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Témavezető: Dr. Friedler Ferenc

Elfogadásra javaslom (igen / nem)
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2.2.1. Folyamat (Process) gráf . . . . . . . . . . . . . . . . . . . . . 5
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3.9.1. Generált tesztfeladatok . . . . . . . . . . . . . . . . . . . . . . 86

3.9.2. Valós ipari feladatok . . . . . . . . . . . . . . . . . . . . . . . 88
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4.4.2. Rejtett hő . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
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4.5.4. Hőcserélők költsége . . . . . . . . . . . . . . . . . . . . . . . . 114
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4.6. Az integrált módszer léırása . . . . . . . . . . . . . . . . . . . . . . . 116
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3.4. Általános módszer: 60 műveleti egység . . . . . . . . . . . . . . . . . 87
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Ábrák jegyzéke
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4.12. Megoldás struktúra az 1.1.1.2 csúcsban. . . . . . . . . . . . . . . . . . 132
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Kivonat

Globális optimalizálási algoritmusok PNS feladatok
megoldására

A dolgozatban a folyamathálózat-szintézis feladat fontos osztályainak megoldására

alkalmas módszereket vezetünk be. A vizsgált feladatok NP teljesek, az általános

megoldó módszerekkel gyakorlati feladatok megoldása belátható időn belül nem le-

hetséges, ezért a célunk olyan specializált megoldó módszerek létrehozása, amely ki-

használják a PNS feladatok tulajdonságait.

Először a PNS feladatosztály konkáv célfüggvénnyel kibőv́ıtett lineáris modelljét

vizsgáljuk. A kapcsolódó modell egy lineáris feltételrendszerrel adott, változóiban

szétválasztható konkáv programozási feladat, melyek megoldására a korlátozás és

szétválasztás módszerét választottuk.

A megoldás során felmerülő szétválasztás lépésre hatékony és egyszerűen kiszámı́t-

ható part́ıcionálási stratégiákat mutatunk be, amelyeket összehasonĺıtunk korábban

bevezetett módszerekkel.

A korábbi part́ıcionálási eljárásokkal ellentétben a korlátozási lépésben használt

közeĺıtő lineáris programozási feladat érzékenységi vizsgálatával figyelembe tudjuk

venni a konvex poliéder és a célfüggvény viszonyát. Így egy olyan optimalizálási

eljáráshoz jutunk, amely kihasználja a PNS feladatokhoz kapcsolódó feltételrendszer

tulajdonságát.

Egy P-gráf jól reprezentálja a PNS feladathoz kapcsolódó modell változói között

lévő függőségi kapcsolatokat. A kombinatorikusan gyorśıtott algoritmus a változók le-

hetséges értékeinek part́ıcionálásával párhuzamosan egy P-gráfon végez műveleteket,

x
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és ı́gy jav́ıtja a módszer hatékonyságát.

Valós rendszerek esetében sokszor az adott t́ıpusú matematikai modellben nem

lehet kifejezni a rendszer összes tulajdonságát. Kı́vánatos lenne, hogy az optimális

megoldáson túl az első N legjobb megoldást is meghatározzuk, amelyekből a fel-

használó további megfontolások alapján ki tudja választani a megfelelő struktúrát.

Az általános megközeĺıtésben az ilyen szuboptimális megoldások nem értelmezhe-

tők, viszont a kombinatorikus eszközök lehetővé teszik, hogy megfelelően definiáljuk,

és algoritmikus módszerekkel generáljuk az ilyen optimális megoldáshoz közeli me-

goldásokat.

Integrált folyamat- és hőcserélőhálózat-szintézis során a teljes folyamat- és hő-

cserélőhálózat szintézise azonos időben történik, ellentétben a szekvenciális módsze-

rekkel, ahol a különböző szintézis lépések egymás után történnek. Könnyen látható,

hogy az ilyen stratégia nem vezet kieléǵıtő megoldáshoz, hiszen pl. az optimális

folyamathálózat meghatározásakor figyelmen ḱıvül hagyják a hőcserével kapcsolatos

információkat.

A dolgozat bemutat egy vegyes egész lineáris programozási modellen alapuló

módszert, amely a Friedler és munkatársai által bevezetett ABB algoritmuson ala-

pul, és megoldja az integrált szintézis feladatot.



Abstract

Global optimization algorithms for solving PNS prob-
lems

Algorithmic methods for solving important classes of Process Network Synthesis

(PNS) problem have been elaborated. The examined problems are NP hard, solving

industrial size problems with general solution methods is not possible within a rea-

sonable time. Therefore our aim is to create specialized algorithmic methods exploit

the nature of PNS problems.

The PNS problem with concave cost function can be considered as a separable

concave programming problem. Efficient partition strategies have been introduced for

solving the separable concave programming problem. By the help of the sensitivity

analysis of the relaxed linear programming problem, the relationship between the

convex polyhedron and cost function can be taken into account. As a result an

efficient optimization method utilizing the characteristics of the PNS problems have

been elaborated.

A combinatorially accelerated algorithm has also been proposed. In line with the

partitioning the feasible domain it performs operations on the corresponding P-graph

and improve the efficiency.

Solving practical problems the first N-best solution is to be generated beyond the

optimal solution thus enabling the user to select the suitable structure under further

consideration. New methodology has been introduced which enables us to determine

adequately and generate suboptimal solutions close to the optimal one.
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During the integrated synthesis of process and heat-exchanger networks, the pro-

cess synthesis and heat-exchanger-network synthesis are performed simultaneously.

The dissertation introduces a method, which is based on the algorithm ABB intro-

duced by Friedler and colleagues and solves the integrated synthesis problem.



Abstrakt

Globale Optimierungsalgorithmen zur Lösung von
PNS-Problemen

Algorithmische Methoden zum Lösen wichtiger Klassen von Problemen der Pro-

zess-Netzwerk-Synthese (PNS) wurden entwickelt. Die untersuchten Probleme sind

NP hart. Es ist unmöglich, Probleme im industriellen Maßstab mit allgemeinen

Lösungsmethoden in absehbarer Zeit zu lösen. Daher ist es unser Ziel, spezielle algo-

rithmische Methoden, die die Natur der PNS-Probleme ausnutzen, zu entwickeln.

Ein PNS-Problem mit konkaver Kostenfunktion kann als ein trennbares konkaves

Programmierungsproblem betrachtet werden. Effiziente Partitionsstrategien werden

vorgestellt, um das trennbare konkave Programmierungsproblem zu lösen. Mit Hilfe

einer Sensitivitätsanalyse des vereinfachten linearen Programmierungsproblems kann

die Beziehung zwischen dem konvexen Polyeder und der Kostenfunktion betrachtet

werden. Darauf aufbauend wurde eine effiziente Optimierungsmethode erarbeitet, die

die charakteristischen Eigenschaften des PNS-Problems ausnutzt.

Ein kombinatorisch beschleunigter Algorithmus wurde ebenso vorgeschlagen. Par-

allel zum Partitionieren der ausführbaren Domain, werden Operationen am damit

verbundenen P-Graph durchgeführt und somit die Effizienz gesteigert.

Neben der optimalen Lösung muss die erste N-beste Lösung generiert werden, die

es dem Verwender ermöglicht, die entsprechende Struktur gemäss weiterer Überlegung

zu wählen. Eine neue Methode wurde entwickelt, die das Optimieren und Erzeugen

von suboptimalen Lösungen in der Nähe des Optimums ermöglicht.
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Bei der integrierten Synthese von Prozess- und Wärmetauscher-Netzwerken wer-

den die Prozesssynthese und die Wärmetauscher-Netzwerk-Synthese simultan durch-

geführt. Die Arbeit stellt eine Methode vor, die auf dem ABB-Algorithmus basiert.

Dieser ABB-Algorithmus wurde von Friedler und Kollegen eingeführt und löst das

integrierte Synthese-Problem.
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1. fejezet

Bevezetés

Egy feldolgozó rendszerben a rendszer az anyagok kémiai, fizikai és biológiai transz-

formációján keresztül álĺıtja elő a ḱıvánt termékeket a meglévő nyersanyagokból ki-

indulva. A rendszerben lévő transzformációkat a műveleti egységek végzik, melyek

bemeneti anyagokat alaḱıtanak át kimeneti anyagokká. A műveleti egységek és a

közöttük lehetséges kapcsolatok egy hálózattal reprezentálhatók. A ḱıvánt termékek

előálĺıtása gyakran az adott hálózat egy részhálózata által történik. Egy hálózatnak

sok részhálózata van, mely képes az adott termékek előálĺıtására. A melléktermék-

kibocsátás, energia- és nyersanyagfogyasztás nagyban függ magától a részhálózat ki-

választásától, ezért az optimális hálózat vagy struktúra kiválasztása mind gazdasági,

mind környezetvédelmi okokból igen fontos. A folyamathálózat-szintézis (Process

Network Synthesis, PNS) célja ezen optimális struktúrák meghatározása.

A hőcserélőhálózatok (HENS) szintézise az egyik legfontosabb területe a folyamat-

tervezés tudományának. Az utóbbi időben az egyik legintenźıvebben kutatott terüle-

tek közé tartozik, több száz publikáció jelent meg e témában az elmúlt évtizedekben.

Fontossága annak is tulajdońıtható, hogy a vegyipari rendszerek működési költsége-

inek jelentős része az energiaköltség, ezen belül is a hőenergia, amelynek a hasznośı-

tása kiemelten fontos.

Integrált folyamat- és hőcserélőhálózat szintézis során a teljes folyamat- és hőcse-

rélőhálózat szintézise azonos időben történik, szemben a szekvenciális módszerekkel,

amikor először meghatározzák magát az optimális folyamathálózatot és utána az

optimális hőcserélőhálózatot. Könnyen látható, hogy ez nem vezet optimális me-

goldáshoz, hiszen az optimális folyamathálózat meghatározásakor figyelmen ḱıvül
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hagyják a hőcserével kapcsolatos információkat.

Célom a meglévő általános megoldó módszereknél hatékonyabb módszerek kidol-

gozása volt, amelyet a vizsgált feladatosztály speciális tulajdonságainak kihaszná-

lásával értem el. Az általam kifejlesztett módszereket a PNS feladatok bizonyos

t́ıpusainak megoldására dolgoztam ki, amelyek más feladatok megoldására is ked-

vezően viselkednek.

Szakirodalmi áttekintés

A szakirodalomban a szintézis feladatot a bevezetésben megfogalmazott általánosság-

ban nem vizsgálják, csak a fontos feladatt́ıpusokat külön-külön. Ennek megfelelően a

szakirodalom áttekintését fejezetenként tárgyaljuk.

Saját eredményeim kiemelése

A dolgozat tartalmi részében mindvégig többes szám első személyt használok. Annak

érdekében, hogy a dolgozatban elkülöńıtsem mások szakirodalomból ismert ereménye-

itől sajátjaimat, másokéra a szerzők nevével hivatkozom, sajátjaimat pedig minden

fejezet és a dolgozat összefoglalásában egyes szám első személyben egyértelműen meg-

fogalmazom.

Jelölésjegyzék

A dolgozatban kicsi (általában indexelt), latin (illetve időnként görög), dőlt betűkkel

xi, yj, γ, β, ... (valós) számokat jelölünk. Kivételt képeznek ez alól az f , fj, f̄ ,

f ′
k, g, gj, . . . betűk, amelyeket függvények jelölésére használunk. Az i, j, k és l

indexekre utalnak. Az m a (P ) feladat feltételeinek, mı́g az n a változóinak a

számára utalnak. A dőlt, latin nagybetűk A, B, ... mátrixokat, mı́g a kalligrafi-

kus, latin nagybetűk A, P, ... halmazokat jelölnek. Valós elemű halmazok pontjai,

egyenlőtlenségrendszerek változói, korlátjai illetve mátrixok oszlopai (sorai) mind–

mind vektorok, jelölésükre vastag latin kisbetűket x, b, l, u, 0, aj, ... használunk. A
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valós számok halmazát IR, az n-dimenziós euklideszi teret IRn, mı́g az m× n-es valós

mátrixok halmazát IRm×n jelöli. A csupa egyesből álló vektort jelölje e.



2. fejezet

Folyamatszintézis: PNS feladatok

Jelen fejezetben a folyamatszintézis feladatosztály alapvető defińıcióit ismertetjük.

Áttekintetjük a szakirodalmat, továbbá bemutatjuk a Friedler és munkatársai által

bevezetett kombinatorikus technikát.

2.1. Előzmények, a szakirodalom áttekintése

A hálózatszintézis egyik fő nehézségét annak kombinatorikus jellege okozza, hogy

a lehetséges alternat́ıvák nagy száma miatt optimális struktúra meghatározása igen

számı́tásigényes. A [22] dolgozat becslése szerint egy átlagos hálózatszintézis feladat

105 − 1010 alternat́ıvát tartalmazhat.

A korábban kidolgozott matematikai módszereken alapuló eljárások nagy része

általános matematikai programozási módszereket alkalmaznak a folyamathálózat-szin-

tézis feladat megoldására: [24], [33], [55], [58], [98], amelyek a folyamathálózat-szinté-

zis kombinatorikus jellege miatt általában egy vegyes egész matematikai programozási

feladat megoldását jelenti, például Benders dekompoźıció [58], külső közeĺıtés [23],

[24]. A [30] összefoglalást nyújt a folyamathálózat-szintézisben használt globális op-

timalizálási módszerekről. A [72], [90] áttekintő ı́rásokat ad a hálózatszintézis téma-

köréből.

Egy ipari méretű feladat megoldása óriási számı́tásigényű, az általános módszerek

nem használják ki a folyamathálózat-szintézis feladat strukturáltságát, ezért haté-

konyságuk igen alacsony. A módszerek egy része heurisztikus szabályokat alkalmaz

a számı́tások gyorśıtása érdekében, ez viszont nem garantálja a globális optimum
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megtalálását.

Kifejezetten folyamathálózat-szintézis feladatok megoldására a [83] szerzői dolgoz-

tak ki egy módszert. A tárgyalt módszer a feladat kombinatorikus tulajdonságait léıró

logikai összefüggéseket használva jav́ıtja a keresés hatékonyságát. A [8]-ban a szerzők

bebizonýıtották, hogy a gráftechnikán alapuló kombinatorikus technika (lásd [37])

levezethető a [83]-ban vázolt logikai kifejezésekből. Kombinatorikus módszereket,

részben a branch-and-bound technikát, részben dinamikus programozást alkalmaz:

[34], [35]. Módszerük azonban nem teljesen általános, a feladatot részproblémákra

bontó szétválasztó lépés nem független a feladattól.

Az evolúciós módszerek [45] alapvető tulajdonsága, hogy a megoldás menete során

egy lehetséges megoldásból kiindulva, azt jav́ıtások sorozatával fejlesztik, mindig

megtartva egy aktuális megoldást és ı́gy érik el az optimális vagy a közel optimális

megoldást. A jav́ıtó lépések alapján határozzák meg az aktuális struktúrából kiin-

dulva egy lépéssel elérhető összes lehetséges struktúrát, majd azok közül kiválasztják

a legjobbat.

2.2. Matematikai modell PNS feladat léırására

Fejezetünkben Friedler és munkatársai által kidolgozott PNS defińıciót és a hozzá

kapcsolódó matematikai modellt ismertetem [36].

2.2.1. Folyamat (Process) gráf

A hálózatszintézis feladatok reprezentálására az általános iránýıtott gráfok alkalmat-

lanok. Az alkalmatlanság abból ered, hogy az egyszerű gráf nem tesz különbséget az

anyagok és a műveleti egységek között, ı́gy a rendszer léırása sokszor nem egyértelmű.

Legyen M objektumok véges halmaza, általában ezek különböző anyagok vagy

anyagok fajtái, melyek transzformációin keresztül érjük el a ḱıvánt célt. Egy transz-

formációt úgy értelmezünk, mint valamilyen hozzárendelést, amely az M egy részhal-

mazához rendeli az M egy másik részhalmazát. A műveleti egységek reprezentálják

ezen transzformációkat. A műveleti egységek az anyagokon keresztül kapcsolódnak

egymáshoz, ezen kapcsolatok egy iránýıtott páros gráffal ı́rhatók le.
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Defińıció 2.2.1 Legyen M véges halmaz, O ⊆ ℘(M) × ℘(M) és M∩O = ∅, ahol

℘(M) az M halmaz hatványhalmaza. Az (M,O) párt folyamat gráfnak (Process

graph) vagy P-gráfnak nevezzük. A csúcsok halmaza M ∪ O az élek halmaza A =

A1 ∪ A2, ahol

A1 = {(x, Y ) : Y = (α, β) ∈ O, x ∈ α},

A2 = {(Y, z) : Y = (α, β) ∈ O, z ∈ β}.

Az (M′,O′) P-gráf részgráfja az (M,O)-nak azaz (M′,O′) ⊆ (M,O), ha M′ ⊆ M

és O′ ⊆ O. Az (M1,O1) és (M2,O2) P-gráfok uniója azaz (M1,O1) ∪ (M2,O2)

legyen az (M1∪M2,O1∪O2) P-gráf. Ha (α, β) ∈ O akkor α a bemeneti anyaghalmaz

és β a kimeneti anyaghalmaz. Jelölje ω−(V ), (ω+(V )) a V csúcsba bemenő (kimenő)

élek halmazát és ω(V ) = ω−(V )∪ω+(V ). Legyen d−(V ) = |ω−(V )|, d+(V ) = |ω+(V )|

és d(V ) = |ω(X)|.

A 2.1 ábra egy P-gráfot ábrázol, az anyagpontokat (m1,m2, . . . ,m11) körök, a műve-

leti egységeket (o1, o2, . . . , o7) v́ızszintes vonal jelzi.

2.2.2. A folyamatszintézis általános modellje

Legyen P az előálĺıtandó anyagok (termékek) halmaza, R a nyersanyagok halmaza, és

O = {o1, o2, . . . , on} a rendelkezésre álló műveleti egységek halmaza. Továbbá legyen

M = {m1,m2, . . . ,ml} a műveleti egységekhez kapcsolódó anyagok véges halmaza.

A következő feltételek teljesülnek: P ∩ R = ∅, P ⊆ M, O ⊆ ℘(M) × ℘(M) és

M∩O = ∅. Jelölje (M,O) a problémához kapcsolódó P-gráfot.

Legyen adott az (M,O) gráf egy részgráfja és legyen minden 1 ≤ j ≤ n-re yj = 1,

ha a részgráf tartalmazza oj-t és legyen yj = 0, ha nem, ı́gy egy (y1, y2, . . . , yn) bináris

vektor egyértelműen meghatározza részgráfban lévő műveleti egységeket. Feltehetjük,

hogy a részgráf nem tartalmaz izolált anyag t́ıpusú csúcsokat, ı́gy az y indikátor vektor

egyértelműen meghatározza a részgráfot.
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2.1. ábra. P-gráf.

Vezessünk be a hálózatban lévő élekre és csúcsokra vonatkozó feltételeket. Legyen

A = {a1, a2, . . . , ar} az élek halmaza és xk (k = 1, 2, . . . , r) az ak élhez rendelt fo-

lytonos változó, amely az élen áthaladó anyag mennyiségét jelenti. A ϕ függvény

rendelje hozzá az élhez, vagy az élek egy halmazához a megfelelő változók halmazát.

A ϕ(ai1 , ai2 , . . . , ait) = (xi1 , xi2 , . . . , xit) teljesül, {ai1 , ai2 , . . . , ait} ⊆ A-ra. Végül zj

jelölje az oj (j = 1, 2, . . . , n) műveleti egységhez rendelt változót, amely a műveleti

egység méretét jellemzi.

Az oj műveleti egységhez kapcsolódó feltétel illetve a költség a következő:

gj(yj, ϕ(ω−(oj)), ϕ(ω+(oj)), zj) ≤ 0, j = 1, 2, . . . , n, (2.2.1)

fj(yj, ϕ(ω−(oj)), ϕ(ω+(oj)), zj), j = 1, 2, . . . , n, (2.2.2)

ahol fj és gj függvények általában differenciálhatók rögźıtett yj értékre.

Hasonlóan az mi anyagponthoz kapcsolódó feltételrendszer és költség a következő:

g′
i(ϕ(ω−(mi)), ϕ(ω+(mi))) ≤ 0, i = 1, 2, . . . , l, (2.2.3)
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f ′
i(ϕ(ω−(mi)), ϕ(ω+(mi))), i = 1, 2, . . . , l.

A gyakorlatban g′ és f ′ általában lineáris. A g′ reprezentálja az anyagegyensúly

feltételeket, illetve mennyiségi és minőségi követelményeket az adott anyagra. Az f ′

költségfüggvény lehet például a nyersanyagköltség stb.

PNS feladat

Legyenek M = {m1,m2, . . . ,ml} és (P,R,O) adottak, ahol P, R és O nemüres

halmazok, továbbá O = {o1, o2, . . . , on}. Tegyük fel még, hogy P ∩ R = ∅, P ⊆

M, R ⊆ M, O ⊆ ℘(M) × ℘(M), és M =
⋃

(α,β)∈O(α ∪ β). A PNS feladatot a

következőképpen fogalmazhatjuk meg.

min
∑

j∈{1,2,...,n}

fj(yj, ϕ(ω−(oj)), ϕ(ω+(oj)), zj)+

∑

i∈{1,2,...,l}

f ′
i(ϕ(ω−(mi)), ϕ(ω+(mi)))

feltéve, hogy (2.2.4)

gj(yj, ϕ(ω−(oj)), ϕ(ω+(oj)), zj) ≤ 0, j = 1, 2, . . . , n

g′
i(ϕ(ω−(mi)), ϕ(ω+(mi))) ≤ 0, i = 1, 2, . . . , l

zj ≤ Myj, j = 1, 2, . . . n

yj ∈ {0, 1}, zj ≥ 0, j = 1, 2, . . . n

Itt M ∈ IR egy megfelelően választott nagy szám.

Az (M,O) gráf egy részgráfja szorosan kapcsolódik a 2.2.4 modellt kieléǵıtő me-

goldáshoz. A korábban emĺıtettek szerint a részgráf léırható egy (y1, y2, . . . , yn) vek-

torral. Nyilvánvalóan nem minden (y1, y2, . . . , yn), (yi ∈ {0, 1}, i = 1, 2, . . . , n) vek-

tor definiál valós folyamatot. A valódi folyamatot definiáló struktúrák rendelkeznek

néhány közös kombinatorikus tulajdonsággal, amit explicite tartalmaz a 2.2.4 mo-

dell. Ezen tulajdonságokat figyelembe vételével az (M,O) részgráfjainak halmaza

redukálható a kombinatorikusan lehetséges megoldások halmazára. A redukálás mér-

tékére jellemző, hogy például egy 35 műveleti egységből álló ipari feladatra a le-

hetséges részgráfok száma 235 ≈ 3.4× 1010, szemben a 3465 számú kombinatorikusan

lehetséges struktúrák számával. A feladat részletes léırását a [39] tárgyalja.
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Defińıció 2.2.2 Legyen adott a (P,R,O) hármas, továbbá legyen az (M′,O′) P-gráf

az (M,O) P-gráf részgráfja. (M′,O′) részgráf kombinatorikusan lehetséges struktúra

(röviden lehetséges struktúra), ha a következő négy feltétel teljesül.

(S1) P ⊆ M′, azaz minden végtermék reprezentálva van a gráfban.

(S2) ∀x ∈ M′, d−(x) = 0 ⇐⇒ x ∈ R, azaz egy anyag t́ıpusú csúcsnak pontosan

akkor nincs bemenete, ha nyersanyagot reprezentál.

(S3) ∀u ∈ O′, ∃ út [u, v], (M′,O′)-ban, ahol v ∈ P, azaz minden műveleti egység

t́ıpusú csúcstól vezet út a terméket reprezentáló anyag t́ıpusú csúcsig.

(S4) ∀x ∈ M′, ∃(α, β) ∈ O′ melyre x ∈ α ∪ β, azaz ha egy anyag t́ıpusú csúcs

része a gráfnak, akkor kell lennie legalább egy bemenetének vagy legalább egy

kimenetének egy műveleti egység t́ıpusú csúcs felől illetve felé.

A kombinatorikusan lehetséges struktúrák halmazát S(P,R,O)-val jelöljük.

Megemĺıtünk néhány összefüggést a megoldás struktúrákkal kapcsolatban, a bi-

zonýıtások [36]-ben megtalálhatóak.

Defińıció 2.2.3 Tegyük fel, hogy S(P,R,O) 6= ∅, akkor az összes kombinatorikusan

lehetséges struktúra unióját jelöljük µ(P,R,O)-val. Azaz,

µ(P,R,O) =
⋃

σ∈S(P,R,O)

σ.

A µ(P,R,O) struktúrát maximális struktúrának nevezzük.

Tétel 2.2.1 Az S(P,R,O) halmaz zárt az unióra.

Következmény 2.2.2 µ(P,R,O) ∈ S(P,R,O).

2.2.3. PNS feladat lineáris modellje

Először a folyamatszintézis egyik alapmodelljét vezetjük be, ahol a feltételrendszer

és a célfüggvény lineáris. Az alapmodell kiindulásnak tekinthető az általánosabb

nemlineáris modell megoldása felé.
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Műveleti egység modell

Az előző fejezetben bemutatott általános PNS modell (2.2.4) egy-egy műveleti egység

(ok ∈ O) költsége a következő:

fk(zk, yk) = ak yk + bkzk,

ahol a költségfüggvény működési és beruházási költségből tevődik össze:

ak = Oak +
Iak

megtérülési évek száma
, bk = Obk +

Ibk

megtérülési évek száma

Oak : a működési költség állandó része,

Obk : a működési költség a műveleti egység méretétől függő része,

Iak : a beruházási költség állandó része,

Ibk : a beruházási költség a műveleti egység méretétől függő része,

Mivel a költség független az illeszkedő élektől, ı́gy azt nem jelöltük a függvény para-

méterei között.

A (2.2.1) egyenletben szereplő gk : {0, 1} × IRp → IRq-beli függvény, ahol p =

d(ok) + 1. A q természetesen függ a modelltől, jelen esetben q = d(ok).

Legyen as egy él, amely ok-ra illeszkedik, azaz as = (mi, ok) ∈ ω−(ok) (vagy

as = (ok,mi) ∈ ω+(ok)),

gks(yk, ϕ(ω−(ok)), ϕ(ω+(ok)), zk) = 0, as ∈ ω(ok)

A műveleti egység mérete és az illeszkedő élek folyamváltozói közötti kapcsolatot

definiálja a következő képlet:

gks(yk, ϕ(ω−(ok)), ϕ(ω+(ok)), zk) = rkizk − xs, as ∈ ω(ok) (2.2.5)

Az rki a műveleti egységre jellemző paraméter. Nevezetesen rki az mi anyag mennyi-

sége, amelyet az ok egységnyi kapacitással való működésekor fogyaszt as = (mi, ok) ∈

ω−(ok), illetve termel as = (ok,mi) ∈ ω+(ok).
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Anyagponthoz tartozó feltételek

A P-gráf általános modelljében egy anyaghoz rendelhető költség és feltétel. Legyen

mi ∈ M, akkor az mi anyagponthoz tartozó költség:

f ′
i(ϕ(ω−(mi)), ϕ(ω+(mi))) =







0, mi ∈ M \R,

Ci

∑

as=(mi,ok)∈ω+(mi)
xs, mi ∈ R,

ahol Ci jelenti az egységnyi tömegű mi anyag költségét.

Az anyagokra vonatkozó feltételek (lásd korábban a (2.2.3) egyenletek) a köztes

anyagokra meghatározzák az anyagegyensúlyt (azaz egy anyagból a fogyasztott meny-

nyiség nem lehet több, mint a termelt mennyiség), továbbá a nyersanyagokra és ter-

mékekre vonatkozó korlátokat.

g′
i(ϕ(ω−(mi)), g

′
i(ϕ(ω+(mi))) =

∑

aj=(mi,ok)∈ω+(mi)

xj −
∑

aj=(ok,mi)∈ω−(mi)

xj + pi − si

Felhasználva a műveleti egység modellt (lásd korábban a (2.2.5) egyenlet) a feltétel a

következő formába ı́rható:

g′
i(ϕ(ω−(mi)), g

′
i(ϕ(ω+(mi))) =

∑

aj=(mi,ok)∈ω+(mi)

rkizk −
∑

aj=(ok,mi)∈ω−(mi)

rkizk + pi − si.

(2.2.6)

Az si > 0 a rendelkezésre álló mi ∈ R nyersanyag mennyisége (si = 0, ha mi /∈ R)

és pi > 0 az mi ∈ P termékre vonatkozó legyártandó anyagmennyiség alsó korlátja

(pi = 0, ha mi /∈ P).

Hasonlóan felhasználva a műveleti egység modellt (lásd korábban a (2.2.5) egyen-

let), a költség is a következő formába ı́rható:

f ′
i(ϕ(ω−(mi)), ϕ(ω+(mi))) =







0, mi ∈ M \R

Ci

∑

as=(mi,ok)∈ω+(mi)
rkizk, mi ∈ R.

(2.2.7)

A PNS lineáris modelljéből kiküszöböltük az élekhez tartozó változókat. Összefoglal-

juk modellünket:

min
∑

j∈{1,2,...,n}

fj(yj, zj) +
∑

mi∈R

Ci

∑

(mi,ok)∈ω+(mi)

rkizk
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feltéve, hogy

∑

(mi,ok)∈ω+(mi)

rkizk−
∑

(ok,mi)∈ω−(mi)

rkizk + pi − si ≤ 0, i = 1, 2, . . . , l

zj ≤ Myj, j = 1, 2, . . . n

yj ∈ {0, 1}, zj ≥ 0, j = 1, 2, . . . , n (2.2.8)

Egy PNS feladatban a műveleti egységek az anyagpontokon keresztül kapcsolódnak

egymáshoz, a kapcsolódás abban az értelemben lokális, hogy egy műveleti egység

általában nincs kapcsolatban az összes többivel. Ez a tulajdonság nagyban kihat

magára a matematikai modellre, hiszen a modellben a változók a műveleti egységekhez

kapcsolódnak, a feltételek pedig a pontokhoz köthetők. Kijelenthetjük, hogy az

együttható mátrix ritka, amely a megoldó módszerek szempontjából fontos.

Szemléltető példa

Tekintsük a következő példát. M = {m1, . . . ,m11}, R = {m5,m7,m9,m10,m11},

P = {m1}, O = {o1, o2, . . . , o7}.

Műveleti egységek legyenek a következők:

o1 = ({m3}, {m1,m6}), o2 = ({m4}, {m1,m2}), o3 = ({m5,m6}, {m3}),

o4 = ({m6,m7}, {m3,m4}), o5 = ({m7,m8}, {m4}), o6 = ({m9}, {m6}),

o7 = ({m10,m11}, {m8}).

A P-gráf reprezentációt a 2.2 ábra mutatja. Az ábrán feltüntettük a műveleti

egységekhez kapcsolódó rij paramétereket is.
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2.2. ábra. A szemléltető példa P-gráf ábrázolása.
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A 2.2.8 modell szerint a következő anyagegyensúly feltételeket kapjuk:

−r11z1 − r21z2 + p1 ≤ 0 (m1)

−r22z2 ≤ 0 (m2)

r13z1 − r33z3 − r43z4 ≤ 0 (m3)

r24z2 − r44z4 − r54z5 ≤ 0 (m4)

r35z3 − s5 ≤ 0 (m5)

r36z3 + r46z4 − r16z1 − r66z6 ≤ 0 (m6)

r47z4 + r57z5 − s7 ≤ 0 (m7)

r58z5 − r78z7 ≤ 0 (m8)

r69z6 − s9 ≤ 0 (m9)

r710z7 − s10 ≤ 0 (m10)

r711z7 − s11 ≤ 0 (m11)

Az egyenlőtlenségek mellett zárójelben feltüntettük, hogy mely anyagra vonatkoznak.

Mielőtt értelmeznénk az egyenleteket, rendezzük át őket úgy, hogy a negat́ıv előjelű

tagokat vigyük át az egyenlőtlenség másik oldalára.

p1 ≤ r11z1 + r21z2 (m1)

0 ≤ r22z2 (m2)

r13z1 ≤ r33z3 + r43z4 (m3)

r24z2 ≤ r44z4 + r54z5 (m4)

r35z3 ≤ s5 (m5)

r36z3 + r46z4 ≤ r16z1 + r66z6 (m6)

r47z4 + r57z5 ≤ s7 (m7)

r58z5 ≤ r78z7 (m8)

r69z6 ≤ s9 (m9)

r7 10z7 ≤ s10 (m10)

r7 11z7 ≤ s11 (m11)
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Vegyük észre, hogy egy rkjzk szorzat az ok műveleti egység által egységnyi idő alatt

fogyasztott vagy termelt anyagmennyiséget jelenti. Az egyenletek bal oldalán az adott

anyagból elfogyasztott mennyiség, a jobb oldalon pedig a termelt mennyiség szerepel.

A paraméterek meghatározása során a dimenziókat megfelelően kell megválasztani.

A mennyiségek egy időtartamra vonatkoznak, például a nyersanyagra vonatkozó fel-

sőkorlát t/év -ben lehet megadva, vagy a műveleti egységekre a működési költség is

egységnyi mérethez és egységnyi időtartamhoz van meghatározva.

Egy gráfban négyféle anyagt́ıpusú csúcs létezik: nyersanyag, termék, köztes anyag,

melléktermék. Csoportonként nézzük végig ez egyes egyenlőtlenség t́ıpusokat.

Melléktermékre (m2) vonatkozó egyenletek általában elhagyhatók, kivéve ha nincs

valamilyen kikötés a kibocsájtására vonatkozóan. A melléktermékek halmaza könnyen

meghatározható (olyan anyag t́ıpusú pontok, amelyek nem termékek és csak bemenő

éleket tartalmaznak), ı́gy ezen egyenleteket a modellgenerálás folyamán figyelmen

ḱıvül hagyhatjuk. Látszik, hogy az (m2) egyenlet valóban elhagyható. Triviálisan

teljesül, hiszen r22 és z2 is nemnegat́ıv.

A termékekre vonatkozó egyenleteknél a bal oldalon szerepel az adott anyagból a

műveleti egységek által felhasznált anyagmennyiség és a pi legyártandó mennyiség. A

pi-t úgy tekinthetjük, mint egy fogyasztást, amit úgymond ki kell vinnünk a rends-

zerből. Megjegyezzük, hogy az axiómák (2.2.2 defińıció) nem tiltják a termék fo-

gyasztását. Például az (m1) egyenlet garantálja, hogy a o1 és o2 által termelt m1

anyag mennyisége nagyobb vagy egyenlő, mint a ḱıvánt p1 mennyiség.

Köztes anyag esetén a feltétel szerint nem fogyasztunk többet egy anyagból, mint

amennyit termelünk. Az (m3) egyenletben a baloldalon r13z1 mennyiség az o1 által

adott idő alatt m3-ból fogyasztott mennyiséget jelenti. A jobb oldal az o3 és o4 által

termelt m3 mennyiséget jelöli.

A nyersanyaghoz kapcsolódó egyenleteknél az egyenlőtlenség jobb oldalán jelenik

meg az s mennyiség, ami egy külső forrást jelent. A korábban tárgyalt axiómák

(2.2.2 defińıció) szerint nyersanyagot nem termelünk, azaz a jobb oldalán csak a

rendelkezésre álló s mennyiség állhat. A bal oldalán az adott anyagból a műveleti

egységek által időegység alatt felhasznált anyagmennyiség szerepel. Például az (m7)

feltétel kimondja, hogy az o4 és az o5 által fogyasztott m7 anyag r47z4 +r57z5 mennyi-

sége nem lehet több, mint a rendelkezésre álló s7.
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Rendeljünk értékeket a megfelelő paraméterekhez. Itt most év az időegység és a

megtérülési évek száma 3. A 2.1 és 2.2 táblázatokban a paramétereket ismertetjük,

a nem jelölt paramétereket tekintsük zérusnak.

2.1. táblázat. Költségparaméterek a műveleti egységekre

Műveleti Beruházási költség Működési költség

egység Állandó Változó Állandó Változó a b

o1 1500 210 250 100 750 170

o2 1800 270 1000 100 1600 190

o3 900 180 600 200 900 260

o4 3000 90 1500 120 2500 150

o5 900 570 800 200 1100 390

o6 750 120 500 130 750 170

o7 600 120 120 100 320 140

2.2. táblázat. Paraméterek az anyagokra

Anyag p s C

m1 100 0 0

m5 0 10000 700

m7 0 10000 1100

m8 0 10000 400

m10 0 10000 500

m11 0 10000 700
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Az RK mátrix tartalmazza az rij (i = 1, . . . 7, j = 1, . . . , 11) paramétereket.

RK =































2 0 3 0 0 1 0 0 0 0 0

1 0.5 0 1.5 0 0 0 0 0 0 0

0 0 2 0 1 2 0 0 0 0 0

0 0 1 1 0 0.3 1.7 0 0 0 0

0 0 0 3 0 0 2 1 0 0 0

0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 2 0 1.2 0.8































A következő programozási feladatot kapjuk:

min 750y1 + 170z1 + 1600y2 + 190z2 + 900y3 + (260 + 700)z3+

2500y4 + (150 + 1870)z4 + 1100y5 + (390 + 2200)z5 +

750y6 + (170 + 400)z6 + 320y7 + (140 + 1160)z7

feltéve, hogy















































−2 −1 0 0 0 0 0

3 0 −2 −1 0 0 0

0 1.5 0 −1 −3 0 0

0 0 1 0 0 0 0

−1 0 2 0.3 0 −1 0

0 0 0 1.7 2 0 0

0 0 0 0 1 0 −2

0 0 0 0 0 1 0

0 0 0 0 0 0 1.2

0 0 0 0 0 0 0.8















































·































z1

z2

z3

z4

z5

z6

z7































≤











































−100

0

0

10000

0

10000

0

10000

10000











































zi ≤ Myi

zi ≥ 0, yi ∈ {1, 0}, i = 1, . . . , 7

Megoldva a feladatot az optimális struktúra az o1, o3, o6 műveleti egységeket

tartalmazza (azaz y1 = 1, y3 = 1, y6 = 1). A méretük, z1 = 50.0, z3 = 75.0, z6 =

100.
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PNS mint konkáv szeparábilis programozási feladat

A lineáris modell általánosabb esete, amikor a műveleti egység költségét egy konkáv

függvénnyel ı́rjuk le. Gyakorlatban a műveleti egységek mérettől függő fajlagos

költsége a méret növelésével csökken, ami egy a konkáv függvényekre jellemző tu-

lajdonság. A konkáv függvények használatával modellünk jobban léırja a valós költ-

ségeket, mint a korábban bevezetett lineáris költségfüggvény:

fk(zk, yk) = ak yk + bkz
α
k , (2.2.9)

ahol α ∈ IR, 0 ≤ α ≤ 1, ak ∈ IR, ak ≥ 0, bk ∈ IR, bk ≥ 0. Gyakorlatban az α = 0.6

használatos. Későbbiekben ezen modell lesz vizsgálatunk egyik fő tárgya.

2.3. Kombinatorikus algoritmusok PNS feladatok

megoldásához

Fejezetünkben Friedler és munkatársai által kidolgozott kombinatorikus alap algorit-

musokat mutatjuk be.

MSG algoritmus

A kombinatorikusan lehetséges struktúrák halmaza véges, és zárt az unióra (lásd

2.2.1 tétel), ha ez a halmaz nem üres, akkor létezik maximális struktúra, melynek min-

den kombinatorikusan lehetséges struktúra részhalmaza. A Friedler és munkatársai

által kidolgozott MSG algoritmus [38] a maximális struktúrát, µ(P,R,O)-t generálja

polinomiális időben.

SSG algoritmus

Az SSG algoritmus [39] lehetővé teszi az összes kombinatorikusan lehetséges struktúra

generálását. A kombinatorikusan lehetséges struktúrák generálásához alternat́ıv dön-

téseket vagy döntések sorozatát kell végrehajtanunk. A döntések műveleti egységek

bevételéről vagy kizárásáról történnek.
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Minden terméket legalább egy műveleti egységnek kell gyártani. Hasonlóan le-

galább egy műveleti egységnek kell gyártani egy olyan anyagot, amelyet egy korábbi

döntés során bevett műveleti egység fogyaszt. A nyersanyagokra ez természetesen

nem vonatkozik.

A döntések során vigyáznunk kell arra, hogy az egyszer már kizárt műveleti

egységeket egy másik döntés során már nem választhatjuk be. Az inkonzisztens

döntések elkerülése érdekében a műveleti egységeket három osztályba soroljuk: a

beválasztott műveleti egységek halmaza, a kizárt műveleti egységek halmaza és a

még nem döntött műveleti egységek halmaza.

Akt́ıv halmaznak h́ıvjuk az anyagok azon halmazát, amelyek előálĺıtásáról dönteni

kell. Kezdetben az akt́ıv halmaz a termékeket tartalmazza. Egy döntés során meg-

határozzuk az anyagot előálĺıtani képes műveleti egységek közül azokat, amelyek az

adott struktúrában előálĺıtják az anyagot. Az ı́gy kiválasztott műveleti egységeket

beválasztjuk a struktúrába, a többit pedig kizárjuk.

Döntés után frisśıtjük az akt́ıv halmazt. Azokat a nem nyersanyagokat, amelyeket

már beválasztott műveleti egység fogyaszt és még nem volt rajtuk döntés, hozzáadjuk

az akt́ıv halmazhoz.

Azokat az anyagokat, amelyek gyártásáról már döntöttünk, kivesszük az akt́ıv

halmazból. Amikor a konzisztens döntések eredményeként az akt́ıv halmaz üressé

válik, a beválasztott műveleti egységek reprezentálják megoldást.

A döntések sorozata ellentmondáshoz is vezethet, és előfordulhat, hogy egy akt́ıv

halmazban lévő anyagot előálĺıtó műveleti egységek közül korábban már mindet ki-

zártuk.

A döntések összes lehetséges sorozatának leszámlálásával minden megoldásstruk-

túra előálĺıtható. A döntések összes lehetséges sorozatát úgy ábrázolhatjuk mint egy

iránýıtott fagráfot. A pontok az anyagokon végzett döntések, a kimenő élek pedig a

lehetséges döntési alternat́ıvák. A fa levélpontjai az inkonzisztens részproblémák és

a kombinatorikusan lehetséges struktúrák.
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ABB algoritmus

Az ABB algoritmus [40] képes a kombinatorikusan lehetséges megoldásokból a költség

szerinti optimális megoldást kiválasztani. Az eljárás az előző fejezetben ismertetett

SSG módszeren alapszik. Az eljárás a korlátozás és szétválasztás (BB) keretalgo-

ritmusra épül. A különbség az SSG-hez képest annyi, hogy egy döntés előtt egy

korlátszámı́tási eljárást hajtunk végre, amely a részproblémához egy alsó korlátot

rendel. Az alsókorlát alapján törölhetünk részproblémákat. Az ABB algoritmus az

SSG -hez tartozó fagráf egy részét generálja ki. Az algoritmus annál hatékonyabb,

minél kisebb az ı́gy bejárt fa, amit döntően a korlátozási eljárásban meghatározott

alsó korlát élessége határoz meg.

RSG algoritmus

Egy műveleti egység kizárása maga után vonhatja más műveleti egységek kizárását

is. Az RSG algoritmus meghatározza és kizárja ezeket a műveleti egységeket. Leg-

gyakoribb eset az, amikor egy műveleti egység kizárásával olyan diszjunkt részgráfok

keletkeznek, ahonnan nem vezet iránýıtott út a termékig (lásd a 2.2.2 defińıcióban az

S3 sérülése).



3. fejezet

Szeparábilis konkáv optimalizálás
PNS feladatok megoldására

A PNS feladatosztály konkáv függvénnyel kibőv́ıtett modellje egy lineáris feltételekkel

adott szeparábilis konkáv programozási feladat (lásd a (2.2.8) modellt és a (2.2.9) cél-

függvényt). Egy PNS feladathoz kapcsolódó feltételrendszer magán hordozza a PNS

feladat strukturáltságát, melyet az általános megoldók nem tudnak figyelembe venni.

Célunk, hogy ezen tulajdonságok figyelembevételével a korábbinál hatékonyabb me-

goldó módszereket dolgozzunk ki.

Tekintsük a következő szeparábilis, konkáv optimalizációs feladatot

min
∑n

j=1 fj(xj)

Ax ≤ b

l ≤ x ≤ u















(P ) (3.0.1)

ahol az A ∈ IRm×n mátrix, a b ∈ IRm, l,u ∈ IRn adott vektorok, fj : IR → IR konkáv

függvények. Legyen továbbá

A = {x ∈ IRn : Ax ≤ b} és T = {x ∈ IRn : l ≤ x ≤ u}

halmazok, amely metszeteként előáll a (P ) feladat megengedett megoldásainak a hal-

maza, azaz D = A ∩ T . Megjegyezzük, hogy korábban a PNS lineáris modelljében

(lásd korábban (2.2.8)) a műveleti egységekhez tartozó z változókat itt x-el jelöljük.

A (P ) feladat érdekességét az adja, hogy a legegyszerűbb nem konvex optima-

lizálási feladatosztályba tartozik. Elmondhatjuk, hogy a (P ) feladat NP-teljes [75].

Fontos elméleti tulajdonsága az, hogy az optimális megoldása a D poliédernek egy

21
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csúcsában is felvétetik [69] sőt, ha az fj függvények szigorúan konkávak, akkor az

optimum csúcsban van.

Álĺıtás 3.0.1 A (3.0.1) feladat optimuma a D poliédernek egy extremális pontjában

is felvétetik.

Bizonýıtás. Legyen x,y ∈ D, 0 < λ < 1. Mivel f konkáv és nemlineáris, ı́gy a

következő igaz:

f(λx + (1 − λ)y) > λ f(x) + (1 − λ) f(y) ≥ min{f(x), f(y)}

Tehát, ha x̄ ∈ D nem extremális pont, akkor létezik x1,x2 ∈ D, hogy x̄ = 1
2
x1 + 1

2
x2,

amiből az f(x̄) > min{f(x1), f(x2)} adódik. 2

3.1. Szeparábilis konkáv programozás szakirodal-

mának áttekintése

A lineáris feltételrendszerrel adott szeparábilis konkáv minimalizálási problémához

még számos gyakorlati kérdés vezet. A teljesség igénye nélkül megemĺıtünk néhány

olyan műszaki tervezéssel kapcsolatos problémát, amely a (P ) optimalizálási fela-

dattal ı́rható le: bizonyos iránýıtáselméleti feladatok [3], konkáv hátizsák probléma

[73], termelési és szálĺıtási feladatok [60], termelési folyamatok tervezése [67], egyes

hálózati folyamfeladatok [100], léteśıtmények optimális elhelyezése [92], stb.

A konkáv szeparábilis programozási feladat fontosságának megfelelően igen gaz-

dag szakirodalma van. A szakirodalomban napjainkig ismertetett módszerek három fő

csoportra oszthatók: extremális pontok bejárása, metsző śık módszerek és korlátozás

és szétválasztás (Branch-and-Bound, BB) módszerek. A BB módszereket tárgyalják

a következő cikkek: [4], [11], [29], [61], [68], [81], [88], [89]. Csúcs leszámlálási

eljárásokkal foglalkoznak például a [5], [27] és [26] dolgozatok. A metsző śık eljárások

bemutatását a [9], [49], [82] és [95] munkákban találjuk meg. Előfordulnak még

egyéb módszerek is, mint pl. a spline közeĺıtés [59] vagy BB és metszőśık módszer

kombinálása [9].
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A BB t́ıpusú algoritmusok egyik kritikus lépése a részfeladatok generálasa, ez

nagyban befolyásolja az optimális megoldás megtalálását és a módszer hatékonyságát.

Az eljárások egy része hipertéglatestet használ a részfeladatok generálására. Külön-

böző felosztási strartégiákat tárgyalnak a [16], [17], [84], [85], [86] közlemények. Az

[50] szerzője egy a szimplexeken alapuló part́ıcionálási stratégiát mutat be.

3.2. Általános algoritmus

Az algoritmus (3.1 ábra) egy Branch-and-Bound (BB) keretalgoritmusra ([1], [53],

[63]) támaszkodik. Egy BB eljárás ismertetésekor beszélnünk kell a főbb lépésekről:

ezek a részprobléma defińıció, a korlátozási és szétválasztási lépések.

3.2.1. Részprobléma

Tekintsünk egy

T k = {x ∈ IRn : lk ≤ x ≤ uk} ⊆ T

hipertéglatestet és a hozzá tartozó

Dk = A ∩ T k ⊆ D

halmazt, ahol l ≤ lk < uk ≤ u. Ekkor a

min
x∈Dk

n
∑

j=1

fj(xj)

feladatot a (P k) részproblémának nevezzük.

3.2.2. Korlátozás

Az alsókorlát meghatározása a korlátozás és szétválasztás módszerének (BB) az alap-

vető lépése. Az alsókorlát pontossága nagyban meghatározza az algoritmus konver-

genciájának a sebességét.

Legyen (P k) egy részprobléma a hozzátartozó T k hipertéglatesttel, és legyen

Dk = A ∩ T k 6= ∅
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Korlátozás és szétválasztás keretalgoritmus: a téglatest módszer

Bemenő adatok:

m, n ∈ IN
A ∈ IRm×n, b ∈ IRm, l, u ∈ IRn és l ≤ u

f : IRn → IR konkáv függvény
k = 0, L = −∞, U = ∞
A = {x ∈ IRn : Ax ≤ b}
T 0 = {x ∈ IRn : l ≤ x ≤ u}
D0 = A ∩ T 0

P 0 = (T 0, D0)
S = {P 0}

Kimenő adatok:

a (P ) feladat optimális megoldása x̄

a (P ) feladat optimum értéke U

Begin

while (S 6= ∅)
begin

P k = Választ(S);
(U, x̄, βk) = Korlátozás(P k, x̄, U, f);
L = minP j∈S βj ;
if U = L then

x̄ optimális megoldása a (P ) feladatnak, STOP;
S = Part́ıcionálás(A, T k, fk, βk,S);

S = S \ {P k};
end

End.

3.1. ábra. Általános algoritmus.
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halmaz.

Az fj konkáv függvények közeĺıtése a T k halmazon

Tekintsük az fj : IR → IR konkáv függvények lineáris relaxációját az [lkj , uk
j ] zárt

intervallumon a következő módon:

F k
j (xj) = ck

j xj + dk
j ,

ahol

ck
j =

fj(u
k
j ) − fj(l

k
j )

uk
j − lkj

és dk
j = fj(l

k
j ) −

fj(u
k
j ) − fj(l

k
j )

uk
j − lkj

lkj = fj(l
k
j ) − ck

j lkj ,

azaz

F k
j (xj) = ck

j xj + dk
j = ck

j xj + fj(l
k
j ) − ck

j lkj .

Az f(x) =
n
∑

j=1

fj(xj) függvényt az

F k(x) =
n
∑

j=1

F k
j (xj) =

n
∑

j=1

(ck
j xj + fj(l

k
j ) − ck

j lkj )

= (ck)Tx + (f(lk) − (ck)T lk) = (ck)Tx + δk

alakú lineáris függvénnyel közeĺıtjük a Dk = A ∩ T k halmazon, ahol

δk = f(lk) − (ck)T lk.

Ekkor nyilván

f(x) ≥ F k(x) = (ck)Tx + δk

teljesül bármely x ∈ Dk esetén.

Az alsókorlát meghatározása

Az alsókorlát kiszámı́tására a következő lineáris programozási feladatot használjuk:

min
x∈Dk

(ck)Tx + δk (P k
LP ).
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Korlátozás

Bemenő adatok:

P k = (T k, Dk), x̄, U, f

Kimenő adatok:

U, x̄, βk

Begin

számı́tsuk ki az F k lineáris függvényt;
oldjuk meg a (P k

LP ) feladatot;
if Dk = ∅ then

begin

βk = +∞;
αk = +∞;

end

else begin

legyen az ωk a (P k
LP ) feladat optimális megoldása;

βk = F k(ωk);
αk = f(ωk);

end

if αk < U then U = αk; x̄ = ωk;
End.

3.2. ábra. A korlátozási eljárás.

A (P k
LP ) feladat optimális megoldását jelölje ωk, és a hozzátartozó célfüggvényérték

legyen βk = F k(ωk) = (ck)T ωk + δk. Ekkor

βk ≤ (ck)Tx + δk ≤ f(x) ≤ f(ωk) + (∇f(ωk)T (x − ωk)

teljesül bármely x ∈ Dk esetén, tehát alsókorlátot adtunk a (P k) részprobléma op-

timális értékére. Mı́g a második egyenlőtlenség az f(x) függvény konkavitása miatt

igaz, hiszen az

f̄(x) = f(ωk) + (∇f(ωk))T (x − ωk) (3.2.1)

lineáris függvény az f konkáv függvénynek az ωk ∈ Dk pontbeli érintője. A korlátozási

eljárás a 3.2 ábrán látható.
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3.2.3. Szétválasztás

A részproblémákat egy–egy T k hipertéglatesttel definiáltuk. A szétválasztás valamely

adott T k téglatest ketté vágását jelenti.1

Szétválasztási szabály

A konvergencia és a végesség szempontjából kritikus dolog a i ∈ J vágási változó

indexének és a p ∈ [lki , uk
i ] vágási pont meghatározása.2

Egy téglatest part́ıcionálása

Legyen T k = {x ∈ IRn : lk ≤ x ≤ uk} adott téglatest és legyen p ∈ IR, amelyre

lkj ≤ p ≤ uk
j teljesül, valamely j ∈ J indexre.

Következőkben az xj változót vágási változónak nevezzük, mı́g a p értéket vágási

pontnak. A vágás a

T (k,j,1) = {x ∈ T k : lkj ≤ xj ≤ p} és T (k,j,2) = {x ∈ T k : p ≤ xj ≤ uk
j} (3.2.2)

halmazokat eredményezi, ahol j a vágási változó indexe, k az aktuális részprobléma

indexe és 1. a jobb oldali, mı́g 2. a bal oldali téglatestre utal.3

A T (k,j,1) és T (k,j,2) hipertéglatestek defińıciójából világos, hogy

T k = T (k,j,1) ∪ T (k,j,2),

és a metszetük a két hipertéglatest (n − 1)-dimenziós közös lapja lesz, azaz

T (k,j,1) ∩ T (k,j,2) = {x ∈ T k : xj = p},

ı́gy a T k hipertéglatestnek egy felbontását kaptuk. A part́ıcionálási eljárás a 3.3 ábrán

látható.

1Esetünkben a BB eljárás fája, bináris fa lesz.
2Az általános módszert sokféle szétválasztási szabállyal működtethetjük, pl. az intervallumokat

csak a célfüggvény alsó közeĺıtésére használjuk, de a minimalizálást az eredeti megoldás halmazon
végezzük. Ennek a változatnak előnye az, hogy az LP megoldása mindig eredeti csúcspontban van.
Ezzel szemben a hátránya az, hogy időnként relaxált LP feladat optimális megoldása nem esik bele
az intervallumba, ı́gy kapott megoldás nem lesz alsókorlát, hiszen a lineáris közeĺıtő függvényünk
csak az intervallumon belül lesz kisebb, mint az eredeti célfüggvény.

3Ha nem okoz félreértést, akkor egyszerűen T 1 és T 2 téglatestekről beszélünk.
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Part́ıcionálás

Bemenő adatok:

A, T k, fk, βk, S

Kimenő adatok:

S

Begin

if U > βk then

begin

az xj vágási változó meghatározása;
a p vágási pont meghatározása;
T 1 és T 2 téglatest meghatározása;
S = S ∪ {(T 1, D1, βk), (T 2, D2, βk)};

end

End.

3.3. ábra. A part́ıcionálási eljárás.

3.2.4. A keretalgoritmus elemzése

A keretalgoritmusnak eddig még nem tárgyaltuk a Választ nevű eljárását. A Választ

eljárás azt a P k részproblémát választja ki, amelyre a βk = L teljesül.

A Korlátozás eljárás során a kiválasztott részprobléma LP relaxáltját oldjuk meg.

Ennek az optimumértékét jelöli βk. Meghatározzuk az optimális megoldás helyén az

eredeti célfüggvény αk értékét, amely a (P ) feladat optimumértékére lesz felsőkorlát.

Végül az aktuális L és U korlátokat összehasonĺıtjuk az αk és βk számokkal és szükség

esetén módośıtjuk azokat.

Az algoritmus következő lépése a globális optimalitás vizsgálata. Ha az aktuális

legjobb megoldás nem eléǵıti ki ezt a feltételt, akkor a vizsgált részfeladatot part́ıci-

onáljuk.

A Part́ıcionálás eljárásban először a részprobléma alsókorlátját hasonĺıtjuk össze

a (P ) feladat aktuális felsőkorlátjával. Ha βk ≥ U akkor az adott részproblémát

eldobjuk anélkül, hogy part́ıcionálnánk, hiszen a részprobléma az eddig megtalált

legjobb megoldásnál nem tartalmazhat jobb megoldásokat. A part́ıcionáláskor nyert

részfeladatokat további elemzésnek vethetnénk alá.

Ha a Dk = A ∩ T k = ∅, akkor ezt a részfeladatot nem kellene hozzáadni a
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feladatok halmazához. Ennek az eldöntése sajnos egy lineáris egyenlőtlenségrendszer

megoldását jelenti, amely az LP relaxált megoldásával egyenértékű.

Másfelől, ha a Dk nem tartalmazza a D egyetlen egy extremális pontját sem, akkor

sem kellene hozzávenni a feladatok listájához. Sajnos ennek kideŕıtése sem egyszerű,

hiszen a D halmaz összes extremális pontjának az ismeretéből a (P ) feladat megoldása

egyszerűen megkapható lenne.

Az eljárás során, ha a megengedett megoldás tégla, akkor igaz a következő álĺıtás:

Álĺıtás 3.2.1 Ha (P k) részprobléma esetén Dk = T k, akkor a (P k
LP ) feladat opti-

mumértéke βk nem lehet kisebb az aktuális legkisebb értéknél.

Bizonýıtás. Az eddig megtalált legkisebb célfüggvényértéket jelölje U .

A feltétel alapján

Dk = A ∩ T k = T k.

A korlátozás lépésben a (P k
LP ) feladatot oldanánk meg, azaz egy n-dimenziós hiper-

téglatest felett optimalizálnánk az F k(x) lineáris függvényt. Mivel az optimumérték

valamely csúcsban is felvétetik, ezért van olyan optimális ωk megoldása a feladatnak,

amely esetén

ωk
i = lki vagy ωk

i = uk
i

teljesül. Továbbá

f(ωk) =
n
∑

j=1

fj(ω
k
j ) =

n
∑

j=1

F k
j (ωk

j ) = βk ≥ U

hiszen az intervallumok határpontjaiban a függvényértékek megegyeznek, azaz

F k
j (lj) = fj(lj) és F k

j (uj) = fj(uj).

Az egyenlőtlenség pedig azért teljesül, mert f(ωk) ≥ U . 2

Ilyen esetekben tehát a részprobléma nem kerül további part́ıcionálásra.
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3.3. ”Csúsztatott” part́ıcionálási szabály

A part́ıcionálási stratégia döntően befolyásolja az algoritmus hatékonyságát. Jelen

fejezetben, egy a szakirodalomban ismert [89] vágási szabályt ismertetünk, bemutat-

juk ezen vágási stratégia korlátait, majd megadjuk a stratégia egy olyan módośıtását,

amely PNS feladatok megoldásakor hatékonyabban működik.

3.3.1. x̄-part́ıcionálás

A Shectman és munkatársai [89] által bevezetett part́ıcionálási stratégiát vizsgáljuk

meg. Vezessük be a következő függvényt: Level(P k) függvény mutassa a BB fa azon

szintjét, mely a (P k) részproblémához tartozik, és legyen N egy pozit́ıv egész szám.

if ( Level(P k) mod N = 0 ) then

j = argmaxi∈{1...n}(u
k
i − lki )

p = (uk
j + lkj )/2.0

else

j = argmaxi∈{1...n}

{

fi(ω
k
i ) − F k

i (ωk
i )
}

if ( x̄ ∈ Dk ∧ x̄j ∈]lkj , u
k
j [ ) then

p = x̄j

else

p = (uk
j + lkj )/2.0

endif

endif

Minden N -ik szinten lévő részprobléma vágásakor a leghosszabb él mentén vágjuk

két egybevágó részbe a téglatestet, ı́gy a téglatestek oldalainak hossza zérushoz tart.

Más esetekben a vágási változó legyen azon változó, ahol relaxációs távolság az

LP aktuális megoldásnál (fj(ω
k
j ) − F k

j (ωk
j )) maximális. Ha az eddigi legjobb me-

goldást tartalmazza az aktuális intervallum, és a vágásra kijelölt irányban pedig belső

pontként tartalmazza, akkor vágási pont legyen az eddigi legjobb megoldás x̄. Ha ez

nem teljesül, felezzük az intervallumot a korábban kijelölt változó szerint.
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3.3.2. x̄ konvergencia, végesség

Tekintsük a BB algoritmus által generált BB fát. Tegyük fel, hogy az algoritmus

végtelen, tehát létezik egy végtelen T q sorozat, amelyre T q+1 ⊂ T q, azaz a BB fában

létezik egy a gyökérből kiinduló végtelen út.

A vágási stratégiából könnyen levezethető a következő összefüggés [89]:

Lemma 3.3.1 limq→∞ (uq
j − lqj ) = 0, ∀j ∈ {1, . . . , n}, azaz q → ∞ esetén a P q

részproblémát definiáló hipertéglatest oldalainak hossza tart a zérushoz.

Aminek a fontos következménye a 3.3.2 lemma.

Lemma 3.3.2 limq→∞ (f(ωq) − F q(ωq)) = 0, azaz q → ∞ esetén a P q részprobléma

alsó korlátja (F q(ωq)) tart a részprobléma felső korlátjához (f(ωq)).

A 3.3.2 lemma biztośıtja az algoritmus konvergenciáját, a 3.3.1 lemma seǵıtségével

viszont meg lehet mutatni, hogy az algoritmus véges időben azonośıtja a globális op-

timumhelyet [89]. A optimális megoldás megtalálása után a program a további part́ı-

cionálásokat már mindig az optimális megoldás mentén végzi. Egy változón egy adott

részproblémában csak egyszer kell vágást végrehajtani, mert az olyan változókon,

amelyeken már történt vágás a megoldásban a lineáris közeĺıtés eltérése zéró lesz,

hiszen a vágás után a pont az intervallum szélére kerül. Így véges lépésben a re-

laxációs távolság zérussá változik, azaz a korábban megtalált megoldás optimalitása

bizonýıtottá válik.

3.3.3. A módszer viselkedése

Gyakorlati tapasztalatok azt mutatják, hogy a (P ) feladat megoldása során az op-

timumhelyet a BB algorimtus elég korán azonośıtja. A számı́tás nagy része arra

ford́ıtódik, hogy a nyitott részproblémákról belássuk, hogy azok nem tartalmaznak

optimális megoldást, azaz ezen részproblémákat alsókorlát alapján el kell tudni vetni.

A hangsúlyt tehát érdemes arra fektetni, hogy olyan vágási stratégiát dolgozzunk ki,

amely az optimumot nem tartalmazó részproblémákat hatékonyan tudja kezelni.
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Az optimális megoldásnál történő part́ıcionáláskor az optimumhelyet mindkét ke-

letkező részprobléma tartalmazni fogja. Ezért a x̄-part́ıcionálási stratégia nagy felada-

tok megoldása esetében nagy számı́tási és memória kapacitást igényel, amely nagyon

megneheźıti ezen feladatok megoldását.

Miután a módszer megtalálta az optimális megoldást, kettévágja az aktuális rész-

problémát az optimális megoldásnál, majd ezen részproblémákat is kettévágja és ezt

folyatja addig, amı́g valamelyik szabály alapján el nem veti ezen részproblémákat.

Alsó korlát alapján az ilyen részproblémákat nem lehet törölni, hiszen azok tartal-

mazzák az optimális megoldást. Az optimális megoldást tartalmazó részproblémák

elvetése csak akkor történhet, ha a célfüggvény alsó közeĺıtése a megoldásban pontossá

válik. Egyéb gyorśıtási módszerekkel sem érhetünk el javulást, hiszen az optimális

megoldás garantálása érdekében alapkövetelmény, hogy az optimális megoldást tar-

talmazó részprobléma nem törölhető.

Tehát a módszer feléṕıt egy teljes bináris fát. A fa mélysége függ az optimális

megoldásban szereplő eredetileg nem korláton lévő nemlineáris változók számától.

Ha k db nem korláton lévő nemlineáris változót tartalmaz az optimális megoldás, a

hozzátartozó bináris fa k mélységű, azaz a 2k+1 − 1 db csúcspont van benne, ami a

megoldott LP-k számát is jelzi. A nyitott részproblémák maximális számára is lehet

becslést adni, ami a k mélységben lévő csúcsok száma, azaz 2k.

Nézzünk erre egy példát: egy gyakorlati feladat nemlineáris változóinak száma

elérheti a több százat is. Tegyük fel, hogy az az optimumban mondjuk csak 50

nem korláton lévő változó van, ami 251 − 1 ≈ 2 × 1015 db LP megoldását teszi

szükségessé. A részproblémák száma 250 ≈ 1015 (≡ millió × milliárd), ha 1 részproblé-

ma tárolásához kb 1 kbyte tár szükséges, akkor egymilliárd gigabyte memóriára lenne

szükségünk. Az aktuális LP megoldás mentén történő vágás (ω vágás [29]) esetében

is hasonló viselkedésű lesz a módszer, mert a globális optimumhely meghatározása

után a szaporodó részproblémák relaxált megoldása is a globális optimumhely lesz.

3.3.4. ”Csúsztatott” vágási módszer

Az előző módszer fő gyengeségét próbáljuk elkerülni a pozit́ıv tulajdonságok meg-

tartásával. A relaxációs távolságot próbáljuk csökkenteni úgy, hogy a részproblémák
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számát is tudjuk közben kezelni. Célunk az, hogy feleslegesen ne növeljük meg az

optimumhelyet tartalmazó részproblémákat. Legyen a vágási stratégia a következő:

if ( Level(P k) mod N = 0 ) then

j = argmaxi∈{1,...,n}(u
k
i − lki )

p = (uk
j + lkj )/2.0

else

j = argmaxi∈{1...n}

{

fi(ω
k
i ) − F k

i (ωk
i )
}

if ( x̄ ∈ Dk ∧ x̄j ∈]lkj + ε, uk
j [ ) then

p = x̄j − ε

else

p = (uk
j + lkj )/2.0

endif

endif

l j

k

Fj
k

f
j

uj
k xj

xj
p

e

-

3.4. ábra. ε-vágás.

Az alapötlet az, hogy az optimális megoldás mindig csak az egyik részintervallumban

lesz benne, ı́gy alsókorlát alapján a másik eldobható.

Hasonló módszerrel találkozhatunk az intervallum aritmetikán alapuló optima-

lizálási eljárásokban az úgynevezett ”clustering” probléma megoldására. A lapos

helyi minimumok környékén a megállási kritérium után ”fürtökben” lógnak az olyan

részintervallumok, amelyek potenciálisan tartalmazhatják a megoldást. A javasolt

módszer az volt, hogy a feladat megoldását több kezdőintervallummal kell megtenni,
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ı́gy egy jól meghatározott ε értékkel megváltoztatott korlátok miatt sokkal kevesebb

részintervallum fogja csak tartalmazni a helyi minimumokat [56], [57].

Vágási pont: (x̄j − ε)

Tekintsük a 3.4 ábrát. Elemezzük, hogy mi történik az egyes részproblémákkal a

part́ıcionálás után. Az [lkj , x̄j − ε] esetén az optimum már nem része a halmaznak

(x̄j /∈ [lkj , x̄j − ε]). Azaz xj változóhoz tartozó műveleti egység működése felülről

korlátozódott úgy, hogy már nem képes kieléǵıteni az igényeket. A hiányzó igényeket

vagy egy másik műveleti egység pótolhatja vagy egy teljesen más struktúra lesz az

optimális. Ezek már szignifikáns változások lesznek az optimális megoldáshoz képest,

és nagy valósźınűséggel az alsókorlát alapján törlődik. Láthatjuk, hogy itt fontos

szerepet kap az a tény, hogy a feltételrendszer egy PNS feladatot reprezentál.

Az ε meghatározása

Legyen ε > 0 (∈ IR) olyan elegendően nagy mennyiség, mely szerint a bal oldali in-

tervallumhoz ([lkj , x̄j − ε]) tartozó részprobléma megoldáshalmazában nincs benne az

optimális megoldás. Elméletileg természetesen nincs benne, de az LP megoldó gya-

korlatban valamekkora toleranciával dolgozik, ennél a toleranciánál kell nagyobbnak

lennie az ε-nak.

ε vágás esetében a vágási pont meghatározása az x̄j ∈]lkj + ε, uk
j [ feltétel figye-

lembevételével történik. A x̄j ∈ [lkj , l
k
j + ε] esetben úgy tekintjük, hogy a változó

határon van, és rajta vágást nem hajtunk végre. Ha az összes nem korláton lévő

változó az [lki , l
k
i + ε] intervallumban van, akkor a részfeladatot megoldottnak te-

kintjük és elvetjük. Tehát egy ε élhosszúságú hiperkockát
”
hanyagoltunk” el. A

lineáris feltételrendszer által meghatározott poliéderhez becsülhető a csúcsai közti

legkisebb távolság. Ha az ε érték kisebb ennél a távolságnál, akkor a figyelmen ḱıvül

hagyott részben nem lehet más csúcs. Mivel korábban beláttuk, hogy az optimális

megoldás a konvex poliéder egy csúcsában helyezkedik el, ı́gy az ε élhosszúságú hi-

perkocka elhanyagolható.
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3.3.5. Konvergencia, végesség

A konvergencia (lásd 3.3.2 lemma) fennáll itt is, mivel a 3.3.1 lemma az új vágási

stratégiával is teljesül.

Az eredeti módszer végessége abból adódik, hogy a globális optimumot véges

időben azonośıtja és az optimumhelyet tartalmazó részproblémákat az optimumnál

vágja ketté. Az optimumnál történő vágás véges lépésben a relaxációs távolságot

zérussá csökkenti. Az optimumot nem tartalmazó részproblémák lokális optimuma

a globális optimumtól véges távolságra van. A konvergencia (3.3.2 lemma) eredmé-

nyeként véges lépés alatt az ilyen t́ıpusú részproblémák alsó korlátjai az optimumnál

nagyobbá válnak, és ı́gy ezen részproblémák véges lépés alatt törlődnek.

3.3.6. Az eredmény rövid összefoglalása

A 3.3 fejezet az 1a tézispontban megfogalmazott eredményeket tartalmazza.

A szakirodalomból ismert és széleskörűen alkalmazott (Shectman és munkatársai

[89]) part́ıcionálási stratégiát megvizsgálva bemutattam a part́ıcionálási stratégia

egyik kedvezőtlen tulajdonságát: a módszer feleslegesen sok olyan részproblémát ge-

nerál, ami tartalmazza az optimális megoldást. Az, hogy az optimális megoldás sok

akt́ıv részproblémában szerepel, nagyban megneheźıti a megtalált megoldás optima-

litásának bizonýıtását. A bizonýıtás ı́gy teljes bináris fa bejárását teszi szükségessé,

amelynek a mélysége megegyezik az optimális hálózatban lévő csúcsok számával.

Ennek a kedvezőtlen tulajdonságnak a kiküszöbölésére dolgoztam ki az úgynevezett

”csúsztatott” szétválasztási stratégiát, amelyben az optimális megoldást tartalmazó

részproblémákat nem sokszorozzuk meg. A PNS feladatok megoldására ez különösen

jól használható. A módszer helyességét bizonýıtottam.

3.4. Maximális rés part́ıcionálás

Egy BB algoritmus hatékonyságát nagyban befolyásolja az alsókorlát élessége. Fe-

jezetünkben bevezetjük a maximális rés part́ıcionálást (lásd 3.5 ábra), amely által

meghatározott vágási pont minimalizálja a konkáv függvény és a lineáris közeĺıtés
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3.5. ábra. Maximális rés part́ıcionálás.

integrálkülönbségét. Az integrálkülönbség minimalizálása garantálja az alsókorlát

élességét és a konvergenciát is.

3.4.1. Vágási stratégia

Legyen P k a kiválasztott részprobléma. A vágási változó kiválasztása legyen a követ-

kező:

j = argmax
i=1,...,n

{

fi(ω
k
i ) − F k

i (ωk
i )
}

. (3.4.1)

Legyen továbbá p az a vágási pont, amelyre

p = argsup
t∈[lkj ,uk

j ]

{

fj(t) − F k
j (t)

}

. (3.4.2)

3.4.2. Konvergencia

Tekintsük a BB algoritmus által generált BB fát. Tegyük fel, hogy az algoritmus

végtelen, tehát létezik egy végtelen T q sorozat, melyre T q+1 ⊂ T q, azaz a BB fában

létezik egy, a gyökérből kiinduló végtelen út.

Feltételezzük, hogy f az intervallum minden belső pontjában deriválható, és a

végpontokban létezik a bal illetve a jobboldali derivált.

Lemma 3.4.1 Legyen P k egy részprobléma, használjuk a (3.4.1) és (3.4.2) part́ı-

cionálási szabályokat, és legyen P k1 és P k2 az ezután kapott részproblémák. Ekkor
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(a) folytonos eset (b) nemfolytonos eset

3.6. ábra. Az integrálkülönbség folytonos és nemfolytonos esetekre.

teljesülnek a következők:

p
∫

lkj

fj − F k1

j <
1

2

p
∫

lkj

fj − F k
j ,

uk
j
∫

p

fj − F k2

j <
1

2

uk
j
∫

p

fj − F k
j .

Bizonýıtás. Tekintsük a 3.6a ábrát. Legyen T1, T2 a megfelelő paralelogrammák

területe, akkor a következők igazak:

p
∫

lkj

fj − F k
j < T1,

uk
j
∫

p

fj − F k
j < T2.

Az egyenlőtlenségekből következik, hogy

p
∫

lkj

fj − F k1

j =

p
∫

lkj

fj − F k
j −

1

2
T1 <

p
∫

lkj

fj − F k
j −

1

2

p
∫

lkj

fj − F k
j =

1

2

p
∫

lkj

fj − F k
j ,

és hasonlóan,

uk
j
∫

p

fj − F k2

j =

uk
j
∫

p

fj − F k
j −

1

2
T2 <

uk
j
∫

p

fj − F k
j −

1

2

uk
j
∫

p

fj − F k
j =

1

2

uk
j
∫

p

fj − F k
j .
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A nemfolytonos eset hasonlóan következik, lásd a 3.6b ábrát. 2

Tétel 3.4.2 limq→∞ f(ωq) − βq = 0, azaz q → ∞ esetén a P q részprobléma alsó

korlátja (βq) tart a részprobléma felső korlátjához (f(ωq)).

Bizonýıtás. Két fő esetet vizsgálunk, amikor f folytonos T q felett, és amikor nem.

1. f folytonos T q felett

Tegyük fel, hogy létezik az indexeknek egy olyan N1 ⊆ {1, . . . , n} részhalmaza, hogy

∀q > K esetén nem történik vágás az N1 indexhalmazba tartozó változókon. Továbbá

feltehetjük azt is, hogy N1 a legbővebb ilyen tulajdonságú indexhalmaz. Ezért ∃ ε1 >

0, hogy ∀q > K esetén

∀j ∈ N1, fj(ω
q
j ) − F q

j (ωq
j ) ≥ ε1 > 0.

Az {1, . . . , n} \ N1-n viszont lesz vágás, tehát a korábbi álĺıtásunk szerint

∀j ∈ {1, . . . , n} \ N1-re,

uq
j
∫

lqj

fj − F q
j → 0, ahogy q → ∞.

Mivel f folytonos T q-n, ı́gy ∀j ∈ {1, . . . , n} \ N1-re F q
j → fj pontonként.

Ezért ∃K1 > K, hogy q > K1 esetén

∀j ∈ {1, . . . , n} \ N1, t ∈ [lqj , u
q
j ], fj(t) − F q

j (t) < ε1.

Vagyis az algoritmus az N1 halmazból fog választani vágási változót, de ez ellentmond

annak, hogy N1-ben q > K-re nem történik vágás. Így következik, hogy az N1 halmaz

üres. Azaz

∀j ∈ {1, . . . , n}-re,

uq
j
∫

lqj

fj − F q
j → 0, ahogy q → ∞.

Így ∀j ∈ {1, . . . , n}-re F q
j → fj teljesül pontonként. A folytonos esetre az álĺıtást

beláttuk.
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3.7. ábra. Part́ıcionálás az l0j -tól különböző helyen.

2. f nem folytonos T q felett

Ha az f nem folytonos T q-n, akkor a konkavitás miatt csak a határon lehet a

szakadási pontja. Legyen D ⊆ {1, . . . , n} a nem folytonos változók indexhalmaza.

Az általánosság elvesztése nélkül feltehetjük, hogy fj nem folytonos l0j -ban.

Vizsgáljuk ilyen esetben a vágások sorozatát. Különböztessük meg azt az esetet,

mikor a vágás l0j -ban történik és azt amikor nem.

Amikor vágás l0j -ban történt.

Ekkor két intervallumot kaptunk:

Az egyik intervallum, ([l0j , l
0
j ]) egy pontból áll, ı́gy az a függvény triviálisan folytonos.

A másik intervallumon ([l0j , u
q
j ]) pedig a függvénynek megszüntetjük a szakadását

azzal, hogy a

f+
j =







fj(xj), xj ∈ (l0j , u
q
j ]

limt→l0j+ fj(t) xj = l0j

függvényt definiáljuk, és ı́gy az f+
j folytonos lesz [l0j , u

q
j ]-n.

Az f+
j különbözik az fj -től az l0j (= lqj ) pontban, de a minimalizálás miatt ez nem

okoz változást az optimumban. Így ez az eset is visszavezethető a folytonos esetre.

Tegyük fel, hogy sosem vágunk az l0j pontban.

A 3.7 ábrán látható, hogy a vágás után két új intervallumot kapunk, az egyiken

[p, uq
j ]-n az fj folytonos lesz – s ı́gy ezzel kész vagyunk – és a másik intervallumon
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3.8. ábra. Az f+ függvény relaxációja az [l0j , u
q
j ] intervallumon.

az fj-nek szakadása van. Először megmutatjuk, hogy ez utóbbi intervallumok hossza

tart a nullához, azaz, uq
j → l0j mialatt q → ∞.

Indirekten bizonýıtunk. Mivel mindig belső pontban vágunk, ı́gy az uq
j szigorúan mo-

noton módon csökken, tehát ezek sorozata konvergens. Tegyük fel, hogy limk→∞ uq
j =

u+(6= l0j ). Legyen F+ a relaxációja az f+
j -nak az [l0j , u

q
j ] intervallumon (lásd 3.8 ábra).

Az F+ > F q
j teljesül kivéve az uq

j pontot, ahol ezek egyenlők. A következő feltétel

áll:
uq

j
∫

l0j

F+ >

uq
j
∫

l0j

F q
j ,

amiből

uq
j
∫

l0j

f q
j − F q

j =

uq
j
∫

l0j

f+
j − F q

j ≥

uq
j
∫

l0j

F+ − F q
j >

u+ − l0j
2

(

f+
j (l0j ) − fj(l

0
j )
)

> 0 (3.4.3)

következik. Mivel (3.4.3) minden q-ra igaz, ezért ez ellentmond annak az álĺıtásunk-

nak, hogy az integrálkülönbség tart a nullához.

Előzőekben beláttuk azt, hogy az intervallum hossza tart a nullához, vizsgáljuk

meg hogyan viselkedik ekkor a lineáris közeĺıtésünk.

Legyen γj = f+
j (l0j ) − fj(l

0
j ). Mivel f+

j folytonos [lqj , u
q
j ]-n, ezért ∀ε > 0, ∃ δ, hogy

uq
j − lqj < δ-ra a

∣

∣f+
j (uq

j) − f+
j (l0j )

∣

∣ < ε teljesül. Így ∀S ∈]0, γj[-re ∃K1, hogy ∀q > K1

esetén
∣

∣f+
j (uq

j) − f+
j (l0j )

∣

∣ < γj − S.
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Azaz,

S − γj < f+
j (uq

j) − f+
j (l0j ) < γj − S. (3.4.4)

A (3.4.4) egyenlőtlenségből,

f+
j (uq

j) > S + f+
j (l0j ) − γj = S + fj(l

q
j ). (3.4.5)

Mivel fj(u
q
j) = f+

j (uq
j), ı́gy adódik az

fj(u
q
j) − f+

j (lqj ) > S

összefüggés.

Mivel uq
j → l0j , ı́gy ∀S ∈]0, γj[-re, ∀M > 0-ra, ∃K2, hogy ∀q > K2, esetén uq

j−lqj < S
M

.

Tehát, ha q > max(K1, K2), akkor

fj(u
q
j) − fj(l

q
j )

uq
j − lqj

> M. (3.4.6)

teljesül.

Álĺıtjuk a következőt: ∃ q hogy az algoritmus l0j -ban fog vágni.

Azaz maxt∈[l0j ,uq
j ]

{

fj(t) − F q
j (t)

}

az l0j pontban veszi fel az értéket. Legyen G =

f+
j (l0j ) − F q

j és A = supt∈(l0j ,uq
j ] f

′(t). ∃ q melyre
fj(u

q
j )−fj(l

0
j )

uq
j−l0j

> A. Legyen F q
j (xj) =

Cxj + Bj, ∆ > 0 és ∆ ≤ uq
j − l0j .

fj(l
0
j + ∆) − F q

j (l0j + ∆) < fj(l
0
j ) + A∆ − Cj∆ − Cjl

0
j − Bj

= fj(l
0
j ) − F q

j (l0j ) + (A − C)∆

< G.

Hiszen korábban láttuk a (3.4.6) egyenletben, hogy a C tetszőlegesen nagy lehet.

Ezzel tételünket beláttuk. 2

Tétel 3.4.3 ∀q-ra T q tartalmazza a globális optimumhelyet.

Bizonýıtás. Ha a globális minimum x̄ /∈ Dq = A ∩ T q, akkor f(ωq) > f(x̄), ı́gy

∃ q, hogy F q(ωq) elég közel van f(ωq)-hoz, azaz F q(ωq) > f(x̄), és ı́gy nagyobb, mint

bármelyik legkisebb L alsó korlát. Ez ellentmond annak a feltételnek, hogy mindig a

legkisebb alsó korláttal rendelkező részproblémát választjuk. 2
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A módszer végessége itt nem garantált, viszont hivatkozva a [89]-ban vázolt par-

t́ıcionálási szabályra, ezen vágási stratégia is kibőv́ıthető úgy, hogy a végesség ga-

rantálható legyen.

3.4.3. Az eredmény rövid összefoglalása

A 3.4 fejezet az 1b tézispontban megfogalmazott eredményeket tartalmazza.

Kidolgoztam egy új szétválasztási stratégiát, amely a célfüggvény és a relaxációs

függvény integrálkülönbségét minimalizálja, ezáltal a relaxáció élességét maximálisra

növeli. Bizonýıtottam a módszer helyességét.

3.5. Egy elégséges optimalitási kritérium szepará-

bilis konkáv minimalizálási feladatra

Az eddigi szétválasztási eljárások a lehetséges megoldások halmazának part́ıcioná-

lásakor a célfüggvény és annak lineáris relaxációja alapján határozták meg a meg-

felelő vágási pontot. A relaxált lineáris programozási feladat vizsgálatával egy olyan

stratégia lett kidolgozva, amely a part́ıcionáláskor a konvex poliéder és a célfüggvény

viszonyát figyelembe véve végzi a további part́ıcionálást. A megfogalmazott al-

goritmus helyességét igazoljuk. Az elemzésekhez szükségünk lesz az LP feladatok

vizsgálata során használatos néhány jelölésre.

3.5.1. A relaxált lineáris programozási feladat

A (P ) feladat megoldása során a korlátozó lépés egy relaxált lineáris programozási

feladat megoldása. A relaxált lineáris programozási feladat megoldásával és a me-

goldásnak az eredeti (P ) feladat szempontjából történő érzékenység vizsgálatával

meg tudjuk adni a (P ) feladat egy elégséges optimalitási kritériumát. Egész pon-

tosan azt tudjuk eldönteni, hogy a relaxált lineáris programozási feladat optimális

bázismegoldása egyben optimális megoldása-e a lineáris feltételes szeparábilis konkáv

minimalizálási feladatnak is vagy sem.
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A továbbiakban szükségünk lesz az egyváltozós konkáv függvények tulajdonsága-

iról szóló jól ismert álĺıtásra (megtalálható pl. Császár Á., [18], 228. oldal).

Álĺıtás 3.5.1 Legyen f egyváltozós függvény, I ⊂ Df intervallum. A következő

álĺıtások egyenértékűek:

(a) f konkáv az I intervallumban;

(b) az x, y ∈ I, x 6= y esetére bevezetett

m(x, y) =
f(y) − f(x)

y − x

jelöléssel, az a, b, c ∈ I, a < b < c esetén

m(a, b) ≥ m(a, c) ≥ m(b, c);

(c) bármely t ∈ I esetén mt(x) = m(t, x) függvény fogyó az I \ {t} halmazon;

(a) az a, b, c ∈ I, a < b < c esetén

m(a, b) ≥ m(b, c).

2

A konkáv függvények felsorolt tulajdonságainak a fontos következménye az alábbi

álĺıtás (megtalálható pl. Császár Á., [18], 232. oldal).

Álĺıtás 3.5.2 Legyen f egyváltozós konkáv függvény az I ⊂ Df nýılt intervallumban,

ekkor:

(a) az f folytonos az I intervallumban;

(b) az f bármely t ∈ I helyen jobbról és balról differenciálható és

f ′
−(t) ≥ f ′

+(t);
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(c) ha az a, b ∈ I, a < b akkor

f ′
+(a) ≥ m(a, b) ≥ f ′

−(b),

sőt, ha az f szigorúan konkáv az I intervallumban, akkor

f ′
+(a) > m(a, b) > f ′

−(b).

2

3.5.2. A relaxált lineáris programozási feladat optimalitási

kritériuma

Tekintettel arra, hogy a (P ) feladat közeĺıtését léıró lineáris programozási feladat

célfüggvényében szereplő konstans tag nem befolyásolja azt, hogy az optimum hol

vétetik fel, ezért a konstans tagot elhagyjuk a célfüggvényből és a (PLP ) feladatot

részletesen a következő alakban ı́rhatjuk ki:

min cTx

Ax ≤ b

l ≤ x ≤ u















(PLP ).

A (PLP ) feladat megengedett megoldásainak a halmaza megegyezik a (P ) fela-

datéval. A (PLP ) feladat optimális megoldásainak a halmazát jelölje

D∗
c = {x∗ ∈ D : cTx∗ ≤ cTx, x ∈ D}.

Az elemzéshez szükségünk lesz a lineáris programozási feladatok vizsgálata során

használatos néhány jelölésre. Ezeket vezetjük most be.

Jelölje J a (PLP ) feladathoz tartozó változók és ”slack” változók indexhalmazát,

legyen JB ⊂ J az optimális bázis változóinak az indexhalmaza és JN a bázison ḱıvüli

változók indexei. Ekkor az {aj : j ∈ JB} vektorok lineárisan függetlenek. Nyilván

J = JB ∪ JN .

Jelölje J l
N ⊂ JN (J u

N ⊂ JN) azon nem bázisban lévő változók indexhalmazát,

amelyek alsó (felső) kortáton vannak. Természetesen J l
N∪J u

N = JN (és JB∩JN = ∅).
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Legyen Ā = [B−1A], és jelölje a cB vektor, a c vektornak a JB indexeire történő

megszoŕıtását.

Valamely x̄ ∈ D vektor esetén, ha x̄ bázis megoldása a (PLP ) feladatnak, akkor

li ≤ x̄i ≤ ui bármely i ∈ JB,

x̄i = li bármely i ∈ J l
N ,

x̄i = ui bármely i ∈ J u
N .

Ennek következtében, ha ismert a J indexhalmaz (JB,J l
N ,J u

N) part́ıciója, akkor a

bázis változók értékeit az

x̄B = B−1 b −
∑

j∈J l
N

lj āj −
∑

j∈J u
N

uj āj

képlettel számı́thatjuk ki, ahol az āj vektor az Ā mátrix j. oszlopvektora.

A (PLP ) feladat optimalitási kritériumának a feĺırásához hasznos lesz a duál feladat

megfogalmazása

max −bTy + lTz − uT s

−ATy + z − s = c

y ≥ 0, z ≥ 0, s ≥ 0















(DLP ),

és jelölje D̄ = {(y, z, s) : −ATy+z−s = c, y ≥ 0, z ≥ 0, s ≥ 0} a duál megengedett

megoldások halmazát. Egyszerűen feĺırhatjuk a (PLP ) és (DLP ) feladatokhoz tartozó

gyenge dualitás tételt.

Álĺıtás 3.5.3 Bármely x ∈ D és (y, z, s) ∈ D̄ vektorok esetén

cTx ≥ −bTy + lTz − uT s

egyenlőtlenség teljesül és egyenlőség pontosan akkor áll fenn, ha

0 = cTx + bTy − lTz + uT s = yT (b − Ax) + zT (x − l) + sT (u − x). 2

Ezek után a (PLP ) és (DLP ) feladatokhoz tartozó (szükséges és elégséges) optima-

litási kritériumot az alábbi módon adhatjuk meg

Ax ≤ b, l ≤ x ≤ u

−ATy + z − s = c, y ≥ 0, z ≥ 0, s ≥ 0

yT (b − Ax) = 0, zT (x − l) = 0, sT (u − x) = 0.
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Feltéve az x∗ ∈ D∗
c megoldásról azt is, hogy valamely B bázishoz tartozik, ekkor

y∗ = cT
BB−1 ≥ 0. Az optimalitási kritériumot felhasználva azt kapjuk, hogy

• j ∈ JB, lj < x∗
j < uj esetén zj = 0 és sj = 0 teljesül és ı́gy

−aT
j y = cj

• j ∈ J l
N , lj = x∗

j esetén zj ≥ 0 és sj = 0 teljesül, tehát

zj = cj + aT
j y ≥ 0

• j ∈ J u
N , uj = x∗

j esetén zj = 0 és sj ≥ 0 teljesül, tehát

−sj = cj + aT
j y ≤ 0

adódik. A fentiek alapján azt kapjuk, hogy az x∗ ∈ D lehetséges bázismegoldás

pontosan akkor optimális, ha

y∗ = cT
BB−1 ≥ 0, (3.5.1)

− cT
BB−1aj ≤ cj bármely j ∈ J l

N és (3.5.2)

− cT
BB−1aj ≥ cj bármely j ∈ J u

N (3.5.3)

index esetén.

3.5.3. Elégséges optimalitási kritérium

Ebben a részben megfogalmazzuk és igazoljuk a (P ) feladat elégséges optimalitási

kritériumát a D halmaz extremális pontjára, bázismegoldására nézve.

Definiáljuk azt a H halmazt, amely megadja a lineáris közeĺıtő függvények valami-

lyen módon előálĺıtható együtthatóit. A H ⊆ IRn halmaz később igen fontos szerepet

kap vizsgálatunk során.

A H halmaznak olyannak kell lennie, hogy ha elméletileg ismernénk a H halmaz

elemeihez tartozó összes lineáris programozási feladat megoldását, akkor az eredeti

(P ) feladatnak is meg kell tudjuk határozni az optimális megoldását. Ha ez nem
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teljesülne, akkor eleve reménytelen lenne egy ilyen feladatot alsó lineáris közeĺıtésen

alapuló módszerekkel megoldanunk.

Először a H halmazról általánosságban beszélünk és legfontosabb tulajdonságait

használjuk, majd pedig később megadunk olyan – lehetőleg minél szűkebb – halma-

zokat, amelyek tartalmazzák a H halmazt.

A következő lemmában igazoljuk, hogy a (P ) feladat x̂ optimális megoldásához

tartozik egy h ∈ IRn vektor, amely esetén a relaxált lineáris programozási feladat

optimális megoldáshalmazának az x̂ eleme, azaz x̂ ∈ D∗
h
.

Lemma 3.5.1 Legyen adott a (P ) feladat. Jelölje x̂ a (P ) optimális megoldását, azaz

f(x̂) = minx∈D f(x). Ekkor

f̄(x̂) = min
x∈D

f̄(x),

ahol az f̄(x) = (∇f(x̂))T (x − x̂) + f(x̂), a (3.2.1) képlettel definiált affin (lineáris)

függvény.

Bizonýıtás. A következő egyenlőtlenség az f függvény konkavitása miatt teljesül,

f(x) ≤ f̄(x) = (∇f(x̂))T (x − x̂) + f(x̂),

és egyenlőség csak a x̂ pontba áll fenn, azaz f(x̂) = f̄(x̂). Tekintsük azt a lineáris

programozási relaxációt amelynél az f̄(x) a feladat célfüggvénye. Ekkor

f(x̂) = min
x∈D

f(x) ≤ min
x∈D

f̄(x) ≤ f̄(x̂) = f(x̂)

amiből a

min
x∈D

f̄(x) = f̄(x̂)

adódik. 2

A lemma feltételezi az fj deriválhatóságát a [lj, uj] intervallumon. Könnyű meg-

gondolni, hogy az fj nem deriválható pontjaiban a szuperderiváltak halmazának tet-

szőleges pontja is megfelelő az f̄ választásakor.

Vagyis megmutattuk, hogy létezik olyan h célfüggvény vektor, amely esetén a re-

laxált lineáris programozási feladat optimális bázismegoldása, a (P ) feladat optimális
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megoldása is egyben. A H halmaznak tehát tartalmaznia kell a lemmában használt

∇f(x) vektorokat, ahol x ∈ D.

Bármely x̄ ∈ D lehetséges megoldáshoz elkésźıthetjük a

CB = {c ∈ IRn : a c kieléǵıti a (3.5.1)–(3.5.3) feltételeket} (3.5.4)

halmazt. A CB, az olyan célfüggvény együtthatókat tartalmazza, amelyek esetén a B

bázissal adott x̄ lehetséges megoldás optimális megoldása lesz a

min
x∈D

cTx

}

(Pc)

lineáris programozási feladatnak. Természetesen a CB halmaz nem üres. Könnyen

igazolható a következő álĺıtás, amely a szeparábilis konkáv minimalizálási feladat

valamely lineáris programozási feladattal történő közeĺıtéséről szól.

Álĺıtás 3.5.4 Legyen adott az x̄ ∈ D lehetséges bázismegoldás, a B bázissal, és legyen

h̄ ∈ CB, akkor az x̄ optimális bázismegoldása a

min
x∈D

h̄Tx

}

(Ph̄)

lineáris programozási feladatnak, azaz x̄ ∈ D∗
h̄
, ahol D∗

h̄
jelöli a (Ph̄) feladat optimális

megoldásainak a halmazát. 2

Ebből az is következik, hogy

ha H ⊆ CB, akkor x̄ ∈ D∗
h (3.5.5)

teljesül, bármely h ∈ H esetén.

Készen állunk arra, hogy a (P ) feladat elégséges optimalitási feltételét megfogal-

mazzuk és igazoljuk.

Tétel 3.5.1 Tekintsük a (P ) lineáris feltételes szeparábilis konkáv minimalizálási fe-

ladatot és tegyük fel, hogy az fj függvények szigorúan konkávak. Legyen x̄ ∈ D egy

olyan B bázissal adott lehetséges bázismegoldás, amely esetén H ⊆ CB teljesül. Ekkor

D∗ = {x̄}.
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Bizonýıtás. Mivel H ⊆ CB, ezért x̄ ∈ D∗
h teljesül, bármely h ∈ H esetén. Másfelől

tudjuk, hogy a (P ) lineáris feltételes szeparábilis konkáv minimalizálási feladatnak

létezik olyan globális x̂ minimuma a D halmazon, amely extremális pontja a megen-

gedett megoldások halmazának, vagyis bázismegoldása a feltételeknek. Tegyük fel,

hogy x̂ 6= x̄.

Legyen ĥ = ∇ f(x̂). A 3.5.1 Lemma miatt x̂ ∈ D∗
ĥ
, másfelől ĥ ∈ H ⊆ CB miatt

az x̄ ∈ D∗
ĥ

teljesül. Így fennáll a következő

f(x̂) = f̄(x̂) = f̄(x̄) > f(x̄). (3.5.6)

Ami ellentmondáshoz vezet, vagyis x̂ = x̄, amiből D∗ = {x̄} adódik. 2

A szigorú egyenlőtlenség a szigorú konkavitási feltételből adódik. Ha a 3.5.1 Tétel

feltételei közül elhagyjuk a szigorú konkavitási megkötéseket, akkor a (3.5.6) egyen-

lőtlenség a következő alakú lesz:

f(x̄) ≥ f(x̂) = f̄(x̂) = f̄(x̄) ≥ f(x̄),

és ekkor f(x̄) = f(x̂) teljesül, tehát az x̄ ∈ D∗, de nem biztośıtható a |D∗| = 1.

Ezzel beláttuk, hogy a (P ) feladat egy B bázishoz kapcsolódó x̄ ∈ D bázismegol-

dásának az elégséges optimalitási kritériuma a

H ⊆ CB.

Degenerált bázismegoldás

Jelölje Cx̄ azon célfüggvény együtthatók halmazát, amelyre az x̄ optimális megoldása

lesz a minx∈D cTx lineáris programozási feladatnak.

A primál degenerált bázis esetén a meghatározott CB halmaz szűkebb lesz, mint a

csúcsponthoz tartozó Cx̄ halmaz, ı́gy ha az optimalitási kritérium áll a CB halmazra,

akkor ez igaz lesz egy CB-nél bővebb Cx̄ halmazra is.

Ha több információt szeretnénk összeszedni, akkor akár exponenciálisan sok, ugyan-

azt a csúcsot léıró bázissal kellene dolgoznunk, ami az amúgy is nehéz feladatot egy

másik szempontból tenné nehézzé. Egy primál degenerált bázisból dolgozva az lehet

a gond, hogy már optimális a megoldásunk, azaz H ⊆ Cx̄, de mivel mi csak CB-t
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ismerjük, ezért nem tudunk az optimalitás következtetésére jutni. Ez összhangot mu-

tat a lineáris programozási feladat elemzésekor kapott eredményekkel (lásd [10], [42],

[74]).

3.5.4. A H halmazról

A H halmaz (alsó) közeĺıtéseket tartalmaz, ezért szoros kapcsolatban van az f függ-

vény deriváltjaival (szuperderivált is lehet), hiszen a Lagrange középérték tétel miatt

minden alsó közeĺıtéshez létezik egy pont, ahol az alsó közeĺıtés meredeksége a pont-

beli derivált.

Az optimalitás vizsgálata a konvex CB poliéder és a H halmaz tartalmazásának,

illetve általában a két halmaz egymáshoz való viszonyának a vizsgálata. A H halmaz

meghatározásakor azt is figyelembe kell venni, hogy a viszony könnyen vizsgálható

legyen.

A H halmaz meghatározására tekintsük például az f függvény deriváltjainak (szu-

perderiváltoknak) az értékkészletét a D halmaz felett. Ha f szigorúan konkáv, akkor

fj deriváltja szigorúan monoton csökkenő, ı́gy van neki gj inverze. Ekkor az

F = {y : Ag(y) = b és l ≤ g(y) ≤ u}

halmaz az f deriváltjának értékkészlete D halmaz felett, ami jó H halmaznak. Az

F bonyolult struktúrájú halmaz lehet, és a tartalmazás eldöntése hasonlóan nehéz

feladat lenne, mint a (P ) feladat megoldása.

Megtehetjük, hogy az F halmaznál bővebb halmazt választunk a H halmaznak

úgy, hogy struktúrája egyszerűbb lesz, mint az F halmazé.

Nyilvánvaló, hogy a H meghatározását az f függvény tulajdonságai (szigorú kon-

kavitás, differenciálhatóság stb.) jelentősen befolyásolják. Másfelől, ha a H halmaz

struktúrája bonyolult (nem poliéder), akkor a H ⊆ CB összefüggést ellenőrizni igen

nehéz lehet. Ezért érdemes a H halmazt tartalmazó, de egyszerű struktúrájú (pl.

hipertégla) célfüggvény-együttható paraméterhalmazt meghatározni. Ha csak a (P )

feladat adataira támaszkodunk, akkor a

Hf = {h ∈ IRn : hj ∈ [f ′
j−(uj), f

′
j+(lj)]}
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halmazt tudjuk definiálni és nyilván H ⊆ Hf teljesül. Ha azonban valamely x̄ ∈

D lehetséges bázismegoldás esetén szeretnénk meghatározni a relaxált lineáris pro-

gramozási feladatok szóba jövő célfüggvény-együtthatóit, akkor a

Hf,x̄ = {h ∈ IRn : hj ∈ [cl
j, c

u
j ]}

halmazban gyűjthetjük össze a célfüggvény együtthatókat, ahol

cu
j =

{

m(lj, x
∗
j), x∗

j 6= lj

f ′
j+(lj), különben

és cl
j =

{

m(x∗
j , uj), x∗

j 6= uj

f ′
j−(uj), különben

A 3.5.1 és 3.5.2 álĺıtások alapján

f ′
j−(uj) ≤ cl

j = m(x̄j, uj) ≤ m(lj, x̄j) = cu
j ≤ f ′

j+(lj) (3.5.7)

egyenlőtlenségek teljesülnek, ı́gy Hf,x̄ ⊆ Hf , azaz az x̄ ∈ D bázismegoldásból nyer-

hető információt felhasználva a relaxált programozási feladatok célfüggvény együtt-

hatóinak egy szűkebb halmazát tudtuk meghatározni. Philips és Rosen cikkükben

[81] a Hf,x̄ halmazt vezették be.

A Hf,x̄ ⊆ CB feltételből nem következik a H ⊆ CB, ezért a Hf,x̄ ⊆ CB mint

elégséges optimalitási kritériumot a következő 3.5.2 tételben fogalmazom meg.

Tétel 3.5.2 Tekintsük a (P ) lineáris feltételes szeparábilis konkáv minimalizálási fe-

ladatot és tegyük fel, hogy az fj függvények konkávak. Legyen x̄ ∈ D egy olyan B

bázissal adott bázismegoldás, amely esetén Hf,x̄ ⊆ CB teljesül. Ekkor x̄ ∈ D∗.

Bizonýıtás. Legyen x̂ a globális optimuma a (P ) feladatnak, és tegyük fel, hogy

x̂ 6= x̄ teljesül. Legyen

S = {x ∈ IRn : min{x̄i, x̂i} ≤ xi ≤ max{x̄i, x̂i}, i = 1, . . . , n}

hipertégla. Az x̂ ∈ S és x̄ ∈ S teljesül, továbbá elmondható, hogy mindkettő az S

hipertégla egy-egy csúcsa (extremális pontja). Legyen F (x) = ĥ x + d az f függvény

relaxáltja az S hipertégla felett (F (x) ≤ f(x), minden x ∈ S esetén). Ha valamely

j indexre x̄j = x̂j teljesül, akkor a pontbeli érintő legyen a lineáris relaxáció (nem



52

deriválható esetben valamely szupergradiens). Könnyen belátható, hogy ĥ ∈ Hf,x̄

feltétel fennáll, amiből x̄ ∈ D∗
ĥ

következik. A következő egyenletek teljesülnek:

f(x̂) = min
x∈D

f(x) = min
x∈S∩D

f(x), hiszen x̂ ∈ S, (3.5.8)

F (x̄) = min
x∈D

F (x) = min
x∈S∩D

F (x), hiszen x̄ ∈ S. (3.5.9)

A (3.5.8) és (3.5.9) egyenletekből kapjuk a ḱıvánt összefüggést:

f(x̄) = F (x̄) = min
x∈S∩D

F (x) ≤ min
x∈S∩D

f(x) = min
x∈D

f(x).

Az első egyenlőség annak a következménye, hogy x̄ az S hipertégla egy csúcsa, és ı́gy

abban a pontban a relaxációs függvény megegyezik a célfüggvénnyel. 2

Beláttuk, hogy az optimalitás következik a Hf,x̄ ⊆ CB feltételből, viszont a |D∗| = 1

tulajdonság már nem garantálható.

A következőkben azt a kérdést szeretnénk megvizsgálni, hogy a

Hf,x̄ ⊆ CB

tartalmazás ellenőrzése mennyi számolást igényel. Philips és Rosen [81] exponenci-

álisan sok lineáris programozási feladat megoldására vezette vissza a kérdést: ha

ezeknek a lineáris programozási feladatoknak van közös optimális megoldása, akkor

az egyben optimális megoldása a (P ) feladatnak is. Könnyen belátható, hogy elegendő

a Hf,x̄ hipertégla extremális pontjairól eldönteni azt, hogy eleme-e a CB halmaznak

vagy sem. Ezzel jelentős mennyiségű számı́tást takaŕıthatunk meg, de sajnos még

mindig exponenciálisan sok pont ellenőrzéséről van szó. Ezt mi tesztpont seǵıtségével

jóval hatékonyabbá tesszük.

Tesztpontok előálĺıtsa

A Hf,x̄ ⊆ CB tartalmazás ellenörzése helyett olyan tesztpontot szeretnénk előálĺıtani

bármely (3.5.1)–(3.5.3) feltételrendszerben szereplő egyenlőtlenséghez, amely lehe-

tőleg megsérti az egyenlőtlenséget. A tesztpontot természetesen a Hf,x̄ halmazból

választjuk ki. A (3.5.1)–(3.5.3) egyenlőtlenség-rendszerben a célfüggvény együtthatói

a változók jelenleg.
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A tesztpont elkésźıtését vizsgáljuk meg a j ∈ J l
N esetén, azaz a

−cT
BB−1aj = −cT

Bāj ≤ cj

egyenlőtlenséget megsértő célfüggvény együtthatókat keressük a Hf,x̄ halmazból. Ez

azt jelenti, hogy az egyenlőtlenség baloldalát szeretnénk minél nagyobbra, mı́g a job-

boldalát a lehető legkisebbre választani. Ennek érdekében definiáljuk a h̄j tesztpontot

a következő módon.

h̄ij =



























cl
j, i = j

cl
j, āij > 0, i ∈ JB

cu
j , āij < 0, i ∈ JB

hij, i /∈ (JB \ {i : āij = 0}) ∪ {j}, ahol hij ∈ [cl
i, c

u
i ]

Ekkor nyilvánvaló, hogy h̄j ∈ Hf,x̄ teljesül. A tesztpont konstrukciója alapján világos,

hogy

h̄T
Bāj + h̄jj ≤ hT

Bāj + hjj

teljesül bármely h ∈ Hf,x̄ esetén, azaz

−h̄T
Bāj − h̄jj ≥ −hT

Bāj − hjj (3.5.10)

adódik. Amennyiben a tesztpont nem sérti meg a feltételt, azaz

0 ≥ −h̄T
Bāj − h̄jj (3.5.11)

fennáll, akkor a (3.5.10) és (3.5.11) egyenlőtlenség alapján nincsen olyan pontja a

Hf,x̄ halmaznak, amely a j ∈ J l
N feltételt megsértené. Általánośıtva az előzőket,

tetszőleges k ∈ J l
N ∪J u

N index esetén a h̄k tesztpontot az alábbi módon definiálhatjuk

a J +
i és a J −

i , (i ∈ JB) halmazok seǵıtségével, ahol

J +
i = {k ∈ J l

N : āik < 0} ∪ {k ∈ J u
N : āik > 0}, és (3.5.12)

J −
i = {k ∈ J l

N : āik > 0} ∪ {k ∈ J u
N : āik < 0}, (3.5.13)

az alábbi módon

h̄ik =







































cl
i, k ∈ J −

i , i ∈ JB

cu
i , k ∈ J +

i , i ∈ JB

cl
k, i = k, és k ∈ J l

N

cu
k , i = k, és k ∈ J u

N

hi, i /∈ (JB \ {i : āik = 0}) ∪ {k}, ahol hi ∈ [cl
i, c

u
i ].
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Összegezve, a következő álĺıtást kapjuk.

Tétel 3.5.3 Ha a h̄k tesztpont nem sérti meg a k ∈ J l
N ∪ J u

N egyenlőséget, akkor

tetszőleges h ∈ Hf,x̄ vektor sem sérti meg. 2

Másfelől, ha valamely j ∈ J l
N (j ∈ J u

N) esetén

−h̄T
B,j āj > cl

j (−h̄T
B,j āj < cu

j ),

akkor a tesztpont megsérti a j. változóhoz tartozó optimalitási kritériumot.

Hasonló módon késźıthetünk tesztpontot a

h̄T
BB−1 ≥ 0

tesztelésére is. Jelölje B̄ = B−1 mátrixot és ekkor b̄i a B̄ mátrix i. oszlopa

h̄ji =















cl
i, bji > 0, j ∈ JB

cu
i , bji < 0, j ∈ JB

hi, j ∈ J l
N ∪ J u

N ∪ {j ∈ JB : b̄ji = 0} ahol hi ∈ [cl
j, c

u
j ]

Ekkor a h̄T
j,B b̄i ≥ 0 és bármelyik másik h ∈ Hf,x̄ vektor is kieléǵıti az i. nemnegati-

vitási feltételt.

Ez azt jelenti, hogy a Hf,x̄ hipertégla 2n csúcspontja helyett elegendő legfeljebb

n tesztpont elkésźıtése annak érdekében, hogy az összes optimalitási feltételt letesz-

teljük.

Vezessük be a K̂ indexhalmazt az alábbi módon

K̂ = {i : h̄i tesztpont megsérti az i. egyenlőtlenséget}.

Nyilván igaz, hogy a K̂ = ∅ esetén Hf,x̄ ⊆ CB, azaz az x̄ ∈ D∗ teljesül. Ez azt

jelenti, hogy valamely x̄ ∈ D pontról a következő módon dönthető el, hogy optimális

megoldása-e a (P ) feladatnak:

1. elkésźıtjük a Hf,x̄ halmazt;

2. figyelembe véve a B−1 és a B−1AN mátrix elemeit elkésźıtjük a h̄j tesztpontot;
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3. elvégezzük a tesztpontok ellenőrzését; ha nem találunk olyan j indexet, amelyre

h̄j megsérti a j. feltételt akkor az x̄j optimális megoldása a feladatnak.

Ha azonban találunk olyan h̄j tesztpontot, amely megsérti a j. feltételt, akkor abból

sajnos nem vonhatjuk le azt a következtetést, hogy az x ∈ D nem optimális megoldás.

Mivel a H és a Hf,x̄ halmazok jelentősen függnek az lj és uj számoktól is, ezért

várható, hogy a korlátozás és szétválasztás t́ıpusú algoritmusok hatékonyak lehetnek

a (P ) feladatok megoldására, ha Hf,x̄ halmaz átmérője gyorsan csökken.

3.5.5. Az eredmény rövid összefoglalása

A 3.5 fejezet a 2a tézispontban megfogalmazott eredményeket tartalmazza.

Megadtam a lineáris feltételrendszerrel adott, változóiban szétválasztható konkáv

programozási feladat egy elégséges optimalitási kritériumát.

3.6. Érzékenységi vizsgálaton alapuló vágási stra-

tégia

Az elégséges optimalitási feltétel megfogalmazásakor emĺıtettük, hogy az itt megfogal-

mazott gondolatmenet alapul szolgálhat egy, a korlátozás és szétválasztás módszerén

alapuló eljárás kidolgozásához.

Mielőtt rátérnénk a módszer bevezetésére a (P ) feladatot módośıtottuk: az egyen-

lőtlenségek helyett itt most egyenlőséget használunk. A módośıtást azért vezettük be,

mert a gyakorlatban használt LP megoldóknál általában a ”slack” változókat nem

kezelik külön, ı́gy azokat be kell venni az adatok feltöltésénél.

min
∑n

j=1 fj(xj)

Ax = b

l ≤ x ≤ u















(P ). (3.6.1)

Bevezetünk egy part́ıcionálási stratégiát, amely a célfüggvény együtthatóinak érzé-

kenységi vizsgálatán alapul.
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A módośıtással a feladathoz tartozó PLP relaxált feladat optimalitási kritériuma

megváltozott, ı́gy a (3.5.1) feltétel már nem része a kritériumnak. Természetesen a

CB halmaz is megfelelően módosult.

3.6.1. Egy bázisváltozó költsége módosul

Tegyük fel, hogy adott az x̄ ∈ D∗
c

megoldás a B bázissal. Legyen k ∈ JB, és

c(k) = c + γk ek = (c1, c2, . . . , ck + γk, . . . , cn),

ahol az ek az IRn vektortér k. egységvektora. Az a kérdés, hogy meddig marad a B

bázis optimális, azaz meddig teljesülnek a következő egyenlőtlenségek

cj ≥ −c(k)T
BB−1aj = −cT

BB−1aj − γk ākj (3.6.2)

bármely j ∈ J l
N , illetve

cj ≤ −c(k)T
BB−1aj = −cT

BB−1aj − γk ākj (3.6.3)

bármely j ∈ J u
N indexek esetén. A korábban bevezetett J +

k , J −
k indexhalmazokat

(lásd (3.5.12) és (3.5.13) egyenletek) használva definiáljunk olyan alsó és felső korlátot

a γk számra, amely esetén a (3.6.2) és (3.6.3) egyenlőtlenségek fennállnak, azaz legyen

γ−
k =







max
j∈J−

k

cj+c
T
BB−1

aj

ākj
ha J −

k 6= ∅

−∞ ha J −
k = ∅

illetve

γ+
k =







min
j∈J+

k

cj+c
T
BB−1

aj

ākj
ha J +

k 6= ∅

+∞ ha J +
k = ∅

és ekkor

γ−
k ≤ γk ≤ γ+

k

esetén a B bázis optimális marad. Nyilvánvaló, hogy a 0 ∈ [γ−
k , γ+

k ] és legalább az

egyik érték a γ−
k és γ+

k közül véges.

A korlátok alapján számos esetben meghatározhatjuk a (rész)feladat további par-

t́ıcionálását. Ennek elemeit dolgozzuk ki a következő részben.
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Part́ıcionálás

Célunk az, hogy lehetőleg egyszerű számı́tások seǵıtségével olyan p vágási pontot

határozzunk meg, amellyel valamely xj változóra adott [lj, uj] intervallumot, [lj, p]

és [p, uj] intervallumokra bontsuk úgy, hogy a relaxált LP optimális megoldásának

a j. koordinátája az egyik intervallumba kerüljön. Felhasználva az fj függvények

konkavitását, definiáljuk a következő halmazokat:

K− = {j ∈ JB : cl
j < cj + γ−

j < cu
j }

K+ = {j ∈ JB : cl
j < cj + γ+

j < cu
j }.

Vezessük be továbbá a K = K−∪K+ jelölést. Ekkor a K azon indexek halmaza, ame-

lyek esetén a célfüggvény j. együtthatója módośıtható úgy, hogy az új LP feladatnak

a felbontása után (legalább) az egyikben más legyen az optimális megoldása, mint

eredetileg volt. Legyen

τ = max
j∈K

{fj(x̄j) − (cjx̄j + dj)} , (3.6.4)

ahol c az (LP) feladat célfüggvény együtthatója. Legyen k index az, amelyre

τ = fk(x̄k) − (ckx̄k + dk).

Ha k ∈ K−, azaz

cl
k < ck + γ−

k < cu
k

teljesül, akkor létezik p ∈ (lk, uk), amelyre

ck + γ−
k = f ′

k(p) (3.6.5)

Ha k ∈ K+, azaz

cl
k < ck + γ+

k < cu
k

teljesül, akkor létezik p ∈ (lk, uk), amelyre

ck + γ+
k = f ′

k(p). (3.6.6)

A p vágási pont seǵıtségével az aktuális megoldáshalmaz tégla részét a (3.2.2) össze-

függésben léırt módon part́ıcionálhatjuk.

Abban az esetben ha K = ∅ akkor meg kell vizsgálni annak a lehetőségét, hogy

egyszerre több bázisváltozó célfüggvény együtthatóját változtatjuk meg annak érde-

kében, hogy a megoldás optimalitási tulajdonsága megváltozzon.
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3.6.2. Több bázisváltozó költsége módosul

Ha egy célfüggvény együttható módośıtásával a bázis optimalitása nem változik meg,

akkor azt az általános esetet kell tekintenünk, amikor az összes változó célfüggvény

együtthatója változhat.

Feltehetjük, hogy a Hf,x̄ * CB, ellenkező esetben a x̄ megoldás optimális me-

goldása lenne a részfeladatnak. Létezik egy h̄j tesztpont j ∈ J l
N (j ∈ J u

N), amelyre

−h̄T
B,j āj > cl

j (−h̄T
B,j āj < cu

j ).

Vezessük be a K̂ = K̂l ∪ K̂u indexhalmazt, ahol

K̂l = {i ∈ J l
N : −h̄T

B,i āi > cl
i}

K̂u = {i ∈ J u
N : −h̄T

B,i āi < cu
i }.

A K̂ azon indexeknek a halmaza, amelyeknél a (PLP ) relaxált lineáris programozási

feladat optimalitási kritériumai a tesztpont esetén megsérülnek. A korábbi feltevésből

következik, hogy K̂ 6= ∅.

Part́ıcionálás

Vezessük be a

τ̂ = max
i∈K̂

| − h̄T
B,i āi − cl

i|

számot. Legyen k ∈ K̂ az az index, amelynél a τ̂ érték felvétetik, azaz

τ̂ = | − h̄T
B,k āk − cl

k|.

Tekintettel arra, hogy τ̂ méri az optimalitási kritérium maximális megsértését, ezért a

k ∈ K̂ ⊆ J l
N ∪J u

N az az index, amely esetén legjobban sérül az optimalitási kritérium.

Tegyük fel, hogy k ∈ K̂l és legyen

j′ = argmax
i∈{1,2,...,m}

| − (h̄B,ki − cB,i) āki|. (3.6.7)

A j′ itt a B bázisra megszoŕıtott h̄B,k vektor egy indexe, az egyszerűség kedvéért

jelölje j az eredeti h̄k vektorra vonatkozó megfelelő indexet. Induljunk ki a K̂l elemeit

definiáló egyenlőtlenségből, azaz

−h̄T
B,k āk > cl

k,
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amelyből egyszerű átalaḱıtással kapjuk a

−h̄kj ākj′ > cl
k + h̄T

B,k āk − h̄kj ākj′

egyenlőtlenséget. Legyen

γ∗
j = h̄kj +

cl
k + h̄T

B,k āk

−ākj′
. (3.6.8)

Ha γ∗
j /∈ (cl

j, c
u
j ) teljesül, akkor legyen

γ∗
j = tk (h̄kj − cj) + cj, (3.6.9)

ahol

tk =
cl
k + cT

B āk

−(h̄T
B,k − cT

B) āk

.

A cl
k + cT

B āk < 0 miatt 0 < t < 1, ı́gy a γ∗
j ∈ (cl

j, c
u
j ). Legyen gk = h̄B,k − cB továbbá

c̄k = cl
k + cT

B āk. A tk a következő formába ı́rható

tk =
c̄k

−gT
k āk

,

továbbá

γ∗
j = tk gkj′ + cj.

Már csak a p vágási pont meghatározása maradt hátra ebben az esetben. Tekint-

sük az

f ′(lj) < γ∗
j < f ′(uj)

egyenlőtlenségrendszert. Ekkor létezik olyan p ∈ (lj, uj) szám, amelyre

γ∗
j = f ′(p) (3.6.10)

teljesül.

A part́ıcionálás elemzése. Az általánosság megszoŕıtása nélkül feltehetjük, hogy

k ∈ K̂l, ahol legjobban sérül az optimalitási kritérium és j a vágási irány (azaz

−ḡkj′ ākj′ a maximális), továbbá h̄kj = cu
j (azaz ākj′ < 0 teljesül). A többi esetet

teljesen analóg módon tudjuk kezelni.
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A felosztás után két részproblémát kaptunk. Vizsgáljuk meg, hogy mi történik a

k feltétellel a felosztás után. A part́ıcionálás után marad a régi bázis, ı́gy csak a cl
j

és a cu
j értéke fog változni.

A korábbiakhoz hasonlóan tekintsük a BB algoritmus által generált BB fát. Te-

gyük fel, hogy az algoritmus végtelen, tehát létezik a részproblémák egy végtelen P q

sorozata (P q+1 a P q közvetlen utóda), melyre T q+1 ⊂ T q teljesül.

Álĺıtás 3.6.1 Az (3.6.8)-el definiált part́ıcionálás véges sok esetben hajtódik végre.

Bizonýıtás. Legyen az aktuális részprobléma P q. Jelölje (q) felső index hogy az

adott érték mely részproblémára vonatkozik.

Tekintsük azt az esetet, amikor a P q+1 a P q baloldali gyereke: [c
l(q)
j , γ

∗(q)
j ]

A h̄
(q+1)
kj értéke γ

∗(q)
j lesz.

−(h̄
(q+1)
B,k )T āk = −

∑

i∈{1,··· ,m}\{j′}

h̄
(q)
B,kiāki − (γ

∗(q)
j ) ākj′

= −
∑

i∈{1,··· ,m}\{j′}

h̄
(q)
B,kiāki −

(

h̄
(q)
kj +

c
l(q)
k + (h̄

(q)
B,k)

T āk

−ākj′

)

ākj′

= c
l(q)
k = c

l(q+1)
k

Az k egyenlet már nem sérül. Mivel az egyenletek száma véges, ı́gy ez az eset csak

véges sokszor fordulhat elő.

Tekintsük azt az esetet, amikor a P q+1 a P q jobboldali gyereke: [γ
∗(q)
j , c

u(q)
j ]

A h̄
(q+1)
kj értéke a c

u(q)
j lesz. Számoljuk ki ekkor az új γ

∗(q+1)
j tagot.

γ
∗(q+1)
j = h̄

(q+1)
kj +

c
l(q+1)
k + (h̄

(q+1)
B,k )T āk

−ākj′
=

= h̄
(q)
kj +

c
l(q)
k + (h̄

(q)
B,k)

T āk

−ākj′
=

= γ
∗(q+1)
j = c

l(q+1)
j

γ
∗(q+1)
j /∈

(

c
l(q+1)
j , c

u(q+1)
j

)

miatt a j később már nem lehet vágási irány a (3.6.8)

szabály szerint.
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Megvizsgálva a keletkezett részproblémákat, arra a következtetésre jutunk, hogy a

(3.6.8) szerinti part́ıcionálási szabályt ismételten alkalmazva, véges lépésben eljutunk

oda, hogy a részprobléma bázisa már nem változhat (azaz a részfeladat törölhető)

vagy a (3.6.9) szabály szerint kell a felosztást elvégeznünk. 2

Álĺıtás 3.6.2 (3.6.9)-ban definiált part́ıcionálás lépés véges végrehajtása után vagy

az optimalitási feltétel teljesül, vagy egy változó célfüggvényének módośıtása bázisvál-

tozást eredményez.

Bizonýıtás. Hasonlóan az előző álĺıtás bizonýıtáshoz itt is külön-külön vizsgáljuk a

részproblémákat.

A c az aktuálisan relaxált együtthatókat jelenti, xj változó újrarelaxálása után a

cj érték fog megváltozni. A változás mértéke legyen p = c
(q+1)
j − c

(q)
j , nyilvánvaló,

hogy p ∈ (c
l(q)
j − c

(q)
j , c

u(q)
j − c

(q)
j ).

Baloldali részprobléma: [c
l(q)
j , γ

∗(q)
j ].

Becsüljük meg a k egyenlet mennyivel sérül a part́ıcionálás után. Vezessük be az

eredeti eltérésre következő jelölést:

d(q) = −(h̄
(q)
B,k)

T āk − c
l(q)
k = −(g

(q)
k )T āk − c̄

(q)
k .

Számı́tsuk ki d(q+1)-t a part́ıcionálás után.

d(q+1) = −
∑

i∈{1,··· ,m}\{j′}

g
(q+1)
ki āki − (γ

∗(q)
j − c

(q+1)
j ) ākj′ − c̄

(q+1)
k =

= −
∑

i∈{1,··· ,m}

g
(q)
ki āki + g

(q)
kj′ ākj′ − (γ

∗(q)
j − c

(q)
j − p) ākj′ − (c̄

(q)
k + p ākj′) =

= d(q) + g
(q)
kj′ ākj′ − (γ

∗(q)
j − c

(q)
j ) ākj′ (3.6.11)

= d(q) + g
(q)
kj′ ākj′ − tkg

(q)
kj′ ākj′

= d(q) + g
(q)
kj′ ākj′ (1 − tk)

A −g
(q)
kj′ ākj′ szorzatról feltettük, hogy maximális – lásd (3.6.7) egyenlet – ı́gy a követ-

kező teljesül:

−g
(q)
kj′ ākj′ ≥

c̄
(q)
k + d(q)

m
,
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ahol m a feltételek száma, amely természetesen rögźıtett. Zárójelben megjegyezzük,

hogy a becslésünk elég durva, a gyakorlatban a konvergencia gyorsabb. Visszatérve

(3.6.11)-hez kapjuk, hogy:

d(q+1) = d(q) − (−g
(q)
kj′ ākj′) (1 − tk)

≤ d(q) −
c
l(q)
k + d(q)

m

d(q)

c̄
(q)
k + d(q)

= d(q) −
d(q)

m
= d(q)

(

1 −
1

m

)

.

Azaz a vágások során a d(q) → 0. Mivel mindig a legjobban sértett feltételt választjuk,

ı́gy az összes feltételre is igaz a konvergencia. Tehát bizonyos lépés után már nem

sérül az egyenletrendszer.

Jobboldali részprobléma: [γ
∗(q)
j , c

u(q)
j ]

Számoljuk ki az egyenletre vonatkozó c̄
(q+1)
k és d

(q+1)
k értékeket.

c̄
(q+1)
k = c̄

(q)
k − p (−ākj′)

≤ c̄
(q)
k + γ

∗(q)
j ākj′

= c̄
(q)
k + g

(q)
kj′ ākj′tk

= c̄
(q)
k + g

(q)
kj′ ākj′

c̄k

−gT
k āk

(3.6.12)

≤ c̄
(q)
k + g

(q)
kj′ ākj′

c
(q)
k

−m g
(q)
kj′ ākj′

= c̄
(q)
k

(

1 −
1

m

)

d(q+1) = −
∑

i∈{1,··· ,m}\{j′}

g
(q+1)
ki āki − γ

∗(q)
j ākj′ − c̄

(q+1)
k

= −
∑

i∈{1,··· ,m}\{j′}

g
(q)
ki āki − (g

(q)
kj′ − p) ākj′ − (c̄

(q)
k − p (−ākj′)) (3.6.13)

= −
∑

i∈{1,··· ,m}

g
(q)
ki āki − c̄

(q)
k = d(q)

vagyis d nem változik.
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Megfelelően nagy q-ra a következő teljesül:

−g
(q)
kj′ ākj′ ≥

d(q) + c̄
(q)
k

m
≥

d(q)

m
> c̄

(q)
k ,

hiszen a (3.6.12) miatt c̄
(q)
k → 0 és (3.6.13) miatt d(q) nem változik. Továbbá

−(h̄
(q)
kj − c

(q)
j )ākj′ > cl

k + cT
B āk

−h̄
(q)
kj ākj′ −

∑

i∈{1,··· ,m}\{j′}

c
(q)
B,i āki > cl

k

Ami pontosan azt jelenti, hogy vágások véges számú végrehajtásával el tudunk jutni

egy olyan part́ıcionálásához, ahol egy változó módośıtása már bázisváltozást eredmé-

nyez és visszatérünk ahhoz az esethez, amikor egy változó célfüggvénye módosul.

2

3.6.3. Szétválasztási stratégia

Fejezetünkben összefoglaljuk a korábbi fejezetekben kidolgozott part́ıcionálási eljárá-

sokat. A 3.3.1 fejezetben emĺıtett jelölést használva Level(P k) függvény mutassa a

BB fa azon szintjét, mely az (P k) részproblémához tartozik és továbbá legyen N egy

pozit́ıv egész szám és K a 3.6.1 fejezet szerint definiált indexhalmaz és K̂ a 3.6.2 fejezet

szerint definiált indexhalmaz.

if ( Level(P k) mod N = 0 ) then

j = argmaxi∈{1...n}(u
k
i − lki )

p = (uk
j + lkj )/2.0

else if K 6= ∅ then

j = argmaxj∈K {fj(x̄j) − (cjx̄j + dj)}

legyen p vágási pont a (3.6.5) és (3.6.6) képlet alapján meghatározva.

else if K̂ 6= ∅ then

j′ = argmaxi∈{1,2,...,m} | − (h̄B,ki − cB,i) āki|.

legyen a p vágási pont a (3.6.10) képlet alapján meghatározva.

else

K̂ = ∅ esetén nincs tesztpont, amely megsértene valamely feltételt,
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ı́gy a részprobléma optimális megoldása az aktuális bázismegoldás

endif

3.6.4. Az algoritmus helyességének bizonýıtása

Minden N -ik szinten lévő részproblémát a leghosszabb él mentén vágjuk a két egy-

bevágó részbe, ı́gy a téglatestek oldalainak hossza zérushoz tart. A 3.3.1 lemma itt

is teljesül, amiből a 3.3.2 lemma következik bizonýıtva az algoritmus helyességét.

3.6.5. Az algoritmus működésének elemzése

A globális optimum megtalálását a BB fa minden N -ik szinten lévő részproblémájának

part́ıcionálása garantálja, viszont a hatékonyságát nem. Az relaxált LP vizsgálatával

meghatározott vágási pontok azok, amelyek megalapozzák módszerünk hatékonysá-

gát. Megjegyezzük, hogy érzésünk szerint – amit a tapasztalat is alátámaszt – az

érzékenységi vizsgálattal kapott vágási pontok is garantálják az optimális megoldás

megtalálását, de a bizonýıtás még a jövő egyik feladata.

A vágási pontok meghatározását a következő alapgondolat vezette: mivel az op-

timális megoldás a poliéder egy csúcsában van, ı́gy érdemes olyan vágási pontokat

generálni, amely esetében az új részproblémák közül az egyik relaxált feladatnak

az optimális megoldása már egy másik lehetséges bázismegoldás legyen. Ez soks-

zor nem teljeśıthető (K = ∅), ilyenkor az LP feladat érzékenységi vizsgálatával ke-

resünk megfelelő vágási pontot. Ekkor célunk az, hogy minél kevesebb part́ıcionálással

olyan részfeladatokhoz jussunk, amelyek már vagy optimálisak (azaz K̂ = ∅) vagy

bázisváltozás lép fel.

A korábbi részben a part́ıcionálás utáni részfeladatok viselkedését vizsgáltuk.

Megmutattuk, hogy elegendően sok part́ıcionálási lépés után egy részprobléma vagy

terminálissá válik, vagy bázisváltozás lép fel.

Az algoritmus szempontjából fontos a feltételrendszer által meghatározott poliéder

szerkezete, azok az úgymond
”
szép” csúcsok (bázismegoldások), amelyek az érzékeny-

ségvizsgálat alapján eléggé stabilak a célfüggvény módośıtására nézve. Például egy

focilabda (amely 5 és 6 szögekből áll) csúcsai nem annyira
”
szépek” szemben egy
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kocka csúcsaival. A PNS feladatok együtthatómátrixa ritka, ı́gy a feltételek által

meghatározott śıkok
”
szép” csúcsokat képezhetnek. A módszerünk jól kihasználja a

PNS feladatok ilyen tulajdonságát.

Az érzékenységi vizsgálat seǵıtségével a part́ıcionálás utáni részproblémákról sok

esetben előre tudjuk, hogy a korlátozási lépésben mi lesz az optimális bázis. Ilyen

estekben természetesen nem kell az LP feladatot megoldani.

3.6.6. Az eredmény rövid összefoglalása

A 3.6 fejezet a 2b tézispontban megfogalmazott eredményeket tartalmazza.

Új eljárást dolgoztam ki a lineáris feltételrendszerrel adott, változóiban szét-

választható konkáv programozási feladat megoldása során felmerülő szétválasztás

lépésre. Az eljárás a 2a tézispontban megfogalmazott optimalitási kritériumon ala-

pulva végzi a részproblémák part́ıcionálását, illetve a terminális részproblémák meg-

határozását. A megfogalmazott algoritmus helyességét igazoltam.

3.7. Kombinatorikusan gyorśıtott algoritmus

Egy PNS feladathoz tartozó konkáv szeparábilis feladat feltételrendszere magán hor-

dozza a PNS feladat sajátosságait, melyek figyelembevételével új, hatékony módszer

késźıthető PNS feladatok optimalizálására.

3.7.1. Bevezetés

Egy P-gráf jól reprezentálja a PNS modellben lévő változók közötti függőségeket (lásd

2.2.3 fejezet). A matematikai modell egy lehetséges x megoldását azonośıthatjuk a

P-gráf egy s (struktúrával) P-részgráfjával : oi ∈ s ⇔ xi 6= 0 (természetesen nem

minden részgráfhoz létezik lehetséges x megoldásvektor).

Az alap algoritmus (3.1 ábra) működése közben a lehetséges megoldások hal-

mazát part́ıcionálja. Az itt bevezetésre kerülő módszer abban különbözik a korábbi
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eljárástól, hogy a part́ıcionálással párhuzamosan az eljárás egy P-gráfon végez mű-

veleteket. A gráf seǵıtségével kiszűrhetünk olyan részproblémákat, amelyek nem tel-

jeśıtik a korábban bevezetett axiómákat (2.2.2 defińıció), ezáltal törölhetőek. Egy

LP feladat megoldásának számı́tásigénye jóval több egy P-gráfon végzett egyszerű

műveletnél, viszont a P-gráf használata nélkül csak az alsókorlát számı́tás (egy LP

feladat megoldása) után lenne lehetőség a részprobléma törlésére.

A módszer egy általánosabb feladatosztályt kezelését teszi lehetővé, amely félfoly-

tonos változókat is tartalmazhat. Egy xi ∈ IR változó félfolytonos, ha xi = 0 vagy

0 ≤ li ≤ xi ≤ ui teljesül (0 /∈ [li, ui], különben folytonos változóval van dolgunk).

A félfolytonos változók gyakran előfordulnak valós ipari feladatok modellezésénél.

Szemléletesen annyit jelent, hogy egy műveleti egység mérete nem lehet akármilyen

kicsi.

A T halmaz a következőképpen módosul:

T = {x ∈ IRn : 0 ≤ li ≤ xi ≤ ui vagy xi = 0, i = 1, . . . , n}.

A félfolytonos változók miatt a T halmaz nem konvex, ı́gy a kiindulási T halmazt

közeĺıtenünk kell:

T 0 = {x ∈ IRn : 0 ≤ xi ≤ ui, i = 1, . . . , n}.

A műveleti egységhez kapcsolódó költségfüggvény (korábban lásd (2.2.9) egyenlet):

fi(xi) =







0, xi = 0,

ai + bi x
α
i , xi > 0,

(3.7.1)

ahol α ∈ IR, 0 ≤ α ≤ 1, ai ≥ 0, bi ≥ 0, (i = 1, . . . , n).

3.7.2. Részproblémák

Korábbi tárgyalásunkban egy részproblémát egy T k hipertégla határozott meg (lásd

3.2.1 fejezet), a kombinatorikusan gyorśıtott módszer esetében a részproblémához egy

P-gráfot is hozzárendelünk. A P-gráf léırását a műveleti egységek halmazának egy

osztályozása adja meg: fixk
0 ⊆ O, fixk

1 ⊆ O, freek ⊆ O halmazok. A részprobléma

meghatározásakor ezeket a halmazokat is definiálni kell.



67

Legyen P k = (T k,Dk, f ixk
0, f ixk

1, freek) részprobléma. Legyen T k = {x ∈ IRn :

lk ≤ x ≤ uk} ⊆ T 0 és a fixk
0, f ixk

1, freek halmazok a korábban emĺıtett osztályozása

a műveleti egységek halmazának. A halmazok között a következő összefüggések állnak

fenn:

oi ∈ fixk
0 ⇔ lki = uk

i = 0,

oi ∈ fixk
1 ⇔ 0 ≤ li ≤ lki ≤ xi ≤ uk

i ≤ ui,

oi ∈ freek ⇔ 0 = lki ≤ xi ≤ uk
i = ui.

A fixk
0 halmaz tartalmazza a kizárt műveleti egységeket, fixk

1 a beválasztott műveleti

egységek halmaza és a freek halmaz a még nem döntött műveleti egységeket tartal-

mazza.

3.7.3. Kiterjesztés

A kiterjesztési eljárás végrehajtásakor, a gráf már rögźıtett részét
”
éṕıtjük” tovább

a korábban végzett döntések alapján. A kiterjesztési lépés a kombinatorikusan le-

hetséges megoldások tulajdonságait kihasználva végzi a döntéseket a még nem döntött

műveleti egységek bevételéről vagy kizárásáról.

A kiterjesztés egy iterat́ıv folyamat, a kiterjesztési lépéseket addig kell ismételni,

amı́g már nincs változás a gráfon. Ez véges sok iterációs lépést jelent, hiszen a

műveleti egységek száma véges.

A kiterjesztés két irányban lehetséges: felfelé és lefelé. Megjegyezzük, hogy a

kiterjesztések csak gyorśıtják az algoritmus konvergenciáját, a konvergenciának nem

feltételei.

Felfelé éṕıtkezés

Legyen mi anyagpont, ahol potenciálisan kiterjesztést végezhetünk, továbbá kiszá-

moljuk Ui halmazt, amely az mi-t előálĺıtó műveleti egységek halmaza.

mi ∈





⋃

(αj ,βj)∈fixk
1

αj



 ∪ P \ R, Ui =





⋃

(αj ,βj)∈O,mi∈βj

oj



 \ fixk
0.
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Ha Ui = {(αl, βl)} ⊆ freek, akkor freek = freek \ {l}, f ixk
1 = fixk

1 ∪ {l}.

A szabály szerint, ha létezik egy mi anyag, mely nem nyersanyag és azt valamely

műveleti egység már fogyasztja, akkor azt legalább egy műveleti egységnek elő kell

álĺıtani. Ha az mi-t előálĺıtó műveleti egységek halmaza egyelemű, akkor azt az elemet

hozzá kell venni a már beválasztott műveleti egységek közé, különben az S2 feltétel

(2.2.2 defińıció) sérülne.

Lefelé éṕıtkezés

Legyen os = (αs, βs) ∈ fixk
1, melyre βs ∩ P = ∅, legyen továbbá

Us =





⋃

(αj ,βj)∈O,βs∩αj 6=∅

oj



 \ fixk
0.

Us tartalmazza az os által gyártott anyagokat fogyasztó műveleti egységeket. Ha

Us = {(αl, βl)} ⊆ freek, akkor freek = freek \ {l}, f ixk
1 = fixk

1 ∪ {l}.

Ha adott egy már beválasztott műveleti egység, mely nem gyárt terméket, és

az általa gyártott anyagokat csak egy műveleti egység képes felhasználni, akkor azt

hozzávesszük a beválasztott műveleti egységekhez. Ha az ı́gy meghatározott halmaz

üres, akkor a részprobléma eldobható, hiszen sérül az S3 feltétel (2.2.2 defińıció).

A kiterjesztés eredményeként bizonyos műveleti egységek a freek halmazból át-

kerülnek egy másik osztályba. Ilyenkor megváltoznak a műveleti egységekhez kapc-

solódó változók korlátai. Jelölje most oj ∈ freek a műveleti egységet és xj a hozzá

tartozó változót (0 ≤ xj ≤ uj teljesül). Két eset van:

1. Az oj műveleti egység a freek-ból a fixk
0-be kerül.

A műveleti egységet a kizártak közé helyeztük, ı́gy az xj = 0 teljesül (lkj = 0,

uk
j = 0).

2. Az oj műveleti egység a freek-ból a fixk
1-be kerül.

A műveleti egységet a bevettek közé helyeztük. Az xj = 0 lehetőséget kizártuk,

ı́gy lj ≤ xj ≤ uj teljesül ( lkj = lj, uk
j = uj).
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3.7.4. Algoritmus

Az algoritmus az általános szeparábilis konkáv mininimalizációs eljárásra épül kie-

gésźıtve a P-gráf reprezentáción alapuló kombinatorikus részekkel. A korábban be-

vezetett (3.1 ábra) algoritmust módośıtjuk és csak az új részeket részletezzük (lásd

3.9 ábra).

Csak akkor végezzük el a műveleteket a párhuzamosan épülő P-gráfon, ha a

döntés előtt álló változón még nem volt döntés (j ∈ freek). Ha egy korábban

döntött változón végzünk döntést, akkor a kapcsolódó művelet egységet már korábban

beválasztottuk a struktúrába és ı́gy a P-gráf változatlan.

Korlátozás

A korlátozási lépés teljesen analóg a 3.2.2 fejezetben bevezetett eljárással. A félfolyto-

nos változók miatt a T halmazt kiterjesztettük T 0 halmazra. Az induló részproblé-

mában definiált T 0 halmaz a T halmaz kiterjesztése (3.9 ábra).

A kiterjesztés miatt az alaphalmazunk bővült. Ha valamely i ∈ {1, . . . , n}-re

ωk
i ∈]0, li[ teljesül, az ωk nem lehetséges megoldása az eredeti feladatnak. Az F k(ω)

továbbra is alsó korlát, hiszen bővebb halmazon minimalizáltunk, az f(ωk) érték felső

korlátként már nem használható.

Szétválasztás

A vágási változó kiválasztása legyen a következő szabályok szerint:

if ( ∃i (ωk
i ∈]0, li[ ) then

j = argmaxωk
i ∈]0,li[

{

fi(ω
k
i ) − F k

i (ωk
i )
}

else if ( ∃i ( i ∈ freek ∧ (fi(ω
k
j ) − F k

i (ωk
i )) > 0) ) then

j = argmaxi∈freek

{

fi(ω
k
i ) − F k

i (ωk
i )
}

else

j = argmaxi∈1...n

{

fi(ω
k
i ) − F k

i (ωk
i )
}

endif

A korábbi vágási stratégiákhoz képest a különbség annyi, hogy először olyan xj

változón döntünk, amelyhez tartozó ωk
j megoldás értéke nem megengedett. Ha nincs
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Kombinatorikusan gyorśıtott algoritmus

Bemenő adatok:

m, n ∈ IN
A ∈ IRm×n, b ∈ IRm, l, u ∈ IRn és 0 ≤ l ≤ u

f : IRn → IR függvény
k = 0, L = −∞, U = ∞,

A = {x ∈ IRn : Ax ≤ b}
T 0 = {x ∈ IRn : 0 ≤ x ≤ u}
D0 = A ∩ T 0

P 0 = (T 0, D0, ∅, ∅, O)
S = {P 0}

Kimenő adatok:

a (P ) feladat optimális megoldása x̄

a (P ) feladat optimum értéke U

Begin

while (S 6= ∅)
begin

P k = Választ(S);
(L, U, x̄) = Korlátozás(P k, x̄);
if U = L then

x̄ optimális megoldása a (P ) feladatnak, STOP;
(P k1 , P k2 , P k3 , ι) = Part́ıcionálás(P k, fk, βk);
if ι = 1 then

S = S ∪ {P k1 , P k2};
else if ι = 2 then

begin

RSG(P k1);
hajtsuk végre a kiterjesztési lépéseket a részproblémákra
S = S ∪ {P k1 , P k2 , P k3};

end

end

End.

3.9. ábra. Kombinatorikusan gyorśıtott algoritmus.
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Part́ıcionálás

Bemenő adatok:

P k, fk, βk

Kimenő adatok:

P k1 , P k2 , P k3 , ι

Begin

if U ≥ βk then

begin

a vágási változó xj meghatározása;
a vágási pont p meghatározása;
if j ∈ freek then

begin

kiszámoljuk az új halmazokat (lásd (3.7.4) és (3.7.5) képletek).
ι = 2;

end

else begin

kiszámoljuk az új halmazokat (lásd (3.7.2) és (3.7.3) képletek).
ι = 1;

end

end

else begin

ι = 0;
a halmazok legyenek üresek;

end

S = S \ {P k}
End.

3.10. ábra. A part́ıcionálási eljárás a kombinatorikusan gyorśıtott algoritmusban.
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ilyen, akkor olyan változón döntünk, amelyen még nem volt döntés (j ∈ freek),

különben a korábban már bevezetett módon döntünk.

A szétválasztási stratégia szerint lehetőleg a még nem döntött változón vágunk,

és mivel csak az i ∈ freek-ra lehetséges az ωk
i ∈]0, li[ nem megengedett megoldás, ı́gy

véges lépésben valódi megoldást kapunk.

A vágási pont meghatározása lehet a korábban a bemutatott ”csúsztatott” vagy

maximális rés part́ıcionálásban használt választás.

Egy részfeladat part́ıcionálása is módosul a korábbiakhoz képest. Legyen az

aktuális részfeladat P k, j a vágási változó és p a vágási pont.

Ha j ∈ fixk
1, akkor két részprobléma keletkezik (P k1 , P k2).

freek1 = freek, f ixk1

0 = fixk
0, f ixk1

1 = fixk
1, (3.7.2)

freek2 = freek, f ixk2

0 = fixk
0, f ixk2

1 = fixk
1,

T 1 = {x ∈ T k : lkj ≤ xj ≤ p} (3.7.3)

T 2 = {x ∈ T k : p ≤ xj ≤ uk
j}

Ha j ∈ freek, akkor három részprobléma keletkezik (P k1 , P k2 , P k3). A 3.11 ábrán a

I. II. III. jelöli a megfelelő részproblémákat.

freek1 = freek \ {j}, f ixk1

0 = fixk
0 ∪ {j}, f ixk1

1 = fixk
1,

freek2 = freek \ {j}, f ixk2

0 = fixk
0, f ixk2

1 = fixk
1 ∪ {j}, (3.7.4)

freek3 = freek \ {j}, f ixk3

0 = fixk
0, f ixk3

1 = fixk
1 ∪ {j},

T k1 = {x ∈ T k : xj = 0}

T k2 = {x ∈ T k : lj ≤ xj ≤ p} (3.7.5)

T k3 = {x ∈ T k : p ≤ xj ≤ uj}

A part́ıcionálási eljárást a 3.10 ábra foglalja össze.

RSG

Korábban már emĺıtett RSG algoritmus (2.3 fejezet) itt is használható változatlan

formában.
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3.11. ábra. Vágás egy még nem döntött változón.

3.7.5. A helyesség bizonýıtása

Az eredeti algoritmushoz képest (lásd 3.1 ábra) fő eltérés a félfolytonos változók

kezelése.

Egy már korábban döntött xj változón (j ∈ fixk
0 ∪ fixk

1) a part́ıcionálás már az

eredeti algoritmus szerint viselkedik. Egy még nem döntött változó (j ∈ freek) döntés

után már döntötté válik, mivel kezdetben a nem döntött változók száma véges, ezért

véges számú olyan döntés van, amely még nem döntött változón történik, azaz véges

lépésben tér el módszerünk az eredeti algoritmustól. Ezek alapján mondhatjuk, ha az

eredeti algoritmusunk konvergens, akkor a kombinatorikusan gyorśıtott algoritmus is

konvergens lesz, és ez végességre is teljesül.

3.7.6. Az eredmény rövid összefoglalása

A 3.7 fejezet a 3a tézispontban megfogalmazott eredményeket tartalmazza.

A Friedler és munkatársa által kidolgozott P-gráf módszert felhasználva elkésźı-

tettem a lineáris feltételrendszerrel adott szeparábilis konkáv programozási feladatot

megoldó algoritmus kombinatorikusan gyorśıtott változatát.
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3.8. N-legjobb megoldás

Vegyipari rendszerek esetében a matematikai modell nem képes (vagy abban az eset-

ben ha képes lenne, akkor túl bonyolulttá válna a modell) a rendszer minden tulaj-

donságát léırni, pl.: iránýıthatóság, megvalóśıthatóság stb. Ezért szükség van az op-

timális megoldáson túl szuboptimális megoldások meghatározására is, amelyek közül

a felhasználó tudja kiválasztani a számára megfelelőt.

3.8.1. Bevezetés

Egy optimalizációs feladatban, amely tartalmaz folytonos változókat nincs értelme

második legjobb megoldásról beszélni. A kombinatorikusan lehetséges megoldások

defińıcióját (2.2.2 defińıció) bevezetve, a szuboptimális megoldások jól definiáltakká

válnak.

Definiáljuk f̃ függvényt az f költségfüggvény (lásd (3.7.1) egyenlet) felhasználá-

sával:

f̃i(xi) =







0, xi = 0,

bix
α
i , xi > 0,

(3.8.1)

ahol bi ≥ 0 és 0 ≤ α ≤ 1, azaz a fix költségtől tekintettünk el.

Legyen s ∈ S(P,R,O), kombinatorikusan lehetséges struktúra. Jelölje z̃(s) érték

az f̃ költségfüggvénnyel vett optimumértéket az s struktúrára megszoŕıtva (oj /∈ s-re

xj = 0), és hasonlóan jelölje z(s) érték az f költségfüggvénnyel vett optimumértéket

az s struktúrára megszoŕıtva.

Defińıció 3.8.1 A p ∈ S(P,R,O) kombinatorikusan lehetséges struktúra lokálisan

optimális struktúra, ha

∀q ∈ S(P,R,O) ((q ⊂ p) ⇒ (z(p) < z(q)))

teljesül. A lokálisan optimális struktúrák halmazát jelölje L(P,R,O).
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3.1. táblázat. Lokálisan optimális struktúrák számossága

Feladat Komb. lehetséges struktúrák Lok. opt. struktúrák

Denmark 3465 96

Alpha 423 36

p ∈ S(P,R,O) kombinatorikusan lehetséges struktúra arányos költség szerinti lokáli-

san optimális struktúra, ha

∀q ∈ S(P,R,O) ((q ⊂ p) ⇒ (z̃(p) < z̃(q)))

teljesül. Az arányos költség szerinti lokálisan optimális struktúrák halmazát jelölje

L̃(P,R,O).

A lokálisan optimális struktúrák halmaza függ a modell paramétereitől, ellentétben

a kombinatorikusan lehetséges megoldások halmazával, amely csak maximális a struk-

túrától függ.

A 3.1 táblázat tartalmazza két ipari feladat [39] lokálisan optimális megoldásainak

a számát és a kombinatorikusan lehetséges struktúrák számát.

A lokálisan optimális struktúrák halmaza része a kombinatorikusan lehetséges

struktúrák halmazának, továbbá egy lokálisan optimális struktúrához hozzátartozik

egy x megoldásvektor, amely megadja a struktúrában szereplő műveleti egységek

méretét. Elképzelhető, hogy egy p struktúrához több optimális x megoldásvektor

tartozik, amely egy ritka eset, de nem zárható ki. Szemléletes jelentése az, hogy egy

azonos struktúrához két optimális konfiguráció (megoldásvektor) tartozik. Ilyenkor

mindkét megoldásvektor hasznos lehet, és az algoritmus azonośıtani fogja ezeket. A

következőkben a lokálisan optimális struktúrák néhány tulajdonságát mutatjuk meg.

Álĺıtás 3.8.1 L(P,R,O) ⊆ L̃(P,R,O)

Bizonýıtás. Megmutatjuk, hogy ha s ∈ L(P,R,O), akkor s ∈ L̃(P,R,O).

Legyen xs ∈ IRn, melyre z(s) = f(xs), x̃s ∈ IRn, melyre z̃(s) = f̃(x̃s). z̃(s) ≤ z(s),

hiszen f̃ ≤ f .
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Indirekten: Tfh. s /∈ L̃(P,R,O), akkor ∃ q ⊂ s és x̃q vektor, melyre z̃(q) = f̃(x̃q) ≤

f̃(x̃s) = z̃(s). A következő teljesül:

∑

i:x̃q
i 6=0

ai ≤
∑

i:xs
i 6=0

ai, hiszen, q ⊂ s és s ∈ L(P,R,O).

Az egyenlőtlenség felhasználásával kapjuk, hogy

f(x̃q) = f̃(x̃q) +
∑

i:x̃q
i 6=0

ai ≤ f̃(x̃s) +
∑

i:x̃q
i 6=0

ai ≤ f̃(xs) +
∑

i:xs
i 6=0

ai = f(xs).

Mivel q ⊂ s, ezért s /∈ L(P,R,O) következik. 2

Álĺıtás 3.8.2 L(P,R,O) 6= L̃(P,R,O)

Bizonýıtás. Triviálisan adható egy ellenpélda.

O = {1, 2}, o1 = ({m2}, {m1}), o2 = ({m3}, {m1})

Modell paraméterek

A műveleti egységekhez tartozó paraméterek:

l1 = 0, l2 = 0,u1 = 100, u2 = 100, a1 = 1, a2 = 1000, b1 = 0, b2 = 0, r11 = 1, r12 = 1,

r21 = 1, r23 = 1.

Az anyagponthoz tartozó paraméterek:

C1 = 0, C2 = 100, C3 = 1, p1 = 10, p2 = 0, p3 = 0, s1 = 0, s2 = 100, s3 = 5

Könnyen ellenőrizhető, hogy az {1, 2} /∈ L(P,R,O), viszont {1, 2} ∈ L̃(P,R,O). 2

Összefoglalva: a lokálisan optimális struktúrák nem tartalmaznak olyan műveleti

egységeket, amelyek öncélúan vesznek részt a végtermékek gyártásában. Ellenkező

esetben sok értelmetlen struktúrát lehetne létrehozni, amelyben az optimális me-

goldást kibőv́ıtjük fikt́ıv műveleti egységekkel, és azokat valamilyen szinten működ-

tetjük.

Álĺıtás 3.8.3 Legyen p ∈ L(P,R,O) lokálisan optimális struktúra, és x∗ ∈ IRn

a hozzá tartozó optimális megoldásvektor, akkor x∗ a D politop extremális pontja

(csúcsa).
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Bizonýıtás. A megoldásvektor úgy kapjuk, hogy a korábban emĺıtett módon p

struktúrára megszoŕıtjuk a D halmazt, és azon keressük az optimális megoldását. A

p struktúrára megszoŕıtott D halmaz a következőképpen néz ki:

D ∩





⋂

oi /∈p

{xi : xi = 0}



 . (3.8.2)

Mivel xi ≥ 0 teljesül minden i-re, ı́gy az új halmazban nincs új extremális pont, és

korábban már megmutattuk, hogy az optimális megoldás mindig extremális pontban

van (lásd 3.0.1 lemma). 2

Megjegyzés: Visszafelé természetesen nem igaz, egy extremális pont nem biztos,

hogy kieléǵıti a lokálisan optimális struktúra defińıcióját. Tekintsünk a legegyszerűbb

esetet: legyen két csúcs, amelyben a nemzéró változók halmaza megegyezik, és a

csúcsokban számolt célfüggvény értéke különböző, a csúcsok közül csak az egyik lehet

lokálisan optimális struktúra.

A csúcs leszámlálási eljárásokkal elvileg lehetséges N-legjobb megoldást keresni.

A lokálisan optimális struktúrákhoz tartozó csúcsok még csak nem is szomszédosak,

ı́gy az összes csúcs generálását tenné szükségessé a módszer. Továbbá minden csúcsra

ki kell értékelni a függvényt és ellenőrizni, hogy lokálisan optimális struktúra-e?

Felmerül a kérdés, hogy miért különböztetjük meg a lokálisan optimális struktú-

rákat az arányos költség szerinti lokálisan optimális struktúráktól. A 2.3 fejezetben

emĺıtett ABB algoritmust is lehet úgy módośıtani, hogy az N -legjobb megoldást

szolgáltassa. Az ABB módszer a költség fix részét külön kezeli, ı́gy csak az arányos

költség szerinti lokális optimális struktúrákat képes azonośıtani.

3.8.2. Algoritmus

A módszer a kombinatorikusan gyorśıtott algoritmusra (lásd 3.9 ábra) épül. A mód-

szer a lokálisan optimális struktúrák halmazán keresi meg az első N -legjobbat. Az

algoritmus vázlatos léırását a 3.12 ábra tartalmazza, csak az új részeket részletezzük.

Megjegyezzük, hogy az arányos költség szerinti lokálisan optimális struktúrák hal-

mazán történő keresés csak kis mértékben tér el a bemutatott eljárástól, az arra

történő módośıtás megvalóśıtható.
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N-legjobb megoldás algoritmus

Bemenő adatok:

N, m, n ∈ IN
A ∈ IRm×n, b ∈ IRm, l, u ∈ IRn és 0 ≤ l ≤ u

f : IRn → IR konkáv függvény
k = 0, L = −∞, U = ∞
A = {x ∈ IRn : Ax ≤ b}
T 0 = {x ∈ IRn : 0 ≤ x ≤ u}
D0 = A ∩ T 0

P 0 = (T 0, D0)
S = {P 0}

Kimenő adatok:

a (P ) feladat első N legjobb lokálisan optimális struktúrát tartalmazó sN lista
Begin

while (S 6= ∅)
begin

P k = Választ(S);
(L, U, x̄) = Korlátozás(P k, x̄);
N-Lista Frisśıt(ωk, sN )
if P k nem terminális then

(P k1 , P k2 , P k3 , ι) = Part́ıcionálás(P k, fk, βk);
else

ι = 0
if ι = 1 then

S = S ∪ {P k1 , P k2};
else if ι = 2 then

begin

RSG(P k1);
hajtsuk végre a kiterjesztési lépéseket a részproblémákra
S = S ∪ {P k1 , P k2 , P k3};

end

end

End.

3.12. ábra. N -legjobb megoldást meghatározó algoritmus vázlata.
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A módszert a kombinatorikusan gyorśıtott algoritmusból (lásd 3.9 ábra) származ-

tatjuk. A potenciális lokálisan optimális struktúrákat egy listába gyűjtjük (N -lista),

amit az algoritmus folyamatosan frisśıt. A részproblémák terminalitásának eldöntése

és a vágási stratégia is módosult.

Part́ıcionálás

A part́ıcionálás megegyezik a Kombinatorikusan gyorśıtott algoritmusnál bevezetett

eljárással (lásd 3.7.4 fejezet).

Az N -lista frisśıtése

Az eddig megtalált legjobb megoldásokat tartalmazza az N -lista. Jelölje rendre sN
i ⊆

O, xN
i ∈ IRn, i ∈ {1, . . . N}, az N -listában lévő i-edik struktúrát, és a hozzá tartozó

megoldásvektort. Legyen ωk az aktuális részfeladatokhoz tartozó megoldásvektor,

qk ⊆ O az ωk megoldásvektorhoz tartozó struktúra, amelyre oj ∈ qk ↔ ωk
j 6= 0,

(qk ⊆ fixk
1 ∪ freek), és βk az alsókorlát. Az eljárás léırását a 3.13 ábra tartalmazza.

Vegyük sorra az eljárás egyes lépéseit:

1. Az első sor azt vizsgálja, hogy ha az aktuális megoldás rosszabb, mint a lista

legrosszabb megoldása, akkor az eljárás befejeződik és nem történik semmi vál-

tozás a listában.

2. A ciklus megvizsgálja az összes listában lévő elemet, és összehasonĺıtja az aktu-

ális elemmel.

(a) A listában egy hasonló struktúrát találtunk.

i. Az aktuális qk struktúrának kisebb a célfüggvény értéke, ı́gy a listában

lévő sN
i elemet töröljük a listából.

ii. Az aktuális struktúrának a célfüggvényértéke megegyezik a listában

lévő struktúrával, és a megoldásvektorok különbözőek. Ebben az eset-

ben mindkét megoldást megtartjuk és megnöveljük a listát, mert ilyen

esetekben egy struktúra törlése maga után vonja az összes azonos

struktúra törlését.
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N-lista Frisśıt

Bemenő adatok:

ωk, sN lista

Kimenő adatok:

sN lista
Begin

if (f(ωk) > f(xN
N )) then

return;

for i ∈ {1, . . . , N} do

begin

if (qk = sN
i ) then

if (f(ωk) < f(xN
i )) then

delete sN
i ,xN

i ;
else if (ωk 6= xN

i ∧ f(ωk) = f(xN
i ))

IncreaseList;
if (sN

i ⊂ qk ∧ f(xN
i ) < f(ωk)) then

return;

else if (qk ⊂ sN
i ∧ f(ωk) ≤ f(xN

i )) then

delete sN
i ,xN

i ;
else if (qk ∩ sN

i ∈ S(P,R,O)) then

IncreaseList;
end

sN
N = qk;xN

N = ωk;
ReorderList;

End.

3.13. ábra. N -listát módośıtó eljárás.
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(b) Létezik olyan struktúra a listában, amely részhalmaza az aktuális struktú-

rának és a célfüggvényértéke kisebb. Ez ellentmond a lokálisan optimális

struktúra defińıciójának, a listánk változatlan marad.

(c) Az aktuális struktúra részhalmaza egy, a listában lévő struktúrának és a

célfüggvényértéke kisebb. Ez ellentmond a lokálisan optimális struktúra

defińıciójának, ezért a listaelemet töröljük a listából, és az aktuális elemet

hozzáadjuk a listához.

(d) Ha két listaelemnek van közös része, amely maga is megoldásstruktúra,

akkor elképzelhető, hogy egy új struktúra (ami része a metszetnek) több

listaelem törléséhez vezet. Beszúrás esetén növeljük a lista méretét, ı́gy az

új listaelem nem
”
szoŕıt” ki egy, már korábban bevett elemet a listából. A

qk ∩ sN
i ∈ S(P,R,O) feltétel eléggé általános, ez éleśıthető egy LP feladat

fizibilitás vizsgálatával, ami viszont számı́tásigényes.

A lista mérete akkor csökken, amikor egy új potenciális listaelem több korábbi listae-

lem törléséhez vezetett. A lista elemszáma nem csökkenhet az eredetileg megadott N

alá, viszont előfordulhat, hogy az algoritmus lefutása után az N -lista mérete nagyobb,

mint amit paraméterként megadtunk, hiszen több elem együttes törlését nem tudjuk

előre megjósolni.

Terminalitás ellenőrzése

Egy részproblémát akkor tekintünk terminálisnak, ha már nem tartalmaz további

lokálisan optimális struktúrát, mely eleme lehetne a listának és ezáltal az törölhető.

Hasonlóan, mint az N -lista bőv́ıtésénél jelölje sN
i , i = 1, . . . , N a N -listában lévő i-

ik struktúrát és legyen xN
i a hozzá tartozó megoldásvektor. Legyen ωk, βk az aktuális

megoldásvektor és a hozzá kapcsolódó alsókorlát. Egy P k részprobléma törölhető, ha

a következő feltétel teljesül:

(f(ωk) − βk < ε) ∨ βk > f(xN
N) ∨ (∃sN

j ∈ {N − lista} sN
j ⊆ fixk

1 ∧ βk > f(xN
j )),

(3.8.3)

ahol ε > 0 egy tolerancia paraméter.
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3.8.3. A helyesség bizonýıtás

Korábban már emĺıtettük, hogy az algoritmus a kombinatorikusan gyorśıtott algo-

ritmusra épül, amelynek konvergenciája bizonýıtott. A helyesség bizonýıtáshoz azt

kell megmutatnunk, hogy az N -lista a ḱıvánt megoldásstruktúrákat tartalmazza, és

a terminalitási kritérium helyes.

Tekintsük a BB algoritmus által generált BB fát. Tegyük fel, hogy az algoritmus

végtelen, tehát létezik egy végtelen P k sorozat melyre, P k+1 a P k leszármazottja,

azaz BB fában létezik egy, a gyökérből kiinduló végtelen út.

Lemma 3.8.1 A (3.8.3) terminalitási feltétel elégséges egy részprobléma törléséhez.

Bizonýıtás. Az indoklás egyszerű, a (f(ωk) − βk < ε) kifejezés igaz volta a

részprobléma megoldását jelenti, és egy megoldott részprobléma nem tartalmazhat

további lokálisan optimális struktúrákat, ezáltal törölhető. A βk > f(xN
N) teljesülése

szerint, a részprobléma nem tartalmazhat olyan lokálisan optimális struktúrát, amely

eleme lehetne a listának. Ha a (∃sN
j ∈ {N − lista} sN

j ⊆ fixk
1 ∧ βk > f(xN

j ) teljesül,

akkor a részprobléma nem tartalmazhat további lokálisan optimális struktúrákat his-

zen, ha tartalmazna, akkor a struktúrában lévő műveleti egységek a fixk
1 halmaz

bőv́ıtései lennének, és a költség alsó korlátja is rosszabb, mint a listában lévő elem

költsége. 2

Lemma 3.8.2 A (3.8.3) terminalitási feltétel valamely k-ra teljesül.

Bizonýıtás. A konvergencia miatt biztos, hogy véges lépés után a P k részfeladat

törlődik, hiszen f(ωk) − βk < ε feltétel teljesülni fog, ami elegendő az álĺıtásunk

bizonýıtásához, viszont az ezen feltétel alapján való döntés lassú futást eredményezne.

Nem véletlenül nem csak ezt a feltételt tartalmazza a (3.8.3) terminalitási feltételünk.

Nézzük meg azt az esetet, amikor nem tartalmaz lokálisan optimális struktúrát

a részfeladat. Azt kell megmutatni, hogy létezik olyan k, amelyre a terminalitási

feltételünk igazzá válik. A βk < f(xN
N) feltehető, különben a feladat egyszerűen

törölhető. Mivel feltettük, hogy a részprobléma nem tartalmaz lokálisan optimális

struktúrát és βk < f(xN
N) is teljesül, ezért valamely k-ra léteznie kell a listában egy
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lokálisan optimális sN
j struktúrának, amelyre qk ⊂ sN

j és f(xk) > f(xN
j ). Továbbá

a konvergencia miatt a βk > f(xN
j ) teljesülni fog, azaz a (∃sN

j ∈ {N − lista} sN
j ⊆

fixk
1 ∧ βk > f(xN

j )) feltétel igazzá válik.

Tegyük fel, hogy a P k sorozatban egy lokálisan optimális struktúrát tartalmaz

a részprobléma. A βk < f(xN
N) itt is feltehető. Ez az eset hasonĺıt a kombinato-

rikusan gyorśıtott algoritmusban az optimális megoldást tartalmazó részfeladat vi-

selkedéséhez, hiszen alsó korlát alapján nem lehet eldobni a részfeladatot. Tehát a

részfeladat a f(ωk) − βk < ε feltétel alapján fog terminálissá válni. 2

Tétel 3.8.3 A (3.8.3) terminalitási feltétel helyes.

Bizonýıtás. A 3.8.1 és 3.8.2 lemmákból következik. 2

A 3.8.3 tétel a terminalitási kritérium helyességét bizonýıtja, az algoritmus helyes-

ségéhez még az N -lista korrekt voltát kell megmutatni.

Tétel 3.8.4 Az N -lista korrekt.

Bizonýıtás. A 3.8.1 lemma szerint csak olyan részproblémát töröl az algoritmus,

amely nem tartalmaz további lokálisan optimális struktúrákat. Így minden lokálisan

optimális struktúrát az
”
N -lista Frisśıt” algoritmus (3.13 ábra) megpróbálja beszúrni

a listába. A beszúrást korábban már részleteztük (3.8.2 fejezet), a lokálisan optimális

struktúra defińıciójának értelmében minden esetet megvizsgáltunk. 2

3.8.4. Példa

A 2.2.3 fejezetben ismertetett feladatra futtatjuk le a módszert, annyi módośıtással,

hogy célfüggvény itt konkáv. Keressük a összes lokálisan optimális struktúrát (kis

méretű feladatról lévén szó itt ez megtehető). A 3.14 ábra mutatja a megoldásokat,

és a megoldáshoz tatozó költséget.

3.8.5. Az eredmény rövid összefoglalása

A 3.8 fejezet a 3b tézispontban megfogalmazott eredményeket tartalmazza.
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1: 102839 2: 149352 3: 150075

4: 150260 5: 279073 6: 288560

7: 311062

3.14. ábra. A szemléltető példa lokálisan optimális struktúrái és a hozzá tartozó
költség.
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PNS feladatokra bevezettem a lokálisan optimális struktúrák fogalmát, amely

lehetővé teszi az optimális megoldások mellett szuboptimális megoldások meghatáro-

zását. Kidolgoztam a kombinatorikusan gyorśıtott algoritmus egy változatát, amely

képes ezen szuboptimális megoldások generálására.
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3.9. Gyakorlati tapasztalatok

Az eddig tárgyalt a szeparábilis konkáv minimalizáláshoz kapcsolódó algoritmusokat

megvalóśıtottam C++ nyelven. LP feladat megoldóként a Fábián Csaba által ki-

dolgozott és kutatási célokra forráskódon rendelkezésünkre bocsátott LINX megoldót

[28] használtuk.

3.9.1. Generált tesztfeladatok

Minden feladatmérethez 200 generált PNS feladatot [6] oldottunk meg a különböző

megoldó módszerekkel.

Általános módszer

A korábban bevezetett part́ıcionálási módszereket vizsgáljuk. A 3.2 – 3.5 táblázatok

tartalmazzák a különböző méretű tesztfeladatokon végrahajtott futási eredményeket.

Néhány megjegyzés az oszlopokhoz

x̄ jelöli a Shectman és munkatársai [89] által bevezetett part́ıcionálást.

ε jelöli a ”csúsztatott” part́ıcionálást.

Max jelöli a maximális rés part́ıcionálást.

Érz. jelöli az érzékenységi vizsgálaton alapuló vágási stratégiát.
1 Átlagolt megoldási idő. (mp)
2 Megoldott LP-k átlagos száma.
3 A felhasznált memória átlagos nagysága. (MB)
4 Az optimális megoldást hányadik LP megoldása után lett azonośıtva.
5 Az időkorlát (106 db LP megoldása) alapján nem megoldott feladatok száma.
6 A memória korlát (300MB) alapján nem megoldott feladatok száma.
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3.2. táblázat. Általános módszer: 20 műveleti egység

Stratégia Idő1 #LP2 Mem.3 Opt.meghat.4 Lim.LP5 Lim.Mem6

x̄ 0.19 639.83 0.04 49.5 0 0

ε 0.27 1007.32 0.01 72.9 0 0

Max 0.84 2541.55 0.1 27.9 0 0

Érz. 0.01 16.21 0.002 4.1 0 0

3.3. táblázat. Általános módszer: 40 műveleti egység

Stratégia Idő1 #LP2 Mem.3 Opt.meghat.4 Lim.LP5 Lim.Mem6

x̄ 22.48 9171 1.858 645.2 0 0

ε 7.12 11131 0.291 2269.5 0 0

Max 11.51 16182 0.761 919.1 5 1

Érz. 0.13 49 0.011 8.5 0 0

3.4. táblázat. Általános módszer: 60 műveleti egység

Stratégia Idő1 #LP2 Mem.3 Opt.meghat.4 Lim.LP5 Lim.Mem6

x̄ 139.07 49638 10.013 2400.7 16 1

ε 84.25 70621 2.894 2419.9 12 0

Max 121.92 44667 5.329 265.9 23 8

Érz. 2.07 394 0.069 8.1 0 2

3.5. táblázat. Általános módszer: 80 műveleti egység

Stratégia Idő1 #LP2 Mem.3 Opt.meghat.4 Lim.LP5 Lim.Mem6

x̄ 181.42 93845 10.291 17088 44 12

ε 168.58 108925 4.608 3397 43 0

Max 100.99 42020 4.441 3863 24 10

Érz. 13.122 1172 0.309 8 2 4
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Kombinatorikusan gyorśıtott módszer

A kombinatorikusan gyorśıtott eljárást (lásd 3.7 fejezet) teszteltük a különböző par-

t́ıcionálási stratégiákkal. Az érzékenységi vizsgálaton alapuló vágási módszer di-

rekt nem éṕıthető be a kombinatorikusan gyorśıtott keretalgoritmusba a félfolytonos

változók miatt, ı́gy az nem szerepel a listában. Ezen stratégia kibőv́ıtése a jövő egyik

feladata. A 3.6 – 3.9 táblázatok tartalmazzák a különböző méretű tesztfeladatokon

végrehajtott futási eredményeket.

Elemzés

Az átlagolt eredmények számı́tásakor csak az összes megoldó módszer által megoldott

feladatokat vettük figyelembe. Ezzel sajnos a feladatokat jól megoldó módszereket

”
büntetjük”, hiszen az általuk megoldott, de egy rosszabb módszer által nem megol-

dott feladatokat figyelmen ḱıvül hagyjuk, ezért a nem megoldott feladatok számát

külön kiemeltük.

3.9.2. Valós ipari feladatok

Két valós ipari feladaton teszteltük a módszereket (lásd 3.15 és 3.16 ábrák). A 3.10

– 3.13 táblázatok tartalmazzák az eredményeket. A feladatok léırását a [39] tartal-

mazza.
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3.6. táblázat. Kombinatorikusan gyorśıtott módszer: 20 műveleti egység

Stratégia Idő1 #LP2 Mem.3 Opt.meghat.4 Lim.LP5 Lim.Mem6

x̄ 0.11 309.2 0.044 53.2 0 0

ε 0.08 227.5 0.022 15.6 0 0

Max 0.04 124.1 0.003 7.3 0 0

3.7. táblázat. Kombinatorikusan gyorśıtott módszer: 40 műveleti egység

Stratégia Idő1 #LP2 Mem.3 Opt.meghat.4 Lim.LP5 Lim.Mem6

x̄ 22.23 8063 1.897 552 0 0

ε 6.22 4401 0.875 133 0 0

Max 0.181 246 0.015 12 0 0

3.8. táblázat. Kombinatorikusan gyorśıtott módszer: 60 műveleti egység

Stratégia Idő1 #LP2 Mem.3 Opt.meghat.4 Lim.LP5 Lim.Mem6

x̄ 160.72 68927 10.616 1816 6 1

ε 139.46 36848 9.984 651 0 4

Max 2.15 1952 0.146 146 0 0

3.9. táblázat. Kombinatorikusan gyorśıtott módszer: 80 műveleti egység

Stratégia Idő1 #LP2 Mem.3 Opt.meghat.4 Lim.LP5 Lim.Mem6

x̄ 438.65 109955 31.273 3423 8 25

ε 351.08 87853 31.756 9402 0 25

Max 6.22 3685 0.497 437 0 0
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32

31

30

45

26

53

35

45

25

44

50 751

52

5

33

127

46 9

29

9

27

947

4849

28

54

55

34

36

18

37

56

3839

4 10

12 43

27

16

5

21

1

2

7

11

2 9 28

262529

15

1

5

5

48

9

19

35

5 8 11

7

7

36 6 16

17

23

18 6

19

37

38

7

20

39

21

9

5

22

40 22 23

20

40 7

41

24

11 42 8 13 7 14 9

9

15 3

34

17

14

27

12

11

732

31

30 13

33

13

11

7

10

5

9

15 3

34

24

17

18

3.16. ábra. Alpha feladat P-gráf ábrázolása.
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3.10. táblázat. Általános módszer: Alpha (41 műveleti egység)

Stratégia Idő(mp) #LP Memória (MB) Opt.meghat.

x̄ 41.40 44765 10.63 295

ε 9.48 16639 0.30 359

Max 1.48 2592 0.04 793

Érz. 0.65 225 0.03 7

3.11. táblázat. Kombinatorikusan gyorśıtott módszer: Alpha (41 műveleti egység)

Stratégia Idő(mp) #LP Memória (MB) Opt.meghat.

x̄ 25.59 33779 11.63 21

ε 0.42 679 0.02 21

Max 0.57 1043 0.01 18

3.12. táblázat. Általános módszer: Denmark (35 műveleti egység)

Stratégia Idő(mp) #LP Memória (MB) Opt.meghat.

x̄ 0.32 1022 0.285 1

ε 1.17 3521 0.051 1

Max 0.09 181 0.002 1

Érz. 0.01 1 0.001 1

3.13. táblázat. Kombinatorikusan gyorśıtott módszer: Denmark (35 műveleti egység)

Stratégia Idő(mp) #LP Memória (MB) Opt.meghat.

x̄ 0.51 1322 0.47 1

ε 0.51 1042 0.17 1

Max 0.09 217 0.01 1
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3.10. Alkalmazás: ipari hőellátó rendszer optimális

tervezése

Vegyipari rendszerek jellemzője a nagy hőenergiaigény. A hőenergia szükségletet az

esetek jelentős részében v́ızgőz kondenzációjával biztośıtják. A gőzt kazánházakban

álĺıtják elő vagy ellennyomásos erőműből szolgáltatják. A gőz előálĺıtásának és fel-

használási helyének távolsága akár több kilométer is lehet, ı́gy a gőzellátó hálózat

paraméterei (pl. csővezeték keresztmetszete, szigetelése) a hálózat beruházási- és

üzemeltetési-költségét is jelentősen befolyásolják.

Összetett vegyipari rendszerekben a szakaszos üzemű és az időszakosan működte-

tett technológiáknak köszönhetően a felhasználás helyén fellépő gőzigény jelentős inga-

dozást mutathat. A gőzigény időbeni változása tovább neheźıti az optimális gőzellátó

rendszer meghatározását, hiszen a gőzellátó rendszernek az időben változó gőzigény

összességét tekintve kell optimálisan működnie, miközben eléggé rugalmasnak kell

lennie ahhoz, hogy a fellépő igénymaximumokat is biztośıtani tudja.

Számos közlemény foglalkozik a változó igényű hőellátó hálózat optimalizálásával.

Például egy multiperiodikus optimalizálás eljárást mutat be a [78], [79]; egy kombi-

natorikus optimalizálási módszert ismertet a [76]; csak a gőznyomás optimalizálását

végzi a [70].

A fejezetben ismertetett eljárás természetesen tetszőleges változó igényű PNS fe-

ladatokra is használható.

3.10.1. Gőzhálózat, kiindulási feltételek

A gőzellátó rendszer eredeti struktúráját a 3.17 ábra szemlélteti. Az erőmű és a

kazánház gőzelosztókon keresztül csatlakozik az S1, S2, O jelű vezetékekhez. Az

A, . . . , E üzemek az S1 és S2 csatlakozása után S2-ből leágazásokon keresztül kapják

a gőzt. Az üzemi leágazások viszonylag közel vannak egymáshoz, mintegy 20-50m-re,

az erőmű és az első leágazás közötti csőhossz körülbelül 1800m, a kazánház és az

erőmű közötti csőhossz pedig 2 km. Az O jelű vezeték eredetileg használaton ḱıvül

van, csak az S1 és S2 vezetékeket használják a gőzigény ellátására.
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3.17. ábra. Az eredeti hőellátó rendszer sematikus ábrázolása.

3.10.2. Alternat́ıv megoldási lehetőségek

Az előbbiek figyelembevételével a következő gőzellátási lehetőségeket fogalmaztuk

meg:

1. Megszüntetjük a kazánházat (hőellátás csak a hőerőmű által történik).

(a) Az áramlási keresztmetszet növelése. Ez az O jelű vezeték üzembe he-

lyezésével és további csővezetékek kiéṕıtésével valóśıtható meg.

(b) A nyomásesés növelése.

i. Megnöveljük a gőz induló nyomását.

ii. A csőben a gőzelvételi helyen a nyomás csökkentése.

2. A kazánház további üzemeltetése.

(a) A tápv́ızellátás megváltoztatásával.

(b) A kazánház időszakos üzemeltetésével.
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(a) (b)

3.18. ábra. (a) Időben változó hőigény trend. (b) A diszkretizálás eredményeként
kapott kumulat́ıv hőteljeśıtmény trend.

3.10.3. Módszer

A változó hőigény miatt a korábban bemutatott hálózatszintézis módszerek közvet-

lenül nem használhatók. A gőzfogyasztó egységek össześıtett hőteljeśıtmény-igé-

nyének az időbeni alakulását kapjuk meg bemenetként. Hogy az optimalizáló mód-

szert alkalmazni tudjuk az alábbiak szerint diszkretizáljuk, alaḱıtjuk át a hőteljeśıt-

mény-igény trendet.

1. Megkeressük a minimum és maximum hőteljeśıtmény-igény értékeket. A nullától

a maximum értékig terjedő tartományt felosztjuk n részre úgy, hogy a le-

galsó teljeśıtménysáv felső határa a talált minimum érték fölött legyen (diszkre-

tizálás).

2. A trenden végighaladva az egyes hőteljeśıtmény-igény értékekhez tartozó idő-

tartamokat teljeśıtménysávonként összegezzük.

Ezzel az átalaḱıtással a hőteljeśıtmény-igény trendből n darab (öt) teljeśıtmény-

szintet kapunk a hozzá tartozó időtartamokkal együtt, amit a hőteljeśıtmény-igény

trendhez hasonlóan teljeśıtmény - idő koordinátarendszerben ábrázolhatunk (3.18 áb-

ra).

Ennek alapján már egyszerűen megfogalmazható a feladat: határozzuk meg azt

a gőzellátó rendszert, amely képes az n (öt) féle eltérő teljeśıtmény egyenkénti biz-

tośıtására úgy, hogy az egyes teljeśıtményszintekhez tartozó időtartamokkal súlyozott
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költségösszeg minimális legyen. Az alternat́ıv megoldásokból létrehozzuk a maximális

struktúrát (3.19 ábra).

Egy termékhez (hőigény szinthez) tartozó hálózatot annyi példányban kell ven-

nünk, ahány termékünk van. Egy termékhez tartozó hálózaton belül az ismétlődő,

többször előforduló műveleti egységek közül a megoldásstruktúrában csak egy sze-

repelhet, hiszen egy adott időpillanatban az adott műveleti egység nem dolgozhat

párhuzamosan önmagával. A különböző termékek különböző időpontokban történő

gőzigényt eléǵıtenek ki, ı́gy a különböző termékekhez tartozó hálózatok egyidejűleg is

tartalmazhatják ugyanazt a műveleti egységet, esetleg megegyező vagy eltérő diszkrét

állapotban. Lényeges azonban, hogy minden műveleti egység esetleges beruházási

költsége csak egyszer szerepelhet a költségfüggvényben.

Matematikai modell
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yk
ij : bináris változó az i műveleti egység j diszkretizált esetének létezése az adott

struktúrában, a k termék előálĺıtásánál,

xk
ij : változó ( xij) az i műveleti egység j diszkretizált esetének kapacitása k termék

előálĺıtásában, (xk
ij ≥ 0),

zij : bináris változó, az i műveleti egység j diszkretizált esetének a fixköltség számı́-

tásánál,

uij : az i műveleti egység j diszkretizált esetének kapacitás korlátja,

ni : az i műveleti egység diszkretizált eseteinek a száma,

aij : az i műveleti egység j diszkretizált esetének a beruházási költségének állandó

része,

cij : az i műveleti egység j diszkretizált esetének a működtetési költségének állandó

része,

dij : az i műveleti egység j diszkretizált esetének a kapacitással arányos működtetési

költsége,

rl : l nyersanyag egységnyi mennyiségére vonatkozó költsége, l ∈ R,

ql : az l nyersanyagra megadott felsőkorlát, l ∈ R,

pk : a k termékre megadott teljeśıtményigény, k ∈ P, t/hour,

tk : k terméknek megfelelő teljeśıtményszint biztośıtása órákban, k ∈ P,hour,

sil : az l ∈ M anyagnak az i műveleti egység által szolgáltatott (sil > 0) ill.

felhasznált (sil < 0) gőzteljeśıtménye (tonna/óra) egységnyi kapacitás mellet

(sil = 0 esetén értelemszerűen az i műveleti egységnek nincs kapcsolódása az l

anyaghoz),

E : megtérülési idő években.
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A modellünk 530 bináris változót tartalmaz; az eljárásunk 550.41 másodperc alatt

azonośıtotta az optimális hálózatot egy PC-n (Athlon 1.33GHz, 1852 MFLOPS, 3687

MIPS), a megoldott LP feladatok száma 115596 volt. Az éves költség 143,905,000

HUF, amely 8 százalékkal kevesebb, mint a jelenlegi költség.



4. fejezet

A folyamat- és hőcserélőhálózat
együttes szintézise

4.1. Bevezetés

A folyamathálózat szintéziséről korábban már a 2. fejezetben részletesen ı́rtunk. Be-

vezetésünkben a hőcserélőhálózatokról teszünk emĺıtést.

4.1.1. Hőcserélőhálózat szintézis

A hőcserélőhálózatok (HENS) szintézise az egyik legfontosabb területe a folyamatter-

vezés tudományának. Az utóbbi időben az egyik legintenźıvebben kutatott területek

közé tartozik, több száz publikáció jelent meg e témában az elmúlt évtizedekben. A

fontossága annak is tulajdońıtható, hogy a vegyipari rendszerek költségeinek jelentős

része az energiaköltség, ezen belül is a hőenergiáé, aminek hasznośıtása kiemelten

fontos.

Az első publikáció, amely a hőcserélőhálózatok tervezésével foglakozik 1944-ben

jelent meg [93], az első teljes hőcserélőhálózat-tervezést 1965-ben publikálták [52],

1969-ben jelent meg az első szigorú matematikai léırás [71].

Az általános HENS problémát a következőképpen definiáljuk:

Adottak:

• a meleg anyagáramok halmaza (FH), melyeket a bemenő hőmérsékletről kell

99
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lehűteni a kimenő hőmérsékletre;

• a hideg anyagáramok halmaza (FC), melyeket a bemenő hőmérsékletről kell

felmeleǵıteni a kimenő hőmérsékletre;

• az anyagáram hőkapacitása és az anyagáram nagysága;

• a rendelkezésre álló külső meleg és hideg források, a megfelelő hőmérsékletekkel

együtt, és ezen források költsége;

• hőcserélők költsége.

Cél: egy költségoptimális hőcserélőhálózat meghatározása, amely kieléǵıti a fenti

igényeket. A feladat nem könnyű, az általános hőcserélőhálózatok szintézise NP nehéz

probléma [41].

4.1.2. Az integrált folyamat- és hőcserélőhálózat szintézise

Integrált folyamat- és hőcserélőhálózat szintézise során a teljes folyamat- és hőcseré-

lőhálózat meghatározása azonos időben történik. A szekvenciális módszerek esetében

először meghatározzák magát az optimális folyamathálózatot és utána határozzák

meg az optimális hőcserélő hálózatot. Könnyen látható, hogy az utóbbi nem vezet

optimális megoldáshoz, hiszen az optimális folyamathálózat meghatározásakor figyel-

men ḱıvül hagyják a hőcserével kapcsolatos információkat.

A PNS feladatot vesszük alapul a feladat részletes ismertetéséhez. A PNS fela-

datot kibőv́ıtjük új paraméterekkel, amelyek szükségesek a HENS feladathoz (lásd a

HENS defińıciót).

Anyagáramhoz kapcsolódó hőáram

A kiterjesztett feladatban az anyagáramhoz tartozhat hőmérséklet is. Ha egy műveleti

egység kimenő anyagárama közvetlenül kapcsolódik egy másik műveleti egység be-

menő anyagáramára és a definiált hőmérsékletek különbözőek, akkor hőbevitel, illetve

hőelvitel válik szükségessé, az itt fellépő hő mennyisége az anyagárammal arányos.
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Rejtett hő

Rejtett hőnek nevezzük azokat a hőigényeket, amikor a műveleti egységgel úgy való-

śıtunk meg hőforgalmat, hogy közben a műveleti egység hőmérséklete állandó marad.

Ilyen lehet például a halmazállapot-változást és a kémiai átalakulást ḱısérő ental-

piaváltozás. Egyes műveleti egység t́ıpusoknál a művelet során betáplált, illetve el-

vont rejtett hő mennyisége többszöröse lehet annak a hőforgalomnak, amit a műveleti

egységbe belépő, illetve kilépő anyagáramok képviselnek. Erre jó példa a rektifikáló

kondenzátora és kiforralója, vagy egy erősen exoterm illetve endoterm hősźınezetű

reaktor. Ezen okok miatt a folyamatszintézis hőintegrációval való kiterjesztésekor

szükséges a rejtett hő figyelembevétele, és a matematikai modellbe való beéṕıtése. A

rejtett hőt t́ıpusától függetlenül úgy definiáljuk a modellben, hogy minden egyes eset-

ben megadjuk a hőmérsékletet és azt a hőmennyiséget is, ami a rejtett hő forrásához

tartozik a műveleti egység egységnyi kapacitása mellett.

4.2. A szakirodalom áttekintése

Először az általános HENS módszerek szakirodalmát tekintjük át, majd az integrált

módszerekről szólunk.

4.2.1. Általános HENS módszerek

A HENS módszereket két fő csoportra oszthatjuk: szekvenciális módszerek és a teljes

HEN szintézis.

Szekvenciális szintézis

A szekvenciális szintézis során a feladatot olyan részfeladatokra bontjuk, amelyek

különböző cél szerint oldják meg a problémát. A célok között egy sorrendet álĺıtunk

fel, amely általában valamilyen heurisztikán alapszik. A megfogalmazott részfelada-

tokat a célok szerint csökkenő sorrendben oldjuk meg és az előző feladat eredményét

alkalmazzuk a következő feladat megoldásakor. A hőcserélőhálózatok szintézise fo-

lyamán általában a következő három célt szokták használni:
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1. a külső meleg és hideg források használatának minimalizálása,

2. a hőcserélők számának minimalizálása,

3. a hőcserélő felület minimalizálása.

Így azt a megoldást kapjuk, amely minimális külső forrást használ ezen belül a leg-

kevesebb hőcserélővel és ezen belül a legkisebb hőcserélő felületet használja [7].

A szekvenciális módszereket két fő csoportra oszthatjuk:

1. Evolúciós módszerek: pinch eljárás (PDM) [2], [64], [65]; duális hőmérséklet

[13], [94]; és pszeudó-pinch eljárás [87], [94], [99].

2. Matematikai programozási módszerek: vegyes egész lineáris egyenletek megol-

dásának sorozatára épülnek a [12], [80], illetve nemlineáris optimalizálási fela-

datok megoldására épül a [32].

A pinch módszer egy olyan grafikus eljárás, amely a hőmérséklet intervallumo-

kat felhasználva számolja ki a minimálisan felhasznált külső energia mennyiségét.

Az eljárás közben a rendszer szűk keresztmetszeteit is megkapjuk, ezeket nevezzük

pinch pontoknak. A pinch pontok hőmérsékleti pontok, amelyeken keresztül nem

történik hőátadás. A feladat a pinch pontok mentén felbontható részfeladatokra. A

duális hőmérséklet módszer megengedi a hőcserét a pinch pontokon keresztül, ezáltal

a kapott hálózat kevesebb hőcserélőt tartalmaz, illetve a hálózat struktúrája egysze-

rűsödik. A pszeudó-pinch tervezés szintén laźıtja a pinch feltételt. A pinch pontok

mentén történő part́ıcionálási stratégián alapszik a vertikális hőcsere elv [47], [48].

A matematikai programozási módszeren alapuló eljárás a korábban emĺıtett három

részfeladatot oldja meg. Egy részfeladat megoldásértéke paraméterként szolgál a

következő részfeladat számára. A minimális külső hőforrás meghatározására lineáris

programozási modellt ı́rnak fel a [12], [80] szerzői, vegyes egész lineáris feladatot

(MILP) és vegyes egész nemlineáris feladatot (MINLP) használ [43], [44], amelyek

már strukturális megszoŕıtásokat is tartalmaznak. A minimális külső hőforrás meg-

határozása mellett hőcserét is meghatározza a [12], [80].
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Teljes szintézis

A szekvenciális szintézissel ellentétben itt az a cél, hogy a feladat dekomponálása

nélkül határozzuk meg az optimális hálózatot. Általában ezek vegyes egész nem-

lineáris programozási feladatot (MINLP) fogalmaznak meg a feltételektől függően.

Az egyik legkorábban publikált HENS modell a [103], aminek a hátránya, hogy nem

engedélyezi a hőáramok megosztását. Egy másik MINLP feladat a [31]-ban található,

amely a hőmérsékleti intervallumok part́ıcionálásán alapszik. A [101]-ben publikált

modell feltételezi, hogy egy megosztott hőáram csak egy hőcserélőn megy keresztül,

ı́gy a feltételrendszer lineáris lesz. [20] szerzői bevezettek egy módszert, amely képes

alsó és felső korlát meghatározására egy HENS feladatnál.

4.2.2. Integrált folyamat- és hőcserélőhálózat szintézise

A HENS feladatot megoldó módszerek közvetlenül nem használhatók, mivel az anyag-

áramok nagysága nem adott (lásd a HENS feladat defińıcióját), ı́gy a hőáramok

hőtartalma ismeretlen. Az integrált PNS-HENS módszereket a folyamatszintézis

t́ıpusa szerint különböztethetjük úgy meg, mint szakaszos és folytonos. A jelenlegi

munkánk a folytonos t́ıpushoz tartozik, de röviden kitérek a szakaszos esetre is.

Folytonos PNS-HENS integrált módszerek

Az integrált hőcserélő- és folyamatszintézis módszerek általában már meglévő HENS

és PNS eljárások módośıtását használják. Az itt emĺıtett eljárásokat a HENS rész

szerint tárgyaljuk.

Pinch eljáráson alapuló módszerek: az [54] szerzői a hőmérséklet-entalpia dia-

gramot terjesztik ki; a [66] a folyamattervezés feladatot vizsgálja a pinch módszer

felhasználásával. A [104] dolgozatban úgy valóśıtanak meg HENS retrofit tervezést,

hogy a kapcsolódó folyamatban a folyamértékek megváltozhatnak. Az [51] is Pinch

technológiát alkalmaz, több különböző folyamat közös külső hideg és meleg forrásainak

optimalizálására.

Nemlineáris folytonos (NLP) modelleket vezet be a [25], ahol a modell egyszerre
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optimalizálja a folyamatot, minimális külső hideg vagy meleg forrást és a hőmér-

sékleteket. A szerzők tapasztalataik alapján megállaṕıtják a korábban már emĺıtett

észrevételt, hogy jelentős eltérés van a költségekben a szimultán optimalizálás és a

szekvenciálisan végrehajtott PNS-HENS között.

Vegyes egész lineáris modellt alkalmaznak a következő munkák. A [77]-ben be-

mutatott módszer két fő lépésből áll: egy belső lépés a hőintegrációt valóśıtja meg,

és közben egy külső lépésben pedig a hálózatot optimalizálja. A [19] cikk a szintézis-

feladathoz kapcsolódó keretalgoritmust mutat be, amely a rendszer részeit megfelelő

esetekben egyeśıti, illetve dekomponálja. Az eljárást egy desztilláló rendszerre al-

kalmazza, maga a MILP modell azonos a [20]-ban léırt modellel. A módszer képes

kiszűrni a lehetséges alternat́ıvák egy olyan részhalmazát, amely már nem lehet op-

timális.

Vegyes egész nemlineáris modellt (MINLP) alkalmaznak: a [102] feltételezi, hogy

csak egy meleg és hideg külső hőforrás áll rendelkezésre; a [46] szerzői elemzik a

hőintegráció nehézségeit, majd a [25]-ben szereplő MINLP modellt analizálva jutnak

el a feladat egy új MINLP megfogalmazásához. A [21] egy kereteljárást ad a folyamat

hierarchikus dekompoźıciójára, az optimalizációs lépések a dekompoźıció által meg-

határozott szintenként történnek, ellentétben az eddigi módszerekkel, amelyek egy

nagy MINLP feladatot definiáltak. Itt sok kis MINLP feladatot kell megoldani, ı́gy

kérdéses, hogy a globális optimumot mennyire tudja garantálni az eljárás.

Egyéb eljárások: a [62] szekvenciális folyamatszintézis módszert használ, amely

egy interfészen keresztül kapcsolódik a HENS megoldóhoz. A [91] szerzői áttekintést

adnak a legújabb eredményekről a folyamat integrációban, a munkában külön fejezet

foglalkozik a hőcserélő hálózatokkal.

Szakaszos PNS-HENS integrált módszerek

A szakaszos folyamatok esetében neheźıti a feladatot, hogy egyben ütemezési problé-

mákat is meg kell oldanunk. MILP modell feĺırásával jutnak el a megoldásig a [96],

[105], [106] munkák. Heurisztikával keres megoldást a [97], majd egy MINLP modell

feĺırásával jav́ıtja a korábban megtalált megoldást. Tisztán heurisztikus megközeĺıtést

alkalmaznak a [14] és [15] dolgozatok.
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4.1. ábra. Hőáramok reprezentálása.

4.2. ábra. Rejtett hő reprezentálása.

4.3. A hP-gráf

A korábban bevezetett P-gráf reprezentációt bőv́ıtjük ki úgy, hogy képes legyen a

lehetséges hőbevitelek és hőelvonások reprezentálására.

Az anyagáramhoz kapcsolódó hőforgalom hP-gráf reprezentációját mutatja be a

4.1 ábra. A műveleti egységhez kapcsolódó rejtett hő hP-gráf reprezentációját mutatja

be a 4.2 ábra.
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4.3. ábra. Az anyag t́ıpusú pont kiterjesztése

4.3.1. Az anyagpont kiterjesztése

Olyan esetekben, ahol mi anyagot több műveleti egység is gyártja, illetve fogyasztja;

elképzelhető, hogy azt különböző hőmérsékleten végzik. A P-gráf figyelmen ḱıvül

hagyja az anyagok hőmérsékleti paramétereit, a több műveleti egység által termelt

anyagokat összekeveri, ı́gy a hőmérsékletre vonatkozó paraméterek torzulnának. Ilyen

esetekben a hP-gráfban minden termelő-fogyasztó műveleti egység párra külön kell

meghatározni a két műveleti egység között átáramlott anyagmennyiséget. Ennek

érdekében az anyagpontot felbontjuk mesterséges anyagpontokká és mesterséges mű-

veleti egységekké. A kiterjesztésnek az általános ábráját mutatja be a 4.3 ábra.

4.4. Kiindulási adatok, halmazok

4.4.1. Hideg és meleg hőáramok

Jelölje prod(mi) az mi anyagot előálĺıtó és feed(mi) az anyagot fogyasztó műveleti

egységek halmazát, azaz

prod(mi) = {ok : ok = (α, β) ∈ O, i ∈ β} ,

feed(mi) = {ok : ok = (α, β) ∈ O, i ∈ α} .

Egy hőáramot egy hármassal jellemezhetünk attól függően, hogy melyik anyagról

van szó, és mely műveleti egység bemenetén illetve kimenetén fordul elő. Figyelembe
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véve az anyagok hőmérsékleti paramétereit, a lehetséges hideg és meleg áramok:

FH =
{

(i, k, l) : tout
ik > tinil , yk 6= 0, yl 6= 0,mi ∈ M, ok ∈ prod(mi), ol ∈ feed(mi)

}

= {FH1, FH2, . . . , FHnFH
} ,

FC =
{

(i, k, l) : tout
ik < tinil , yk 6= 0, yl 6= 0,mi ∈ M, ok ∈ prod(mi), ol ∈ feed(mi)

}

= {FC1, FC2, . . . FCnFC
} .

A hőáramokat definiáló indexek alapján meg tudjuk mondani egy hőáram kezdő- és

véghőmérsékletét, például FCj = (i, k, l) ∈ FC-re tout
ik , tinil kezdő- illetve véghőmér-

séklete. A könnyebb megértés céljából ezen kezdő- és véghőmérsékleteket jelölje t
(i,k,l)
0

és t
(i,k,l)
1 . Hasonlóan FHj = (i, k, l) ∈ FH-ra azzal a kikötéssel, hogy t

(i,k,l)
0 jelentse

mindig a kisebb hőmérsékletet. (Meleg áramoknál a kezdő hőmérséklet a magasabb,

és ezt ford́ıtsuk meg a későbbi könnyebb jelölés miatt.)

4.4.2. Rejtett hő

A feladat definiálásakor szükséges megadni a rejtett hő paramétereit. Legyen ok ∈

O, és jelölje lk az ok-hoz tartozó rejtett hőforrások számát. Jelölje hki az i. rejtett

hőforráshoz tartozó paramétert, amely megmondja az ok egységnyi működésekor az

időegységre eső betáplálandó, illetve elvonandó hő mennyiségét. Legyen TMki az

i. rejtett hő hőmérsékleti paramétere (i = 1, . . . , lk).

A műveleti egységekhez kapcsolódó rejtett hőt két indexszel jellemezhetjük. Az

első index megmondja, hogy mely műveleti egységhez tartozik a rejtett hő, a második

pedig a műveleti egységen belüli sorszámát jelöli. A lehetséges meleg és hideg rejtett

hőforrások halmaza legyen (LH , LC).

LH = {(k, j) : hkj > 0, yk 6= 0, ok ∈ O} = {LH1, . . . , LHnLH
} ,

LC = {(k, j) : hkj < 0, yk 6= 0, ok ∈ O} = {LC1, . . . , LCnLC
} .

Egy (j, k) ∈ LH ∪ LC-ra legyen t(k,j) a rejtett hőforráshoz kapcsolódó hőmérséklet.

4.4.3. A hideg áramok eltolása

Minden hideg hőáram, illetve hideg külső forrás hőmérsékleti paramétereit el kell tolni

pozit́ıv irányba minimális megközeĺıtési távolsággal (MT ). A továbbiakban, amikor a
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hideg áramok, rejtett hőforrások hőmérsékleteiről beszélünk, akkor már a módośıtott

értékekkel dolgozunk. (i, k, l) ∈ FC -ra a t
(i,k,l)
0 + MT , (k, j) ∈ LC-re a t(k,j) + MT

értékekkel számolunk.

4.4.4. Az elemi hőáramok

Megadjuk az elemi hőmérsékleti intervallumok fogalmát.

Elemi hőmérsékleti intervallumok

Definiáljuk a következő sorozatot: t1, t2, . . . , tne
, ahol a sorozat elemei az (i, k, l) ∈

FH ∪ FC hőáramhoz tartozó kezdő- és véghőmérsékletek, illetve (k, j) ∈ LC ∪ LH

a rejtett hőforráshoz tartozó hőmérsékleti értékek egyszeres előfordulással. Legyen a

sorozat rendezve (i > j ⇒ ti > tj). A hőintervallumokat a tp sorozat szerint elemi

intervallumokra bontjuk. Legyen Ep = [tp, tp+1], p ∈ [1, . . . , ne] egy elemi intervallum.

Az elemi hőintervallumok alapján úgynevezett elemi hőáramokká (EH , EC) bont-

juk fel az áramokat:

EH =
{

(i, k, l, p) : (i, k, l) ∈ FH , tp ≥ t
(i,k,l)
0 & tp+1 ≤ t

(i,k,l)
1

}

= {FSH1, . . . , FSHnFSH
} ,

EC =
{

(i, k, l, p) : (i, k, l) ∈ FC , tp ≥ t
(i,k,l)
0 & tp+1 ≤ t

(i,k,l)
1

}

= {FSC1, . . . , FSCnFSC
} .

4.4.5. A részhőáramok

Az elemi hőintervallumok felhasználásával a hőáramokat felbontjuk részhőáramokra.

Az (i, k, l) ∈ FC ∪FH , [t
(i,k,l)
0 , t

(i,k,l)
1 ] hőmérséklet intervallum feĺırható [tp, tp+d] alak-

ban, ahol tp = t
(i,k,l)
0 , tp+d = t

(i,k,l)
1 . [tp, tp+d] felbontható Iqs = [tq, ts+1] részintervallu-

mokra, ahol p ≤ q ≤ s ≤ p + d − 1 (ez összesen
(

d+1
2

)

intervallum).

Az előbb vázolt intervallumfelbontásokat a hőáramokra használva részhőáramokat
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kapunk:

IH =
{

(i, k, l, q, s) : (i, k, l) ∈ FH , & Iqs ⊆ [t
(i,k,l)
0 , t

(i,k,l)
1 ]

}

= {SSH1, SSH2, . . . , SSHnSSH
} ,

IC =
{

(i, k, l, q, s) : (i, k, l) ∈ FC , & Iqs ⊆ [t
(i,k,l)
0 , t

(i,k,l)
1 ]

}

= {SSC1, SSC2, . . . , SSCnSSC
} .

4.5. A matematikai modell

Fejezetünkben a PNS modellt terjesztjük ki a HENS-hez kapcsolódó részekkel. Ko-

rábban már definiáltuk a PNS lineáris modelljét (2.2.3 fejezet). A bevezetett HENS

modell független magától a PNS részhez kapcsolódó modelltől, ı́gy a megértés könnýı-

tése céljából használjuk a PNS lineáris modelljét.

4.5.1. Anyagponthoz tartozó matematikai modell

Fejezetünkben a kiterjesztett anyagpontokhoz tartozó feltételeket részletezzük. Le-

gyen T azon anyagok halmaza, melyre létezik specifikált hőmérséklet. Legyen mi ∈ T ,

(ok,mi) ∈ ω−(mi) és (mi, ol) ∈ ω+(mi). Jelölje tinik az mi anyag mint ok műveleti

egység kimeneti anyagának hőmérsékletét. Hasonlóan jelölje tout
il az mi anyag mint ol

műveleti egység bemeneti anyagának hőmérsékletét. Jelöljük hkl
i -vel az ok műveleti

egységből ol műveleti egységbe áramló mi anyaghoz tartozó mesterséges műveleti

egységet a rajta átáramló anyag mennyiségét pedig jelölje wkl
i . Jelölje továbbá mk

i az

ok műveleti egységhez tartozó új
”
mesterséges anyagpontot” (lásd 4.4 ábra).

A korábban adott mi anyagponthoz kapcsolódó feltételt új feltételekkel fogjuk

helyetteśıteni. Jelölje Ki az mi anyagpont kiterjesztésével létrehozott új mesterséges

műveleti egységek halmazát, és Mi az új anyagpontok halmazát. A mesterséges

műveleti egységek egy input, illetve output anyaggal rendelkeznek. Így két feltétel

tartozik egy műveleti egységhez.

A mesterséges műveleti egységekre vonatkozó költség és feltételrendszer:

Költség:

fkl
i () = 0, hkl

i ∈ Ki, i ∈ T
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4.4. ábra. Egy mesterséges műveleti egység.

Feltételek:

gkl1
i (xk

l , w
kl
i ) = 0, hkl

i ∈ Ki, i ∈ T ,

gkl2
i (xk

l , w
kl
i ) = 0, hkl

i ∈ Ki, i ∈ T .

Itt legyen ak
i = (mk

i , h
kl
i ) ∈ ω−(hkl

i ), al
i = (hkl

i ,ml
i) ∈ ω+(hkl

i ), és jelölje xk
i = ϕ(ak

i ),

xl
i = ϕ(al

i) az élekhez tartozó változókat.

gkl1
i (yk, yl, x

k
i , h

kl
i ) = wkl

i − xk
i , hkl

i ∈ Ki, i ∈ T

gkl2
i (yk, yl, x

k
i , h

kl
i ) = wkl

i − xl
i, hkl

i ∈ Ki, i ∈ T

A mesterséges anyagpontokhoz tartozó költség és feltételrendszer:

f
′k
i (ϕ(ω−(mi)), ϕ(ω+(mi))) = 0, mk

i ∈ Mi,

g
′k
i (ϕ(ω−(mk

i )), ϕ(ω+(mk
i ))) ≤ 0, mk

i ∈ Mi, ok ∈ prod(mi),

g
′l
i (ϕ(ω−(ml

i)), ϕ(ω+(ml
i))) ≤ 0, ml

i ∈ Mi, ol ∈ feed(mi).

Legyen ok ∈ prod(mi) és as = (ok,m
k
i ) ∈ ω+(ok),

g
′k
i (ϕ(ω−(mk

i )), ϕ(ω+(mk
i ))) =

∑

ol∈feed(mi)

wkl
i − xs. (4.5.1)
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Hasonlóan ol ∈ feed(mi) és as = (ml
i, ol) ∈ ω+(ok),

g
′l
i (ϕ(ω−(ml

i)), ϕ(ω+(ml
i))) = xs −

∑

ok∈prod(mi)

wkl
i . (4.5.2)

Felhasználva a műveleti egységekhez tartozó (2.2.5) feltételeket, a (4.5.1) és (4.5.2)

formulák rendre a következő formában ı́rhatók:

g
′k
i (ϕ(ω−(mk

i )), ϕ(ω+(mk
i ))) =

∑

ol∈feed(mi)

wkl
i − rkizk,

g
′l
i (ϕ(ω−(ml

i)), ϕ(ω+(ml
i))) = rlizl −

∑

ok∈prod(mi)

wkl
i .

Modellünkben kiküszöböltük az élekhez tartozó x változókat a z és w változók seǵıt-

ségével.

4.5.2. Potenciális hőcserék meghatározása

Minden áramhoz definiáljuk az áramok egy részhalmazát, melyeknek képes hőt átadni.

A meleg részáramokhoz rendeljük a vele párośıtható hideg részáramokat.

JFF (SSHj) =
{

SSCj′ = (i′, k′, l′, q′, s′) ∈ IC : q ≤ q′, s ≤ s′
}

,

SSHj = (i, k, l, q, s) ∈ IH

JFL(SSHj) =
{

LCj′ = (k′, j′) ∈ LC : tq ≤ Tk′j′
}

,

SSHj = (i, k, l, q, s) ∈ IH

JLF (LHj) =
{

SSCj′ = (i′, k′, l′, q′, s′) ∈ IC : Tkj ≤ ts′+1

}

,

LHj = (k, j) ∈ LH

JLL(LHj) =
{

LHj′ = (k′, j′) ∈ LC : Tkj ≤ Tk′j′
}

,

LHj = (k, j) ∈ LH

Minden elemi áramhoz, rejtett meleg és hideg forráshoz hozzárendeljük a megfelelő

külső forrást.

JFU(FSCj) =
{

u ∈ UH : UTu ≥ tp+1

}

, FSCj = (i, k, l, p) ∈ EC

JFU(FSHj) =
{

u ∈ UC : UTu ≤ tp
}

, FSHj = (i, k, l, p) ∈ EH

JLU(LCj) =
{

u ∈ UH : UTu ≥ Tkj

}

, LCj = (k, j) ∈ LC

JLU(LHj) =
{

u ∈ UC : UTu ≤ Tkj

}

, LHj = (k, j) ∈ LH
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A nem párośıtható hőáramok

Lehetnek olyan áramok, melyek valami oknál fogva nem párośıthatók. A tiltott

hőátadásokat kivesszük a megfelelő halmazokból.

4.5.3. Hőegyensúlyi feltételek

A hőegyensúlyi egyenleteket az elemi hőáramokra ı́rjuk fel, a hőcserék definiálásakor

a részhőáramokat, valamint a rejtett hideg és meleg forrásokat használjuk.

A hőegyensúlyi feltételek definiálásakor meg kell határoznunk az elvonandó illetve

betáplálandó hő mennyiségét.

QFHj = ciw
kl
i (tp+1 − tp), FSHj = (i, k, l, p) ∈ EH

QFCj = ciw
kl
i (tp+1 − tp), FSCj = (i, k, l, p) ∈ EC

QLHj = hkizk, LHj = (k, i) ∈ LH

QLCj = hkizk, LCj = (k, i) ∈ LC

Hőcserékhez tartozó változók

A változók az egymáshoz rendelt hideg és meleg részhőáram vagy a rejtett hőáram

közötti átvitt hőmennyiséget jelölik. A változókat a hozzárendelések t́ıpusainak meg-

felelően különböztetjük meg. A változóknak két fő indexük van: az első mindig

a meleg részhőáram azonośıtója, a második pedig a hozzárendelt hideg részhőáram

azonośıtója.

QFFij : SSHi ∈ IH , SSCj ∈ JFF (SSHi)

QFLij : SSHi ∈ IH , LCj ∈ JFL(SSHi)

QLFij : LHi ∈ LH , SSCj ∈ JLF (LHi)

QLLij : LHi ∈ LH , LCj ∈ JLL(LHi)

A külső hőforrásokat az elemi hőáramokhoz rendeljük. Az ide vonatkozó változók

esetében is az egyik index a hőáramra vonatkozik, a másik a megfelelő külső forrásra.
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Az indexek sorrendje a hőelvonás irányát mutatja.

QFUiu : FSHi ∈ EH , u ∈ JFU(FSHi)

QUFui : FSCi ∈ EC , u ∈ JFU(FSCi)

QLUiu : LHi ∈ LH , u ∈ JLU(LHi)

QULui : LCi ∈ LC , u ∈ JLU(LCi)

A hőegyensúlyi feltételek:

H(FSHi) = 0, FSHi ∈ EH

H(FSCi) = 0, FSCi ∈ EC

H(LHi) = 0, LHi ∈ LH

H(LCi) = 0, LCi ∈ LC

Részletezzük az egyenletek bal oldalát:

H(FSHi) = QFHi −
∑

SSHj=(i,k,l,q,s)∈IH ,s≤p≤q

tp+1 − tp
tq+1 − ts

[

∑

SSCj′∈JFF (SSHj)

QFFjj′ +
∑

LCj′∈JFL(SSHj)

QFLjj′

]

−

∑

u∈JFU(FSHi)

QFUiu,

FSHi = (i, k, l, p) ∈ EH ,

H(FSCi′) = QFCi′ +
∑

SSCj′=(i′,k′,l′,q′,s′)∈IC ,s′≤p′≤q′

tp′+1 − tp′

tq′+1 − ts′

[

∑

SSCj′∈JFF (SSHj)

QFFjj′ +
∑

SSCj′∈JLF (LHj)

QLFjj′

]

+

∑

u∈JFU(FSCi′ )

QUFui′ ,

FSCi′ = (i′, k′, l′, p′) ∈ EC ,
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H(LHi) = QLHi −
∑

SSCi′∈JLF (LHi)

QLFii′ −

∑

LCi′∈JLL(LHi)

QLLii′ −
∑

u∈JLU(LHi)

QLUiu,

LHi ∈ LH ,

H(LCi′) = QLCi′ +
∑

LCi′∈JFL(SSHi)

QFLii′ −

∑

LCi′∈JLL(LHi))

QLLii′ +
∑

u∈JLU(LCi′ )

QULui′ ,

LCj ∈ LC .

4.5.4. Hőcserélők költsége

A modellünkben a hőcserélő költség a felülettel arányos. Az arányossági tényezőket

adjuk most meg a különböző t́ıpusú hőcserék esetén.

CFFjj′ = Aii′
1

Uii′LMTD(ts, tq+1, ts′ , tq′+1)
,

SSHj = (i, k, l, q, s) ∈ IH ,

SSCj′ = (i′, k′, l′, q′, s′) ∈ JFF (SSHj),

ahol Aii′ az mi és mi′ anyagok közötti egységnyi felületű hőcserélő költsége és Uii′ az

anyagok közötti fajlagos hőátadási tényező ( W
m2·K

). Az LMTD jelöli a részhőáramok

közötti logaritmikus középhőmérsékletet.

LMTD(x1, x2, y1, y2) =
(x1 − y1) − (x2 − y2)

ln x1−y1

x2−y2

A rejtett források esetében a hőátvitel valamilyen köztes anyagon keresztül történik.

Ilyenkor erre az anyagra vonatkoznak az anyagtól függő paraméterek. Jelölje most
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ezt az anyagot m.

CFLjj′ = Aim
1

UimLMTD(ts, tq+1, Tk′i′ , Tk′i′)
,

SSHj = (i, k, l, q, s) ∈ IH , LCj′ = (k′, i′)

CLFjj′ = Ami′
1

Umi′LMTD(Tki, Tki, ts′ , tq′+1)

LHj = (k, i) ∈ LH , SSCj′ = (i′, k′, l′, q′, s′) ∈ JLF (LHj),

CLLjj′ = Amm
1

Umm

2

(Tki + Tk′i′)

LHj = (k, i) ∈ LH , LCj′ = (k′, i′) ∈ JLL(LHj)

Külső hő energia költsége

A külső meleg és hideg energia költsége az időegység alatt elvitt hő lineáris függvénye.

u ∈ UH ∪ UC -re a UCu jelentse a lineáris költséghez tartozó együtthatót.

4.5.5. Egyeśıtett matematikai modell

Összefoglalva az eddigieket a matematikai modell a következőképpen néz ki:

Célfüggvény:

min
∑

mi∈R

f ′
i +

∑

oj∈O

fj+

∑

QFFjj′

CFFjj′QFFjj′ +
∑

QFLjj′

CFLjj′QFLjj′ +

∑

QLFjj′

CLFjj′QLFjj′ +
∑

QFUiu

UCuQFUiu + (4.5.3)

∑

QLUiu

UCuQLUiu
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Feltételrendszer:

g′
i(ϕ(ω−(mi)), ϕ(ω+(mi))) ≤ 0, mi ∈ M \ T

g
′k
i (ϕ(ω−(mk

i )), ϕ(ω+(mk
i ))) ≤ 0, mk

i ∈ Mi, ok ∈ prod(mi) i ∈ T

g
′l
i (ϕ(ω−(ml

i)), ϕ(ω+(ml
i))) ≤ 0, ml

i ∈ Mi, ol ∈ feed(mi) i ∈ T

H(FSHi) = 0, FSHi ∈ EH (4.5.4)

H(FSCi) = 0, FSCi ∈ EC

H(LHi) = 0, LHi ∈ LH

H(LCi) = 0, LCi ∈ LC

4.6. Az integrált módszer léırása

A módszer az ABB algoritmus [40] módośıtottása. Az algoritmus kombinatorikus

része (szétválasztás, kiterjesztések) változatlan. A korlátszámı́tási lépés változik,

a matematikai modell bővül ki a hőcseréhez tartozó változókkal, egyenletekkel. A

feltételrendszereket a már léırtak szerint kell generálni.

Az algoritmus az iterációk során dönt a műveleti egységek bevételéről (yk = 1)

és kizárásáról (yk = 0). A modell feĺırásakor a fixen kizárt (yk = 0) műveleti

egységek jelentenek változásokat, az ahhoz kapcsolódó hőáramok, rejtett meleg és

hideg források nem kerülnek bele a modellbe.

4.6.1. A korlátozó LP feladat tulajdonsága

A korlátozás lépés során egy LP feladatot kell megoldanunk. A feltételrendszer az

anyagokra és az elemi hőáramokra vonatkoznak, a változók a műveleti egységekhez

és a hőcserélőkhöz vannak hozzárendelve. A potenciális hőcserélők száma az egy-

máshoz rendelhető részhőáramok és rejtett források kombinációitól függ, ezért már

közepes feladatok esetében is nagyszámú potenciális hőcserélőt kapunk. Ez több

nagyságrendben is eltérhet maguktól az elemi áramok számától. Ez azt jelenti, hogy

az LP feladat oszlopainak a száma jóval nagyobb a sorok számánál. Gyakorlati

példáknál nagyméretű LP feladatok merülhetnek fel, amelyek kevés számú feltételt



117

és nagyszámú változót tartalmaznak. A SIMPLEX módszer ilyen t́ıpusú LP felada-

tokra igen hatékony. Az optimális megoldásban az összes hőcserélő számához képest

elenyésző az optimális megoldáshoz tartozó hőátvitelek száma, ı́gy a megoldásban sze-

replő nemzéró változók száma is jóval kevesebb mint a modellhez tartozó változószám.

4.7. Szemléltető példa

Egy szemléltető példa alapján fogjuk bemutatni algoritmusunk működését.

4.7.1. Általános léırás

A feladat maximális struktúrájának reprezentációját a 4.5 ábra mutatja. A téglalapok

a műveleti egységeket, az iránýıtott élek az anyagáramokat ábrázolják. Az esetlegesen

szükséges hőigényeket is feltüntettük.

Célunk egy olyan költségoptimális részstruktúra megtalálása, amely kieléǵıti a

feltételeket. A feltételek lehetnek: termékekre megfogalmazott korlát, hőigények kie-

léǵıtése, anyagegyensúly feltételek.

A termék az M1 anyag, melyből 100 t/év mennyiséget kell gyártani. A műveleti

4.5. ábra. Folyamatábra a szemléltető feladathoz.
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4.1. táblázat. A lehetséges műveleti egységek

Műveleti Rejtett hő Bemeneti Kimeneti

egység Hőm. (K) Forrás eü. áramok áramok

o1 − − M3(3, 343) M1(2),M6(1, 363)

o2 − − M4(1.5) M1(1),M2(0.5)

o3 353 20 M5(1),M6(1, 353) M3(2, 333)

o4 − − M6(0.3),M7(1.7) M3(1, 363),M4(1)

o5 − − M7(2),M8(1) M4(3)

o6 − − M9(1) M6(1, 328)

o7 − − M10(1.2),M11(0.8) M8(2)

egység modelljét léıró paramétereket a 4.1 táblázat tartalmazza, a kapcsolódó költ-

ségparaméterek a 4.2 táblázatban találhatók. A műveleti egységekkel kapcsolatosan

felmerülő rejtett hő mennyiségét a forrás együttható és a méret szorzata adja meg

(lásd a 4.1 táblázat megfelelő oszlopai). Egy műveleti egység egy bemeneti vagy kime-

neti anyagáramának paraméterét az anyagnév utáni zárójelbe tett mennyiség jellemzi,

a második érték a hőmérsékletre vonatkozik. A költségparamétereket a 4.2 táblázat

tartalmazza. A példánkban a megtérülési évek száma 5.

4.2. táblázat. Költségparaméterek a műveleti egységekre

Műveleti Beruházási költség Működési költség

egység Állandó Változó Állandó Változó

o1 7500 1200 500 160

o2 3800 1000 140 250

o3 8000 1000 400 170

o4 15000 1500 500 100

o5 10000 1500 900 300

o6 3000 750 200 100

o7 5000 800 700 160
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4.3. táblázat. Nyersanyagok

Név Költség [USD/t] Limit [t/év]

M5 140 Nincs limit

M7 200 Nincs limit

M9 250 Nincs limit

M10 50 Nincs limit

M11 70 Nincs limit

4.4. táblázat. Külső hideg, meleg források

Külső forrás T́ıpus Hőmérséklet (K) Költség (USD/MJ)

H1 Meleg 373.0 2.0

C1 Hideg 293.0 3.0

A nyersanyagok felsorolását és a hozzá megfelelő értékek a 4.3 táblázat tartal-

mazza.

A felhasználható külső hideg és meleg forrásokat 4.4 tábla tartalmazza a rendel-

kezésre álló hőmérséklet és a költségadatokkal együtt. A hőcserélő költségét anyag-

páronként lehet definiálni, a példánkban minden anyagpárra azonos költséget adunk

meg: 5.0 USD/m2; hasonlóan a hőátadási tényező is egy anyagpárra vonatkozik, most

itt minden párra 1.0 MJ/(h K m2).

hP-Gráf

A feladat hP-gráf reprezentációját mutatja a 4.6 ábra, ahol már a lehetséges hőcseréket

is feltüntettük.

ABB algoritmus

A feladatot a 2.3 fejezetben emĺıtett ABB módszerrel lett megoldva, az algorit-

mus által bejárt BB keresőfa a 4.7 ábrán látható. A BB fa minden pontjához

tartozik a műveleti egységek egy osztályozása: kizárt, beválasztott, nem döntött
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M1 M2

M3(1)

M3(3) M3(4)

M4

M5 M6(3) M6(4)

M6(1) M6(6)

M7 M8

M9

M10
M11

4.6. ábra. A szemléltető példa hP-gráfja.
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4.5. táblázat. Műveleti egység osztályok

Csúcs Műveleti egység

Nem döntött Beválasztott Kizárt

1 1,2,3,4,5,6 − −

1.1 3,4,6 1 2,5,7

1.1.1 6 1,3 2,4,5,7

1.1.1.1 − 1,3 2,4,5,6,7

1.1.1.2 − 1,3,6 2,4,5,7

1.1.2 6 1,4 2,3,5,7

1.1.3 6 1,3,4 2,5,7

1.2 4,5,6,7 2 1,3

1.3 3,4,5,6,7 1,2 −

1.3.1 6 1,2,3,5,7 4

1.3.2 5,6,7 1,2,4 3

1.3.3 5,6,7 1,2,3,4 −

műveleti egységek. A 4.5 táblázat tartalmazza a BB fában a csúcsokhoz tartozó

osztályozásokat.

Továbbiakban két csúcsra, 1 (gyökérpont) és 1.1.1.2 (levélpont), részletezzük a

modell feĺırását.

4.7.2. Az 1. csúcs

Az 1. csúcs a gyökér csúcsot reprezentálja, még nem történt döntés, ı́gy minden

műveleti egység a nem döntött osztályban található. Potenciálisan két meleg és két

hideg áram van, ezeket a 4.6 táblázat tartalmazza, továbbá rejtett hő a 3. műveleti

egységhez tartozik, ennek a paramétereit a 4.7 táblázat tartalmazza.

A meleg és hideg áramokat kaszkád diagrammal ábrázolhatjuk (lásd 4.8 ábra),

ahol a hideg áramokat a minimális megközeĺıtési távolsággal (10 K) már eltoltuk. A

diagramban az I1, I2, . . . I5 jelöli a hőmérsékleti intervallumokat.

A hőmérsékleti intervallumok (I1, I2, . . . I5) a meleg és hideg áramokat elemi hő-

áramokká part́ıcionálják (lásd a 4.8 táblázat).
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1

1.1

1.2

1.3

1.1.1

1.1.2 1.1.3 1.3.1 1.3.2 1.3.3

1.1.1.1 1.1.1.2

4.7. ábra. Az ABB algoritmus által előálĺıtott leszámlálási fa (a legrosszabb eset).

4.6. táblázat. Lehetséges hőáramok az 1. csúcsnál

Áram T́ıpus Anyag Kezdő hőm. (K) Vég hőm. (K)

S1 meleg M3 363.0 343.0

S2 meleg M6 363.0 353.0

S3 hideg M3 333.0 343.0

S4 hideg M6 328.0 353.0

4.7. táblázat. Rejtett hőforrások az 1. csúcsnál

Áram T́ıpus Műveleti egység Hőmérséklet (K)

LH1 meleg 3 353.0
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4.8. ábra. Kaszkád diagram a jellemző hőáramokról az 1. csúcsban.

4.8. táblázat. Lehetséges elemi hőáramok az 1. csúcsban

Elemi hőáramok T́ıpus Anyag Kezdő hőm. (K) Vég hőm. (K)

FSH1 meleg M3 363.0 353.0

FSH2 meleg M3 353.0 343.0

FSH3 meleg M6 363.0 353.0

FSC1 hideg M3 343.0 353.0

FSC2 hideg M6 338.0 343.0

FSC3 hideg M6 343.0 353.0

FSC4 hideg M6 353.0 363.0
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Részhőáramokat az elemi hőáramok folytonos intervallumot alkotó kombinációi

határozzák meg. A részhőáramok listája a 4.9 táblázatban látható.

Egy hőcserélő egy (hideg-meleg) részhőáram párral adható meg, a JSS(SSHi) (i =

1, 2, 3, 4) halmazok tartalmazzák a SSHi-vel potenciálisan párośıtható részhőáramo-

kat, melyeket az alábbiakban részletezzük:

JSS(SSH1) = {SSC1, SSC2, SSC3, SSC5},

JSS(SSH2) = {SSC1, SSC2, SSC3, SSC4, SSC5, SSC6, SSC7},

JSS(SSH3) = {SSC1, SSC2, SSC3, SSC5, SSC6, SSC7},

JSS(SSH4) = {SSC1, SSC2, SSC3, SSC4, SSC5, SSC6, SSC7}.

A rejtett hő úgy kezelhető, mint egy részhőáram amelynek a kezdő- és véghőmérséklete

ugyanaz:

JLS(LH1) = {SSC1, SSC2, SSC3, SSC5}

A külső meleg, hideg forrásokat minden elemi hőáramhoz hozzá kell rendelnünk:

JSU(FSH1) = {C1}, JSU(FSH2) = {C1}, JSU(FSH3) = {C1},

JSU(FSH4) = {C1}, JSU(FSC1) = {H1}, JSU(FSC2) = {H1},

JSU(FSC3) = {H1}.

Itt C1 a külső hideg forrás és H1 a külső meleg forrás. Hasonlóan a rejtett hőre:

JLU(LH1) = {C1}.

Az anyagok hőkapacitásait a 4.10 táblázat tartalmazza.

Egy elemi hőáram számára betáplálandó illetve elvonandó hő mennyiségét a hő-

kapacitás az áram és a hőmérsékleti intervallum szorzata adja (QFCi, i = 1, 2, ..., 7).

A rejtett hő mennyisége a kapcsolódó műveleti egység méretének és rejtett hő pa-

raméterének szorzata (QLH1). Meleg hőáramokra QFHi > 0, hideg hőáramokra

QFCi < 0 teljesül ez természetesen a rejtett hőre is igaz.

A hőátvitelhez kapcsolódó változókat a megfelelő részáramok vagy rejtett hőára-

mok indexeivel azonośıtjuk, az első index a meleg áramra, a második index a hideg

áramra vonatkozik (lásd a 4.11 táblázatot).

Rejtett és elemi hőáramokhoz rendeljük a külső meleg és hideg energiaforrásokat,

a külső energiához kapcsolódó változókat a 4.12 tábla tartalmazza.

A hőcserék részhőáramok között mennek végbe, viszont a hőegyensúlyi feltételeket
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4.9. táblázat. Lehetséges részhőáramok az 1. csúcsban

Részhőáramok T́ıpus Anyag Intervallum Kezdő hőm. (K) Vég hőm.(K)

SSH1 meleg M3 I3 353.0 343.0

SSH2 meleg M3 I4 363.0 353.0

SSH3 meleg M3 I3, I4 363.0 343.0

SSH4 meleg M6 I4 363.0 353.0

SSC1 hideg M3 I3 338.0 353.0

SSC2 hideg M6 I2 343.0 343.0

SSC3 hideg M6 I3 338.0 353.0

SSC4 hideg M6 I4 343.0 363.0

SSC5 hideg M6 I2, I3 338.0 353.0

SSC6 hideg M6 I3, I4 343.0 363.0

SSC7 hideg M6 I2, I3, I4 338.0 363.0

4.10. táblázat. Anyagok hőkapacitásai

Anyagnév érték

M3 0.4

M4 1.0

M6 1.0

4.11. táblázat. Hőcseréhez kapcsolódó változók az 1. csúcsban

SSC1 SSC2 SSC3 SSC4 SSC5 SSC6 SSC7

SSH1 QFF11 QFF12 QFF13 − QFF15 − −

SSH2 QFF21 QFF22 QFF23 QFF24 QFF25 QFF26 Q27

SSH3 QFF31 QFF32 QFF33 − QFF35 QFF36 Q37

SSH4 QFF41 QFF42 QFF43 QFF44 QFF45 QFF46 Q47

LH1 QLF11 QLF12 QLF13 − QLF15 − −
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az elemi hőáramokra számı́tjuk, ezért fontos a részhőáramból elvont hő elemi hő-

áramra eső részének a meghatározása (lásd 4.9 ábra). A hőáram egy téglalapnak

tekinthető, a horizontális mérete a fajhő és az anyagáram szorzata, a vertikális hossz

pedig a kezdő- és véghőmérséklet különbsége. A két oldal szorzata adja meg az

időegység alatt elvonandó illetve betáplálandó hőmennyiséget.

Tekintsük az FSHk (EFGH téglalap) elemi hőáramot a hozzá kapcsolódó hő-

mérsékleti intervallummal [T2,T3]. Jelölje a hozzá tartozó téglalap területét QFk.

Legyen SSHi (ABCD téglalap) a részhőáram és SSCj a hőcserében résztvevő másik

részhőáram. A [T1,T4] az SSHi-hoz tartozó hőmérsékleti intervallum és legyen az

átvitt hő mennyisége QFFij. Az EFGH és ABCD téglalapok metszete jelzi az

FSHk -ról ténylegesen elvitt hőmennyiséget, mely a következőképpen számolható:

T3 − T2

T4 − T1

QFFij (4.7.1)

A megfelelő hőintervallumok aránya határozza meg, hogy a QFFij mennyiségű elvitt

hő mekkora hányada származik a kérdéses elemi részhőáramról.

Tekintsük az FSH2 elemi hőáramot. Az FSH2-re vonatkozó hőegyensúlyi feltétel

meghatározásában a rá illeszkedő részhőáramokat kell figyelembe vennünk, ezek most

az SSH1 és az SSH3. Az SSH1 részhőáram lehetséges párośıtásait a 4.10 ábrán

mutatjuk be. Hasonlóan a SSH3 részhőáram lehetséges párośıtásait a 4.11 ábra

mutatja. Az FSH2-re vonatkozó hőegyensúlyi feltétel a következőképpen néz ki:

0 = QFH2 − QFF11 − 0.5 QFF31 − QFF12 − 0.5 QFF32 − QFF13

−0.5 QFF33 − QFF15 − 0.5 QFF35 − 0.5 QFF36 − 0.5 QFF37 − QFU21.

Hasonlóan minden elemi hőáramra és rejtett hőre feĺırható a hőegyensúlyi feltétel,

ezek együtthatóit a 4.13 táblázat tartalmazza.

A hőcserélő költsége a felülettel arányos, ennek a kiszámı́tásához tekintsünk egy

hőcserélőt, amely az SSHi és SSCj részhőáramok között van. A hőcseréhez tartozó

költség a következő:

cijQFFij = aij
1

UijLMTDij

QFFij,

ahol QFFij az átvitt hőmennyiség. A 4.14 táblázat tartalmazza ezen cij együtt-

hatókat.
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4.12. táblázat. A külső hideg és meleg energiához kapcsolódó változók a 1. csúcsban

FSH1 FSH2 FSH3 FSC1 FSC2 FSC3 FSC4 LH1

C1 QFU11 QFU21 QFU31 − − − − QLU11

H1 − − − QUF41 QUF51 QUF61 QUF71 −

QFk

QFFi j

Sn

T1

Hõmérséklet

FSHk

SSH i

SSC j

T2

T3

T4

A B

C

G

D

F
E

H

4.9. ábra. Hőegyensúly az elemi áramokra.
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4.10. ábra. Az SSH1 részhőáram lehetséges párośıtásai az 1. csúcsban.

4.11. ábra. Az SSH3 részhőáram lehetséges párośıtásai az 1. csúcsban.
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4.13. táblázat. Hőegyensúlyi feltételek együtthatói az 1. csúcsban
Változók QFH1 QFH2 QFH3 QFC1 QFC2 QFC3 QFC4 QLH1

QFF11 -1 1
QFF21 -1 1
QFF31 -1/2 -1/2 1
QFF41 -1 1
QFF12 -1 1
QFF22 -1 1
QFF32 -1/2 -1/2 1
QFF42 -1 1
QFF13 -1 1
QFF23 -1 1
QFF33 -1/2 -1/2 1
QFF43 -1 1
QFF24 -1 1
QFF44 -1 1
QFF15 -1 1/3 2/3
QFF25 -1 1/3 2/3
QFF35 -1/2 -1/2 1/3 2/3
QFF45 -1 1/3 2/3
QFF26 -1 1/2 1/2
QFF36 -1/2 -1/2 1/2 1/2
QFF46 -1 1/2 1/2
QFF27 -1 1/5 2/5 2/5
QFF37 -1/2 -1/2 1/5 2/5 2/5
QFF47 -1 1/5 2/5 2/5
QLF11 1 -1
QLF12 1 -1
QLF13 1 -1
QLF15 1/3 2/3 -1
QFU11 -1
QFU21 -1
QFU31 -1
QUF11 1
QUF21 1
QUF31 1
QUF41 1
QLU11 -1
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A feĺırt matematikai programozási modell lineáris, a megoldás egy alsó költség-

korlátot ad a részproblémára nézve.

4.7.3. Az 1.1.1.2 csúcs

Az aktuális csúcs egy levélpont a BB fában. Az 1, 3 és 6 műveleti egységek a

beválasztott halmazban vannak, a többi műveleti egység pedig a kizártakat tartal-

mazó halmazban (a nem döntött műveleti egységek halmaza üres). A potenciális

meleg és hideg áramokat a 4.15 táblázat, a rejtett hőket a 4.16 táblázat tartalmazza.

A 4.13 ábrán látható a részfeladathoz kapcsolódó kaszkád diagram.

A 4.17 táblázat tartalmazza a meleg és hideg elemi hőáramok listáját, a 4.18 tábla

pedig a részhőáramokat tartalmazza.

Megoldva az LP feladatot, 51534 USD lett az éves költség. Egy levélpontban

voltunk, ı́gy ez valódi költséget jelent. Az ABB algoritmus miután bejárta a BB fa

egy részét, azonośıtja az optimális megoldást, amely az 1.1.1.2 csúcsban megtalált

struktúra (4.12 ábra). Az optimális struktúra tartalmazza az 1, 3, és 6 műveleti

egységeket; méretük rendre 50, 75, and 25. Az hőcseréket az 4.14 ábra mutatja.
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4.14. táblázat. A költségfüggvényhez tartozó paraméterek az 1. csúcsban
Változó Együttható cij Változó Együttható cij

Q11 0.5000 QFF15 0.4055

Q21 0.2500 QFF25 0.2231

Q31 0.3465 QFF35 0.2877

Q41 0.2500 QFF45 0.2231

Q12 0.2876 QFF26 0.3466

Q22 0.1823 QFF36 0.5000

Q32 0.2310 QFF46 0.3466

Q42 0.1823 QFF27 0.3054

Q13 0.5000 QFF37 0.4055

Q23 0.2500 QFF47 0.3054

Q33 0.3466 QLF11 0.3466

Q43 0.2500 QLF12 0.2231

Q24 0.5000 QLF13 0.3466

Q44 0.5000 QLF15 0.3054

4.15. táblázat. Potenciális hideg és meleg áramok az 1.1.1.2. csúcsban

Áram T́ıpus Anyag Kezdő hőm. (K) Vég hőm. (K)

S1 meleg M6 363.0 353.0

S2 hideg M3 363.0 343.0

S3 hideg M6 328.0 353.0

4.16. táblázat. Rejtett hő előfordulása az 1.1.1.2. csúcsban

Áram T́ıpus Művelet egység Hőm. (K)

LH1 meleg 3 363.0
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4.12. ábra. Megoldás struktúra az 1.1.1.2 csúcsban.

4.17. táblázat. Meleg és hideg elemi hőáramok az 1.1.1.2. csúcsban

Elemi hőáramok T́ıpus Anyag Kezdő hőm. (K) Vég hőm. (K)

FSH1 meleg M6 363.0 353.0

FSC1 hideg M3 333.0 343.0

FSC2 hideg M6 338.0 343.0

FSC3 hideg M6 343.0 353.0

FSC4 hideg M6 353.0 363.0
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Külsõ hideg forrás

4.13. ábra. Kaszkád diagram a jellemző hőáramokról az 1.1.1.2. csúcsban.

4.18. táblázat. Részhőáramok az 1.1.1.2. csúcsban
Részhőáramok T́ıpus Anyag Intervallum Kezdő hőm. (K) Vég hőm.(K)

SSH1 meleg M6 I4 363.0 353.0

SSC1 hideg M3 I2 338.0 343.0

SSC2 hideg M6 I3 343.0 353.0

SSC3 hideg M6 I4 353.0 363.0

SSC4 hideg M6 I2, I3 338.0 353.0

SSC5 hideg M6 I3, I4 343.0 363.0

SSC6 hideg M6 I2, I3, I4 338.0 363.0
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4.14. ábra. Az optimális struktúrához tartozó hőátvitelek.

Reaktor
Szepar ci

h
á ós

álózat

H , CH2 4

Toluol

Gáz recirkuláció

Toluol recirkul ciá ó

Égetés

Benzén

Difenil

H , CH2 4

4.15. ábra. HDA folyamat diagramja.

4.8. Alkalmazás: HDA folyamat

A szakirodalomban jól ismert probléma kiterjesztésére alkalmazzuk az eljárásunkat.

A HDA (toulene-hydrodealkylation) [22] folyamat magába foglal egy reaktort és egy

szeparációs hálózatot (lásd 4.15 ábra). A reakciók a következők:

Tolulol + H2 → Benzén + CH4

2 Benzén ↔ Difenil + H2

A nyersanyagok a toluol és hidrogén, amelyeket meleǵıtés után a visszavezetett tolu-

ollal összekeverve vezetik be a reaktorba. A reaktorból kijövő anyagáram hidrogént,

metánt, benzént, toluolt és a nem ḱıvánt difenilt tartalmaz. A hidrogént és a metán
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legnagyobb részét kondenzálással kivonják. Az ı́gy kivont hidrogén csak egy részét

vezetik vissza, mert szennyezőanyagként metánt is tartalmaz és a feldúsulás elkerülése

miatt a gáz egy részét elégetik. A termék a benzén, amit a szeparációs rész választ

el a nem ḱıvánt difeniltől és a toluoltól, amit visszavezetnek. A szeparációs rész két

egyszerű (egy bemenet-két kimenet) és két összetett (egy bemenet-három kimenet)

szeparátort tartalmaz (lásd 4.16 ábra).

A reaktor működési hőmérséklete 895K ı́gy a bemenő anyagokat erre a hőmér-

sékletre kell meleǵıteni. A reaktort elhagyó anyagáramot hűteni kell a kondenzáció

miatt. Minden szeparátorhoz tartozik egy kiforraló és egy kondenzáló rész, amely

szintén hőbevitelt vagy hőelvitelt tesz szükségessé. A reaktor exoterm hősźınezetű,

ı́gy hűtést igényel. A rendszer tartalmaz 4 meleg és 4 hideg hőáramot továbbá 6 meleg

és 5 hideg rejtett hőt. A meleg elemi hőáramok száma 14, a hideg elemi hőáramok

száma pedig 48. Ez 48+12 lineáris feltételt jelent a HENS modellben. 105 hideg és 333

meleg részhőáram keletkezett, amely 10227 db potenciális hőcserélőt eredményezett.

Az eljárásunk 96.07 másodperc alatt azonośıtotta az optimális hálózatot egy PC-n

(Celeron 400MHz). Az optimális hálózatot a 4.17 ábra mutatja, amely 7 műveleti

egységet és 18 hőcserélőt tartalmaz.

4.9. Az eredmény rövid összefoglalása

A 4 fejezet a 4. tézispontban megfogalmazott eredményeket tartalmazza.

Az integrált folyamathálózat- és hőcserélőhálózat-szintézis feladat megoldásához

a korlátozás és szétválasztás algoritmus részproblémáinak matematikai modelljében a

hőcserélőhálózat nemlineáris feltételeit kombinatorikus eszközökkel lineárissá transz-

formáltam, ezáltal a feladat megoldhatóvá vált a MILP alapú PNS keretalgoritmussal.
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4.16. ábra. A HDA folyamat maximális struktúrája.
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4.17. ábra. Az optimális hálózatot tartalmazó folyamatábra.



5. fejezet

Új tudományos eredmények

Az értekezés új tudományos eredményeinek tézisszerű összefoglalása.

1. A lineáris feltételrendszerrel adott, változóiban szétválasztható konkáv pro-

gramozási feladat megoldása során felmerülő szétválasztás lépésre két új part́ı-

cionálási stratégiát dolgoztam ki, melyek számı́tásigénye alacsony, és PNS fela-

datokon kedvező tulajdonságokkal b́ırhatnak nagyméretű feladatok esetén. A

két módszer viselkedését gyakorlati példákon illusztráltam.

(a) A szakirodalomból ismert és széleskörűen alkalmazott (Shectman és mun-

katársai [89]) part́ıcionálási stratégiát megvizsgálva bemutattam a part́ıci-

onálási stratégia egyik kedvezőtlen tulajdonságát: a módszer feleslegesen

sok olyan részproblémát generál, ami tartalmazza az optimális megoldást.

Az, hogy az optimális megoldás sok akt́ıv részproblémában szerepel, nagy-

ban megneheźıti a megtalált megoldás optimalitásának bizonýıtását. A

bizonýıtás ı́gy teljes bináris fa bejárását teszi szükségessé, amelynek a

mélysége megegyezik az optimális hálózatban lévő csúcsok számával.

Ennek a kedvezőtlen tulajdonságnak a kiküszöbölésére dolgoztam ki az

úgynevezett ”csúsztatott” szétválasztási stratégiát, amelyben az optimális

megoldást tartalmazó részproblémákat nem sokszorozzuk meg. A PNS fe-

ladatok megoldására ez különösen jól használható. A módszer helyességét

bizonýıtottam.

(b) Kidolgoztam egy új szétválasztási stratégiát, amely a célfüggvény és a

relaxációs függvény integrálkülönbségét minimalizálja, ezáltal a relaxáció
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élességét maximálisra növeli. Bizonýıtottam a módszer helyességét.

2. A lineáris programozási feladat érzékenységi vizsgálatát felhasználva új eljárást

dolgoztam ki a lineáris feltételrendszerrel adott, változóiban szétválasztható

konkáv programozási feladat megoldására.

(a) Megadtam a lineáris feltételrendszerrel adott, változóiban szétválasztható

konkáv programozási feladat egy elégséges optimalitási kritériumát.

(b) Új eljárást dolgoztam ki a lineáris feltételrendszerrel adott, változóiban

szétválasztható konkáv programozási feladat megoldása során felmerülő

szétválasztás lépésre. Az eljárás a 2a tézispontban megfogalmazott opti-

malitási kritériumon alapulva végzi a részproblémák part́ıcionálását, illetve

a terminális részproblémák meghatározását. A megfogalmazott algoritmus

helyességét igazoltam.

3. A lineáris feltételrendszerrel adott, változóiban szétválasztható konkáv pro-

gramozási feladat megoldására kidolgoztam a szakirodalomban ismert korlá-

tozás és szétválasztás alapalgoritmus kombinatorikusan gyorśıtott változatát.

A kombinatorikus gyorśıtások elsősorban a PNS feladatok megoldására hatéko-

nyak, de ritka mátrixszal adott, jól struktúrált feltételek esetében is jól alkal-

mazhatók.

(a) A Friedler és munkatársa által kidolgozott P-gráf módszert felhasználva

elkésźıtettem a lineáris feltételrendszerrel adott szeparábilis konkáv prog-

ramozási feladatot megoldó algoritmus kombinatorikusan gyorśıtott válto-

zatát.

(b) PNS feladatokra bevezettem a lokálisan optimális struktúrák fogalmát,

amely lehetővé teszi az optimális megoldások mellett szuboptimális me-

goldások meghatározzását. Kidolgoztam a kombinatorikusan gyorśıtott

algoritmus egy változatát, amely képes ezen szuboptimális megoldások ge-

nerálására.
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4. Az integrált folyamathálózat- és hőcserélőhálózat-szintézis feladat megoldásához

a korlátozás és szétválasztás algoritmus részproblémáinak matematikai modell-

jében a hőcserélőhálózat nemlineáris feltételeit kombinatorikus eszközökkel line-

árissá transzformáltam, ezáltal a feladat megoldhatóvá vált a MILP alapú PNS

keretalgoritmussal.
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