő tényleges

IMFP értékeket EPES módszerrel határoztam meg. Mielőtt az IMFP értékeket a mért Si és

SiO2 rugalmas csúcs intenzitások alapján szimulációs programommal határoztam volna

meg, különböző feltevéseket alkalmaztam. Először a felületi gerjesztés hatását mindkét

anyagnál (Si és SiO2) elhanyagoltam, és így kaptam a nem-korrigált IMFP adatokat.

Másodszor az EPES-REELS spektrumok alapján SiO2 felületi gerjesztését hanyagoltam el,

míg a Si rugalmas csúcs intenzitását (EPSi-t) Chen és Werner formulái és anyagi paraméter

adatai alapján a felületi gerjesztésre korrigáltam. Végül mindkét anyag mért rugalmas

csúcs intenzitására korrekciót végeztem Chen képlete és Kwei SiO2-re vonatkozó [21] SEP

adataiból nyert korrekciós faktorok alapján.

A 2. Táblázat ezeket a felületi gerjesztésre korrigált, illetve nem korrigált IMFP

adatokat mutatják, együtt a TPP-2M formula alapján számított térfogati IMFP adatokkal.
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2. Táblázat
Korrigált és nem korrigált SiO2 IMFP adatok

Energia
(eV)

nem
korr.

αin=0o

nem
korr.

αin=55o

korr.
Chen

αin=0o

korr.
Chen

αin=55o

korr.
Chen +
Kwei

αin=0o

korr.
Chen +
Kwei

αin=55o

Korr.

Werner

αin=0o

Korr.
Werner

αin=55o

TPP
Optikai
adatok

300 16.8 10.8 12.6 9.8 12.6
500 23.5 24.1 18.5 17.5 20.2 19.7 16.5 15.8 17.7

1000 35.5 36.3 30.5 29.4 32.4 32.0 27.9 26.8 29.3
1500 47.1 48.7 42.0 41.2 44.0 44.0 39.0 37.8 40.1
2000 55.8 59.3 50.3 51.3 52.6 54.5 47.0 47.4 50.4

A 16. ábrán csak a tömbi adatok és Chen adatai alapján korrigált tényleges IMFP adatok

láthatók.

16. ábra SiO2 IMFP adatai optikai adatok alapján, valamint felületi korrekcióval

A 16. ábrán látható két adatsor kiválóan egyezik. Ha megvizsgáljuk a táblázati adatokat,

látható, hogy különböző beesési szögekre, felületi korrekció nélkül meghatározott IMFP

adatok jól egyeznek. Ez azt jelenti, hogy szimulációs programom jól követi a szögfüggést.

Mivel a felületi korrekcióval, különböző beesési szögekre meghatározott IMFP adatok

szintén jól egyeznek, azt a következtetést vonhatjuk le, hogy a felületi korrekció

szögfüggése megbízható.
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Összevetettem az optikai adatok alapján nyert IMFP adatsort azokkal az értékekkel,

melyeket úgy kaptam, hogy Chen adatai alapján felületi korrekciót végeztem el Si-ra (2.

táblázat 5. és 10. oszlopa). Az egyezés kiváló, kivéve 300 eV-ot. A felületi plazmon

intenzitása és még a helye is függ a felület minőségétől [116]. Ez azt jelenti, hogy a felületi

korrekciós faktor, fs, szintén függ a felület állapotától, amit az alkalmazott módszer

természetesen nem tartalmaz. Előfordulhat, hogy a porlasztás során a SiO2 (felületi)

rétegben hibák keletkeznek. Arra a megállapításra jutottam, hogy a tényleges IMFP

adatok, melyeket Chen adatai alapján elvégzett felületi korrekcióval kaptam, jól egyeznek

a térfogati (optikai adatok alapján) nyert IMFP értékekkel. Ez azt jelenti, hogy a térfogati

SiO2 IMFP adatok megbízhatóan alkalmazhatók a mi esetünkben.

Si3N4

Si3N4 minta esetén a SiO2 vizsgálatánál leírtakhoz hasonlóan jártunk el, először

megvizsgáltuk a felületi gerjesztés erősségét EPES-REELS spektrumokban. Azt találtuk,

hogy a 300 és a 2000 eV-os EPES-REELS spektrumok esetén a lehetséges felületi

gerjesztés erőssége nem változott. Ezért Si3N4.re a felületi korrekciós tényező, fs(Si3N4)=1,

felületi korrekciót a Si rétegen mért rugalmas csúcs intenzitásokra végeztem.

Werner SEP képlete [19] és Chen SEP formulája [20] nem ugyanazt a SEP mennyiséget

számítja. Werner képletével a teljes, a mintán kívüli és a mintán belüli felületi gerjesztések

számíthatók. Chen képletének alkalmazásakor figyelembe vesszük azt, hogy a felület

közelében a térfogati gerjesztések valószínűsége csökken. Ennek a csökkenésnek, valamint

a mintán belül megjelenő felületi gerjesztéseknek olyan az együttes hatása, hogy a mintán

belül a gerjesztések gyakorisága közel állandó. Ezért Chen képletének alkalmazásakor a

mintán kívüli felületi gerjesztéseket vesszük figyelembe.

A kísérleti eredmények tanulmányozása alapján is Werner és Chen közelítése közül

Chen eljárását tartom jobbnak, felületi korrekciót ezért Chen adatai alapján végeztem el a

Si rétegen mért rugalmas csúcs intenzitásokra. A 3. Táblázatban feltüntettem a tényleges és

a TPP-2M formula [62] alapján meghatározott IMFP értékeket, melyeket a 17. ábra mutat.
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3. Táblázat Si3N4 IMFP adatok
energia

(eV)
nem

korr.

αin=0o

nem

korr.

αin=55o

korr.

Chen

αin=0o

korr.

Chen

αin=55o

TPP-2M

13 9.2 10.2
500 15.3 15.3 12.0 11.1 14.2
1000 21.6 19.9 18.5 16.0 23.6
1500 27 29.4 23.9 25.0 32.3
2000 34.8 34.1 31.3 29.5 40.6

17. ábra Si3N4 IMFP adatai optikai adatok alapján, valamint felületi korrekcióval

Látható, hogy míg alacsony energián az egyezés elfogadható, magasabb energiákon az

eltérés jelentős. A TPP-2M formula tartalmazza az Nv valencia elektronok számát, az Eg

tiltott sáv energiáját és a ρ anyagi sűrűséget (a 3. táblázatban számított értékeket rendre

Nv=32, Eg=5.4 eV és ρ =3.44 g/cm3 értékekkel kaptam). Megvizsgáltam, hogy a képlet

alapján számított IMFP milyen paraméterekre érzékeny. Tiltott sávot a mért spektrumban

nem észleltünk, ami egyébként a számított IMFP értéket csak kissé módosítaná. Ellenben a

TPP-2M formulával végzett számításban megváltoztattam Si3N4 sűrűség adatát, és az így

kapott adatokat vetettem össze a Chen adatai alapján korrigált IMFP értékekkel. Ezt az

eredményt a 4. Táblázat mutatja.
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4. Táblázat Si3N4 IMFP adatok
Energia

(eV)
korr.
Chen

αin=55o

TPP-
2M

300 10.4 10.4
500 12.9 14.6
1000 20.3 24.3
1500 27 33.3
2000 38 41.9

Ha összehasonlítjuk a 3. Táblázat utolsó két oszopát és a 4. Táblázatot, láthatjuk, hogy a

különbség jelentősen csökkent. Ebben az esetben számításomban a sűrűséget 15%-al

csökkentettem (ρ = 3.0 g/cm3). A sűrűség megváltozására vonatkozó mérési adatok nem

álltak rendelkezésemre.

II.E. Réteges szerkezetű minták EPES mélységi feltérképezése

Számos analitikai technológia, pl. SIMS (Secondary Ion Mass spectroscopy - Szekunder

ion tömegspektrometria), AES, XPS vagy EPES mélységi feltérképezése alkalmaz alacsony

energiájú (< 5 keV) ionokat. Az ionnyaláb megváltoztatja a minta felületközeli rétegét,

melyben felületi durvulást és koncentrációváltozást tapasztalhatunk. Az utóbbit

ionkeveredésnek hívjuk [117]. Ha az ionnyaláb a mintát súrlódó szögben éri, energiája

alacsony és közben a mintát forgatjuk, a felületi durvulás jelentősen csökken [118-119]. A

felületközeli réteg eredeti koncentrációja annál jobban változik meg, minél nagyobb az

ionenergia. Az ionkeveredés még alacsony ionenergiánál is jelentős lehet. Az ionnyaláb

energiáján kívül beesési szöge is befolyásolja, hogy a porlasztás hatására inhomogenné vált

réteg milyen vastagságú. A mélységi feltérképezés során folyamatosan távolítunk el

rétegeket, és közben a mintáról információt gyűjtünk. Ha a feltérképezés során

elektronokat detektálunk, a detektált spektrum függ az elektronnyaláb beesési szögétől és a

minta IMFP-jétől. Az elektronok a mintában az atomi potenciálon szóródnak. Mivel a

potenciál függ a rendszámtól, a rugalmas szórás erősen függ az elektron pályája menti

koncentráció-eloszlástól. Egy megváltozott összetételű anyagban tehát az elektron pályája

függ az elektron és az ion beesési szögétől, energiájától.

Az AES mélységi feltérképezés, mellyel a porlasztás során folyamatosan változó felületi

tartományból érkezett Auger elektronok detektálhatók, gyakran alkalmazott eszköz, hogy
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vékony rétegeket, rétegszerkezeteket, határátmenetet vizsgáljunk. Hogy a mért Auger

jelekből a minta eredeti koncentráció-eloszlását meghatározzuk, figyelembe kell vennünk

az ionnyaláb módosító hatását. A mélységi felbontás [1], mely megszabja a módszer

alkalmazhatóságát, sokat javult az alacsony, kis szögben beeső ionnyaláb, valamint a

mintaforgatás alkalmazásával. A módosult felület vastagsága a nm-es tartományba esik, ha

megfelelő porlasztási feltételeket alkalmazunk [120]. Az Auger elektronok IMFP-je

meghatározza az információs mélységet. A módosult nm-es tartomány ezzel az

információs mélységgel összemérhető.

A minta felületi tartományában, ahol az anyagi eloszlás erősen változik, az

ionporlasztás hatására fellépő ionkeveredés a koncentráció változásokat csökkenti. Ennek

ellenére sok esetben még az ionkeveredés hatása mellett is erősen változó koncentráció

eloszlást találhatunk a minta felületközeli tartományában. Ha ilyen változásokat az Auger

elektronok IMFP-jéhez képest kis távolságon belül találunk, az Auger jelek e változásokat

nem képesek megkülönböztetni, erről a tartományról csak átlagos információt kapunk AES

profilírozással.

Rugalmas csúcs -EPES- mélységi  feltérképezés, mellyel a porlasztás során

folyamatosan változó felületi tartományból érkezett rugalmasan visszaszórt elektronok

detektálhatók, a minta aktuális felületi rétegéről adnak információt, éppúgy, mint az Auger

mélységi feltérképezés. Ez a módszer ugyan nem olyan általánosan alkalmazható

felületanalitikai eszköz, mint az AES mélységi feltérképezés, speciális esetekben mégis

előnyös lehet e módszer alkalmazása.

EPES feltérképezés során az elektron energiáját és a mérés geometriáját változtathatjuk.

A rugalmas csúcs intenzitása MC programommal számítható, a geometria és az energia

változtatásának beillesztése a szimulációba csak a bemenő paraméterek módosítását jelenti.

Ilyen számítások előnye az, hogy egy adott mintára a bemenő adatok könnyen

változtathatók. Az energián és a geometrián kívül bemenő adatok még a minta

koncentráció-eloszlása.

Rugalmas csúcs mérések során mielőtt az elektronok elhagyják a mintát, részt vehetnek

egyszeres és többszörös rugalmas szórásban is. Amikor a szimulációban egyszeres szórást

vizsgáltam, csak azoknak az elektronoknak számítottam a rugalmas csúcs intenzitását,
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amelyek a szimulációban egyetlen nagyszögű rugalmas szórás után, míg a többszörös

szórás vizsgálatakor azokét, melyeket tetszőleges számú rugalmas szórás után hagyták el a

mintát a detektor irányában. A szimulációs eredmények alapján megvizsgáltam, milyen

különbséget okoz, ha EPES mélységi feltérképezés kiértékelésében egyszeres, illetve

többszörös rugalmas szórást tételezek fel. Megvizsgáltam olyan mintákat, melyekben nincs

ionkeveredés, és olyanokat is, melyekben van. Azokat a mintákat, melyekben nincs

ionkeveredés, ezentúl ideális mintáknak hívom. A számításokban adott koncentráció-

eloszlású, kétkomponensű Ge-Si minták rugalmas csúcs mélységi feltérképezését

szimuláltam.

A 18. ábrán látható ideális mintában azonos vastagságú, 20 A Ge és Si rétegek váltják

egymást. A koncentrációváltozások lépcsőfüggvény alakúak, a rétegek közti átmenet

vastagsága egy atomsor.
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18. ábra Ideális Ge-Si minta koncentráció-eloszlása

Az ideális mintán kívül olyan Ge-Si rétegsoros mintákon is szimuláltam rugalmas csúcs

mélységi feltérképezést, mely mintákban a rétegek közötti ionkeveredést TRIM

szimulációval számítottam [121]. Ezeket a mintákat a következőkben triviálisan

inhomogén mintáknak fogom hívni. Az inhomogén minták koncentráció-eloszlását a TRIM

számítások szolgáltatták. Feltételeztem, hogy ezekben a mintákban ionporlasztás előtt 30 A

vastagságú Ge és Si rétegek váltják egymást. Az ionporlasztás hatására a rétegek között
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ionkeveredés lép fel. A 19-21 ábrákon tetszőlegesen kiválasztott pillanatokban láthatók

300, 600 és 1000 eV-os energiájú Ar+ ionnyaláb hatására 30 A vastagságú réteg

koncentráció-eloszlása.

0

0.2

0.4

0.6

0.8

1

1.2

10 60 110 160 210 260 310 360 410

mélység (A)

ko
nc

en
tr

ác
ió

Si
Ge

19. ábra 300 eV Ar+-ion porlasztás hatására megváltozott anyagi eloszlású, inhomogén Ge-Si

minta koncentráció eloszlása
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20. ábra 600 eV Ar+-ion porlasztás hatására megváltozott anyagi eloszlású, inhomogén Ge-Si

minta koncentráció eloszlása
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21. ábra 1000 eV Ar+-ion porlasztás hatására megváltozott anyagi eloszlású, inhomogén Ge-Si

minta koncentráció eloszlása

Az ideális mintán számított rugalmas csúcsok változását több elektron energia és mérési

geometria mellett is megvizsgáltam. Az 22-23. ábrán különböző energiákon láthatók Si és

Ge rugalmas szórásra vonatkozó hatáskeresztmetszetei.
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22. ábra Si rugalmas szórás differenciális hatáskeresztmetszete

23. ábra Ge rugalmas szórás differenciális hatáskeresztmetszete

Látható, hogy az energiával a hatáskeresztmetszetek alakja jelentősen változik, és ez a tény

a mérések során bonyolult módon befolyásolhatja a rugalmas csúcs intenzitásának

változását.

Az MC szimulációban a mérési geometriát változtattam. Az elektron energiáját 0.5 keV

- 5.0 keV között változtattam. A rugalmas szórás hatáskeresztmetszetét a NIST 64

adatbázisból [105] vettem, a Si és Ge minták IMFP adatait pedig a NIST 71 [57]

adatbázisból, és egy i-dik réteg IMFP-jét gyakran alkalmazott módszerrel számítottam

[122]:

Ge

Ge

Si

Si

i

cc
λλλ

+=
1 ,

ahol cSi és cGe a rétegen belül Si, illetve Ge koncentrációját jelölik, és cSi+cGe=1. A

szimulált rugalmas csúcs profilírozás kiértékelésére alkalmas a rugalmas csúcs

intenzitásának változásának vizsgálata. A feltételezett (lehetséges) mintákon a rugalmas

csúcs amplitúdóinak változását hasonlítottam össze, amikor egyszeres, illetve amikor
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többszörös rugalmas szórást számítottam. A könnyebb összehasonlíthatóság kedvéért a

görbéket egyre normáltam.

Nézzük meg, milyen eltérést látunk az egyszeres és a sokszoros szórást feltételező

számítások eredményeiben. Ideális anyagra először megvizsgáltam, hogy hogyan

változnak a szimulált profilok az elektron energia függvényében, amikor a belépő elektron

a mintára merőleges, a detektálási szög tartománya pedig 0°-42°, amely egy tipikus RFA

elektron spektrométer mérési geometriájának felel meg.

24. ábra Ideális minta szimulált EPES mélységi profilja RFA elektron spektrométeren, 300 eV elektron

energián

A 24. ábra ideális minta rugalmas csúcs mélységi feltérképezését szimulálja, ahol az

elektron energiája 300 eV. A szimulációban az egyes pontok megfelelnek egy adott

mélységi koncentráció-eloszlással jellemzett mintán számított rugalmas csúcs

intenzitásnak. A 18. ábrán látható az ideális minta koncentráció-eloszlásra, ami alapján egy

pontban számítottam ki a rugalmas csúcs intenzitást egyszeres, valamint többszörös

szórással. A minta koncentráció-eloszlásának megváltozása miatt a spektrumban a

rugalmas csúcs intenzitások is változnak a maximális és a minimális értékek között. Egy

szimulációban bizonyos számú elektron transzportját szimulálom. Ezek valamekkora

hányada érkezik a detektorba. A számításban az energiaveszteség nélkül detektált

elektronoknak természetesen csak egy részét észlelem egyetlen rugalmas szórás után. Ezért

amikor a spektrumban összehasonlítom, hogy a minta eloszlásának változásával hogyan
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módosul egymáshoz képest az egyszeres és a többszörös rugalmas szórás alapján számított

spektrum, az intenzitások maximumát mindkét esetben egyre normálom. A minta mélység

szerint változó eloszlására az EPES feltérképezés akkor érzékeny, ha egymáshoz közeli

pontokban jelentős a rugalmas csúcs intenzitások változása.

A 24. ábrán látható spektrum érzékeny a koncentráció-eloszlás változására, az egymás

melletti pontokban számított értékek is jelentősen különböznek egymástól. Ugyanakkor

hasonlítsuk össze az az egyszeres, illetve a többszörös rugalmas szórásokat számító

spektrumokat! Hasonlítsuk össze a spektrumok alakját és az egyes pontokban intenzitásuk

értékét is. Mivel kísérleti EPES mélységi feltérképezéskor a mérési bizonytalanság

szokásosan eléri az 5%-ot, ezért csak olyan esetben hívom fel a figyelmet az egyszeres és a

többszörös számítások alapján nyert spektrumok közti különbségekre, amikor vagy a

spektrumok alakja különbözik jelentősen, vagy találhatók olyan pont(ok), ahol az

intenzitások különbsége meghaladja az 5%-ot. Abban az esetben, amikor sem a

spektrumok alakja, sem az intenzitások közt nem találok nagy különbséget, azt

hangsúlyozom, hogy az egyszeres és a többszörös rugalmas szórásokat számító

spektrumok között lényeges különbség nem látható.

A 24. ábrán a spektrumok alakja hasonló, az abszcissza irányában azonban a két

spektrum eltolódott. Az eltolódás következtében ha az egyes pontokban összehasonlítjuk

az intenzitások értékét, a spektrumok néhány pontban jelentősen eltérnek. Ennek ellenére

ha valamelyik spektrumot eltoljuk úgy, hogy a két profil a lehető legjobban illeszkedjék,

akkor a többszörös és az egyszeres szórások eredményét bemutató görbék közt lényeges

különbség nem látható.

Lássuk, hogy a különbség hogyan változik az elektron energiájának változtatásával. A

25. ábrán az ideális minta EPES mélységi profilját mutatja, ha a primer energia 1000 eV.
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25. ábra Ideális minta szimulált EPES mélységi profilja RFA elektron spektrométeren, 1000 eV elektron

energián

Látható, hogy a rugalmas csúcs intenzitása az egyszeres szórási képben jobban változik,

mint a többszörösben. Ez az eredmény nem meglepő, hiszen az elektronok a többszörös

szórás során nagyobb rétegvastagságból gyűjtenek információkat, ezzel a képpel a változó

koncentráció-eloszlású tartományról átlagos jelet kapunk, ami megfelel egy tényleges

mérésnek is. Azt, hogy a szimuláció 300 eV-os elektron energián kisebb mértékű eltérést

eredményezett 1000 eV-hoz képest, magyarázhatjuk azzal, hogy a 300 eV-os IMFP miatt

az elektronok a többszörös rugalmas szórás ellenére is vékony tartományból jutnak a

detektorba. A 19. ábrán látható anyagi eloszlás pedig ilyen kis tartományon belül nem

változik jelentősen. A spektrumok intenzitása az egyes pontokban (az egyre normált)

maximumok és a minimumok közt változnak. Az egyszeres és a többszörös szórási kép

alapján számított intenzitások minimuma 11.4 %-al tér el. A többszörös szórási képben

számított minimumok meghaladják az egyszeres szórási képpel számított megfelelő

minimum értékeket. Ez érthető, mivel abban a pontban, ahol a rugalmasan visszaszórt

elektronok minimumot adnak, a többszörös szórás jobban átlagolja a koncentráció-

változásokat. A 25. ábrán is látható eltolás a két spektrum között az abszcissza irányában.

A 26-28. ábrán látható, hogy az elektron energiájának növelésével hogyan változik az

egyszeres, illetve többszörös rugalmas szórást feltételező szimulációk különbsége.
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26. ábra Ideális minta szimulált EPES mélységi profilja RFA elektron spektrométeren, 2000 eV elektron

energián

A 26. ábrán látható, hogy 2000 eV-on is különböznek az egyszeres és a többszörös

rugalmas szórást számító spektrumok. A különbség mértéke azonban csökken az 1000 eV-

os számításokhoz képest. Ha a minimumok különbségét leolvassuk, 9.6 %-ot kapunk.

Ebből látható, hogy az elektron energiájának változtatásával a rugalmas és a rugalmatlan

szórások együttes hatása sokszor kiszámíthatatlan, meglepő eredményekre vezet, hsonlóan

ahhoz, mint ahogy azt Konkol Attila és Menyhárd Miklós kimutatták [97].
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27. ábra Ideális minta szimulált EPES mélységi profilja RFA elektron spektrométeren, 3000 eV elektron

energián

A 27. ábrán látható  3000 eV-os elektron energián végzett szimulációban nagy eltérést

látható az egyszeres és a többszörös rugalmas szórást számító spektrumokban. A két

spektrum minimumai között az eltérés 28.6 %. Ekkora különbség már jelentős hibát

okozhat, ha egy mérés eredményét egyszeres rugalmas szórással értékeljük ki. Az

intenzitáskülönbségeken kívül a spektrumok alakja is jelentősen eltér.
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28. ábra Ideális minta szimulált EPES mélységi profilja RFA elektron spektrométeren, 5000 eV elektron

energián

A 28. ábrán 5000 eV-os elektron energián látható az ideális minta mélységi

feltérképezésének szimulációja egyszeres és többszörös rugalmas szórásokat számítva.  Az

egyszeres és a többszörös szórásokat feltételezett számítások intenzitás minimumai csak

6.5 %-al különböznek.  Ugyanakkor a két profil alakja lényegesen különbözik. Az

egyszeres rugalmas szórást számító spektrum a minimum és a maximum között csaknem

egyenes szakaszokból áll, a többszörös szórás spektruma pedig hullámzó görbét ír le. 30 A

anyag eltávolításakor a két számítás 21 % különbséget mutat. A fenti rugalmas csúcs

mélységi profilokból látható, hogy ideális mintán az elektron energiájának változtatásával

a szimuláció nagy különbséget eredményezett, amikor a mérési geometria nagy detektálási

szögnek, 0-42°-nak felelt meg 0°-os beeső elektron mellett.
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Vizsgáljuk meg, hogy ha jóval kisebb detektálási szögre végezzük el a szimulációt, az

ideális mintán az egyszeres és a többszörös rugalmas szórások milyen különbséget

eredményeznek. A 29-32. ábrán CMA elektron spektrométernek megfelelő geometriai

elrendezést, 0°-os beesési és 42±6°-os detektálási szöget tételeztem fel a felület

normálisához képest 0.5 keV, 1.5 keV és 2.5 keV elektron energiánál.
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29. ábra Ideális minta szimulált EPES mélységi profilja CMA elektron spektrométeren, 500 eV elektron

energián

A 29. ábrán látható profilok különbsége elhanyagolható mind intenzitásban, mind

jellegében. A görbék menete megegyezik, és az egyszeres és többszörös szórással

számított spektrumok között jelentős különbség nem látható. Vizsgáljuk meg, hogyan

változnak a profilok az energia növelésével!
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30. ábra Ideális minta szimulált EPES mélységi profilja CMA elektron spektrométeren, 1500 eV elektron

energián

A 30. ábrán látott profilok különbsége nagyobb az előző ábrához képest, az egyszeres

rugalmas szórást mutató eredmény menete kissé eltér a többszörös szóráséhoz képest. Az

intenzitások különbsége azonban minden pontban kisebb, mint 8%.
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31. ábra Ideális minta szimulált EPES mélységi profilja CMA elektron spektrométeren, 2500 eV elektron

energián
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Az ideális mintán végzett rugalmas csúcs profilok szimulációi közül a 31. ábrán látható

a legnagyobb eltérés az egyszeres és többszörös rugalmas szórás számítások között, amikor

a mintára merőlegesen belépő elektronnyalábot és 36-48o-os detektálási szöget

szimuláltam. Az intenzitások eltérése ebben az esetben maximum 12%.

Vizsgáljuk meg, hogy az ionkeveredés, azaz a tényleges mérési körülmények

figyelembe vétele hogyan változtatja meg a szimulált profilokat. Lássuk, milyen

különbséget mutatnak az egyszeres, illetve a többszörös rugalmas szórást számítások. Azt

várhatjuk, hogy inhomogén mintában a koncentráció-változások nem olyan élesek, mint az

ideális esetben, ezért a két számítás közt az eltérés kisebb. Lássunk erre egy példát, amikor

a szimulációban 300 eV-os ionporlasztást tételeztem fel. A 32-35. ábrán 500 eV-os, 1000

eV-os és 1500 eV-os elektron energiákon szimulált profilokat mutatom be, melyekkel

megmutatom, hogyan változnak a számított spektrumok az elektron energia

változtatásával.

0.5

0.7

0.9

1.1

0 20 40 60 80 100
eltávolított rétegvastagság (A)

no
rm

ali
zá

lt 
in

te
nz

itá
s

többszörös szórás
egyszeres szórás

32. ábra 300 eV Ar+-ion porlasztás hatására megváltozott anyagi eloszlású, inhomogén Ge-Si minta

szimulált EPES mélységi profilja CMA elektron spektrométeren, 500 eV elektron energián

A 32. ábrán látható spektrumok profilok közt az eltérés elhanyagolható (az intenzitások

közötti eltérés minden egyes pontban kevesebb, mint 3% és a görbék alakja is hasonló).

Lássuk, hogyan változik ez nagyobb elektron energiákon!
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33. ábra 300 eV Ar+-ion porlasztás hatására megváltozott anyagi eloszlású, inhomogén Ge-Si minta szimulált

EPES mélységi profilja CMA elektron spektrométeren, 1000 eV elektron energián

A 33. ábrán látott profilok eltérése sem jelentős. Még a 300 eV-os ionenergia mellett

fellépő ionkeveredés is elégendően megváltoztatja az eredeti koncentrációt ahhoz, hogy

1000 eV elektron energián sem látható lényeges különbség a két spektrum között. Az

egyszeres és többszörös szórások spektrumának intenzitás különbsége minden pontban

kisebb, mint 5%.
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34. ábra 300 eV Ar+-ion porlasztás hatására megváltozott anyagi eloszlású, inhomogén Ge-Si minta CMA

elektron spektrométeren, 1500 eV elektron energián szimulált EPES mélységi profilja
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A 34. ábrán látható, hogy a két profil közt a különbség valamelyest nőtt, az intenzitások

különbsége azonban mindenütt kisebb, mint 7%.

Vizsgáljuk meg, hogy inhomogén mintáinknál a szimuláció milyen eredményre vezet,

miközben az ionenergia változik. Ebben az esetben csak többszörös rugalmas szórást

számítok, mely a kísérleteknek is megfelel. A 35. ábra megmutatja, hogy különböző

ionenergiákon milyen eredményeket kaptam, amikor 1000 eV-os elektron energiát

szimuláltam.
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35. ábra 300 eV, 600eV és 1000 eV Ar+-ion porlasztás hatására megváltozott anyagi eloszlású, inhomogén

Ge-Si minták szimulált EPES mélységi profilja CMA elektron spektrométeren, 1000 eV elektron energián

A 35. ábrán látott eredmények alapján látható, hogy az ionenergia növelésével a

profilokban a rugalmas csúcs intenzitások változása egyre csökken. Ezt azzal

magyarázhatjuk, hogy minél nagyobb az ionenergia, a rétegek annál jobban

összekeverednek, és ekkor a szimuláció  a kevésbé éles koncentráció-eloszlást tükrözi.

Szimulációs programom könnyen alkalmazható arra, hogy megvizsgáljuk, különböző

mérési geometriák esetén hogyan változik a (többszörös szórással) számított rugalmas

csúcs változása. A számítások alkalmasak annak a vizsgálatára, hogy milyen

paraméterekre érzékeny a mérés. Ha valamilyen paraméterre a mérés érzékeny, a
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szimuláció eredménye alapján a legkedvezőbb eset kiválasztható. A legkedvezőbb esetek

természetesen nem biztos, hogy a gyakorlat szempontjából elérhetők. A praktikusan

elérhető esetek közül a szimuláció alapján javaslatot teszek, hogy melyik a legjobb.

Tekintsünk egy lehetséges kétkomponensű, rétegszerkezetű Ge-Si minta EPES mélységi

profilját néhány primer energiára és néhány geometriai elrendezésre. Célom, hogy az

eredmények alapján javaslatot tudjak tenni, hogy milyen energián és geometrián célszerű

méréseket végezni. A szimulációban a 600 eV-os ionenergiával porlasztott minta

koncentráció-eloszlását használtam. A számításokat négy elektron energiára végeztem el:

0.5, 1.0, 1.5 és 2.0 keV-re. Négy geometriai elrendezést vizsgáltam. Elsőként lássuk a

szokásos CMA spektrométernek megfelelő geometriát, ahol az elektron beesési és

detektálási szöge a felület normálisához képest rendre 0o és 42o±6 o. A következő

elrendezés a laboratóriumunkban lévő DESA 100 -nak felel meg. A beesés szöge

változtatható. Attól függően, hogy melyik elektronforrás gerjeszti a mintát, ez 0o vagy 55o.

A detektálás szöge pedig mindkét esetben 19o-31o a felület normálisához képest. Végül

megvizsgáltam a debreceni ESA 31 spektrométer elrendezést, ahol a beesési szög 50o, a

detektálás pedig 0o-5o a felület normálisához képest. Számítási eredményeimet a következő

36-40. ábra mutatja.
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36. ábra 600eV Ar+-ion porlasztás hatására megváltozott anyagi eloszlású, inhomogén Ge-Si minta szimulált

EPES mélységi profiljai CMA elektron spektrométeren, 500 eV, 1000 eV, 1500 eV és 2000 eV elektron

energián
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37. ábra 600eV Ar+-ion porlasztás hatására megváltozott anyagi eloszlású, inhomogén Ge-Si minta szimulált

EPES mélységi profiljai DESA elektron spektrométer szembeágyúján 500 eV, 1000 eV, 1500 eV és 2000 eV

elektron energián
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38. ábra 600eV Ar+-ion porlasztás hatására megváltozott anyagi eloszlású, inhomogén Ge-Si minta szimulált

EPES mélységi profiljai DESA elektron spektrométer oldalágyúján 500 eV, 1000 eV, 1500 eV és 2000 eV

elektron energián
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39. ábra 600eV Ar+-ion porlasztás hatására megváltozott anyagi eloszlású, inhomogén Ge-Si minta szimulált

EPES mélységi profiljai ESA 31 elektron spektrométer oldalágyúján 500 eV, 1000 eV, 1500 eV és 2000 eV

elektron energián

Az inhomogén minta esetén a 36-39. ábrán láthatók a négy mérési geometrián szimulált

profilok eredményei. Ezeket összevetve láthatjuk, hogy a profilok 1.0 keV energiájú

elektron energián a legérzékenyebbek a minta koncentráció-változásra. Ebben az esetben a

szimulált intenzitásváltozások nagyok. Megvizsgáltam azt, hogy ha e körül az 1.0 keV

körül  0.1-0.2 keV értékkel megváltoztattam az elektron energiáját, a spektrumokban ez

milyen változást eredményezett. Azt kaptam, hogy az 1.0 keV-os energiához képest ezek

csak kissé térnek el. Az elektron energiájának változtatása a különböző spektrométereken

eltérő mértékű változásokat okoz a spektrumokban, ezek a különbségek azonban a mérési

bizonytalanságon belül vannak. Megjegyzendő mégis, hogy amikor a DESA 100

spektrométer geometriájával szimuláltam az rugalmas csúcs intenzitásokat, jobb (a

koncentráció-változásra érzékenyebb) spektrumot kaptam, amikor a belépő elektron

merőleges volt a minta felületére (0o), mint amikor a felület normálisával 55o-ot zárt be.

Az ESA 31 spektrométernél pedig azt találtam, hogy 0.5 keV elektron energiánál kaptam a

legkevésbé érzékeny profilt, vagyis ezzel a spektrométerrel az adott mintát 0.5 keV

elektron energián nem célszerű mérni.
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Megvizsgáltam, hogy adott elektron energián (1500 eV-on) melyik mérési geometrián

kapok legjobb profilt. A 40. ábra ezt az összehasonlítást mutatja.

0.7

0.9

1.1

36 56 76 96
eltávolított rétegvastagság (A)

no
rm

ali
zá

lt 
in

te
nz

itá
s

DESA oldalágyú
DESA szembeágyú
ESA 31
CMA

40. ábra 600eV Ar+-ion porlasztás hatására megváltozott anyagi eloszlású, inhomogén Ge-Si minta szimulált

EPES mélységi profiljai CMA, DESA 100  és ESA 31elektron spektrométeren mért 1500 eV elektron energián

Az eredmények alapján megállapíthatjuk, hogy réteges MC programunkat könnyen

tudtuk alkalmazni arra, hogy megvizsgáljuk számunkra a gyakorlat szempontjából fontos

spektrométerek esetén, hogy milyen energiájú elektronnal célszerű EPES mélységi

feltérképezést végezni.
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III. Összefoglalás

Elektronspektroszkópiai módszerek a vizsgált mintáról emittált elektronokat

analizálnak. Felületérzékeny ektronspektroszkópiai eszközökkel, röntgen fotoemisszós

spektroszkópiával (XPS), Auger elektron spektroszkópiával (AES) a minta valamilyen

vastagságú rétege analizálható. XPS és AES mérések kiértékeléséhez szükség van az

átlagos rugalmatlan szabad útossz (IMFP) ismeretére.

Rugalmas csúcs elektron spektroszkópiával (EPES), valamint a visszaszórt elektron

energiaveszteségi spektroszkópiával (REELS) IMFP értékek, továbbá energiaveszteségi

függvények határozhatók meg. Olyan méréseket, melyekből információ nyerhető a minta

felületi tartományáról, szokásosan közepes (néhány száz eV-os) energiájú elektronokkal

végeznek.

A dolgozat célja, hogy egy egyszerű eljárást mutasson be, mellyel

elektronspektroszkópiai mérések könnyen, hatékonyan értékelhetők ki. EPES és REELS

mérések kiértékelésére kidolgoztam egy Monte Carlo modellt, amely alkalmas homogén és

inhomogén közegben az elektron transzport leírására. A rugalmas és rugalmatlan

szórásokat független eseményekként kezelem. A rugalmas szórást a táblázati formában

elérhető rugalmas szórás differenciális hatáskeresztmetszeti adataiból és a minta ismert

anyagi sűrűségéből számítom. A rugalmatlan szórást a felületi és térfogati

energiaveszteségi függvényekkel írom le. Az energiaveszteségi függvényeket Drude-

Lindhard típusú függvényekkel állítom elő, melyek szabad paramétereit a kísérleti

spektrumokhoz illesztem. A réteges leírást homogén mintára is alkalmaztam, tömbi és

felületi tartományok definiálásával. Mind a mintában, mind a mintán kívüli felületi

gerjesztéseket a felületi rétegen belül számítottam. A modellnek megfelelő számítógépes

programot elkészítettem. MC programommal polySi, amorfGe és mikrokristályos Sn

minták mért REELS spektrumait szimuláltam a felületi veszteségek figyelembe vételével.

Módszeremmel a szimulációs eredmények és a kísérleti REELS görbék jól illeszkedtek. A

szimulációban az illesztési paraméterek a veszteségi függvények alakja, és a felületi

gerjesztés intenzitása volt. MC szimulációs eljárásom alkalmas arra, hogy különböző

mérési körülmények közt is illesszem ezeket a paramétereket. Különböző elekron

energiákra és különböző elektron spektrométerek geometriájára végeztem el az

illesztéseket. Az összes Si, Ge és Sn mérést tudtam illeszteni a megfelelő (Si, Ge vagy Sn)

veszteségi függvényekkel, függetlenül az elektronenergiától és a mérési geometriától. Ezen
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eredmény alapján a meghatározott veszteségi függvényeknek tényleges fizikai jelentése

van.

A szimulációban külön kezeltem a felületi veszteségeket. A felületi veszteségek

leírására szokásosan alkalmazott fizikai paraméter a felületi gerjesztési paraméter (SEP). A

mérések szimulációjakor a mérési körülmények miatt ismert modellt alkalmazhattam a

SEP meghatározására. Mivel MC programom mind a rugalmasan visszaszórt elektronokat,

mind a felületi veszteségeket számolja, a SEP értékeket könnyen meghatároztam. Az így

nyert Si és Ge minták felületi gerjesztési paraméter (SEP) értékeket összehasonlítottam

Werner és Gergely adataival. A három modell értékei jól egyeztek.

SiO2 és Si3N4 tényleges IMFP adatait határoztam meg EPES módszerrel, Monte Carlo

programom alkalmazásával. Megmutattam, hogy a mért rugalmas csúcs intenzitásokat

felületi gerjesztésre korrigálni kell. A korrekciót Chen képlete és anyagi paraméter adatai,

továbbá Kwei anyagi paraméter adatai alapján végeztem el. A SiO2 és Si3N4 rétegek IMFP

adatait meghatároztam a TPP-2M formula alapján is.

Adott kétkomponensű, rétegsoros Ge-Si minták rugalmas csúcs feltérképezését

szimuláltam MC programommal különböző elektron beesési és detektálási geometrián és

elektron energián. A határrétegen az ionkeveredést TRIM szimulációval vettem

figyelembe. A szimulált rugalmas csúcs intenzitások a mérési geometria és az elektron

energia függvényében változtak a mélységi feltérképezés során. A szimulációs eredmények

alapján CMA, ESA 31 és DESA 100 elektron spektrométerekre megállapítottam az

optimális mérés elektron energiáját. Megmutattam továbbá, hogy a mérési geometriák

függvényében hogyan változik a rugalmas csúcs mélységi eloszlás.
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TÉZISPONTOK

1. tézis:

Kidolgoztam egy Monte Carlo modellt, amely alkalmas homogén és inhomogén

közegben elektron transzport leírására. A modellnek megfelelő szimulációs

programot elkészítettem többkomponensű homogén, valamint réteges minták

vizsgálatára.

2. tézis:

Jó egyezéssel rekonstruáltam polySi, amorfGe és mikrokristályos Sn minták kísérleti

REELS spektrumait Monte Carlo szimulációval, a felületi veszteségek figyelembe

vételével. Ennek során meghatároztam a Si, Ge és Sn minták felületi és térfogati

energiaveszteségi fügvényeit 0-50 eV tartományban.

3. tézis:

Monte Carlo modellemmel Si és Ge minták felületi gerjesztési paraméter (SEP)

értékeit határoztam meg, melyeket összehasonlítottam Werner és Gergely adataival.

A három modell értékei jól egyeztek.

4. tézis:

SiO2 / Si3N4 / SiO2 / Si mintán mért rugalmas csúcsok szimulálásával határoztam meg

SiO2 és Si3N4 IMFP értékeket. A felületi veszteség korrekciójára Chen adatait

használtam. Kimutattam, hogy szükséges ez a korrekció.

5. tézis:

Ge-Si több rétegű minták EPES mélységi feltérképezésének számítógépes

szimulálását végeztem CMA, ESA 31 és DESA 100 spektrométerekre. Az egyes

mérési geometriákra megállapítottam az optimális mérés elektron energiáját.

Megmutattam a mérési geometriák eredményeként a mélységi profil változását.
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Theses

1st point

I developed a Monte Carlo model that is suitable for describing electron transport in

a multi-component homogeneous and inhomogenous material. I prepared a software

according to the model above.

2nd point

I simulated measured REELS spectra of polySi, amorphous Ge and microcrystalline

Sn samples with good agreement using the Monte Carlo program, considering

surface losses. The simulation provided surface and bulk energy loss functions of Si,

Ge and Sn samples in the 0-50 eV energy range.

3rd point

I determined the surface excitation parameter (SEP) of Si and Ge samples and

compared those to the data of Gergely and Werner. The values obtained by the three

different models agreed well.

4th point

I determined the IMFP values of SiO2 and Si3N4 using EPES method with Si

reference sample. I made surface correction on the measured elastic peak intensity of

Si, using material parameters and formula of Chen. I showed that this surface

correction is necessary.

5th point

I simulated EPES depth profiling measurements on Ge-Si multilayered samples for

the geometries of CMA, ESA 31 and DESA 100 spectrometers. For each geometry I

determined the optimum electron energy for the measurements. I evaluated

differences in the calculated elastic peak profiles due to the different measurement

geometries.
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Melléklet
A Monte Carlo szimulációs eljárások olyan véletlenszám sorozatot igényelnek, amelyek

eloszlása megfelel adott fizikai mennyiségek eloszlásának. Ilyen véletlenszám sorozatot

előállíthatunk az

[ ] ( )∫=
'

0

1
0

x

dxxfR (M.1)

egyenlet x'-re történő megoldásával, ahol f(x) eloszlás a követni kívánt valószínűségi

függvény, [ ]10R  pedig egyenletes eloszlású véletlenszám sorozat, ami a számítógép

rutinokban alapszolgáltatás.

Jelölje F(x) az f(x) primitív függvényét, azaz:

( ) ( )∫= xfxF . (M.2)

(M.1) és (M.2) egyenletekből következik, hogy a megoldandó feladat

[ ] ( )'1
0 xFR = . (M.3)

Ilyen típusú egyenleteket kell megoldani (II.A.2) és a (II.A.4.) egyenletekben, ahol x’ a ϑsz

polár koordinátát, illetve Esz energiaveszteséget, f(x) pedig a rugalmas szórás differenciális

hatáskeresztmetszeti, illetve az energiaveszteségi függvényt jelentik. x' értékének

megkeresése lehetséges, de lassú megoldás. Gyors eljárás az, ha képezzük a ( ) ( )xFxG =−1

inverz integrál függvényt, mellyel x' közvetlenül kiszámítható:

[ ]( ) '1
0 xRG = . (M.4)

f(x) számítógépes ábrázolása adott xi pontokban történik, az olyan xj pontokban pedig,

amelyek az xi és az xi+1 pontok közé esnek, ahol xi ≤ x ≤ xi+1, f(xj) interpolációval

számítható.
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(M.3) és az (M.4) egyenletek inverz integrálfüggvény megoldását jelentik x’-re, ezért az

f(x)-ben lineáris interpoláció F(x)-ben másodfokú interpolációt jelent, mégpedig úgy, hogy

F(x)-nek xj pontjában teljesüljön, hogy

F(xj)=0.5*aj*xj
2+bj*xj+cj. (M.5)

Ugyanezekkel az aj és bj együtthatókkal felírható másik két egyenlet is F(xi)-re:

F(xi) = 0.5*aj*xi
2+bj*xi+cj (M.6)

 (M.6) egyenletből aj és bj paramétert meg tudom határozni, (M.7) egyenletből pedig cj

együttható kiszámítható.

Amennyiben a másodfokú függvény a, b és c együtthatóit ismerem, tetszőleges F(xj)

értékre ki tudom számítani xj értékét. A másodfokú függvény két gyöke közül a pozitív a

megfelelő, mivel az integrálfüggvény monoton függvény, melyre érvényes, hogy

F(xj)≥F(xi) mindenütt.

Az inverz integrálok pontonkénti kiszámítása egyszer, a szimuláció elején történik, és

utána már egyszerű interpolációval működik a számolás. Ez a módszer egy gyors eljárást

biztosít a kívánt eloszlású számok generálására.
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