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Kivonat

Globalis optimalizalasi algoritmusok PNS feladatok
megoldasara

A dolgozatban a folyamathalézat-szintézis feladat fontos osztdlyainak megoldédsara
alkalmas moddszereket vezetiink be. A vizsgalt feladatok NP teljesek, az altalanos
megoldé modszerekkel gyakorlati feladatok megoldasa belathaté idén beliil nem le-
hetséges, ezért a célunk olyan specializalt megoldé moédszerek létrehozéasa, amely ki-
hasznaljdk a PNS feladatok tulajdonsagait.

Eloszor a PNS feladatosztaly konkav célfiiggvénnyel kibovitett linearis modelljét
vizsgaljuk. A kapcsolédé modell egy linedris feltételrendszerrel adott, valtozéiban
szétvéalaszthaté konkav programozasi feladat, melyek megoldasara a korlatozas és
szétvélasztas modszerét valasztottuk.

A megoldas soran felmeriil6 szétvélasztas 1épésre hatékony és egyszertien kiszamit-
haté particionalasi stratégiakat mutatunk be, amelyeket Osszehasonlitunk korabban
bevezetett modszerekkel.

A korabbi particionalasi eljarasokkal ellentétben a korlatozasi 1épésben hasznélt
kozelito linearis programozasi feladat érzékenységi vizsgalatdaval figyelembe tudjuk
venni a konvex poliéder és a célfliggvény viszonyéat. fgy egy olyan optimalizaléasi
eljarashoz jutunk, amely kihasznalja a PNS feladatokhoz kapcsolodé feltételrendszer
tulajdonsagat.

Egy P-graf jol reprezentalja a PNS feladathoz kapcsolodé modell valtozoi kozott
1év6 fliggdségi kapesolatokat. A kombinatorikusan gyorsitott algoritmus a valtozdk le-

hetséges értékeinek particionalasaval parhuzamosan egy P-grafon végez miiveleteket,
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és igy javitja a modszer hatékonysagat.

Valés rendszerek esetében sokszor az adott tipust matematikai modellben nem
lehet kifejezni a rendszer Osszes tulajdonsiagat. Kivanatos lenne, hogy az optimaélis
megoldason tul az els6 N legjobb megoldast is meghatarozzuk, amelyekbdl a fel-
hasznalé tovabbi megfontolasok alapjan ki tudja véalasztani a megfelel6 strukturat.
Az altaldnos megkozelitésben az ilyen szuboptimalis megoldasok nem értelmezhe-
tok, viszont a kombinatorikus eszkozok lehetové teszik, hogy megfelel6en definialjuk,
és algoritmikus moédszerekkel generaljuk az ilyen optimalis megoldashoz kozeli me-
goldasokat.

Integréalt folyamat- és hdcserélohalozat-szintézis soran a teljes folyamat- és ho-
cserélohalézat szintézise azonos idoben torténik, ellentétben a szekvencialis modsze-
rekkel, ahol a kiilonbo6z6 szintézis 1épések egymas utéan torténnek. Konnyen lathato,
hogy az ilyen stratégia nem vezet kielégité megoldashoz, hiszen pl. az optimélis
folyamathéalézat meghatarozasakor figyelmen kiviil hagyjék a hécserével kapcsolatos
informaciokat.

A dolgozat bemutat egy vegyes egész linearis programozasi modellen alapuld
modszert, amely a Friedler és munkatarsai altal bevezetett ABB algoritmuson ala-

pul, és megoldja az integralt szintézis feladatot.



Abstract

Global optimization algorithms for solving PNS prob-
lems

Algorithmic methods for solving important classes of Process Network Synthesis
(PNS) problem have been elaborated. The examined problems are NP hard, solving
industrial size problems with general solution methods is not possible within a rea-
sonable time. Therefore our aim is to create specialized algorithmic methods exploit
the nature of PNS problems.

The PNS problem with concave cost function can be considered as a separable
concave programming problem. Efficient partition strategies have been introduced for
solving the separable concave programming problem. By the help of the sensitivity
analysis of the relaxed linear programming problem, the relationship between the
convex polyhedron and cost function can be taken into account. As a result an
efficient optimization method utilizing the characteristics of the PNS problems have
been elaborated.

A combinatorially accelerated algorithm has also been proposed. In line with the
partitioning the feasible domain it performs operations on the corresponding P-graph
and improve the efficiency.

Solving practical problems the first N-best solution is to be generated beyond the
optimal solution thus enabling the user to select the suitable structure under further
consideration. New methodology has been introduced which enables us to determine

adequately and generate suboptimal solutions close to the optimal one.
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During the integrated synthesis of process and heat-exchanger networks, the pro-
cess synthesis and heat-exchanger-network synthesis are performed simultaneously.
The dissertation introduces a method, which is based on the algorithm ABB intro-

duced by Friedler and colleagues and solves the integrated synthesis problem.



Abstrakt

Globale Optimierungsalgorithmen zur Losung von
PNS-Problemen

Algorithmische Methoden zum Losen wichtiger Klassen von Problemen der Pro-
zess-Netzwerk-Synthese (PNS) wurden entwickelt. Die untersuchten Probleme sind
NP hart. Es ist unmoglich, Probleme im industriellen Mafistab mit allgemeinen
Losungsmethoden in absehbarer Zeit zu losen. Daher ist es unser Ziel, spezielle algo-
rithmische Methoden, die die Natur der PNS-Probleme ausnutzen, zu entwickeln.

Ein PNS-Problem mit konkaver Kostenfunktion kann als ein trennbares konkaves
Programmierungsproblem betrachtet werden. Effiziente Partitionsstrategien werden
vorgestellt, um das trennbare konkave Programmierungsproblem zu losen. Mit Hilfe
einer Sensitivitatsanalyse des vereinfachten linearen Programmierungsproblems kann
die Beziehung zwischen dem konvexen Polyeder und der Kostenfunktion betrachtet
werden. Darauf aufbauend wurde eine effiziente Optimierungsmethode erarbeitet, die
die charakteristischen Eigenschaften des PNS-Problems ausnutzt.

Ein kombinatorisch beschleunigter Algorithmus wurde ebenso vorgeschlagen. Par-
allel zum Partitionieren der ausfithrbaren Domain, werden Operationen am damit
verbundenen P-Graph durchgefiithrt und somit die Effizienz gesteigert.

Neben der optimalen Losung muss die erste N-beste Losung generiert werden, die
es dem Verwender ermdglicht, die entsprechende Struktur geméss weiterer Uberlegung
zu wahlen. Eine neue Methode wurde entwickelt, die das Optimieren und Erzeugen

von suboptimalen Losungen in der Nahe des Optimums erméglicht.

Xiv
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Bei der integrierten Synthese von Prozess- und Warmetauscher-Netzwerken wer-
den die Prozesssynthese und die Warmetauscher-Netzwerk-Synthese simultan durch-
gefithrt. Die Arbeit stellt eine Methode vor, die auf dem ABB-Algorithmus basiert.
Dieser ABB-Algorithmus wurde von Friedler und Kollegen eingefiihrt und 16st das

integrierte Synthese-Problem.
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1. fejezet

Bevezetés

Egy feldolgozé rendszerben a rendszer az anyagok kémiai, fizikai és bioldgiai transz-
formacidjan keresztiil allitja elé a kivant termékeket a meglévo nyersanyagokbol ki-
indulva. A rendszerben 1év6 transzforméciokat a miiveleti egységek végzik, melyek
bemeneti anyagokat alakitanak at kimeneti anyagokka. A miveleti egységek és a
kozottiik lehetséges kapcesolatok egy héaldzattal reprezentalhatok. A kivant termékek
eloallitasa gyakran az adott halozat egy részhaldzata altal torténik. Egy hélézatnak
sok részhalozata van, mely képes az adott termékek eloallitasara. A melléktermék-
kibocsatas, energia- és nyersanyagfogyasztas nagyban fligg magatol a részhalozat ki-
valasztasatol, ezért az optimalis halézat vagy struktira kivédlasztasa mind gazdasagi,
mind kérnyezetvédelmi okokbdl igen fontos. A folyamathalézat-szintézis (Process
Network Synthesis, PNS) célja ezen optimélis struktirdk meghatarozésa.

A hécserélohalézatok (HENS) szintézise az egyik legfontosabb teriilete a folyamat-
tervezés tudomanyanak. Az utobbi idében az egyik legintenzivebben kutatott tertile-
tek kozé tartozik, tobb szaz publikacié jelent meg e témaban az elmult évtizedekben.
Fontossaga annak is tulajdonithatd, hogy a vegyipari rendszerek miikodési koltsége-
inek jelentos része az energiakoltség, ezen beliil is a héenergia, amelynek a hasznosi-
tasa kiemelten fontos.

Integrélt folyamat- és hocseréléhalézat szintézis soran a teljes folyamat- és hdcse-
rélohélézat szintézise azonos idében torténik, szemben a szekvencidlis modszerekkel,
amikor el6szor meghatarozzak magat az optimalis folyamathalozatot és utdna az
optimalis hdcserélohalozatot. Konnyen lathatd, hogy ez nem vezet optimalis me-

goldashoz, hiszen az optimalis folyamathélozat meghatarozésakor figyelmen kiviil



hagyjak a hdcserével kapcsolatos informécidkat.

Célom a meglévo altalanos megoldé modszereknél hatékonyabb modszerek kidol-
gozasa volt, amelyet a vizsgalt feladatosztaly specidlis tulajdonsdgainak kihaszné-
lasaval értem el. Az altalam kifejlesztett modszereket a PNS feladatok bizonyos
tipusainak megoldasara dolgoztam ki, amelyek mas feladatok megoldasara is ked-

vezoen viselkednek.

Szakirodalmi attekintés

A szakirodalomban a szintézis feladatot a bevezetésben megfogalmazott altalanossag-
ban nem vizsgaljak, csak a fontos feladattipusokat kiilon-kiilon. Ennek megfeleloen a

szakirodalom attekintését fejezetenként targyaljuk.

Sajat eredményeim kiemelése

A dolgozat tartalmi részében mindvégig tobbes szam elsé személyt hasznalok. Annak
érdekében, hogy a dolgozatban elkiilonitsem mésok szakirodalombdl ismert ereménye-
itol sajatjaimat, masokéra a szerzok nevével hivatkozom, sajatjaimat pedig minden
fejezet és a dolgozat Osszefoglalasaban egyes szam elso személyben egyértelmiien meg-

fogalmazom.

Jelolésjegyzék

A dolgozatban kicsi (dltaldban indexelt), latin (illetve idénként gorog), délt betiikkel
Tiy Y, Vs 3, (valés) szdmokat jeldliink. Kivételt képeznek ez aldl az f, f;, f,
Ii, g, gj,-.. betlik, amelyeket fliggvények jelolésére hasznalunk. Az i, j, k és I
indexekre utalnak. Az m a (P) feladat feltételeinek, mig az n a véltozéinak a
szamara utalnak. A dolt, latin nagybetiik A, B, ... matrixokat, mig a kalligrafi-
kus, latin nagybetiik A, P, ... halmazokat jelolnek. Valés elemli halmazok pontjai,
egyenlitlenségrendszerek valtozoi, korlatjai illetve métrixok oszlopai (sorai) mind-—

mind vektorok, jeloléstikre vastag latin kisbettiket x, b, 1, u, 0, a;, ... haszndlunk. A



valés szamok halmazat IR, az n-dimenzids euklideszi teret R", mig az m x n-es valds

matrixok halmazat IR ™ jeloli. A csupa egyesbdl &ll6 vektort jelolje e.



2. fejezet

Folyamatszintézis: PNS feladatok

Jelen fejezetben a folyamatszintézis feladatosztdly alapveté definicidit ismertetjiik.
Attekintetjiik a szakirodalmat, tovabba bemutatjuk a Friedler és munkatarsai altal

bevezetett kombinatorikus technikat.

2.1. El6zmények, a szakirodalom attekintése

A hélézatszintézis egyik f6 nehézségét annak kombinatorikus jellege okozza, hogy
a lehetséges alternativak nagy szama miatt optimaélis struktira meghatarozasa igen
szamitasigényes. A [22] dolgozat becslése szerint egy dtlagos halézatszintézis feladat
10° — 10 alternativat tartalmazhat.

A korabban kidolgozott matematikai modszereken alapulé eljardsok nagy része
altalanos matematikai programozasi modszereket alkalmaznak a folyamathalozat-szin-
tézis feladat megoldasara: [24], [33], [55], [58], [98], amelyek a folyamathalézat-szinté-
zis kombinatorikus jellege miatt altalaban egy vegyes egész matematikai programozasi
feladat megoldasat jelenti, példaul Benders dekompozicié [58], kiilsé kozelités [23],
[24]. A [30] Osszefoglaldst nyujt a folyamathaldzat-szintézisben hasznalt globélis op-
timalizaldsi médszerekrSl. A [72], [90] dttekint6 frdsokat ad a hdlézatszintézis téma-
korébol.

Egy ipari méretii feladat megoldasa oridsi szamitasigényti, az altalanos mddszerek
nem hasznéljak ki a folyamathéalézat-szintézis feladat strukturaltsagat, ezért haté-
konysaguk igen alacsony. A moddszerek egy része heurisztikus szabalyokat alkalmaz

a szamitasok gyorsitasa érdekében, ez viszont nem garantdlja a globalis optimum
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megtalalasat.

Kifejezetten folyamathalézat-szintézis feladatok megoldasara a [83] szerz6i dolgoz-
tak ki egy modszert. A targyalt modszer a feladat kombinatorikus tulajdonsagait leird
logikai Gsszefiiggéseket haszndlva javitja a keresés hatékonysdgat. A [8]-ban a szerzék
bebizonyitottdk, hogy a graftechnikdn alapulé kombinatorikus technika (lasd [37])
levezetheté a [83]-ban vézolt logikai kifejezésekbdl. Kombinatorikus mddszereket,
részben a branch-and-bound technikat, részben dinamikus programozast alkalmaz:
[34], [35]. Médszeriik azonban nem teljesen altaldnos, a feladatot részproblémékra
bonto szétvalasztd 1épés nem fiiggetlen a feladattol.

Az evoliciés médszerek [45] alapvetd tulajdonsaga, hogy a megoldas menete soran
egy lehetséges megoldasbdl kiindulva, azt javitasok sorozatéval fejlesztik, mindig
megtartva egy aktudlis megoldast és igy érik el az optimélis vagy a kozel optimalis
megoldast. A javité 1épések alapjan hatarozzak meg az aktualis struktirabdl kiin-
dulva egy lépéssel elérhetd Gsszes lehetséges struktirat, majd azok kozil kivalasztjak

a legjobbat.

2.2. Matematikai modell PNS feladat leirasara

Fejezetiinkben Friedler és munkatarsai altal kidolgozott PNS definiciét és a hozza

kapcsolddé matematikai modellt ismertetem [36].

2.2.1. Folyamat (Process) graf

A halézatszintézis feladatok reprezentalasara az altalanos iranyitott grafok alkalmat-
lanok. Az alkalmatlansdg abbdl ered, hogy az egyszerii graf nem tesz kiilonbséget az
anyagok és a miiveleti egységek kozott, igy a rendszer leirdasa sokszor nem egyértelmii.

Legyen M objektumok véges halmaza, altalaban ezek kiillonbozé anyagok vagy
anyagok fajtai, melyek transzformaciéin keresztil érjik el a kivant célt. Egy transz-
forméaciot ugy értelmeziink, mint valamilyen hozzarendelést, amely az M egy részhal-
mazahoz rendeli az M egy masik részhalmazat. A miiveleti egységek reprezentaljak
ezen transzformaciokat. A miiveleti egységek az anyagokon keresztil kapcsolédnak

egymashoz, ezen kapcsolatok egy iranyitott paros graffal irhatok le.



Definici6 2.2.1 Legyen M véges halmaz, O C p(M) x (M) és M N O =0, ahol
o(M) az M halmaz hatvanyhalmaza. Az (M, O) part folyamat grdfnak (Process
graph) vagy P-grifnak nevezzik. A csicsok halmaza M U O az élek halmaza A =
A1 U Ay, ahol

A = {(x,)Y):Y =(a,0) € O, x € a},

A, = {(Y,2):Y =(a,8) € O, z € [}

Az (M, O") P-grif részgrifia az (M, O)-nak azaz (M',O") C (M, 0), ha M' C M
és O C O. Az (My,0y) és (Ms,Os) P-grdafok unidja azaz (My, O1) U (Ms, Os)
legyen az (MiUMy, O1UQs) P-grdaf. Ha (o, 3) € O akkor a a bemeneti anyaghalmaz
és 3 a kimeneti anyaghalmaz. Jelolje w=(V), (w™(V)) a 'V csicsba bemend (kimend)
élek halmazdt és w(V) = w= (V)UwH (V). Legyen d= (V) = |w= (V)|, dT(V) = |wH (V)|
és d(V) = [w(X)].

A 2.1 dbra egy P-gréfot abrazol, az anyagpontokat (mq,ma, ..., my;) korok, a miive-

leti egységeket (01,02, ...,07) vizszintes vonal jelzi.

2.2.2. A folyamatszintézis altalanos modellje

Legyen P az el6allitand6 anyagok (termékek) halmaza, R a nyersanyagok halmaza, és
O ={01,09,...,0,} arendelkezésre all6 miiveleti egységek halmaza. Tovabbd legyen
M = {mqy,mso,...,m} a miiveleti egységekhez kapcsol6dé anyagok véges halmaza.
A kovetkezd feltételek teljesilnek: PNR =0, P C M, O C p(M) x p(M) és
MNO =10. Jelolje (M, O) a problémédhoz kapcsol6dé P-grafot.

Legyen adott az (M, O) graf egy részgrafja és legyen minden 1 < j < n-re y; = 1,
ha a részgraf tartalmazza o;-t és legyen y; = 0, ha nem, igy egy (y1, ya, . - ., y,) bindris
vektor egyértelmiien meghatarozza részgrafban 1évo miiveleti egységeket. Feltehetjiik,
hogy a részgraf nem tartalmaz izolalt anyag tipusu csucsokat, igy az y indikator vektor

egyértelmiien meghatarozza a részgrafot.



2.1. abra. P-graf.

Vezessiink be a hélézatban 1évo élekre és cstcsokra vonatkozé feltételeket. Legyen
A = {aj,as,...,a,} az élek halmaza és xy (kK = 1,2,...,r) az a; élhez rendelt fo-
lytonos valtozo, amely az élen athaladé anyag mennyiségét jelenti. A ¢ fiiggvény
rendelje hozzd az élhez, vagy az élek egy halmazahoz a megfelel6 valtozok halmazat.
A p(aiy, iy, ...y a5) = (T3, Ty, ..., 75,) teljesiil, {a;,, a4y, ..., a;,} C A-ra. Végil z;
jelolje az o; (j = 1,2,...,n) miveleti egységhez rendelt valtozot, amely a miveleti
egység méretét jellemzi.

Az o; miveleti egységhez kapcsolodé feltétel illetve a koltség a kovetkezo:
95y oW (07)), p(w™(05)), 2) <0, j=1,2,...,m, (2:2.1)

fj(ij So(wi(oj))v SO(WJF(O]'))’ Zj)7 .] = 17 27 (7 (222>

ahol f; és g; fuggvények altaldban differencidlhatok rogzitett y; értékre.

Hasonléan az m; anyagponthoz kapcsolédo feltételrendszer és koltség a kovetkezo:

gi(p(w™ (my)), e(wh(my))) <0, i =1,2,...,1, (2.2.3)



file(w™(my)), o(w*(mi)), i=1,2,....1
A gyakorlatban ¢’ és f’ édltaldban linedris. A ¢’ reprezentalja az anyagegyensily
feltételeket, illetve mennyiségi és minéségi kovetelményeket az adott anyagra. Az f

koltségfiiggvény lehet példaul a nyersanyagkoltség stb.

PNS feladat

Legyenek M = {my,ma,...,m} és (P, R,O) adottak, ahol P, R és O nemiires
halmazok, tovabbd O = {01,09,...,0,}. Tegyiik fel még, hogy PNR = 0, P C
M, R C M, O C pM)xpM),és M= ,scoladUpB). APNS feladatot a
kovetkezoképpen fogalmazhatjuk meg.
min Z fj(yj7gp(w_(oj))790(w+<0j))7zj)+
}

je{1,2,...n
> flew (ma), p(w(my)))
ie{1,2,...1}
feltéve, hogy (2.2.4)

IN

95 (W5, (W™ (0)), (w™(05)), ;) 0, j=12...,n

gi(p(w™ (my), plwt(my) < 0,i=1,2,...,1
zj < My;, j=1,2,...n
y; €{0,1}, 2 >0, i=12...n

Itt M € R egy megfelelden véalasztott nagy szam.

Az (M, O) graf egy részgrafja szorosan kapcsolédik a 2.2.4 modellt kielégité me-
golddshoz. A kordbban emlitettek szerint a részgraf leirhaté egy (yi,ya, ..., yn) vek-
torral. Nyilvanvaléan nem minden (y1,y2,...,yn), (y; € {0,1},i = 1,2,...,n) vek-
tor definial valés folyamatot. A valédi folyamatot definidlé struktirak rendelkeznek
néhany kozos kombinatorikus tulajdonsaggal, amit explicite tartalmaz a 2.2.4 mo-
dell. Ezen tulajdonsigokat figyelembe vételével az (M, Q) részgréafjainak halmaza
redukalhaté a kombinatorikusan lehetséges megoldasok halmazara. A redukélas mér-
tékére jellemz6, hogy példaul egy 35 miiveleti egységbdl allé ipari feladatra a le-
hetséges részgrafok szdma 23° ~ 3.4 x 10'°, szemben a 3465 szam1 kombinatorikusan

lehetséges strukturak szaméval. A feladat részletes lefrdsat a [39] targyalja.



Definicié 2.2.2 Legyen adott a (P, R,O) hdrmas, tovabbd legyen az (M’, O") P-grif
az (M, Q) P-grif részgrdfja. (M, O) részgrdf kombinatorikusan lehetséges struktira
(réviden lehetséges struktira), ha a kévetkezd négy feltétel teljesiil.

(S1) P C M, azaz minden végtermék reprezentélva van a grafban.

(S2) Vo € M',d (z) = 0 <= x € R, azaz egy anyag tipusu csucsnak pontosan

akkor nincs bemenete, ha nyersanyagot reprezental.

(S3) Vu € O, 3 1t [u,v],(M',O)-ban, ahol v € P, azaz minden miiveleti egység

tipusu cstcstdl vezet Ut a terméket reprezentdld anyag tipusi csicsig.

(S4) Ve € M', F(a, ) € O melyre z € a U 3, azaz ha egy anyag tipusu csics
része a grafnak, akkor kell lennie legaldbb egy bemenetének vagy legalabb egy

kimenetének egy miiveleti egység tipusu cstucs felol illetve felé.

A kombinatorikusan lehetséges struktirak halmazat S(P, R, O)-val jeloljik.

Megemlitiink néhény Osszefliggést a megoldas strukturakkal kapcsolatban, a bi-

zonyitdsok [36]-ben megtalalhatdak.

Definici6 2.2.3 Tegyiik fel, hogy S(P, R, Q) # 0, akkor az dsszes kombinatorikusan

lehetséges struktira unidjat jelolyik p(P, R, O)-val. Azaz,

WP, RO)= |J =@

c€S(P,R,0)

A p(P,R,O) struktirdt mazimdlis struktirdnak nevezziik.
Tétel 2.2.1 Az S(P,R,O) halmaz zdrt az uniora.

Kovetkezmény 2.2.2 u(P,R,0) € S(P,R,0).

2.2.3. PNS feladat linearis modellje

Eloszor a folyamatszintézis egyik alapmodelljét vezetjik be, ahol a feltételrendszer
és a célfiggvény linearis. Az alapmodell kiindulasnak tekintheté az altalanosabb

nemlinedris modell megoldasa felé.
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Miiveleti egység modell

Az el6z6 fejezetben bemutatott altaldnos PNS modell (2.2.4) egy-egy miiveleti egység
(or € O) koltsége a kovetkezo:

fe(2r, uk) = ar yi + biz,

ahol a koltségfiiggvény miikodési és beruhazasi koltséghdl tevodik Ossze:

I Ib
ay = Oay + ———— e , by = Oby, + k

Oay, : a miikodési koltség allando része,

Oby, : a miikodési koltség a miiveleti egység méretétdl fliggd része,
lay : a beruhazési koltség allandé része,

Ib;, : a beruhdazasi koltség a miiveleti egység méretétdl fiiggo része,

Mivel a koltség fliggetlen az illeszkedo élektdl, igy azt nem jeloltiik a fliggvény para-

méterei kozott.

A (2.2.1) egyenletben szereplé g : {0,1} x RP — RI-beli fiiggvény, ahol p =
d(or) + 1. A ¢ természetesen fiigg a modelltél, jelen esetben ¢ = d(oy).
Legyen ag egy él, amely op-ra illeszkedik, azaz a, = (my;,0r) € w™ (o) (vagy

Qs = (Okami) € w+(01€))7

Is(Yrs (W™ (0r)), (W™ (0k)), 2) = 0, as € w(og)

A miveleti egység mérete és az illeszkedd élek folyamvaltozéi kozotti kapesolatot

definidlja a kovetkezo képlet:

s (Y (W™ (0r)), (W™ (0k)), 2) = Thize — s, a5 € W(0k) (2.2.5)

Az r; a miveleti egységre jellemz6 paraméter. Nevezetesen ry; az m; anyag mennyi-
sége, amelyet az oy, egységnyi kapacitdssal valo miikddésekor fogyaszt as = (m;, o) €

w™ (o), illetve termel a, = (ox, m;) € w (o).
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Anyagponthoz tartozo feltételek

A P-graf altalanos modelljében egy anyaghoz rendelheté koltség és feltétel. Legyen

m; € M, akkor az m; anyagponthoz tartozo koltség:

07 m; € M \ R,
Ci Zasz(mi,ok)Ew‘*(mi) Ts, My € Ra

ahol C; jelenti az egységnyi tomegli m; anyag koltségét.

Az anyagokra vonatkozé feltételek (lasd kordbban a (2.2.3) egyenletek) a koztes
anyagokra meghatarozzak az anyagegyensulyt (azaz egy anyaghdl a fogyasztott meny-
nyiség nem lehet tobb, mint a termelt mennyiség), tovabba a nyersanyagokra és ter-

mékekre vonatkozd korlatokat.

gile(w™(ma)), gilp(w™ (my))) = > Tj = > Tj+pi — S
aj=(m;,0)€wt (m;) aj=(0g,m;)Ew™ (Mm;)
Felhasznélva a miiveleti egység modellt (lasd kordbban a (2.2.5) egyenlet) a feltétel a

kovetkezo formaba irhato:

gi(p(w™(ma)), gi(p(w™ (ms))) = > ThiZk — >, Trizk + Pi — Si-

aj=(m;,0)Ewt (m;) aj=(0k,m;)Ew™ (Mmy)

(2.2.6)

Az s; > 0 a rendelkezésre all6 m; € R nyersanyag mennyisége (s; = 0, ha m; ¢ R)

és p; > 0 az m; € P termékre vonatkozo legyartando anyagmennyiség alsd korlatja
(p; =0, ham; ¢ P).

Hasonléan felhasznalva a miiveleti egység modellt (lasd kordbban a (2.2.5) egyen-

let), a koltség is a kovetkezd formaba irhato:

/ — + O) m; € M \ R
filp(w™ (my)), p(w™ (my))) = (2.2.7)
Ci ZaS:(mi,ok)ew+(mi) Thizk, M; € R.

A PNS linedris modelljébél kikiiszoboltiik az élekhez tartozé véltozékat. Osszefoglal-
juk modelliinket:

min Z 1i(y;, 25) + Z Ci Z TkiZk
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feltéve, hogy

Z Thi 2k — Z reize +pi— 8 <0, 1=1,2,...,1

(mi,ox)EwT (m;) (og,mi)Ew(m;)

ZJSMyJ, jzl,Q,H

y; €{0,1},2,>0, j=1,2,....n (2.2.8)

Egy PNS feladatban a miiveleti egységek az anyagpontokon keresztiil kapcsolodnak
egymashoz, a kapcsolédds abban az értelemben lokalis, hogy egy miveleti egység
altalaban nincs kapcsolatban az oOsszes tobbivel. Ez a tulajdonsag nagyban kihat
magdara a matematikai modellre, hiszen a modellben a valtozok a miiveleti egységekhez
kapcsolédnak, a feltételek pedig a pontokhoz kotheték. Kijelenthetjiik, hogy az

egyiitthaté matrix ritka, amely a megoldé mdédszerek szempontjabdl fontos.

Szemléltet6 példa

Tekintsiik a kovetkezé példat. M = {my,...,mi1}, R = {ms, my, mg, myo, my1},
P ={mi}, O={o01,09,...,07}.
Miiveleti egységek legyenek a kovetkezok:
or = ({ms}, {m1,me}), 02 = ({ma}, {m1,ma}), o3 = ({ms, me}, {ms}),
o1 = ({mg, mr},{ms,ma}), 05 = ({mz,ms}, {ma}), o6 = ({mo}, {me}),
o7 = ({mao, mur}, {ms}).
A P-graf reprezentaciot a 2.2 dbra mutatja. Az abran feltiintettiik a miiveleti

egységekhez kapcsolédod r;; paramétereket is.



m, n,

2.2. abra. A szemléltetd példa P-graf abrazolasa.
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A 2.2.8 modell szerint a kovetkezo anyagegyensily feltételeket kapjuk:

—rnz1 —raize +p1 <0
—T9229 < 0

r1321 — 13323 — T4324 < 0

B

(=2
M Y N N~ Y N Y N N~

T94%9 — T4a24 — T5425 < 0

3

(

(

(

(
r3523 — 85 <0 (
73623 + T4624 — T1621 — Te6%6 < 0 (
rarza +re7zs —s7 <0 (

5825 — rogzr <0 (

Te926 — S9 < 0 (

rr027 — S10 < 0 (mag

rrzr — 11 <0 (mn

Az egyenlGtlenségek mellett zardjelben feltiintettiik, hogy mely anyagra vonatkoznak.
Miel6tt értelmeznénk az egyenleteket, rendezziik at ket 1gy, hogy a negativ eldjelii

tagokat vigyiik at az egyenl6tlenség masik oldalara.

p1 < T1121 + ro1ze
0 <7z

r1321 < 13323 + 14324

A

To429 X T4aZy + T5425

(

(

(

(
T35z3 < S5 (M3
3623 + T4624 < T1621 + Te626  (

Tarza + 75725 < 87 (
5825 < rogzr
T69%6 < Sg  (

r7 1027 < S0 (Mg

r71zr < su (ma
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Vegytik észre, hogy egy ryjzi, szorzat az o, miveleti egység altal egységnyi id6 alatt
fogyasztott vagy termelt anyagmennyiséget jelenti. Az egyenletek bal oldalan az adott
anyagbol elfogyasztott mennyiség, a jobb oldalon pedig a termelt mennyiség szerepel.

A paraméterek meghatarozasa soran a dimenzidkat megfelel6en kell megvélasztani.
A mennyiségek egy idétartamra vonatkoznak, példaul a nyersanyagra vonatkozé fel-
sékorlat t/év-ben lehet megadva, vagy a miiveleti egységekre a miikodési koltség is
egységnyi mérethez és egységnyi idétartamhoz van meghatarozva.

Egy grafban négyféle anyagtipusi cstcs létezik: nyersanyag, termék, koztes anyag,
melléktermék. Csoportonként nézziik végig ez egyes egyenlotlenség tipusokat.

Melléktermékre (ms) vonatkozé egyenletek dltaldban elhagyhatok, kivéve ha nincs
valamilyen kikotés a kibocsédjtédsara vonatkozdan. A melléktermékek halmaza kénnyen
meghatarozhaté (olyan anyag tipusu pontok, amelyek nem termékek és csak bemend
éleket tartalmaznak), igy ezen egyenleteket a modellgeneralds folyaman figyelmen
kiviil hagyhatjuk. Létszik, hogy az (ms) egyenlet valéban elhagyhaté. Trividlisan
teljesiil, hiszen roy és zo is nemnegativ.

A termékekre vonatkozo egyenleteknél a bal oldalon szerepel az adott anyagbol a
miveleti egységek altal felhasznédlt anyagmennyiség és a p; legyartandé mennyiség. A
pi-t agy tekinthetjik, mint egy fogyasztast, amit igymond ki kell vinniink a rends-
zerb6l. Megjegyezziik, hogy az axiémédk (2.2.2 definicié) nem tiltjdk a termék fo-
gyasztdsat. Példaul az (mq) egyenlet garantélja, hogy a o és o altal termelt my
anyag mennyisége nagyobb vagy egyenl6, mint a kivant p; mennyiség.

Koztes anyag esetén a feltétel szerint nem fogyasztunk tobbet egy anyaghdl, mint
amennyit termeliink. Az (mg3) egyenletben a baloldalon ri3z; mennyiség az o, éltal
adott id6 alatt ms-bol fogyasztott mennyiséget jelenti. A jobb oldal az o3 és o4 altal
termelt ms mennyiséget jeloli.

A nyersanyaghoz kapcsolodé egyenleteknél az egyenlétlenség jobb oldalan jelenik
meg az s mennyiség, ami egy kiils forrast jelent. A korabban targyalt axiomak
(2.2.2 definicid) szerint nyersanyagot nem termeliink, azaz a jobb oldalan csak a
rendelkezésre all6 s mennyiség allhat. A bal oldalan az adott anyaghbdl a miiveleti
egységek dltal idéegység alatt felhasznalt anyagmennyiség szerepel. Példaul az (mr)
feltétel kimondja, hogy az o4 és az o5 altal fogyasztott m; anyag r4724 + 75725 mennyi-

sége nem lehet tobb, mint a rendelkezésre all6 s.
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Rendeljiink értékeket a megfelel6 paraméterekhez. Itt most év az idoegység és a

megtériilési évek szama 3. A 2.1 és 2.2 tablazatokban a paramétereket ismertetjiik,

a nem jelolt paramétereket tekintsiik zérusnak.

2.1. tablazat. Koltségparaméterek a miiveleti egységekre

Miiveleti ~ Beruhazasi koltség Miikodési koltség
egység  Allandé  Valtozé  Allandé  VAltozé a b
01 1500 210 250 100 750 170
05 1800 270 1000 100 1600 190
03 900 180 600 200 900 260
04 3000 90 1500 120 2500 150
05 900 570 800 200 1100 390
06 750 120 500 130 750 170
o7 600 120 120 100 320 140

2.2. tablazat. Paraméterek az anyagokra

Anyag P s C
my 100 0 0
ms 0 10000 700
my 0 10000 1100
ms 0 10000 400
M1 0 10000 500
miy 0 10000 700
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Az RK métrix tartalmazza az r;; (i =1,...7, j =1,...,11) paramétereket.

2 0 3 0 0 1 O OO0 O O
1050150 0 0 00 0 O
o o0 2 0 1 2 0 00 0 O
RK=|0 0 1 1 0031700 0 0
o o o0 3 0 0 2 10 0 O
o 0 o0 0 o0 1 0 01 0 0
o 0o 0 0 0 0 0 20 12 08

A kovetkez6 programozasi feladatot kapjuk:

min 750y, + 17021 + 1600y, + 19025 + 900y3 + (260 + 700) 23+
2500y, + (150 + 1870)z4 + 1100ys + (390 + 2200) 25 +
750y + (170 + 400) 2 + 320y7 + (140 + 1160) 27

feltéve, hogy

-2 -1 0 0 0 0 O
—100
3 0 -2 -1 0 0 O
Z1 0
0o 15 0 -1 =3 0 O
29 0
o o 1 o0 0 0 0
Z3 10000
-1 0 2 03 0 -1 0
24 S 0
o o o 17 2 0 0
25 10000
o o o o0 1 0 =2
26 0
o o o o0 o 1 0
27 10000
o o0 o0 o0 0 0 12
10000
0o 0o 0 0 0 0 038

zi > 0, yiE{l,O}, i1=1,...,7

Megoldva a feladatot az optimalis struktira az o, 03, 0g miveleti egységeket
tartalmazza (azaz y; = 1, y3 = 1, y¢ = 1). A méretiik, z; = 50.0, z3 = 75.0, z5 =
100.
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PNS mint konkav szeparabilis programozasi feladat

A linedris modell altalanosabb esete, amikor a muveleti egység koltségét egy konkav
figgvénnyel irjuk le. Gyakorlatban a mitveleti egységek mérettdl fliggd fajlagos
koltsége a méret novelésével csokken, ami egy a konkdav fliggvényekre jellemzo tu-
lajdonsag. A konkav fliggvények hasznalataval modelliink jobban leirja a valds kolt-

ségeket, mint a korabban bevezetett linedris koltségfiiggvény:

Ji(2h, yk) = ax yi + brzy, (2.2.9)

aholae R, 0 <a<1, a, €R, ap >0, b € R, by > 0. Gyakorlatban az a« = 0.6

hasznalatos. Késobbiekben ezen modell lesz vizsgalatunk egyik f6 targya.

2.3. Kombinatorikus algoritmusok PNS feladatok

megoldasahoz

Fejezetiinkben Friedler és munkatérsai altal kidolgozott kombinatorikus alap algorit-

musokat mutatjuk be.

MSG algoritmus

A kombinatorikusan lehetséges strukturdk halmaza véges, és zart az uniéra (lasd
2.2.1 tétel), ha ez a halmaz nem iires, akkor létezik maximélis struktira, melynek min-
den kombinatorikusan lehetséges struktira részhalmaza. A Friedler és munkatarsai
altal kidolgozott MSG algoritmus [38] a maximadlis strukturat, u(P, R, O)-t generélja

polinomialis id6ben.

SSG algoritmus

Az SSG algoritmus [39] lehet6vé teszi az 6sszes kombinatorikusan lehetséges struktira
generalasat. A kombinatorikusan lehetséges strukturak generalasdhoz alternativ don-

téseket vagy dontések sorozatat kell végrehajtanunk. A dontések miveleti egységek

/////
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Minden terméket legaldbb egy miiveleti egységnek kell gyartani. Hasonléan le-
galdbb egy miiveleti egységnek kell gyartani egy olyan anyagot, amelyet egy korabbi
dontés soran bevett miuveleti egység fogyaszt. A nyersanyagokra ez természetesen
nem vonatkozik.

A dontések soran vigyaznunk kell arra, hogy az egyszer mar kizart miiveleti
egységeket egy masik dontés soran mar nem valaszthatjuk be. Az inkonzisztens
dontések elkeriilése érdekében a miveleti egységeket harom osztalyba soroljuk: a
bevalasztott miveleti egységek halmaza, a kizart miveleti egységek halmaza és a
még nem dontott miiveleti egységek halmaza.

Aktiv halmaznak hivjuk az anyagok azon halmazat, amelyek el6allitasarol donteni
kell. Kezdetben az aktiv halmaz a termékeket tartalmazza. Egy dontés soran meg-
hatarozzuk az anyagot eldallitani képes miiveleti egységek koziil azokat, amelyek az
adott strukturaban el6éllitjdk az anyagot. Az igy kivalasztott miiveleti egységeket
bevalasztjuk a struktiraba, a tobbit pedig kizarjuk.

Dontés utan frissitjiik az aktiv halmazt. Azokat a nem nyersanyagokat, amelyeket
mar bevélasztott miiveleti egység fogyaszt és még nem volt rajtuk dontés, hozzaadjuk
az aktiv halmazhoz.

Azokat az anyagokat, amelyek gyartasarél mar dontottiink, kivessziik az aktiv
halmazbdl. Amikor a konzisztens dontések eredményeként az aktiv halmaz tiressé
valik, a bevalasztott miiveleti egységek reprezentaljak megoldést.

A dontések sorozata ellentmondéshoz is vezethet, és elofordulhat, hogy egy aktiv
halmazban 1év6 anyagot el6allité miiveleti egységek koziil korabban mar mindet ki-
zartuk.

A dontések Osszes lehetséges sorozatanak leszamlalasaval minden megoldasstruk-
tara eloallithato. A dontések Gsszes lehetséges sorozatat ugy abrazolhatjuk mint egy
iranyitott fagrafot. A pontok az anyagokon végzett dontések, a kimend élek pedig a
lehetséges dontési alternativak. A fa levélpontjai az inkonzisztens részproblémak és

a kombinatorikusan lehetséges strukturak.



20

ABB algoritmus

Az ABB algoritmus [40] képes a kombinatorikusan lehetséges megolddsokbdl a koltség
szerinti optimalis megoldast kivalasztani. Az eljaras az el6z6 fejezetben ismertetett
SSG modszeren alapszik. Az eljards a korlatozéas és szétvalasztds (BB) keretalgo-
ritmusra épiill. A kiilonbség az SSG-hez képest annyi, hogy egy dontés elott egy
korlatszamitasi eljarast hajtunk végre, amely a részproblémahoz egy alsé korlatot
rendel. Az alsékorlat alapjan torolhetiink részproblémékat. Az ABB algoritmus az
SSG -hez tartozo fagraf egy részét generalja ki. Az algoritmus annal hatékonyabb,
minél kisebb az igy bejart fa, amit dontéen a korldtozasi eljarasban meghatarozott

alsé korlat élessége hataroz meg.

RSG algoritmus

Egy miiveleti egység kizarasa maga utan vonhatja mas miiveleti egységek kizarasat
is. Az RSG algoritmus meghatdrozza és kizarja ezeket a miveleti egységeket. Leg-
gyakoribb eset az, amikor egy miiveleti egység kizarasaval olyan diszjunkt részgrafok
keletkeznek, ahonnan nem vezet irdnyitott it a termékig (lasd a 2.2.2 definiciéban az

S3 sériilése).



3. fejezet

Szeparabilis konkav optimalizalas
PNS feladatok megoldasara

A PNS feladatosztély konkav fliggvénnyel kibovitett modellje egy linedris feltételekkel
adott szeparabilis konkav programozési feladat (1dsd a (2.2.8) modellt és a (2.2.9) cél-
fiiggvényt). Egy PNS feladathoz kapcsolddo feltételrendszer magan hordozza a PNS
feladat strukturaltsagat, melyet az altalanos megoldék nem tudnak figyelembe venni.
Célunk, hogy ezen tulajdonsagok figyelembevételével a korabbinal hatékonyabb me-
goldé moédszereket dolgozzunk ki.

Tekintsiik a kovetkez6 szeparabilis, konkav optimalizacios feladatot
min ) 7, f;(z;)
Ax<b (P) (3.0.1)
I<x<u

ahol az A € R™*" matrix, a b € R™, 1,u € R" adott vektorok, f; : R — R konkav
fiiggvények. Legyen tovabba

A={xeR": Ax<b} é T={xeR":1<x<u}

halmazok, amely metszeteként eléall a (P) feladat megengedett megoldasainak a hal-
maza, azaz D = AN 7. Megjegyezzik, hogy korabban a PNS linearis modelljében
(lasd korabban (2.2.8)) a miiveleti egységekhez tartozé z valtozokat itt x-el jeloljik.
A (P) feladat érdekességét az adja, hogy a legegyszeriibb nem konvex optima-
lizalasi feladatosztélyba tartozik. Elmondhatjuk, hogy a (P) feladat NP-teljes [75].

Fontos elméleti tulajdonsidga az, hogy az optimélis megoldésa a D poliédernek egy

21
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csucsdban is felvétetik [69] s6t, ha az f; fiiggvények szigortan konkavak, akkor az

optimum csucsban van.

Allitas 3.0.1 A (3.0.1) feladat optimuma a D poliédernek eqy extremdlis pontjdban

is felvétetik.

Bizonyitas. Legyen x,y € D, 0 < A < 1. Mivel f konkdv és nemlinearis, igy a

kovetkezd igaz:

FOx+ 1 =Ny) > f(x)+ (1= A) fly) =2 min{f(x), f(y)}

Tehat, ha X € D nem extremalis pont, akkor 1étezik x1,x5 € D, hogy X = %xl + %XQ,
amibél az f(x) > min{ f(x1), f(x2)} adddik. O

3.1. Szeparabilis konkav programozas szakirodal-

manak attekintése

A linearis feltételrendszerrel adott szeparabilis konkav minimalizaldsi probléma&ahoz
még szamos gyakorlati kérdés vezet. A teljesség igénye nélkiill megemlitiink néhany
olyan miiszaki tervezéssel kapcsolatos problémat, amely a (P) optimalizalasi fela-
dattal irhat6 le: bizonyos irdnyitdselméleti feladatok [3], konkav hatizsdk probléma
(73], termelési és szallitasi feladatok [60], termelési folyamatok tervezése [67], egyes

hélozati folyamfeladatok [100], létesitmények optimalis elhelyezése [92], stb.

A konkav szeparabilis programozasi feladat fontossaganak megfeleléen igen gaz-
dag szakirodalma van. A szakirodalomban napjainkig ismertetett médszerek harom f6
csoportra oszthatdk: extremdlis pontok bejardsa, metszo sik médszerek és korlatozas
és szétvalasztds (Branch-and-Bound, BB) mdédszerek. A BB mddszereket targyaljak
a kovetkezé cikkek: [4], [11], [29], [61], [68], [81], [88], [89]. Cstics leszamldldsi
eljarasokkal foglalkoznak példaul a [5], [27] és [26] dolgozatok. A metsz6 sik eljarasok
bemutatdsat a [9], [49], [82] és [95] munkdkban taldljuk meg. El6fordulnak még
egyéb mddszerek is, mint pl. a spline kozelités [59] vagy BB és metsz6sik médszer

kombindldsa [9].
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A BB tipusu algoritmusok egyik kritikus lépése a részfeladatok generalasa, ez
nagyban befolyédsolja az optimalis megoldas megtalaldsat és a modszer hatékonysagat.
Az eljarasok egy része hipertéglatestet haszndl a részfeladatok generalasara. Kiilon-
bozé felosztasi strartégidkat targyalnak a [16], [17], [84], [85], [86] kozlemények. Az

[50] szerzdje egy a szimplexeken alapulé particiondlédsi stratégiat mutat be.

3.2. Altaldnos algoritmus

Az algoritmus (3.1 4bra) egy Branch-and-Bound (BB) keretalgoritmusra ([1], [53],
[63]) tdamaszkodik. Egy BB eljaras ismertetésekor beszélntink kell a f&bb 1épésekrél:

ezek a részprobléma definicid, a korlatozasi és szétvélasztasi 1épések.

3.2.1. Részprobléma

Tekintsiink egy
T’“:{xe]R”:l’“gxgu’“}gT

hipertéglatestet és a hozza tartozo
D'=ANTFCD

halmazt, ahol 1 < 1¥ < u* < u. Ekkor a

n

min Z (s
min 3 i)

feladatot a (P*) részproblémanak nevezziik.

3.2.2. Korlatozas

Az alsékorlat meghatarozasa a korldtozas és szétvélasztds mdodszerének (BB) az alap-
veto 1épése. Az alsékorlat pontossaga nagyban meghatarozza az algoritmus konver-
genciajanak a sebességét.

Legyen (P*) egy részprobléma a hozzédtartozé T* hipertéglatesttel, és legyen

DF=ANTFA£0(
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Korlatozés és szétvalasztas keretalgoritmus: a téglatest mdédszer

Bemend6 adatok:
m,n €N
AcR™™ beR™ LLueR"é1<u
f:R"™ - R konkév fiiggvény
k=0, L=—-00, U=00
A={xecR": Ax <b}
T'={xeR":1<x<u}
D' =ANT?
PO =(7° DY)
S ={P%
Kimend adatok:
a (P) feladat optimalis megolddsa X
a (P) feladat optimum értéke U

Begin
while (S # 0)
begin
P¥ = Vilaszt(S);
(U, %, B*) = Korlatozas(P*, x,U, f);
L =minpjcg 67,
if U = L then
x optimalis megoldédsa a (P) feladatnak, STOP;
S = Particiondlas(A, T*, f*, gk, S);
S =8\ {P};
end
End.

3.1. 4bra. Altaldnos algoritmus.
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halmaz.

Az f; konkav fliggvények kozelitése a 7F halmazon

]?] 7art

Tekintsik az f; : R — R konkdv fiiggvények linedris relaxdcijét az [I¥, ul

intervallumon a kovetkezo mddon:

Ff(z;) = cFx;+ df,

ahol
fi(df) = f;5) fi(uh) = f;()
j j J J
aAZaZ

Fj(aj) = ¢y + dj = &y + fi(I5) = 1.
Az f(x) =) fi(z;) fuggvényt az
j=1

PR = 30 FR) = St ()
— —
= ch)TX + (f(lk]) = ()11*) = (") x + ¢
alaki linedris fiiggvénnyel kozelitjiik a D¥ = AN T* halmazon, ahol
5 = (1) — ()T
Ekkor nyilvan
F(x) > FH(x) = (¢h)Tx +

teljesiil barmely x € D* esetén.

Az alsékorlat meghatarozasa

Az alsokorlat kiszamitasara a kovetkezo linedris programozasi feladatot hasznaljuk:

(kT k k
s (c")"x+4 (Prp)-
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Korldtozas

Bemeno6 adatok:
Pk - (Tkv Dk)v )_(a Uu f

Kimeno adatok:
U, x, B*

Begin
szamitsuk ki az F* linearis fliggvényt;
oldjuk meg a (PF,) feladatot;
if D* = () then

begin
B = +o0;
of = +00;
end

else begin
legyen az w* a (Pf p) feladat optimalis megoldasa;

Br = FHwh);
oF = f(wh);
end
if of < U then U = of; x = wF¥;
End.

3.2. abra. A korlatozési eljaras.

A (PFp) feladat optimélis megolddsét jeldlje w¥, és a hozzéatartozé célfiiggvényérték
legyen (% = F*(w*) = (cF)Twk + §*. Ekkor

B < (F)x + 6% < f(x) < F(WF) + (V(h)T (x —wb)

teljesiil barmely x € D* esetén, tehat alsékorldtot adtunk a (P*) részprobléma op-
timéalis értékére. Mig a masodik egyenl6tlenség az f(x) fiiggvény konkavitdsa miatt
igaz, hiszen az

fx) = f@") + (V") (x =) (3.2.1)
linedris fiiggvény az f konkdv fiiggvénynek az w* € DF pontbeli érintdje. A korlatozdsi

eljaras a 3.2 dbran lathato.
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3.2.3. Szétvalasztas

A részproblémékat egy—egy T* hipertéglatesttel definidltuk. A szétvilasztds valamely
adott 7% téglatest ketté vagasat jelenti.!

Szétvalasztasi szabaly

A konvergencia és a végesség szempontjabdl kritikus dolog a ¢ € J vagasi valtozd

k

indexének és a p € [IF, uf] vigdsi pont meghatarozésa.?

Egy téglatest particionalasa

Legyen 7% = {x € R" : I*¥ < x < u*} adott téglatest és legyen p € R, amelyre
k k . . . .
l7 < p < uj teljesiil, valamely j € J indexre.

Kovetkezokben az x; valtozot vdgdsi valtozonak nevezzik, mig a p értéket vagasi

pontnak. A vagas a
THID =[x e TF . lf <z <p} és THID =AIxeTrF.p<a; < uf} (3.2.2)

halmazokat eredményezi, ahol j a vagasi véltozo indexe, k az aktudlis részprobléma
indexe és 1. a jobb oldali, mig 2. a bal oldali téglatestre utal.?

A TH3D ég TH32) hipertéglatestek definiciéjabdl vildgos, hogy
Tk — T(k,j,l) U T(k7j72)7
és a metszetiik a két hipertéglatest (n — 1)-dimenzids kozos lapja lesz, azaz
T(k7j71) m T(k7j72) — {X € Tk : :[/‘J — p}’

igy a T* hipertéglatestnek egy felbontdsat kaptuk. A particiondlasi eljaras a 3.3 4brdn
lathato.

!Esetiinkben a BB eljaras faja, bindris fa lesz.

2Az &ltaldnos médszert sokféle szétvalasztasi szabéllyal miikodtethetjiik, pl. az intervallumokat
csak a célfiiggvény alsé kozelitésére haszndljuk, de a minimalizdlast az eredeti megoldas halmazon
végezzik. Ennek a valtozatnak elénye az, hogy az LP megolddsa mindig eredeti csticspontban van.
Ezzel szemben a hatranya az, hogy idénként relaxalt LP feladat optimélis megolddsa nem esik bele
az intervallumba, igy kapott megoldas nem lesz alsékorldt, hiszen a linearis kozelité fiiggvényiink
csak az intervallumon beliil lesz kisebb, mint az eredeti célfliggvény.

3Ha nem okoz félreértést, akkor egyszeriien 7' és 72 téglatestekrsl beszéliink.
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Particionalas

Bemeno6 adatok:
Aa Tku fk) /Bk7 S
Kimeno adatok:

S

Begin
if U > 8" then
begin
az x; vagasi valtozé meghatdrozdsa,;
a p vagasi pont meghatirozasa;
T' és T? téglatest meghatarozasa;
S=SU{(T', D!, B, (T2, D2, 3)};
end
End.

3.3. dbra. A particionalasi eljaras.

3.2.4. A keretalgoritmus elemzése

A keretalgoritmusnak eddig még nem targyaltuk a Valaszt nevii eljarasat. A Valaszt
eljards azt a P* részproblémat véalasztja ki, amelyre a 3% = L teljesiil.

A Korlatozas eljaras soran a kivalasztott részprobléma LP relaxéltjat oldjuk meg.
Ennek az optimumértékét jeloli 3*. Meghatarozzuk az optimalis megoldés helyén az
eredeti célfiiggvény oF értékét, amely a (P) feladat optimumértékére lesz felsdkorlat.
Végiil az aktudlis L és U korlatokat tsszehasonlitjuk az o és ¥ szamokkal és sziikség
esetén modositjuk azokat.

Az algoritmus kovetkezo 1épése a globalis optimalitds vizsgalata. Ha az aktualis
legjobb megoldas nem elégiti ki ezt a feltételt, akkor a vizsgalt részfeladatot partici-
onaljuk.

A Particionalas eljarasban el0szor a részprobléma alsékorlatjat hasonlitjuk Ossze
a (P) feladat aktudlis fels6korldtjaval. Ha % > U akkor az adott részproblémét
eldobjuk anélkiil, hogy particiondlnank, hiszen a részprobléma az eddig megtalalt
legjobb megoldasnal nem tartalmazhat jobb megoldasokat. A particionalaskor nyert
részfeladatokat tovabbi elemzésnek vethetnénk ala.

Ha a DF = ANTF = (0, akkor ezt a részfeladatot nem kellene hozzdadni a
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feladatok halmazahoz. Ennek az eldontése sajnos egy linearis egyenlétlenségrendszer
megoldéasat jelenti, amely az LP relaxalt megoldasaval egyenértékii.

Masfeldl, ha a D* nem tartalmazza a D egyetlen egy extremalis pontjat sem, akkor
sem kellene hozzavenni a feladatok listajahoz. Sajnos ennek kideritése sem egyszerti,
hiszen a D halmaz Gsszes extremélis pontjanak az ismeretébdl a (P) feladat megoldésa
egyszertien megkaphato lenne.

Az eljaras soran, ha a megengedett megoldés tégla, akkor igaz a kovetkezd allitas:

Allitis 3.2.1 Ha (P*) részprobléma esetén D* = T*, akkor a (PFp) feladat opti-

mumértéke B* nem lehet kisebb az aktudlis legkisebb értéknél.

Bizonyitas. Az eddig megtalalt legkisebb célfiiggvényértéket jelolje U.
A feltétel alapjan
DF=ANTF=T"

A korlatozés 1épésben a (Prp) feladatot oldanank meg, azaz egy n-dimenziés hiper-
téglatest felett optimalizalndnk az F*(x) linedris fiiggvényt. Mivel az optimumérték
valamely csticsban is felvétetik, ezért van olyan optimélis w* megolddsa a feladatnak,

amely esetén

k _ gk k k
w; =1} vagy w; = Uy

teljesiil. Tovabba

n

W) =2 heh) = R =8 20

j=1

hiszen az intervallumok hatarpontjaiban a fiiggvényértékek megegyeznek, azaz
Fi(ly) = fi(ly) & Ff(uy) = fi(uy).

Az egyenl6tlenség pedig azért teljesiil, mert f(w*) > U. O

Ilyen esetekben tehat a részprobléma nem keriil tovabbi particionalasra.
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3.3. 7Csusztatott” particionalasi szabaly

A particionalasi stratégia dontéen befolyédsolja az algoritmus hatékonysagat. Jelen
fejezetben, egy a szakirodalomban ismert [89] vagdsi szabalyt ismertetiink, bemutat-
juk ezen vagasi stratégia korlatait, majd megadjuk a stratégia egy olyan médositasat,

amely PNS feladatok megoldasakor hatékonyabban miikodik.

3.3.1. Xx-particionalas

A Shectman és munkatarsai [89] altal bevezetett particiondldsi stratégiat vizsgaljuk
meg. Vezessiik be a kiovetkezd fiiggvényt: Level(P¥) fiiggvény mutassa a BB fa azon

szintjét, mely a (P*) részproblémahoz tartozik, és legyen N egy pozitiv egész szam.

if ( Level(P*) mod N =0 ) then
J= argmax;c(y n} (Uf - lf)
D= (uf + lf)/Z.O
else
j = argmax;cy oy {filwf) — FF(wh)}
if (x € D* AZ; €]lf,uf[ ) then

pP=1I;
else
p=(uf +1%)/2.0
endif
endif

Minden N-ik szinten 1év6 részprobléma vagasakor a leghosszabb él mentén vagjuk
két egybevago részbe a téglatestet, igy a téglatestek oldalainak hossza zérushoz tart.
Mas esetekben a véagasi valtozo legyen azon valtozd, ahol relaxacios tavolsdg az
LP aktudlis megoldasnél (f;(wF) — FF(wF)) maximalis. Ha az eddigi legjobb me-
goldast tartalmazza az aktualis intervallum, és a vagasra kijelolt iranyban pedig belso
pontként tartalmazza, akkor vagasi pont legyen az eddigi legjobb megoldas x. Ha ez

nem teljestl, felezziik az intervallumot a korabban kijel6lt valtozo szerint.
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3.3.2. Xx konvergencia, végesség

Tekintsiik a BB algoritmus altal generalt BB fat. Tegyiik fel, hogy az algoritmus
végtelen, tehat létezik egy végtelen 7 sorozat, amelyre 79! C T4, azaz a BB faban

létezik egy a gyokérbdl kiinduld végtelen 1t.

A vagasi stratégidbdl konnyen levezethetd a kovetkezo Gsszeftiggés [89):

Lemma 3.3.1 lim, .o (uj—1j) = 0, Vj € {1,...,n}, azaz ¢ — oo esetén a P*

részproblémdt definidlo hipertéglatest oldalainak hossza tart a zérushoz.
Aminek a fontos kovetkezménye a 3.3.2 lemma.

Lemma 3.3.2 lim,_. (f(w?) — F9(w?)) =0, azaz g — oo esetén a P? részprobléma

also korldtja (F1(w?)) tart a részprobléma felsé korlatjdhoz (f(w?)).

A 3.3.2 lemma biztositja az algoritmus konvergenciajat, a 3.3.1 lemma segitségével
viszont meg lehet mutatni, hogy az algoritmus véges idoben azonositja a globalis op-
timumhelyet [89]. A optimélis megoldds megtaldldsa utédn a program a tovabbi parti-
cionaldsokat mar mindig az optimalis megoldds mentén végzi. Egy valtozon egy adott
részproblémaban csak egyszer kell vagast végrehajtani, mert az olyan valtozdkon,
amelyeken mar tortént vagas a megoldasban a linearis kozelités eltérése zérd lesz,
hiszen a vagas utan a pont az intervallum szélére keriil. fgy véges 1épésben a re-
laxacios tavolsag zérussa valtozik, azaz a kordbban megtaldlt megoldas optimalitdsa

bizonyitotta valik.

3.3.3. A moddszer viselkedése

Gyakorlati tapasztalatok azt mutatjak, hogy a (P) feladat megolddsa sordn az op-
timumbhelyet a BB algorimtus elég kordn azonositja. A szamitdas nagy része arra
forditédik, hogy a nyitott részproblémakrdl belassuk, hogy azok nem tartalmaznak
optimalis megoldast, azaz ezen részproblémaékat alsokorlat alapjan el kell tudni vetni.
A hangsulyt tehat érdemes arra fektetni, hogy olyan vagasi stratégiat dolgozzunk Kki,

amely az optimumot nem tartalmazé részproblémakat hatékonyan tudja kezelni.
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Az optimalis megoldasnél torténd particionaldaskor az optimumbhelyet mindkét ke-
letkezo részprobléma tartalmazni fogja. Ezért a Z-particionalési stratégia nagy felada-
tok megoldasa esetében nagy szamitasi és memoria kapacitést igényel, amely nagyon
megneheziti ezen feladatok megolddasat.

Miutan a médszer megtalalta az optimalis megoldast, kettévagja az aktudlis rész-
problémat az optimalis megoldasnal, majd ezen részproblémakat is kettévagja és ezt
folyatja addig, amig valamelyik szabdaly alapjan el nem veti ezen részproblémakat.
Als6 korlat alapjan az ilyen részproblémékat nem lehet tordlni, hiszen azok tartal-
mazzak az optimalis megoldast. Az optimalis megoldédst tartalmazoé részproblémak
elvetése csak akkor torténhet, ha a célfiiggvény also kozelitése a megoldasban pontossa
valik. Egyéb gyorsitasi modszerekkel sem érhetiink el javulast, hiszen az optimaélis
megoldas garantalasa érdekében alapkovetelmény, hogy az optimalis megoldéast tar-
talmazdé részprobléma nem torolheto.

Tehat a médszer felépit egy teljes bindris fat. A fa mélysége fiigg az optimalis
megoldasban szereplé eredetileg nem korlaton 1évé nemlinearis valtozok szamatol.
Ha k£ db nem korldton 1évé nemlinearis valtozot tartalmaz az optimaélis megoldas, a
hozzatartozé bindris fa k mélységli, azaz a 287! — 1 db csticspont van benne, ami a
megoldott LP-k szamat is jelzi. A nyitott részproblémak maximalis szamara is lehet

becslést adni, ami a k& mélységben 1év6 csticsok szama, azaz 2.

Nézziink erre egy példat: egy gyakorlati feladat nemlinedaris véltozdinak szama
elérheti a tobb szazat is. Tegytlk fel, hogy az az optimumban mondjuk csak 50
nem korldton 16v6 valtozé van, ami 2°! — 1 ~ 2 x 10 db LP megolddsit teszi
sziikségessé. A részproblémék szama 2°° &~ 10'° (= millié x millidrd), ha 1 részproblé-
ma tarolasdhoz kb 1 kbyte tar sziikséges, akkor egymilliard gigabyte memoriara lenne
szitkséglink. Az aktudlis LP megoldds mentén torténd vigéas (w vagés [29]) esetében
is hasonlé viselkedésii lesz a modszer, mert a globdlis optimumhely meghatarozasa

utan a szaporodé részproblémak relaxalt megoldasa is a globalis optimumhely lesz.

3.3.4. 7 Cstusztatott” vagasi modszer

Az el6z6 modszer 6 gyengeségét prébéljuk elkeriilni a pozitiv tulajdonsagok meg-

tartasaval. A relaxaciés tavolsdgot prébaljuk csokkenteni gy, hogy a részproblémak
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szamat is tudjuk kozben kezelni. Célunk az, hogy feleslegesen ne néveljik meg az

optimumbhelyet tartalmazé részproblémakat. Legyen a vagasi stratégia a kovetkezo:

if ( Level(P*) mod N =0 ) then
J= argmax;c(y  n} (uf - lf)
p=(uf +1%)/2.0
else
j = argmaxcy_y {fi(wf) — FFwi)}
if (x € D" AZ; €]lf +¢,uj[ ) then

p=2x;—¢
else
p=(uf +1%)/2.0
endif
endif

BN

1

[ N u; X;

3.4. dbra. e-vagas.

Az alapotlet az, hogy az optimalis megoldéds mindig csak az egyik részintervallumban
lesz benne, igy alsokorlat alapjan a masik eldobhato.

Hasonlé moédszerrel taldlkozhatunk az intervallum aritmetikan alapulé optima-
lizalasi eljarasokban az tgynevezett ”clustering” probléma megoldasara. A lapos
helyi minimumok kornyékén a megéllasi kritérium utan ”firtokben” lognak az olyan
részintervallumok, amelyek potencialisan tartalmazhatjak a megoldast. A javasolt

modszer az volt, hogy a feladat megoldasat tobb kezddintervallummal kell megtenni,
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igy egy jol meghatarozott ¢ értékkel megvaltoztatott korlatok miatt sokkal kevesebb

részintervallum fogja csak tartalmazni a helyi minimumokat [56], [57].

Vagasi pont: (z; —¢)

Tekintsiik a 3.4 abrat. Elemezziik, hogy mi torténik az egyes részproblémakkal a
particiondlds utén. Az [I¥,z; — €] esetén az optimum mér nem része a halmaznak
(z; ¢ [I5,%; —¢]). Azaz x; valtozohoz tartozé miiveleti egység miikodése feliilrél
korlatozodott ugy, hogy méar nem képes kielégiteni az igényeket. A hidnyzd igényeket
vagy egy masik miiveleti egység potolhatja vagy egy teljesen mas struktira lesz az
optimalis. Ezek mar szignifikans valtozasok lesznek az optimalis megoldashoz képest,
és nagy valoszintiséggel az alsokorlat alapjan torlodik. Lathatjuk, hogy itt fontos

szerepet kap az a tény, hogy a feltételrendszer egy PNS feladatot reprezental.

Az ¢ meghatarozasa

Legyen € > 0 (€ R) olyan elegendéen nagy mennyiség, mely szerint a bal oldali in-
tervallumhoz ([I}, 7; — €]) tartozd részprobléma megoldashalmazdban nincs benne az
optimalis megoldas. Elméletileg természetesen nincs benne, de az LP megoldé gya-
korlatban valamekkora toleranciaval dolgozik, ennél a tolerancianal kell nagyobbnak
lennie az e-nak.

€ vagas esetében a vagasi pont meghatdrozasa az ; G]lé? + 5,u§?[ feltétel figye-
lembevételével torténik. A z; € [IF,1F + €] esetben tigy tekintjiik, hogy a véltozo
hataron van, és rajta vagast nem hajtunk végre. Ha az Gsszes nem korlaton 1évo
valtozé az [I¥,IF + €] intervallumban van, akkor a részfeladatot megoldottnak te-
kintjiik és elvetjiik. Tehat egy e élhosszusagu hiperkockat ,,hanyagoltunk” el. A
linedris feltételrendszer altal meghatarozott poliéderhez becsiilheté a csicsai kozti
legkisebb tavolsdg. Ha az e érték kisebb ennél a tavolsagnal, akkor a figyelmen kiviil
hagyott részben nem lehet mas csiics. Mivel korabban belattuk, hogy az optimaélis
megoldas a konvex poliéder egy cstucsaban helyezkedik el, igy az ¢ élhosszusdgu hi-

perkocka elhanyagolhaté.
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3.3.5. Konvergencia, végesség

A konvergencia (lasd 3.3.2 lemma) fenndll itt is, mivel a 3.3.1 lemma az 1j végési
stratégiaval is teljesiil.

Az eredeti mddszer végessége abbdl adodik, hogy a globalis optimumot véges
idoben azonositja és az optimumhelyet tartalmazé részproblémakat az optimumnal
vagja ketté. Az optimumnal torténo vagas véges lépésben a relaxacios tavolsagot
zérussa csokkenti. Az optimumot nem tartalmazoé részproblémak lokélis optimuma
a globdlis optimumtdl véges tavolsdgra van. A konvergencia (3.3.2 lemma) eredmé-
nyeként véges 1épés alatt az ilyen tipusi részproblémak alsé korlatjai az optimumnal

nagyobba valnak, és igy ezen részproblémak véges 1épés alatt torlodnek.

3.3.6. Az eredmény rovid osszefoglalasa

A 3.3 fejezet az la tézispontban megfogalmazott eredményeket tartalmazza.

A szakirodalombdl ismert és széleskortien alkalmazott (Shectman és munkatérsai
[89]) particionéldsi stratégiat megvizsgdlva bemutattam a particiondldsi stratégia
egyik kedvezdtlen tulajdonsdgat: a modszer feleslegesen sok olyan részproblémat ge-
neral, ami tartalmazza az optimalis megoldast. Az, hogy az optimalis megoldas sok
aktiv részproblémaban szerepel, nagyban megneheziti a megtaldlt megoldés optima-
litasanak bizonyitdsat. A bizonyitas igy teljes binaris fa bejarasat teszi sziikségessé,
amelynek a mélysége megegyezik az optimalis halézatban 1év6 cstucsok szaméaval.
Ennek a kedvezotlen tulajdonsiagnak a kikiiszobolésére dolgoztam ki az tgynevezett
"csusztatott” szétvélasztasi stratégiat, amelyben az optimalis megoldést tartalmazo
részproblémakat nem sokszorozzuk meg. A PNS feladatok megoldasara ez kiillondsen

jol hasznalhaté. A mddszer helyességét bizonyitottam.

3.4. Maximalis rés particionalas

Egy BB algoritmus hatékonysagat nagyban befolyasolja az alsékorlat élessége. Fe-
jezetiinkben bevezetjiik a maximadlis rés particionalast (lasd 3.5 dbra), amely &ltal

meghatarozott vagasi pont minimalizalja a konkav fliggvény és a linearis kozelités
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3.5. dbra. Maximadlis rés particiondlas.

integralkiillonbségét. Az integralkiilonbség minimalizaldsa garantalja az alsékorlat

élességét és a konvergenciat is.

3.4.1. Vagasi stratégia

Legyen P* a kivalasztott részprobléma. A vagési valtozo kivalasztasa legyen a kovet-
kezo:
| = argmax {fi(wF) — FF(wi)} . (3.4.1)

i=1,...,n

Legyen tovabba p az a vagasi pont, amelyre

p = argsup { f;(t) — FF(t)}. (3.4.2)

te[l;?,u;?]

3.4.2. Konvergencia

Tekintsiik a BB algoritmus altal generalt BB fat. Tegyiik fel, hogy az algoritmus
végtelen, tehat 1étezik egy végtelen 77 sorozat, melyre 79t C 79, azaz a BB faban
1étezik egy, a gyokérbdl kiinduld végtelen tit.

Feltételezziik, hogy f az intervallum minden belsé pontjaban derivalhatd, és a

végpontokban létezik a bal illetve a jobboldali derivalt.

Lemma 3.4.1 Legyen P* egy részprobléma, haszndljuk a (3.4.1) és (3.4.2) parti-

ciondldsi szabdlyokat, és legyen P* és P* az ezutdn kapott részproblémdk. Ekkor
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(a) folytonos eset (b) nemfolytonos eset

3.6. dbra. Az integralkiilonbség folytonos és nemfolytonos esetekre.

teljestilnek a kovetkezok:

Bizonyitas. Tekintsiik a 3.6a abrat. Legyen T3, T5 a megfelel6 paralelogramméak

teriilete, akkor a kovetkezok igazak:

k

p “
/fj—Ff<T1, /fj—Ff<Tz-
ik p
Az egyenlotlenségekbdl kovetkezik, hogy
p p p p p
k1 koL . .. k
fi—Fj' = fj_Fj_§T1< fj—Fj—§ fj—Fj:§ fi—F},
1k 1% 1% 1% 1%

és hasonldan,

uk uk uk uk uk
ko k 1 k 1 k 1 k
fi—Er =L < [ i-F -5 [ =5 i— 1§
p p P p p
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A nemfolytonos eset hasonléan kovetkezik, lasd a 3.6b abrat. a

Tétel 3.4.2 lim, . f(w?) — 8¢ = 0, azaz ¢ — oo esetén a P? részprobléma alsd

korldtja (87) tart a részprobléma felsd korlatjahoz (f(w?)).

Bizonyitas. Két f6 esetet vizsgalunk, amikor f folytonos 79 felett, és amikor nem.

1. f folytonos 719 felett
Tegyiik fel, hogy létezik az indexeknek egy olyan N7 C {1,...,n} részhalmaza, hogy
Vg > K esetén nem torténik vdgds az N, indexhalmazba tartozé valtozékon. Tovabba
feltehetjiik azt is, hogy N; a legb&vebb ilyen tulajdonsdgu indexhalmaz. Ezért 3&; >
0, hogy Vq > K esetén

Vi € Ny, fi(w)) = F(wj) > €1 > 0.

J J

Az {1,...,n} \ Ni-n viszont lesz vigds, tehét a korabbi allitdsunk szerint

ul

Vie{l,...,n}\ Ni-re, fi — ' — 0, ahogy ¢ — oo.

g
Mivel f folytonos 79-n, igy Vj € {1,...,n} \ Ni-re F} — f; pontonként.
Ezért 3 K, > K, hogy q > K, esetén

Vie{l,...,n}\ M, e[l ul],  fi(t)— Fi(t) < er.

J

Vagyis az algoritmus az N halmazbdl fog valasztani vagasi valtozét, de ez ellentmond
annak, hogy Ai-ben ¢ > K-re nem torténik vagas. gy kovetkezik, hogy az NV, halmaz
lires. Azaz

ul

J
Vi e{l,...,n}-re, fi— Ff — 0, ahogy ¢ — oo.

q
lj

oy Vj € {1,...,n}-re F{ — f; teljesiil pontonként. A folytonos esetre az allitdst
belattuk.
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3.7. abra. Particiondlas az l?—tél kiilonb6zo helyen.

2. f nem folytonos 79 felett
Ha az f nem folytonos 79%n, akkor a konkavitds miatt csak a hataron lehet a
szakadési pontja. Legyen D C {1,...,n} a nem folytonos valtozék indexhalmaza.
Az dltalanossag elvesztése nélkiil feltehetjiik, hogy f; nem folytonos l?-ban.
Vizsgaljuk ilyen esetben a vagasok sorozatat. Kiilonboztessiik meg azt az esetet,

mikor a vagas [9-ban térténik és azt amikor nem.

Amikor vdgds 13-ban, tortént.
Ekkor két intervallumot kaptunk:

Az egyik intervallum, ([17,19]) egy pontbdl &ll, igy az a fiiggvény trividlisan folytonos.

q

A masik intervallumon ([I7,u]]) pedig a fiiggvénynek megsziintetjitk a szakaddsét

azzal, hogy a
fi(zy), z; € (1F, uf]

11mt~>l?+ fit) =z = Z?

fi =

fiiggvényt definidljuk, és igy az f;r folytonos lesz (I, uf]-n.
Az f kiillonbozik az f; -t6l az 19 (= 1) pontban, de a minimalizalds miatt ez nem

okoz valtozast az optimumban. fgy ez az eset is visszavezetheto a folytonos esetre.
Tegyiik fel, hogy sosem vdagunk az l;’ pontban.

A 3.7 dbran lathatd, hogy a vagas utan két 1j intervallumot kapunk, az egyiken

p,u?l-n az f; folytonos lesz — s igy ezzel kész vagyunk — és a mdsik intervallumon
J j oLy gy



40

A
fq
7
F
F.q
q__ 10 >
=, uf
4 Jr . e R 0

3.8. dbra. Az f* fiiggvény relaxdciéja az [Ij, ul] intervallumon.

az fj-nek szakadasa van. El6szor megmutatjuk, hogy ez utébbi intervallumok hossza

tart a nullahoz, azaz, u? — l? mialatt ¢ — oo.

Indirekten bizonyitunk. Mivel mindig bels6 pontban vagunk, igy az u? szigoruan mo-
noton moédon csokken, tehat ezek sorozata konvergens. Tegyiik fel, hogy limy_ u? =
+ 0 + R Jr O q . z z
ut(#13). Legyen F'" a relaxdcibja az f;"-nak az [[}, uf] intervallumon (1asd 3.8 dbra).
Az F* > F teljesiil kivéve az u] pontot, ahol ezek egyenlSk. A kovetkezé feltétel
all:

/F+ /Fq
l? lg?
amibdl
! ¥ 7 ut =19
[r-p=[g-rs [roms S - pmy >0 Gy
10 10 19

kovetkezik. Mivel (3.4.3) minden g¢-ra igaz, ezért ez ellentmond annak az éllitasunk-

nak, hogy az integralkiillonbség tart a nulldhoz.

El6z6ekben belattuk azt, hogy az intervallum hossza tart a nulldhoz, vizsgaljuk

meg hogyan viselkedik ekkor a linearis kozelitéstink.

Legyen v; = f;r(l?) — fj(l?). Mivel f; folytonos [I7, uj]-n, ezért Ve > 0, 30, hogy
uf — 15 < d-raa }ff(u?) - f;“(l?)| < ¢ teljesiil. Igy VS €]0 ,vjl-re 3 K7, hogy Vg > K,
esetén

| = fr)| <y — S
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Azaz,
S~ < f ) — (1) <~ S. (3.44)

A (3.4.4) egyenlStlenséghil,
Mivel f;(uf) = f;"(uf), gy adédik az

fiud) = f;7(15) > S

Osszefiiggés.
Mivel uf — 12, igy VS €]0,v;[-re, VM > 0-ra, 3 K», hogy Yq > K>, esetén uf -1 < %
Tehét, ha ¢ > max (K, K3), akkor
(ud) — f. (1
fit) = 15) > M. (3.4.6)

uf — I
teljestil.
Allitjuk a kovetkezot: 4¢ hogy az algoritmus l?—ban fog vagni.
Azaz MaX;eo 1) {£;@®) - F;](t)} az [ pontban veszi fel az értéket. Legyen G =
f9) — Ff és A = SUPyeo e f'(t). 3 melyre L)1)

s A. Legyen F}(v;) =
Czj+ Bj,A>0é A <uj—1.

Fil)+A) = FI(1) + A) < f;(19) + AA — C;A = Gl — B;
= f(5) = F{(5) + (A= C)A
<G.

Hiszen kordbban lattuk a (3.4.6) egyenletben, hogy a C' tetszSlegesen nagy lehet.
Ezzel tételiinket belattuk. a

Tétel 3.4.3 Vg-ra T tartalmazza a globdlis optimumhelyet.

Bizonyitas. Ha a globdlis minimum x ¢ D? = AN 7Y, akkor f(w?) > f(X), igy
g, hogy F(w?) elég kozel van f(w?)-hoz, azaz F4(w?) > f(X), és igy nagyobb, mint
barmelyik legkisebb L als6 korlat. Ez ellentmond annak a feltételnek, hogy mindig a

legkisebb alsé korlattal rendelkezo részproblémét valasztjuk. ]
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A moédszer végessége itt nem garantélt, viszont hivatkozva a [89]-ban vézolt par-
ticiondlasi szabdlyra, ezen véagasi stratégia is kibovithetd ugy, hogy a végesség ga-

rantalhaté legyen.

3.4.3. Az eredmény rovid osszefoglalasa

A 3.4 fejezet az 1b tézispontban megfogalmazott eredményeket tartalmazza.
Kidolgoztam egy 1j szétvalasztasi stratégiat, amely a célfiiggvény és a relaxacios
fiiggvény integralkiilonbségét minimalizalja, ezéltal a relaxacio élességét maximalisra

noveli. Bizonyitottam a moédszer helyességét.

3.5. Egy elégséges optimalitasi kritérium szepara-

bilis konkav minimalizalasi feladatra

Az eddigi szétvalasztési eljarasok a lehetséges megoldasok halmazanak particiond-
lasakor a célfiiggvény és annak linedris relaxacidja alapjan hataroztak meg a meg-
felel6 vagasi pontot. A relaxalt linearis programozasi feladat vizsgalataval egy olyan
stratégia lett kidolgozva, amely a particionaldskor a konvex poliéder és a célfiiggvény
viszonyat figyelembe véve végzi a tovabbi particionalast. A megfogalmazott al-
goritmus helyességét igazoljuk. Az elemzésekhez sziikséglink lesz az LP feladatok

vizsgalata soran hasznalatos néhany jelolésre.

3.5.1. A relaxalt linearis programozasi feladat

A (P) feladat megoldasa soran a korlatozé 1épés egy relaxalt linedris programozasi
feladat megoldasa. A relaxdlt linedris programozasi feladat megoldasdval és a me-
goldasnak az eredeti (P) feladat szempontjabdl torténd érzékenység vizsgalatdval
meg tudjuk adni a (P) feladat egy elégséges optimalitasi kritériumat. Egész pon-
tosan azt tudjuk eldonteni, hogy a relaxalt linearis programozasi feladat optimalis
bazismegoldasa egyben optimalis megoldasa-e a linedris feltételes szeparabilis konkav

minimalizalasi feladatnak is vagy sem.
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A tovabbiakban sziikségiink lesz az egyvaltozds konkav fiiggvények tulajdonsaga-

irél sz6l6 jol ismert &llitasra (megtalalhaté pl. Csdszar A., [18], 228. oldal).

Allitas 3.5.1 Legyen f egyvdltozos figguény, I C Dy intervallum. A kovetkezd

allitasok egyenértékiiek:
(a) f konkdv az I intervallumban;

(b) azx,yel, v+#y esetére bevezetett

fly) — f(x)

m(r,y) = -

jeloléssel, az a, b, c € I, a < b < c esetén
m(a,b) > m(a,c) > m(b,c);
(c) barmelyt € I esetén my(x) = m(t,z) figguény fogyé az I\ {t} halmazon;
(a) aza,b,cel, a<b<c esetén
m(a,b) > m(b,c).
O

A konkav fiiggvények felsorolt tulajdonsagainak a fontos kévetkezménye az aldabbi
allitas (megtaldlhat6 pl. Csészar A., [18], 232. oldal).

Allitas 3.5.2 Legyen f egyvdltozds konkdv figgvény az I C Dy nyilt intervallumban,
ekkor:

(a) az f folytonos az I intervallumban;

(b) az f bdrmely t € I helyen jobbrdl és balrol differencidlhato és

fL(8) = fi(0);
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(¢) haaza,bel, a<b akkor

fila) = m(a,b) = f1(b),

sot, ha az f szigorian konkdv az I intervallumban, akkor

fi(a) > m(a,b) > f(b).

3.5.2. A relaxalt linearis programozasi feladat optimalitasi
kritériuma

Tekintettel arra, hogy a (P) feladat kozelitését leird linedris programozasi feladat
célfiiggvényében szereplo konstans tag nem befolyasolja azt, hogy az optimum hol
vétetik fel, ezért a konstans tagot elhagyjuk a célfiiggvénybdl és a (Ppp) feladatot

részletesen a kovetkez6 alakban irhatjuk ki:

min c’'x
AXSb (PLP).
I<x<u

A (Ppp) feladat megengedett megolddsainak a halmaza megegyezik a (P) fela-

datéval. A (Ppp) feladat optimalis megolddsainak a halmazat jelolje
D ={x*e€D:c'x* <c'x, x €D}

Az elemzéshez sziikségiink lesz a linedaris programozasi feladatok vizsgalata soran

haszndalatos néhany jelolésre. Ezeket vezetjitk most be.

Jelolje J a (Ppp) feladathoz tartozé véltozdk és "slack” véltozdk indexhalmazét,
legyen Jp C J az optimalis bazis valtozéinak az indexhalmaza és Jy a bazison kiviili
valtozdk indexei. Ekkor az {a; : j € Jp} vektorok linedrisan fiiggetlenek. Nyilvan
J =JpUJn.

Jelolie J4 € In (J¥ C Jn) azon nem bédzisban 1évé véltozdk indexhalmazdt,

amelyek alsé (fels6) kortdton vannak. Természetesen JLUJTY = Ty (és TpNIn = 0).
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Legyen A = [B7!A], és jeldlje a cp vektor, a ¢ vektornak a Jp indexeire torténd
megszoritasat.

Valamely x € D vektor esetén, ha X bazis megoldasa a (Prp) feladatnak, akkor
L<zZ <u barmely 7 € Jp,
T, =1 barmely i € J%,

T; = Uy barmely i € Jy.

Ennek kovetkeztében, ha ismert a J indexhalmaz (Jg, Jk, J%) particidja, akkor a

bézis valtozdk értékeit az
XpB :B_lb— Z ljf:lj— Z Ujf_ij
JeTL JETN
képlettel szdmithatjuk ki, ahol az a; vektor az A métrix j. oszlopvektora.

A (P p) feladat optimalitasi kritériuménak a felirdsdhoz hasznos lesz a dudl feladat
megfogalmazdsa
max —b’y +17z — u’s
~Aly+z—-s=c (Drp),
y>0, z>0  s>0
és jelolje D = {(y,z,s) : —ATy+z—s=c,y >0,z >0, s > 0} a dual megengedett
megolddsok halmazat. Egyszertien felirhatjuk a (Ppp) és (Dpp) feladatokhoz tartozé

gyenge dualitas tételt.
Allitas 3.5.3 Bdrmely x € D és (y,z,8) € D vektorok esetén
c'x > —bTy +17z —u's
egyenlotlenség teljesil és egyenldség pontosan akkor dll fenn, ha
0=c'x+bly—1"z4+uls=y"(b—Ax)+z"(x - 1) +s"(u—x). 0

Ezek utédn a (Prp) és (Dpp) feladatokhoz tartozé (sziikséges és elégséges) optima-

litasi kritériumot az aldbbi médon adhatjuk meg
Ax<b, 1<x<u
—Aly4+z—-s=c, y>0,z>0,s>0
yI(b-—Ax)=0, z'(x-1)=0, s’ (u—x)=0.
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Feltéve az x* € D} megoldasrdl azt is, hogy valamely B bazishoz tartozik, ekkor

y* =cEB™! > 0. Az optimalitasi kritériumot felhaszndlva azt kapjuk, hogy
e j€Jp, lj <z} <wujesetén z; =0 és s; = 0 teljesil és igy
—afy = Cj
o jcJi, lj = a7 esetén z; > 0 és s; = 0 teljesill, tehdt
zj=c¢; + aJTy >0
e j € JyN, uj =1 esetén z; = 0 és s; > 0 teljesiil, tehat

—sj:cj+ajTy§0

adodik. A fentiek alapjan azt kapjuk, hogy az x* € D lehetséges bazismegoldas

pontosan akkor optimaélis, ha

y*=cEB™' > 0, (3.5.1)
—cEBta; < ¢ barmely j € Ji és (3.5.2)
—cpB'a; > ¢ barmely j € Jy (3.5.3)

index esetén.

3.5.3. Elégséges optimalitasi kritérium

Ebben a részben megfogalmazzuk és igazoljuk a (P) feladat elégséges optimalitdsi

kritériumat a D halmaz extremalis pontjara, bazismegoldasara nézve.

Definidljuk azt a ‘H halmazt, amely megadja a linearis kozelit6 fiiggvények valami-
lyen modon eloallithaté egytitthatoit. A ‘H C IR™ halmaz kés6bb igen fontos szerepet
kap vizsgalatunk soran.

A H halmaznak olyannak kell lennie, hogy ha elméletileg ismernénk a H halmaz
elemeihez tartozé Osszes linearis programozasi feladat megoldasat, akkor az eredeti

(P) feladatnak is meg kell tudjuk hatdarozni az optimalis megolddsiat. Ha ez nem



47

teljestilne, akkor eleve reménytelen lenne egy ilyen feladatot alsé linearis kozelitésen
alapulé moédszerekkel megoldanunk.

El6szor a 'H halmazrol dltalanossagban beszéliink és legfontosabb tulajdonsagait
hasznaljuk, majd pedig kés6bb megadunk olyan — lehetéleg minél sziikebb — halma-
zokat, amelyek tartalmazzak a H halmazt.

A kovetkez6 lemméban igazoljuk, hogy a (P) feladat x optimdlis megoldasahoz
tartozik egy h € R" vektor, amely esetén a relaxalt linearis programozasi feladat

optimalis megolddshalmazanak az x eleme, azaz x € Dy..

Lemma 3.5.1 Legyen adott a (P) feladat. Jeldlje X a (P) optimdlis megolddsdt, azaz
f(X) = mingep f(x). Ekkor

f(x) = min f(x),

xe€D
ahol az f(x) = (Vf(X)T(x — %) + f(X), a (3.2.1) képlettel definidlt affin (linedris)

fugguény.
Bizonyitas. A kovetkez6 egyenl6tlenség az f fliggvény konkavitasa miatt teljestil,

fx) < f(x) = (V) (x = %) + f(%),

és egyenldség csak a % pontba all fenn, azaz f(X) = f(X). Tekintsiik azt a linearis

programozasi relaxdciét amelynél az f(x) a feladat célfiiggvénye. Ekkor

f(x) = min f(x) < min f(x) < f(%) = f(%)

xeD xeD

amibdl a

adodik. O

A lemma feltételezi az f; derivalhatésagat a [l;, u;] intervallumon. Koénnyti meg-
gondolni, hogy az f; nem derivdlhat6 pontjaiban a szuperderivaltak halmazdnak tet-

sz6leges pontja is megfelelé az f valasztésakor.

Vagyis megmutattuk, hogy létezik olyan h célfiiggvény vektor, amely esetén a re-

laxalt linedris programozasi feladat optimalis bazismegoldasa, a (P) feladat optimalis
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megoldasa is egyben. A H halmaznak tehat tartalmaznia kell a lemmaban hasznalt
V f(x) vektorokat, ahol x € D.

Barmely x € D lehetséges megoldashoz elkészithetjiik a
Cs={ceR": ac kielégiti a (3.5.1)—(3.5.3) feltételeket} (3.5.4)

halmazt. A Cp, az olyan célfiiggvény egyiitthatokat tartalmazza, amelyek esetén a B

béazissal adott x lehetséges megoldas optimalis megoldasa lesz a

xeD

min ch} (P.)

linearis programozési feladatnak. Természetesen a Cp halmaz nem iires. Konnyen
igazolhaté a kovetkezd allitas, amely a szepardbilis konkav minimalizalasi feladat

valamely linedaris programozasi feladattal torténd kozelitésérol szol.

Allitas 3.5.4 Legyen adott azx € D lehetséges bazismegoldas, a B bdzissal, és legyen

h € Cp, akkor az X optimdlis bdzismegolddsa a

. T .
min h x} (Py,)

linedris programozdsi feladatnak, azazx € Dj, ahol D; jeldli a (P) feladat optimdlis

megoldasainak a halmazdt. a
Ebbdl az is kovetkezik, hogy
ha H CCp, akkor xe€0Dj (3.5.5)

teljesiil, barmely h € H esetén.
Készen éllunk arra, hogy a (P) feladat elégséges optimalitasi feltételét megfogal-

mazzuk és igazoljuk.

Tétel 3.5.1 Tekintsik a (P) linedris feltételes szepardbilis konkdv minimalizdldsi fe-
ladatot és tegyik fel, hogy az f; figguények szigorian konkdvak. Legyen X € D egy
olyan B bazissal adott lehetséges bdzismegoldas, amely esetén H C Cpg teljesul. Ekkor

D* = {x}.



49

Bizonyitas. Mivel H C Cp, ezért x € Dj teljesiil, barmely h € H esetén. Masfeldl
tudjuk, hogy a (P) linedris feltételes szeparabilis konkav minimalizaldsi feladatnak
létezik olyan globdlis X minimuma a D halmazon, amely extremalis pontja a megen-
gedett megolddsok halmazanak, vagyis bazismegoldasa a feltételeknek. Tegyiik fel,
hogy x # X.

Legyen h = V f(X). A 3.5.1 Lemma miatt X € D, masfeldl h € H C Cp miatt

az X € D teljestl. fgy fennall a kovetkezo

f&) = f(x) = f(x) > f(%). (3.5.6)
Ami ellentmondéshoz vezet, vagyis x = X, amib8l D* = {x} addédik. a

A szigori egyenlotlenség a szigoru konkavitési feltételbdl adédik. Ha a 3.5.1 Tétel
feltételei koziil elhagyjuk a szigori konkavitdsi megkotéseket, akkor a (3.5.6) egyen-

16tlenség a kovetkezo alaku lesz:
Fx) = f(%) = [(%) = f(%) > [(%),
és ekkor f(x) = f(x) teljestil, tehdt az x € D*, de nem biztosithat6 a |D*| = 1.

Ezzel belattuk, hogy a (P) feladat egy B bazishoz kapcsolédé x € D bazismegol-

dasanak az elégséges optimalitasi kritériuma a

H C Cp.

Degeneralt bazismegoldas

Jelolje Cx azon célfiiggvény egyiitthatok halmazat, amelyre az X optimalis megoldasa
lesz a mingep c?x linedris programozasi feladatnak.

A primal degenerélt bézis esetén a meghatarozott Cg halmaz sziikebb lesz, mint a
csucsponthoz tartozé Cx halmaz, igy ha az optimalitasi kritérium all a Cg halmazra,
akkor ez igaz lesz egy Cp-nél bovebb Cx halmazra is.

Ha tobb informaciot szeretnénk osszeszedni, akkor akar exponencialisan sok, ugyan-
azt a csucsot leiré bazissal kellene dolgoznunk, ami az amugy is nehéz feladatot egy
masik szempontbdl tenné nehézzé. Egy primal degeneralt bazisbol dolgozva az lehet

a gond, hogy mar optimélis a megoldasunk, azaz ‘H C Cg, de mivel mi csak Cp-t
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ismerjiik, ezért nem tudunk az optimalitas kovetkeztetésére jutni. Ez 6sszhangot mu-
tat a linedris programozasi feladat elemzésekor kapott eredményekkel (lasd [10], [42],
[74]).

3.5.4. A H halmazrdl

A 'H halmaz (alsd) kozelitéseket tartalmaz, ezért szoros kapcsolatban van az f fiigg-
vény derivaltjaival (szuperderivélt is lehet), hiszen a Lagrange kozépérték tétel miatt
minden als6 kozelitéshez 1étezik egy pont, ahol az alsé kozelités meredeksége a pont-
beli derivalt.

Az optimalitds vizsgdlata a konvex Cp poliéder és a H halmaz tartalmazasanak,
illetve altalaban a két halmaz egymaéshoz val6 viszonyanak a vizsgalata. A H halmaz
meghatarozasakor azt is figyelembe kell venni, hogy a viszony konnyen vizsgalhato
legyen.

A 'H halmaz meghatédrozéaséara tekintsiik példaul az f fliggvény derivaltjainak (szu-
perderivéltoknak) az értékkészletét a D halmaz felett. Ha f szigortan konkav, akkor

f; derivéltja szigorian monoton csokkend, igy van neki g; inverze. Ekkor az

F={y:Agly)=b & l<g(y) <u}

halmaz az f derivaltjanak értékkészlete D halmaz felett, ami jé6 H halmaznak. Az
F bonyolult strukturaju halmaz lehet, és a tartalmazas eldontése hasonléan nehéz
feladat lenne, mint a (P) feladat megoldasa.

Megtehetjiik, hogy az F halmazndl bovebb halmazt véalasztunk a H halmaznak
ugy, hogy struktiraja egyszeriibb lesz, mint az F halmazé.

Nyilvanvald, hogy a 'H meghatdrozasat az f fliggvény tulajdonsagai (szigori kon-
kavitas, differencidlhatésag stb.) jelentsen befolyasoljak. Masfel6l, ha a H halmaz
struktiraja bonyolult (nem poliéder), akkor a H C Cp Osszefiiggést ellendrizni igen
nehéz lehet. Ezért érdemes a ‘H halmazt tartalmazd, de egyszert struktiraju (pl.
hipertégla) célfiiggvény-egyiitthaté paraméterhalmazt meghatarozni. Ha csak a (P)

feladat adataira tamaszkodunk, akkor a

Hy={heR": h; € [fj (u), fi ()]}
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halmazt tudjuk definidlni és nyilvdn H C H; teljesiil. Ha azonban valamely x &
D lehetséges bazismegoldas esetén szeretnénk meghatarozni a relaxalt linedris pro-

gramozasi feladatok széba jové célfiiggvény-egyiitthatoit, akkor a
Hrx ={h e R": h; € [d},c}]}
halmazban gytjthetjik Ossze a célfiiggvény egytitthatdkat, ahol

v m(l;, z3), v # 1 és 1 _ m(x}, u;), Ti # Uy
! (), kiilonben ’ fi(uy), kiilonben

A 3.5.1 és 3.5.2 allitasok alapjan
fi-(ug) < ¢ = m(z5,u5) < m(ly, 75) = ¢f < fi, (1) (3.5.7)

egyenl6tlenségek teljesiilnek, igy Hyx € Hy, azaz az X € D bazismegoldasbdl nyer-
het6 informaciot felhasznalva a relaxalt programozasi feladatok célfiiggvény egyiitt-
hatéinak egy sziikebb halmazat tudtuk meghatarozni. Philips és Rosen cikkiikben
[81] a Hyx halmazt vezették be.

A Hyx C Cp feltételbdl nem kovetkezik a H C Cp, ezért a Hyx C Cp mint

elégséges optimalitasi kritériumot a kovetkezo 3.5.2 tételben fogalmazom meg.

Tétel 3.5.2 Tekintsik a (P) linedris feltételes szepardbilis konkdv minimalizdldsi fe-
ladatot és tegyiik fel, hogy az f; figguények konkdvak. Legyen X € D egy olyan B

bazissal adott bdzismegoldds, amely esetén Hyx C Cp teljesil. Ekkor x € D*.

Bizonyitas. Legyen x a globélis optimuma a (P) feladatnak, és tegyiik fel, hogy
X # X teljesiil. Legyen

S={xeR" : min{z;, 7} <x; <max{Z;,z;},i=1,...,n}

hipertégla. Az x € S és x € S teljesiil, tovabba elmondhatd, hogy mindketté az S
hipertégla egy-egy csticsa (extremalis pontja). Legyen F(x) = hx+d az f fiiggvény
relaxdltja az S hipertégla felett (F'(x) < f(x), minden x € S esetén). Ha valamely

J indexre 7; = ; teljesiil, akkor a pontbeli érint6 legyen a linearis relaxacié (nem
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derivalhaté esetben valamely szupergradiens). Kénnyen beldthaté, hogy h € Hyx
feltétel fennall, amibdl z € D} kovetkezik. A kovetkezd egyenletek teljesiilnek:

f(x) = min f(x) = xIenSlrleDf(X)’ hiszen x € S, (3.5.8)
F(x) = min F(x) = nin F(x), hiszen x € S. (3.5.9)

A (3.5.8) és (3.5.9) egyenletekbél kapjuk a kivant Gsszefliggést:

f(x)=F(x)= mn F(x)< min f(x)=min f(x).

Az els6 egyenloség annak a kovetkezménye, hogy X az S hipertégla egy csicsa, és igy

abban a pontban a relaxacids fiiggvény megegyezik a célfliggvénnyel. a

Belattuk, hogy az optimalitds kovetkezik a Hyx C Cp feltételbdl, viszont a |D*| =1
tulajdonsag mar nem garantalhato.

A kovetkezOkben azt a kérdést szeretnénk megvizsgalni, hogy a
Hix CCr

tartalmazas ellenérzése mennyi szamolast igényel. Philips és Rosen [81] exponenci-
alisan sok linearis programozasi feladat megoldasara vezette vissza a kérdést: ha
ezeknek a linedris programozasi feladatoknak van kozos optimalis megoldasa, akkor
az egyben optimalis megolddsa a (P) feladatnak is. Kénnyen beldthaté, hogy elegend6
a Hyx hipertégla extremadlis pontjairdl eldonteni azt, hogy eleme-e a Cp halmaznak
vagy sem. Ezzel jelentos mennyiségli szamitast takarithatunk meg, de sajnos még
mindig exponencidlisan sok pont ellendrzésérol van szé. Ezt mi tesztpont segitségével

joval hatékonyabbd tessziik.

Tesztpontok eldallitsa

A H;x C Cp tartalmazés ellenorzése helyett olyan tesztpontot szeretnénk eldéllitani
barmely (3.5.1)—(3.5.3) feltételrendszerben szereplé egyenl6tlenséghez, amely lehe-
téleg megsérti az egyenldtlenséget. A tesztpontot természetesen a Hyx halmazbdl
vélasztjuk ki. A (3.5.1)—(3.5.3) egyenlétlenség-rendszerben a célfiiggvény egyiitthatéi

a valtozok jelenleg.
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A tesztpont elkészitését vizsgaljuk meg a j € J esetén, azaz a
—CEB_laj = —Cgﬁj S Cj

egyenltlenséget megsértd célfiiggvény egyiitthatokat keressiik a Hyx halmazbdl. Ez
azt jelenti, hogy az egyenlGtlenség baloldalat szeretnénk minél nagyobbra, mig a job-
boldalat a leheto legkisebbre valasztani. Ennek érdekében definidljuk a l_lj tesztpontot

a kovetkez6 modon.
(

cé-, 1=

!

— C -
hij = J
C;-L, Q5 < 0,2 € Ip
L hij: 1 ¢ (jB \ {Z . C_lij = 0}) U {]}, ahol hij < [Cé,C?]
Ekkor nyilvanvald, hogy E.j € Hjx teljestl. A tesztpont konstrukciéja alapjan vilagos,

hogy

C_L,L'j >0,'l € jB

hj;a; + hy; < hpa; + hy;
teljestl barmely h € H;x esetén, azaz
—~hla; — hj; > —hLa; — hy; (3.5.10)
adodik. Amennyiben a tesztpont nem sérti meg a feltételt, azaz
0 > —hLa; — hyj; (3.5.11)

fennall, akkor a (3.5.10) és (3.5.11) egyenl6tlenség alapjan nincsen olyan pontja a
H;x halmaznak, amely a j € J§ feltételt megsértend. Altaldnositva az eléz6ket,
tetszéleges k € JLUJR index esetén a hy, tesztpontot az alabbi médon definidlhatjuk
a Jtésa J, (i € Jp) halmazok segitségével, ahol
JH = ke Ty aw<0yU{ke Ty ay >0}, és (3.5.12)
T~ = {keJy aw >0 U{kec Ty ag <0}, (3.5.13)
az aldbbi modon
Lo ke J ,ieJp
v ke Jr i€ Jp
hiw =4 ¢, i=k éskeJk
cp, 1=k, éskeJy
hi, ¢ (JIs\{i: ay=0})U{k}, ahol h; € [c},c¥].
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Osszegezve, a kovetkezo6 allitast kapjuk.

Tétel 3.5.3 Ha a hy, tesztpont nem sérti meg a k € JL U J¥ egyenlbséget, akkor

tetszoleges h € Hyx vektor sem sérti meg. a

Maésfel8l, ha valamely j € J§ (j € J) esetén

~hj a; > (~hTp;a; < i),
akkor a tesztpont megsérti a j. valtozéhoz tartozé optimalitasi kritériumot.

Hasonlé modon készithetiink tesztpontot a
P T -1
hp,B7 >0
tesztelésére is. Jelolje B = B~' métrixot és ekkor b, a B métrix i. oszlopa

Cé, bji>0,jEjB
hji = CQ'L7 bji < 07 .7 € jB
hi, 7€ JLUJTEU{j€ Tp : by =0} ahol h; € [}, ¢¥]

3%
Ekkor a E;{B b; > 0 és barmelyik mésik h € H;x vektor is kielégiti az i. nemnegati-
vitasi feltételt.
Ez azt jelenti, hogy a Hj;x hipertégla 2" csicspontja helyett elegendd legfeljebb
n tesztpont elkészitése annak érdekében, hogy az Osszes optimalitasi feltételt letesz-
teljik.
Vezessiik be a K indexhalmazt az aldbbi médon

~ —

K ={i : h; tesztpont megsérti az i. egyenl6tlenséget}.

Nyilvan igaz, hogy a K = 0 esetén Hix C Cp, azaz az X € D* teljesil. Ez azt
jelenti, hogy valamely X € D pontrdl a kovetkezé6 médon dontheto el, hogy optimalis

megoldésa-e a (P) feladatnak:
1. elkészitjiik a H g halmazt;

2. figyelembe véve a B~! és a B! Ay métrix elemeit elkészitjiik a l_lj tesztpontot;
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3. elvégezziik a tesztpontok ellenérzését; ha nem taldlunk olyan j indexet, amelyre

h; megsérti a j. feltételt akkor az X; optimalis megoldésa a feladatnak.

Ha azonban taldlunk olyan h; tesztpontot, amely megsérti a j. feltételt, akkor abbél
sajnos nem vonhatjuk le azt a kovetkeztetést, hogy az x € D nem optiméalis megoldas.

Mivel a ‘H és a Hyx halmazok jelentésen fiiggnek az [; és u; szdmoktol is, ezért
varhatd, hogy a korlatozas és szétvalasztas tipusi algoritmusok hatékonyak lehetnek

a (P) feladatok megoldaséara, ha H;x halmaz atméréje gyorsan csokken.

3.5.5. Az eredmény rovid osszefoglalasa

A 3.5 fejezet a 2a tézispontban megfogalmazott eredményeket tartalmazza.
Megadtam a linedris feltételrendszerrel adott, valtozoiban szétvélaszthaté konkav

programozasi feladat egy elégséges optimalitasi kritériumat.

3.6. Erzékenységi vizsgalaton alapulé vagasi stra-
tégia

Az elégséges optimalitasi feltétel megfogalmazasakor emlitettiik, hogy az itt megfogal-
mazott gondolatmenet alapul szolgdlhat egy, a korlatozas és szétvalasztas modszerén
alapul6 eljaras kidolgozasahoz.

Miel6tt ratérnénk a médszer bevezetésére a (P) feladatot mddositottuk: az egyen-
16tlenségek helyett itt most egyenloséget hasznalunk. A mdédositast azért vezettiik be,
mert a gyakorlatban hasznalt LP megoldoknal altalaban a ”slack” valtozokat nem

kezelik kiilon, igy azokat be kell venni az adatok feltoltésénél.

min Z?:l fi(x;)
Ax=Db (P). (3.6.1)
I<x<u

Bevezetiink egy particionaldsi stratégiat, amely a célfiiggvény egyiitthatoinak érzé-

kenységi vizsgalatan alapul.
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A moédositassal a feladathoz tartozoé Ppp relaxalt feladat optimalitasi kritériuma
megvaltozott, igy a (3.5.1) feltétel mar nem része a kritériumnak. Természetesen a

Cp halmaz is megfeleléen modosult.

3.6.1. Egy bazisvaltozé koltsége moédosul

Tegytik fel, hogy adott az X € D} megoldas a B bazissal. Legyen k € Jg, és

clk)=c+per=_(c1,Co, -, Cli+ Vs --+Cn),

ahol az e, az R" vektortér k. egységvektora. Az a kérdés, hogy meddig marad a B

bézis optimalis, azaz meddig teljesiilnek a kévetkezd egyenlotlenségek

c; > —c(k)EB 'a; = —c5B 'a; — Gy, (3.6.2)
barmely j € J}, illetve

¢; < —c(k)EB 'a; = —cEB 'a; — Gy, (3.6.3)

barmely j € Jy indexek esetén. A kordbban bevezetett j,j, J,, indexhalmazokat
(lasd (3.5.12) és (3.5.13) egyenletek) haszndlva definidljunk olyan alsé és fels6 korlatot

a Y szamra, amely esetén a (3.6.2) és (3.6.3) egyenlétlenségek fenndllnak, azaz legyen

. TB—l . .
max 9TEETA pa 7o g

7}; = I o
—00 ha J, =1
illetve
min “FEBT py T #0
V=g
+00 ha j,:r =0
és ekkor
Yo <<

esetén a B bdzis optimdlis marad. Nyilvdnvald, hogy a 0 € [y, 7] és legaldbb az
egyik érték a v, és v kozill véges.
A korlétok alapjan szdmos esetben meghatérozhatjuk a (rész)feladat tovabbi par-

ticiondlasat. Ennek elemeit dolgozzuk ki a kovetkezo részben.
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Particionalas

Célunk az, hogy lehetdleg egyszerli szamitasok segitségével olyan p vagasi pontot
hatarozzunk meg, amellyel valamely x; véltozéra adott [l;, u;] intervallumot, [I;,p]
és [p, u;] intervallumokra bontsuk gy, hogy a relaxdlt LP optimélis megoldasanak
a j. koordinatdja az egyik intervallumba kertiljon. Felhaszndlva az f; fiiggvények

konkavitasat, definidljuk a kovetkez6 halmazokat:

K- = {jEJB : Cj<Cj—|—’7j_<C?}

l
Ki = {jeds : &<+ <}

Vezessiik be tovabbd a K = K_ UK, jelolést. Ekkor a K azon indexek halmaza, ame-
lyek esetén a célfiiggvény j. egyiitthatéja modosithato gy, hogy az 1uj LP feladatnak
a felbontdsa utan (legaldbb) az egyikben maés legyen az optimélis megolddsa, mint

eredetileg volt. Legyen

7 = max {f;(z;) — (¢;7; + d;)}, (3.6.4)

jeK
ahol c az (LP) feladat célfiiggvény egyiitthatdja. Legyen k index az, amelyre
T = fk(.Tk) — (Ckifk + dk)
Ha k € K_, azaz
d <ot <cd

teljestil, akkor létezik p € (Ix, ug), amelyre

+ 7 = filp) (3.6.5)
Ha k € K., azaz
o<+ <c

teljestil, akkor 1étezik p € (Ix, ug), amelyre

o+ = filp). (3.6.6)

A p vagasi pont segitségével az aktuélis megoldashalmaz tégla részét a (3.2.2) Gssze-
fliggésben leirt médon particionalhatjuk.

Abban az esetben ha K = () akkor meg kell vizsgélni annak a lehetdségét, hogy
egyszerre tobb bazisvaltozd célfiiggvény egyiitthatéjat valtoztatjuk meg annak érde-

kében, hogy a megoldas optimalitdsi tulajdonsaga megvaltozzon.
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3.6.2. Tobb bazisvaltozé koltsége modosul

Ha egy célfiiggvény egytlitthatdo modositasaval a bazis optimalitasa nem valtozik meg,
akkor azt az altalanos esetet kell tekinteniink, amikor az 0sszes valtozd célfiiggvény
egyiitthatoja valtozhat.

Feltehetjiik, hogy a Hrx ¢ Cg, ellenkezd esetben a X megoldds optimalis me-
golddsa lenne a részfeladatnak. Létezik egy h; tesztpont j € Jk (j € J¥), amelyre

_EEJ éj > Cé- (-hTBJ' éj < C?)
Vezessiik be a K = I@l U I@u indexhalmazt, ahol

I&l = {Z € j]lv : —ljlgﬂ- a; > Cﬁ}
l&u = {Z € \7;\1[ : —h_TBﬂ' a; < C;A}
A K azon indexeknek a halmaza, amelyeknél a (Ppp) relaxalt linedris programozasi

feladat optimalitdsi kritériumai a tesztpont esetén megsériilnek. A korabbi feltevésbol
kovetkezik, hogy K # 0.

Particionalas

Vezessiuk be a
!

i

#=max | -h,a, —c
iek ’

szamot. Legyen k € K az az index, amelynél a 7 érték felvétetik, azaz

Tekintettel arra, hogy 7 méri az optimalitasi kritérium maximalis megsértését, ezért a
keKCJ LUJY az az index, amely esetén legjobban sériil az optimalitdsi kritérium.
Tegyiik fel, hogy k € K, és legyen

j = argmax | — (hpr — CB,i) Gpil. (3.6.7)
1€{1,2,....m}

A j' itt a B bézisra megszoritott hp, vektor egy indexe, az egyszertiség kedvéért

jelélje j az eredeti hy, vektorra vonatkozé megfelelé indexet. Induljunk ki a K, elemeit

definial6 egyenlotlenséghbol, azaz

.7 5 l
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amelybdl egyszert atalakitassal kapjuk a
—Bkj Q0 > ng + flg’k ap — ilkj (O

egyenlotlenséget. Legyen B
_ ¢t +hp &

*_ ] 3.6.8
’7] kj _dkj/ ( )
Ha v; ¢ (cg, c}) teljesiil, akkor legyen
,-y]* — tk (]_ij — Cj) + Cj, (369>
ahol
Cic + Cg ék

ty =

_(Bg,k - Cg) ay
A d+cha, <Omiatt 0 <t <1,igya~; € (c,cb). Legyen g, = hp i — cp tovabba
o, = cb +chag. Aty akovetkezd formaba frhaté
Ck
e = —7—;
—Bi Ak
tovabba

’)/; = tk Gk’ + Cj.

Mar csak a p vagéasi pont meghatarozasa maradt hatra ebben az esetben. Tekint-

stk az
) <7 < fl(w)

egyenlStlenségrendszert. Ekkor létezik olyan p € (I, u;) szdm, amelyre

vi = f'(p) (3.6.10)

teljestil.

A particionalas elemzése. Az altalanossag megszoritasa nélkiil feltehetjiik, hogy
k € I@l, ahol legjobban sériil az optimalitdsi kritérium és j a vagasi irdny (azaz
—Gkj'Gr;7 a maximalis), tovabbd Bkj = ¢} (azaz apy < 0 teljesiil). A tobbi esetet

teljesen analég moédon tudjuk kezelni.
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A felosztas utan két részproblémat kaptunk. Vizsgaljuk meg, hogy mi torténik a
k feltétellel a felosztds utdan. A particiondlas utan marad a régi bazis, igy csak a cé
és a ¢} értéke fog valtozni.

A korabbiakhoz hasonléan tekintsiikk a BB algoritmus altal generalt BB fat. Te-
gyiik fel, hogy az algoritmus végtelen, tehat létezik a részproblémak egy végtelen P?

sorozata (P! a P? kézvetlen utéda), melyre 79t C T4 teljesiil.

Allitas 3.6.1 Az (3.6.8)-el definidlt particiondlds véges sok esetben hajtodik végre.

Bizonyitas. Legyen az aktudlis részprobléma P9. Jelolje (q) felsé index hogy az

adott érték mely részproblémara vonatkozik.

Tekintsiik azt az esetet, amikor a P4t! a P4 baloldali gyereke: [cé 2
A fz,(g-ﬂ) értéke ’y;f(q) lesz.

—(hg A = Y hidan — ()
ie{lv“’vm}\{jl}
q) (@) N\T 5
_ _ ¢+ (h a
iE{l,"' 7m}\{]l}

Cz(q) _ CZ(qH)

Az k egyenlet mar nem sériil. Mivel az egyenletek szama véges, igy ez az eset csak

véges sokszor fordulhat el6.

Tekintsiik azt az esetet, amikor a P?™! a P? jobboldali gyereke: [fy;(q), c?(q)]

A B,E?D értéke a c;“»‘(q) lesz. Szédmoljuk ki ekkor az 1j ’y;(qﬂ) tagot.
Ug+1 S (g DN T =
*(g+1)  _ 7(g+1) Ck(q ) + (h(Bg,k ))T A .
j = hkj + = -
I - _
7 (q) Ck(q) + (hg,)k)T ag
_ xet1) _ lgt+1)
= =G

“Y;(qﬂ) ¢ <C§_(q+1) ot

! ) miatt a j késébb mar nem lehet végdsi irdny a (3.6.8)

szabaly szerint.
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Megvizsgélva a keletkezett részproblémékat, arra a kovetkeztetésre jutunk, hogy a
(3.6.8) szerinti particionaldsi szabdlyt ismételten alkalmazva, véges 1épésben eljutunk
oda, hogy a részprobléma bézisa mar nem valtozhat (azaz a részfeladat torolheto)

vagy a (3.6.9) szabdly szerint kell a felosztést elvégezniink. O

Allitas 3.6.2 (8.6.9)-ban definidlt particiondlds lépés véges végrehajtisa utdin vagy
az optimalitdsi feltétel teljesil, vagy eqy valtozo célfiigguényének modositdsa bazisvdl-

tozdast eredményez.

Bizonyitas. Hasonlbéan az eloz6 allitas bizonyitashoz itt is kiilon-kiilon vizsgaljuk a
részproblémédkat.
A c az aktudlisan relaxdlt egytitthatokat jelenti, x; valtozé Ujrarelaxdlasa utan a

c; érték fog megvaltozni. A véltozas mértéke legyen p = cg-qﬂ) — M nyilvanvalo,

¥ )
[ U

hogy p € (Cj(q) _ ng)7 ¢ (@ _ cg.Q)).

Baloldali részprobléma: [c;(q),v;@].

Becsiiljiik meg a k egyenlet mennyivel sériil a particionalas utan. Vezessiik be az

eredeti eltérésre kovetkezo jelolést:

d9 = _(BSBq,)k)T a, — Cic(q) _ _(gIEQ))T a, — El(cq)'

Szamitsuk ki d@Y-t a particiondlds utan.

det — Z g;(;fﬂ)@m _ (7;(‘1) _ C§q+1)) iy — 655“) _
ie{lv"' 7m}\{]/}
(9) *(q) (9) (9)

= - Z 9P + Grplrg — (70 — ¢ = p)awy — (6" +pagy) =
i€{L - m}

4 gy 59— ) ae)
= 9 + g,g‘;),dkj/ — tkg,i?dkj/

dD + g\ Gy (1 1)

A — g,(;;-),dkj/ szorzatrdl feltettiik, hogy maximélis — lasd (3.6.7) egyenlet — igy a kovet-

kezo teljestl:
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ahol m a feltételek szama, amely természetesen rogzitett. Zardjelben megjegyezziik,
hogy a becsléstink elég durva, a gyakorlatban a konvergencia gyorsabb. Visszatérve
(3.6.11)-hez kapjuk, hogy:

dt) — g@ _ (—g](;;)/akj’) (1 —tx)
RO ORI
m El(cq) 4+ d@

_ d(qLﬁ:d(q)(l_l),

m m

< d@ —

Azaz a vagasok soran a d'9 — 0. Mivel mindig a legjobban sértett feltételt valasztjuk,
igy az Osszes feltételre is igaz a konvergencia. Tehat bizonyos lépés utan mar nem

sériil az egyenletrendszer.

Jobboldali részprobléma: [Wj(q), c?(q)]

Szamoljuk ki az egyenletre vonatkozd él(fﬂ) és dl(fH) értékeket.

e = @’ —p(-ay)
(—:](Cq) + ,y;(q)

IN

Q!

(@) |, (a)~ Ck
G ey Ok —glay
(q)

_ C
b gy —

-m g,;;.,akj,
1
- El(“q) (1 a m)

det) — Z gl(€3+1)aki _ ,y;(Q)C—ij, . 5}(€q+1)
ie{lf" 7m}\{]/}
= — Y 4%~ (99 —p)ary — @0 —p(~awy)) (3.6.13)
iE{l,--- 7m}\{]/}

= - Y gla-g’=dv
1e{l,---,m}

(3.6.12)

)

IN

—(q
Ck

vagyis d nem valtozik.
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Megfelel6en nagy g-ra a kovetkezo teljestil:

d@ o+ 5](9‘1) - d@ =
—k > > g7

(9)
J m m

— Gy Okjr =

hiszen a (3.6.12) miatt &\’ — 0 és (3.6.13) miatt d@ nem véltozik. Tovabbé

—(FL]EZ) — C§~q))C_ij/ > 02 + Cg ay
—iLl(;;-) Qg — Z Cgl Qi > Ci,

iG{l,m 7m}\{]/}
Ami pontosan azt jelenti, hogy vigasok véges szamu végrehajtasaval el tudunk jutni

egy olyan particionalasdhoz, ahol egy valtozé modositasa mar bazisvaltozast eredmé-

nyez és visszatériink ahhoz az esethez, amikor egy valtozo célfiiggvénye modosul.

3.6.3. Szétvalasztasi stratégia

Fejezetiinkben osszefoglaljuk a korabbi fejezetekben kidolgozott particiondlasi eljara-
sokat. A 3.3.1 fejezetben emlitett jelolést hasznélva Level(PF) fiiggvény mutassa a
BB fa azon szintjét, mely az (P*) részproblémahoz tartozik és tovdbba legyen N egy
pozitiv egész szam és K a 3.6.1 fejezet szerint definialt indexhalmaz és K a3.6.2 fejezet

szerint definidlt indexhalmaz.

if ( Level(P¥) mod N =0 ) then
J= arz%“nlaﬂ‘iie{l...n}(Ui‘C - lf)
p=(uf +1%)/2.0
else if K # () then
J = argmax;c {f;(7;) — (¢;7; + d;)}
legyen p végési pont a (3.6.5) és (3.6.6) képlet alapjan meghatdrozva.
else if K # () then
J = argmaX,c oy | — (hpki — CB.) Gl
legyen a p vagasi pont a (3.6.10) képlet alapjan meghatarozva.
else

K = 0 esetén nincs tesztpont, amely megsértene valamely feltételt,
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igy a részprobléma optimalis megoldasa az aktualis bazismegoldas
endif

3.6.4. Az algoritmus helyességének bizonyitasa

Minden N-ik szinten 1év6 részprobléméat a leghosszabb él mentén vagjuk a két egy-
bevago részbe, igy a téglatestek oldalainak hossza zérushoz tart. A 3.3.1 lemma itt

is teljesiil, amibol a 3.3.2 lemma kovetkezik bizonyitva az algoritmus helyességét.

3.6.5. Az algoritmus miikodésének elemzése

A globalis optimum megtalalasat a BB fa minden N-ik szinten 1év6 részproblémajanak
particiondlasa garantalja, viszont a hatékonysagat nem. Az relaxalt LP vizsgalatdaval
meghatarozott vagasi pontok azok, amelyek megalapozzak modszeriink hatékonysa-
gat. Megjegyezziik, hogy érzésiink szerint — amit a tapasztalat is alatamaszt — az
érzékenységi vizsgalattal kapott vagasi pontok is garantaljak az optimalis megoldas
megtalalasat, de a bizonyitas még a jovo egyik feladata.

A vagési pontok meghatarozasat a kovetkezd alapgondolat vezette: mivel az op-
timalis megoldas a poliéder egy csucsaban van, igy érdemes olyan vagasi pontokat
generalni, amely esetében az 1j részproblémék kozil az egyik relaxalt feladatnak
az optimalis megolddsa mar egy masik lehetséges bazismegoldas legyen. Ez soks-
zor nem teljesitheté (K = (), ilyenkor az LP feladat érzékenységi vizsgdlataval ke-
resiink megfelel6 vagasi pontot. Ekkor célunk az, hogy minél kevesebb particionédlassal
olyan részfeladatokhoz jussunk, amelyek mar vagy optimélisak (azaz K = 0) vagy
bazisvaltozas 1ép fel.

A korabbi részben a particionaldas utéani részfeladatok viselkedését vizsgaltuk.
Megmutattuk, hogy elegendéen sok particionalasi 1épés utan egy részprobléma vagy
terminalissa valik, vagy bazisvaltozas 1ép fel.

Az algoritmus szempontjabol fontos a feltételrendszer dltal meghatarozott poliéder
szerkezete, azok az igymond ,,szép” csucsok (bazismegoldasok), amelyek az érzékeny-
ségvizsgalat alapjan eléggé stabilak a célfiiggvény moddositasara nézve. Példaul egy

focilabda (amely 5 és 6 szogekbdl all) csiicsai nem annyira ,,szépek” szemben egy
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kocka csucsaival. A PNS feladatok egytitthatématrixa ritka, igy a feltételek altal
meghatarozott sikok , szép” csucsokat képezhetnek. A moddszertink jél kihasznélja a
PNS feladatok ilyen tulajdonsagat.

Az érzékenységi vizsgalat segitségével a particionalas utani részproblémakrol sok
esetben elére tudjuk, hogy a korlatozasi 1épésben mi lesz az optimalis bazis. Ilyen

estekben természetesen nem kell az LP feladatot megoldani.

3.6.6. Az eredmény rovid osszefoglalasa

A 3.6 fejezet a 2b tézispontban megfogalmazott eredményeket tartalmazza.

Uj eljarast dolgoztam ki a linearis feltételrendszerrel adott, valtozéiban szét-
valaszthatd konkav programozasi feladat megoldésa soran felmeriilé szétvélasztas
lépésre. Az eljaras a 2a tézispontban megfogalmazott optimalitasi kritériumon ala-
pulva végzi a részproblémak particionalasat, illetve a terminalis részprobléméak meg-

hatarozasat. A megfogalmazott algoritmus helyességét igazoltam.

3.7. Kombinatorikusan gyorsitott algoritmus

Egy PNS feladathoz tartozé konkav szeparabilis feladat feltételrendszere magan hor-
dozza a PNS feladat sajatossagait, melyek figyelembevételével 1j, hatékony modszer

készitheté PNS feladatok optimalizalasara.

3.7.1. Bevezetés

Egy P-gréf jol reprezentélja a PNS modellben 16v6 valtozok kozotti fiiggdségeket (lasd
2.2.3 fejezet). A matematikai modell egy lehetséges x megoldasat azonosithatjuk a
P-graf egy s (strukturdval) P-részgréfjaval : o, € s < z; # 0 (természetesen nem
minden részgrafhoz létezik lehetséges x megoldédsvektor).

Az alap algoritmus (3.1 abra) miikddése kozben a lehetséges megolddsok hal-

mazat particionalja. Az itt bevezetésre keriil6 modszer abban kiilonbozik a korabbi
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eljarastél, hogy a particionalassal parhuzamosan az eljaras egy P-grafon végez mii-
veleteket. A graf segitségével kiszlirhetiink olyan részproblémakat, amelyek nem tel-
jesitik a kordbban bevezetett axiémékat (2.2.2 definici6), ezdltal torolhetéek. Egy
LP feladat megoldasdnak szamitasigénye joval tobb egy P-grafon végzett egyszerii
miiveletnél, viszont a P-graf haszndlata nélkiil csak az alsékorldt szamités (egy LP
feladat megolddsa) utén lenne lehetéség a részprobléma torlésére.

A modszer egy altalanosabb feladatosztalyt kezelését teszi lehetové, amely félfoly-
tonos valtozokat is tartalmazhat. Egy z; € R valtozé félfolytonos, ha z; = 0 vagy
0 <1 <z <u, teljestl (0 ¢ [I;, u;), kitlonben folytonos véltozéval van dolgunk).

A félfolytonos valtozok gyakran el6fordulnak valds ipari feladatok modellezésénél.
Szemléletesen annyit jelent, hogy egy miveleti egység mérete nem lehet akarmilyen
kicsi.

A 7T halmaz a koévetkezoképpen modosul:
T={xeR":0<;<z;<u;vagyx; =0, i=1,...,n}.

A félfolytonos valtozok miatt a 7 halmaz nem konvex, igy a kiindulasi 7 halmazt

kozelitentink kell:
T'={xcR":0<z;<wy, i=1,...,n}
A miiveleti egységhez kapcsol6dd koltségfiiggvény (kordbban lasd (2.2.9) egyenlet):

O, €T, = O,
filz;) = (3.7.1)

a; + biﬂﬁ?, xT; > 0,

ahola € R, 0<a<1,a;>20,b;>0,(i=1,...,n).

3.7.2. Részproblémak

Korébbi targyalasunkban egy részproblémat egy 7* hipertégla hatdrozott meg (14sd
3.2.1 fejezet), a kombinatorikusan gyorsitott mdédszer esetében a részprobléméhoz egy
P-grafot is hozzarendeliink. A P-graf leirasat a miiveleti egységek halmazanak egy
osztdlyozdsa adja meg: fizk C O, fizh C O, free® C O halmazok. A részprobléma

meghatarozasakor ezeket a halmazokat is definialni kell.
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Legyen P* = (T% D*, fixk, fiz% freek) részprobléma. Legyen 7% = {x € R" :
1" <x <u*} CT70és a fizl, fizk, free® halmazok a korabban emlitett osztdlyozdsa
a muveleti egységek halmazanak. A halmazok kozott a kovetkezo Osszefiiggések allnak

fenn:

0; € firh & IF=ul=0,
oiefixlf = Ogliglfgxigufgui,

0; € free® < O:lfgxiguf:ui.

A fizf halmaz tartalmazza a kizart miiveleti egységeket, fiz} a bevalasztott miiveleti
egységek halmaza és a free® halmaz a még nem dontott miiveleti egységeket tartal-

mazza.

3.7.3. Kiterjesztés

A Kkiterjesztési eljaras végrehajtasakor, a graf mar rogzitett részét . épitjik” tovabb
a korabban végzett dontések alapjan. A kiterjesztési 1épés a kombinatorikusan le-
hetséges megoldasok tulajdonsagait kihasznalva végzi a dontéseket a még nem dontott

A kiterjesztés egy iterativ folyamat, a kiterjesztési 1épéseket addig kell ismételni,
amig mar nincs véltozas a grafon. Ez véges sok iteracios 1épést jelent, hiszen a
miiveleti egységek szama véges.

A kiterjesztés két iranyban lehetséges: felfelé és lefelé. Megjegyezziik, hogy a
kiterjesztések csak gyorsitjak az algoritmus konvergencidjat, a konvergencianak nem

feltételei.

Felfelé épitkezés

Legyen m; anyagpont, ahol potencidlisan kiterjesztést végezhetiink, tovabba kisza-

moljuk U; halmazt, amely az m;-t el6allité miiveleti egységek halmaza.

m; € U a; | UP\R, U, = U 0; \fmlg

(ovj,B;)€ fiak (aj,8)€0,m;€8;
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Ha U; = {(au, B)} C freeF, akkor freek = free \ {1}, fizh = fizh U {i}.

A szabdly szerint, ha létezik egy m; anyag, mely nem nyersanyag és azt valamely
miuveleti egység mar fogyasztja, akkor azt legalabb egy miveleti egységnek el kell
allitani. Ha az m;-t el6allité miveleti egységek halmaza egyelemii, akkor azt az elemet
hozza kell venni a mar bevélasztott miiveleti egységek kozé, kiillonben az S2 feltétel

(2.2.2 definicid) sériilne.

Lefelé épitkezés

Legyen o, = (ay, 3) € fiz, melyre 3, NP = (), legyen tovdbba

U = U oj | \ fixk.

(@j,85)€0,BsNar; 0

U, tartalmazza az o, altal gyartott anyagokat fogyaszté miiveleti egységeket. Ha
U, = {(ay, 8))} C freek, akkor free® = free® \ {1}, fizk = fizk U {i}.

Ha adott egy mar bevalasztott miiveleti egység, mely nem gyart terméket, és
az altala gyartott anyagokat csak egy miveleti egység képes felhasznalni, akkor azt
hozzavessziik a bevélasztott miiveleti egységekhez. Ha az igy meghatarozott halmaz

tires, akkor a részprobléma eldobhatd, hiszen sériil az S3 feltétel (2.2.2 definicid).

A Kkiterjesztés eredményeként bizonyos miiveleti egységek a free* halmazbdl 4t-
keriilnek egy masik osztalyba. Ilyenkor megvaltoznak a miiveleti egységekhez kapc-
sol6dé véltozok korldtai. Jelolje most o; € free® a miiveleti egységet és z; a hozzd

tartozd véltozot (0 < z; < u; teljesiil). Két eset van:

1. Az o; miiveleti egység a free™bdl a fizk-be keriil.
A miiveleti egységet a kizartak kozé helyeztik, igy az x; = 0 teljesiil (l;C =0,

uf = 0).

2. Az o; miiveleti egység a free®-bél a fiz}-be keriil.
A miiveleti egységet a bevettek kozé helyeztiik. Az z; = 0 lehetdséget kizdrtuk,

fgy lj S Zj S Uj teljesul ( l;ﬂ = lj, uf = Uj).
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3.7.4. Algoritmus

Az algoritmus az altalanos szeparabilis konkav mininimalizacids eljarasra épiil kie-
gészitve a P-graf reprezentdcion alapulé kombinatorikus részekkel. A kordbban be-
vezetett (3.1 dbra) algoritmust mddositjuk és csak az 0j részeket részletezziik (lasd
3.9 abra).

Csak akkor végezziik el a miiveleteket a parhuzamosan épiilé P-grafon, ha a
dontés eltt 4ll6 valtozén még nem volt dontés (j € free*). Ha egy korabban
dontott valtozon végziink dontést, akkor a kapcsolodé miivelet egységet mar korabban

bevalasztottuk a struktiraba és igy a P-graf véaltozatlan.

Korlatozas

A korlatozasi 1épés teljesen analdog a 3.2.2 fejezetben bevezetett eljarassal. A félfolyto-
nos valtozék miatt a 7 halmazt kiterjesztettiik 79 halmazra. Az indul6 részproblé-
méban definialt 7° halmaz a 7 halmaz kiterjesztése (3.9 dbra).

A Kkiterjesztés miatt az alaphalmazunk béviilt. Ha valamely i € {1,...,n}-re

k

wk €]0,1;[ teljesiil, az w* nem lehetséges megolddsa az eredeti feladatnak. Az F*(w)

tovabbra is alsé korlat, hiszen bévebb halmazon minimalizaltunk, az f(w") érték fels6

korlatként mar nem hasznalhatd.

Szétvalasztas

A vagasi valtozo kivalasztasa legyen a kovetkezd szabdlyok szerint:
if (3i (wF €]0,1,[ ) then

J= argmax ke, [ {fz(wf) - Ff(“?)}
else if (3i (i€ free® A (fi(w)) — Ff(wf)) >0) ) then

j = argmax,c o {fi(eh) — FE@H))
else

J = argmax;.; , {fz(wzk) - sz(wf)}
endif

A korabbi végési stratégidkhoz képest a kiilonbség annyi, hogy el6szor olyan z;

valtozon dontiink, amelyhez tartozo u);?’ megoldas értéke nem megengedett. Ha nincs



Kombinatorikusan gyorsitott algoritmus

Bemend6 adatok:
m,n €N
AceR™" beR™ LLueR"é0<1<u
f:R" - R fiiggvény
k=0, L=—00, U=o00,
A={xeR": Ax <b}
T'={xeR":0<x<u}
DV =ANT°
PY=(7° D 0,0, 0)
S ={P"}
Kimené adatok:
a (P) feladat optimélis megoldasa X
a (P) feladat optimum értéke U

Begin
while (S # 0)
begin
Pk = Vilaszt(S);
(L, U, x) = Korlatozas(P*, x);
if U = L then
x optimalis megoldasa a (P) feladatnak, STOP;
(Pkv, Pk2 PFks_ ) = Particiondlds(P*, f*, );
if 1 =1 then
S =SU{Pk, Pk},
else if . = 2 then
begin
RSG(P");
hajtsuk végre a kiterjesztési 1épéseket a részproblémakra
S =SUu{Pk pk: pksy.
end
end
End.

3.9. dbra. Kombinatorikusan gyorsitott algoritmus.



71

Particionalas

Bemend adatok:
Kimeno adatok:
pkv pka | pks

Begin
if U > B* then
begin
a vagasi valtozd x; meghatdrozasa;
a vagési pont p meghatirozasa;
if j € free* then
begin
kiszamoljuk az 1dj halmazokat (lasd (3.7.4) és (3.7.5) képletek).
L= 2;
end
else begin
kiszdmoljuk az 1j halmazokat (lasd (3.7.2) és (3.7.3) képletek).
L =1;
end
end
else begin
L= 0;
a halmazok legyenek tiresek;
end
S=38\{P"}
End.

3.10. abra. A particionalasi eljaras a kombinatorikusan gyorsitott algoritmusban.
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ilyen, akkor olyan véltozén déntiink, amelyen még nem volt déntés (j € freeF),
kiilonben a korabban mar bevezetett médon dontiink.

A szétvalasztési stratégia szerint lehetdleg a még nem dontott valtozdén vagunk,
és mivel csak az i € freef-ra lehetséges az w¥ €]0, [;| nem megengedett megoldas, igy

véges lépésben valédi megoldast kapunk.

A vagasi pont meghatarozasa lehet a korabban a bemutatott ”csusztatott” vagy
maximalis rés particionalasban hasznalt véalasztas.
Egy részfeladat particionalasa is modosul a korabbiakhoz képest. Legyen az
aktudlis részfeladat P¥, j a vagasi valtozo és p a vagasi pont.
Ha j € fiz®, akkor két részprobléma keletkezik (P*, P*2).
freeft = free®, fiaht = fizk, izt = fizk, (3.7.2)

free™ = free®, fz'x]gQ = fixlg, fzx’fz = fizh,

T' = {xeT":ll <z; <p} (3.7.3)
T2 = {xETk:pngguf}

Ha j € free*, akkor hdrom részprobléma keletkezik (P*, P*2. P*3). A 3.11 4brdn a
I. II. III. jeloli a megfelelé részproblémakat.

free™ = free® \ {j}, fiag' = fizg U {5}, fia}* = fiay,
freek? = free \ {4}, fizk? = fiak, fizk? = fiz% U {j}, (3.7.4)
free® = free® \ {j}, fixlg?’ = fixk, fia:’f3 = fizk U {5},

T = {xeT":z; =0}
T = [xeTF:|; <z, <p} (3.7.5)

T = {xeTF:p<umz <u}

A particionalasi eljarast a 3.10 abra foglalja Ossze.

RSG

Korabban mar emlitett RSG algoritmus (2.3 fejezet) itt is hasznalhaté véltozatlan

forméaban.
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3.11. dbra. Vagés egy még nem dontott valtozon.

3.7.5. A helyesség bizonyitasa

Az eredeti algoritmushoz képest (lasd 3.1 abra) f6 eltérés a félfolytonos valtozdok
kezelése.

Egy mér korabban dontott x; valtozén (j € fixh U fixk) a particiondlds mar az
eredeti algoritmus szerint viselkedik. Egy még nem dontott valtozé (j € free*) dontés
utan mar dontotté valik, mivel kezdetben a nem dontott valtozok szama véges, ezért
véges szamu olyan dontés van, amely még nem dontott valtozén torténik, azaz véges
lépésben tér el médszeriink az eredeti algoritmustol. Ezek alapjan mondhatjuk, ha az
eredeti algoritmusunk konvergens, akkor a kombinatorikusan gyorsitott algoritmus is

konvergens lesz, és ez végességre is teljestil.

3.7.6. Az eredmény rovid osszefoglalasa

A 3.7 fejezet a 3a tézispontban megfogalmazott eredményeket tartalmazza.
A Friedler és munkatarsa altal kidolgozott P-graf moédszert felhasznélva elkészi-
tettem a linearis feltételrendszerrel adott szeparabilis konkav programozasi feladatot

megoldo algoritmus kombinatorikusan gyorsitott valtozatat.
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3.8. N-legjobb megoldas

Vegyipari rendszerek esetében a matematikai modell nem képes (vagy abban az eset-
ben ha képes lenne, akkor til bonyolulttd vélna a modell) a rendszer minden tulaj-
donsagat leirni, pl.: iranyithatosag, megvaldsithatosag stb. Ezért sziikség van az op-
timalis megoldason til szuboptimalis megoldasok meghatarozasara is, amelyek koziil

a felhasznal6 tudja kivéalasztani a szamara megfelel6t.

3.8.1. Bevezetés

Egy optimalizacios feladatban, amely tartalmaz folytonos valtozokat nincs értelme
masodik legjobb megoldasrol beszélni. A kombinatorikusan lehetséges megoldasok
definici6jat (2.2.2 definicié) bevezetve, a szuboptimalis megoldasok jél definidltakka
valnak.

Definidljuk f fiiggvényt az f koltségfiiggvény (ldsd (3.7.1) egyenlet) felhasznéla-
saval:

~ 0, T; = 0,
filz:) = (3.8.1)

bixy, x; >0,
ahol b; > 0és 0 < a <1, azaz a fix koltségtol tekintettiink el.

Legyen s € S(P, R, O), kombinatorikusan lehetséges struktira. Jeldlje Z(s) érték
az f koltségfiiggvénnyel vett optimumértéket az s struktirara megszoritva (0j ¢ sre
x; = 0), és hasonléan jeldlje z(s) érték az f koltségfiiggvénnyel vett optimumértéket

az s strukturara megszoritva.

Definicié 3.8.1 A p € S(P,R,O) kombinatorikusan lehetséges struktira lokdlisan

optimadlis struktira, ha
Vg € S(P,R.0)((q Cp) = (2(p) < 2(q)))

teljesiil. A lokdlisan optimdlis struktirdk halmazdt jelolje L(P, R, O).
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3.1. tablazat. Lokalisan optimalis strukturdk szamossaga
Feladat ~ Komb. lehetséges strukturak Lok. opt. strukturak

Denmark 3465 96
Alpha 423 36

p € S(P,R,O) kombinatorikusan lehetséges struktira ardnyos kdltség szerinti lokali-

san optimadlis struktira, ha
Vg € S(P,R,0)((q Cp) = (2(p) < Z(q)))

teljesiil. Az ardnyos kéltség szerinti lokdlisan optimalis struktirdk halmazdt jelélje

L(P,R,0).

A lokalisan optimalis strukturak halmaza fiigg a modell paramétereitdl, ellentétben
a kombinatorikusan lehetséges megoldésok halmazaval, amely csak maximaélis a struk-
turatdl figg.

A 3.1 tabldzat tartalmazza két ipari feladat [39] lokélisan optimalis megolddsainak
a szamat és a kombinatorikusan lehetséges strukturdk szamat.

A lokalisan optimalis strukturak halmaza része a kombinatorikusan lehetséges
struktirak halmazanak, tovabba egy lokalisan optimalis struktirahoz hozzatartozik
egy x megoldasvektor, amely megadja a struktiraban szereplé miiveleti egységek
méretét. Elképzelheto, hogy egy p struktirahoz tobb optimélis x megolddsvektor
tartozik, amely egy ritka eset, de nem zarhato ki. Szemléletes jelentése az, hogy egy
azonos strukturdhoz két optimalis konfigurdcié (megolddsvektor) tartozik. Ilyenkor
mindkét megoldasvektor hasznos lehet, és az algoritmus azonositani fogja ezeket. A

kovetkezdkben a lokélisan optimalis struktirak néhany tulajdonsiagat mutatjuk meg.
Allitis 3.8.1 L(P,R,0) C L(P,R,0)

Bizonyitds. Megmutatjuk, hogy ha s € L(P,R,O), akkor s € L(P,R,O).
Legyen x* € R", melyre z(s) = f(x*), X° € R", melyre 2(s) = f(X°). 2(s) < z(s),
hiszen f < f.
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Indirekten: Tfh. s ¢ L(P, R, ), akkor 3 ¢ C s és X? vektor, melyre 2(q) = f(X%) <
f(%%) = 2(s). A kovetkezd teljesiil:

Z a; < Z a;, hiszen, ¢ C s és s € L(P,R,O).

i:Z1#£0 iz #0

Az egyenlétlenség felhasznédlasaval kapjuk, hogy

f(x) = f(x* a <fE)+ Y a <)+ Y a=f(x)

i A0 T £0 i #£0

Mivel ¢ C s, ezért s ¢ L(P, R, O) kivetkezik. O

Allitis 3.8.2 L(P,R,0) # L(P,R,0)

Bizonyitas. Trivialisan adhaté egy ellenpélda.

O ={1,2}, o1 = ({ma}, {mi}), 02 = ({ms}, {m})

Modell paraméterek

A miveleti egységekhez tartozé paraméterek:

Iy =0,lp = 0,u; = 100, us = 100, a; = 1,ao = 1000, by = 0,b, =0, 111 = 1, r19 = 1,
91 = 1, 193 = 1.

Az anyagponthoz tartozo paraméterek:

Ci=0,0,=100,C3=1,p; =10,po =0,p3 =0, s1 =0,8, = 100,83 =5

Kénnyen ellendrizhetd, hogy az {1,2} ¢ L(P, R, O), viszont {1,2} € L(P,R,O). O

Osszefoglalva: a lokélisan optimalis struktirdk nem tartalmaznak olyan miiveleti
egységeket, amelyek oncélian vesznek részt a végtermékek gyartasaban. Ellenkezo
esetben sok értelmetlen struktirat lehetne létrehozni, amelyben az optimélis me-
goldast kibdvitjiik fiktiv miiveleti egységekkel, és azokat valamilyen szinten miikod-

tetjiik.

Allitas 3.8.3 Legyen p € L(P,R,O) lokdlisan optimdlis struktira, és x* € IR"
a hozzd tartozo optimalis megolddsvektor, akkor x* a D politop extremadlis pontja

(csicsa).
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Bizonyitas. A megoldasvektor ugy kapjuk, hogy a kordbban emlitett mdédon p
strukturara megszoritjuk a D halmazt, és azon keressiik az optimalis megoldédsat. A

p struktirara megszoritott D halmaz a kovetkezoképpen néz ki:

DN | ({aiiz =0} . (3.8.2)
0;i&p
Mivel z; > 0 teljesiil minden i-re, igy az uj halmazban nincs 1j extremadlis pont, és

korabban mar megmutattuk, hogy az optimélis megoldds mindig extremalis pontban
van (lasd 3.0.1 lemma). O

Megjegyzés: Visszafelé természetesen nem igaz, egy extremalis pont nem biztos,
hogy kielégiti a lokalisan optimaélis struktira definicidjat. Tekintsiink a legegyszeriibb
esetet: legyen két cstcs, amelyben a nemzéré valtozok halmaza megegyezik, és a
csucsokban szamolt célfiiggvény értéke kiillonbozo, a csticsok koziil csak az egyik lehet

lokalisan optimalis struktura.

A csics leszamlalasi eljarasokkal elvileg lehetséges N-legjobb megoldast keresni.
A lokélisan optimalis strukturdkhoz tartozd csicsok még csak nem is szomszédosak,
igy az Osszes csics generalasat tenné sziikségessé a modszer. Tovabba minden csicsra

ki kell értékelni a fiiggvényt és ellendrizni, hogy lokalisan optimélis struktira-e?

Felmeril a kérdés, hogy miért kiilonboztetjiik meg a lokédlisan optimaélis strukti-
rakat az ardanyos koltség szerinti lokalisan optimalis struktiraktol. A 2.3 fejezetben
emlitett ABB algoritmust is lehet ugy mddositani, hogy az N-legjobb megoldést
szolgaltassa. Az ABB moddszer a koltség fix részét kilon kezeli, igy csak az ardanyos

koltség szerinti lokdlis optimaélis struktirakat képes azonositani.

3.8.2. Algoritmus

A modszer a kombinatorikusan gyorsitott algoritmusra (lasd 3.9 dbra) épiil. A mod-
szer a lokdlisan optimélis struktirdk halmazan keresi meg az els6 N-legjobbat. Az
algoritmus vazlatos leirasat a 3.12 abra tartalmazza, csak az j részeket részletezziik.
Megjegyezziik, hogy az aranyos koltség szerinti lokalisan optimalis strukturak hal-
mazan torténd keresés csak kis mértékben tér el a bemutatott eljarastél, az arra

torténd modositas megvaldsithato.
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N-legjobb megoldas algoritmus

Bemend adatok:
N,m,n €N
AcR™™ beR™ lLueR"é0<1<u
f:R" — R konkév fiiggvény
k=0, L=—0c0, U=00
A={xecR": Ax <b}
T'={xeR":0<x<u}
DV =ANTO
PO — (f]’O7 DO)
S ={P%
Kimen6 adatok:

a (P) feladat elsé N legjobb lokalisan optimélis struktirat tartalmazé s lista
Begin
while (S # 0)
begin
P* = Vilaszt(S);
(L, U, x) = Korlatozas(P*, x);
N-Lista Frissit(w®,sN)
if P* nem termindlis then
(Pkv, Pk2 PFs ) = Particiondlds(P*, f*, )
else
t=0
if 1 =1 then
S =SU{Ph, Pk},
else if . = 2 then
begin
RSG(PFv);
hajtsuk végre a kiterjesztési 1épéseket a részproblémakra
S =SU{Pk, pk: pksy.
end
end
End.

3.12. abra. N-legjobb megoldast meghataroz6 algoritmus véazlata.
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A médszert a kombinatorikusan gyorsitott algoritmusbdl (1dsd 3.9 dbra) szarmaz-
tatjuk. A potencidlis lokalisan optimélis struktirdkat egy listdba gytjtjiikk (N-lista),
amit az algoritmus folyamatosan frissit. A részproblémak terminalitasanak eldontése

és a vagasi stratégia is médosult.

Particionalas

A particiondlas megegyezik a Kombinatorikusan gyorsitott algoritmusnal bevezetett

eljarassal (14sd 3.7.4 fejezet).

Az N-lista frissitése

Az eddig megtaldlt legjobb megolddsokat tartalmazza az N-lista. Jelolje rendre s C
O,xN¥ e R", i €{l,... N}, az N-listdban 1év6 i-edik strukttrdt, és a hozz4 tartozé

megoldésvektort. Legyen w”

az aktudlis részfeladatokhoz tartozé megoldasvektor,
¢* C O az w* megoldasvektorhoz tartozé struktira, amelyre 0j € ¢ - w;-“ # 0,
(¢F C fizh U freek), és B* az alsékorlat. Az eljaras lefrdsat a 3.13 dbra tartalmazza.

Vegyiik sorra az eljaras egyes lépéseit:

1. Az els6 sor azt vizsgélja, hogy ha az aktudlis megoldas rosszabb, mint a lista
legrosszabb megoldasa, akkor az eljards befejezodik és nem torténik semmi val-

tozas a listaban.

2. A ciklus megvizsgalja az Gsszes listdban 1év6 elemet, és Osszehasonlitja az aktu-

alis elemmel.

(a) A listaban egy hasonlé strukturat taldltunk.

i. Az aktudlis ¢* struktirdnak kisebb a célfiiggvény értéke, igy a listdban
16v6 sV elemet toroljiik a listdbol.

ii. Az aktudlis strukturanak a célfiiggvényértéke megegyezik a listdban
1év6 strukturaval, és a megoldasvektorok kiilonbozoek. Ebben az eset-
ben mindkét megoldast megtartjuk és megndoveljiik a listat, mert ilyen
esetekben egy struktiura torlése maga utan vonja az Osszes azonos

struktira torlését.
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N-lista Frissit

Bemend adatok:
Wk, sV lista

Kimeno adatok:

sV lista
Begin
if (/") > f(x})) then
return;
for ie{1,...,N} do
begin

if (¢* = sV) then
if (f(w") < f(x)) then
delete sV, x¥;
else if (W* #xNV A f(wF) = f(xV)
IncreaseList;
if (s¥ cgb A F(xN) < f(wF)) then
return;
else if (¢ C sV A f(w*) < f(x)) then
delete SZN, Xf\];
else if (¢*NsN € S(P,R,0)) then
Increaselist;
end
sy = ¢ xy = Wk
ReorderList;
End.

3.13. dbra. N-listat modosito eljaras.
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(b) Létezik olyan struktira a listdban, amely részhalmaza az aktuélis struktu-
ranak és a célfiiggvényértéke kisebb. Ez ellentmond a lokalisan optimélis

struktura definicidjanak, a listank valtozatlan marad.

(c¢) Az aktudlis struktira részhalmaza egy, a listdban 16v6 struktirdnak és a
célfiiggvényértéke kisebb. Ez ellentmond a lokélisan optimalis struktira
definiciéjanak, ezért a listaelemet tordljiik a listabol, és az aktualis elemet

hozzaadjuk a listahoz.

(d) Ha két listaelemnek van kozos része, amely maga is megoldasstruktira,
akkor elképzelhetd, hogy egy 1j struktira (ami része a metszetnek) tobb
listaelem torléséhez vezet. Besziras esetén noveljiik a lista méretét, igy az
1j listaelem nem , szorit” ki egy, mar korabban bevett elemet a listabdol. A
¢ Ns € S(P,R,O) feltétel eléggé altaldnos, ez élesithetd egy LP feladat

fizibilitas vizsgalataval, ami viszont szamitasigényes.

A lista mérete akkor csokken, amikor egy 1j potencialis listaelem tobb korabbi listae-
lem torléséhez vezetett. A lista elemszama nem csokkenhet az eredetileg megadott N
ald, viszont el6fordulhat, hogy az algoritmus lefutasa utan az N-lista mérete nagyobb,
mint amit paraméterként megadtunk, hiszen tobb elem egyiittes torlését nem tudjuk

elére megjdsolni.

Terminalitas ellen6rzése

Egy részproblémat akkor tekintiink termindlisnak, ha mar nem tartalmaz tovabbi
lokdlisan optimalis strukturat, mely eleme lehetne a listdnak és ezaltal az torolheto.

Hasonl6éan, mint az N-lista bévitésénél jelolje sV, ¢ = 1,..., N a N-listdban 16vé i-
ik struktirat és legyen xV a hozza tartozé megoldasvektor. Legyen w*, 3% az aktualis
megoldésvektor és a hozza kapcsolédé alsékorlat. Egy PF részprobléma torolhetd, ha

a kovetkezo feltétel teljestil:

(fWh) =B <e) v B> f(xN) v (3s) € (N —lista} s C fizt A 55 > f(x])),
(3.8.3)

ahol € > 0 egy tolerancia paraméter.
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3.8.3. A helyesség bizonyitas

Korabban mar emlitettiik, hogy az algoritmus a kombinatorikusan gyorsitott algo-
ritmusra éptil, amelynek konvergencidja bizonyitott. A helyesség bizonyitashoz azt
kell megmutatnunk, hogy az N-lista a kivant megoldasstrukturakat tartalmazza, és
a terminalitasi kritérium helyes.

Tekintsiik a BB algoritmus altal generalt BB fat. Tegytik fel, hogy az algoritmus
végtelen, tehat létezik egy végtelen P* sorozat melyre, P**! a P* leszdrmazottja,

azaz BB faban létezik egy, a gyokérbol kiinduld végtelen tt.

Lemma 3.8.1 A (3.8.3) terminalitdsi feltétel elégséges eqy részprobléma torléséhez.

Bizonyitas. Az indoklas egyszerti, a (f(w*) — B¥ < ¢) kifejezés igaz volta a
részprobléma megoldasat jelenti, és egy megoldott részprobléma nem tartalmazhat
tovabbi lokdlisan optimdlis struktirdkat, ezaltal torélhets. A 8% > f(x%) teljesiilése
szerint, a részprobléma nem tartalmazhat olyan lokdlisan optimaélis strukturat, amely
eleme lehetne a listanak. Ha a (3s) € {N —lista} s C fiz} A 0% > f(x]) teljesil,
akkor a részprobléma nem tartalmazhat tovabbi lokalisan optimalis struktirakat his-
zen, ha tartalmazna, akkor a struktirdaban 1évé miiveleti egységek a fix® halmaz
bovitései lennének, és a koltség alsd korlatja is rosszabb, mint a listdban 1évé elem

koltsége. O

Lemma 3.8.2 A (3.8.3) terminalitdsi feltétel valamely k-ra teljesiil.

Bizonyitas. A konvergencia miatt biztos, hogy véges lépés utan a P* részfeladat
torlédik, hiszen f(w*) — B* < e feltétel teljesiilni fog, ami elegendd az allitdsunk
bizonyitasahoz, viszont az ezen feltétel alapjan valé dontés lassi futdst eredményezne.
Nem véletleniil nem csak ezt a feltételt tartalmazza a (3.8.3) terminalitési feltételiink.

Nézziik meg azt az esetet, amikor nem tartalmaz lokalisan optimalis strukturat
a részfeladat. Azt kell megmutatni, hogy létezik olyan k, amelyre a terminalitasi
feltételiink igazzd valik. A B¢ < f(a) feltehetd, kiilonben a feladat egyszertien
torolhet6. Mivel feltettiik, hogy a részprobléma nem tartalmaz lokalisan optimalis

struktirdt és % < f(a) is teljesiil, ezért valamely k-ra léteznie kell a listdban egy
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lokélisan optimélis s) struktiranak, amelyre ¢* C s és f(2*) > f(x}). Tovébba
a konvergencia miatt a 3% > f(z}) teljesiilni fog, azaz a (3s) € {N — lista} sY C
fih A BF > f(x))) feltétel igazzé valik.

Tegyiik fel, hogy a P* sorozatban egy lokalisan optimalis struktirat tartalmaz
a részprobléma. A % < f(x) itt is feltehetd. Ez az eset hasonlit a kombinato-
rikusan gyorsitott algoritmusban az optimélis megoldast tartalmazé részfeladat vi-
selkedéséhez, hiszen alsé korlat alapjan nem lehet eldobni a részfeladatot. Tehat a

részfeladat a f(w®) — 3% < ¢ feltétel alapjan fog termindlissd vélni. a

Tétel 3.8.3 A (5.8.3) terminalitasi feltétel helyes.
Bizonyitas. A 3.8.1 és 3.8.2 lemmakbdl kovetkezik. a

A 3.8.3 tétel a terminalitasi kritérium helyességét bizonyitja, az algoritmus helyes-

ségéhez még az N-lista korrekt voltat kell megmutatni.

Tétel 3.8.4 Az N-lista korrekt.

Bizonyitas. A 3.8.1 lemma szerint csak olyan részproblémét torol az algoritmus,
amely nem tartalmaz tovabbi lokdlisan optimalis strukturakat. fgy minden lokalisan
optimaélis struktirat az ,, N-lista Frissit” algoritmus (3.13 dbra) megprdbélja beszirni
a listdba. A beszirast korabban mar részleteztiik (3.8.2 fejezet), a lokalisan optimalis

struktira definicidjanak értelmében minden esetet megvizsgaltunk. a

3.8.4. Példa

A 2.2.3 fejezetben ismertetett feladatra futtatjuk le a mddszert, annyi mddositassal,
hogy célfiiggvény itt konkdv. Keressiik a Osszes lokdlisan optimalis struktirat (kis
méretii feladatrdl 1évén sz itt ez megtehetd). A 3.14 dbra mutatja a megoldasokat,

és a megoldashoz tatozé koltséget.

3.8.5. Az eredmény rovid osszefoglalasa

A 3.8 fejezet a 3b tézispontban megfogalmazott eredményeket tartalmazza.
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4: 150260 5: 279073 6: 288560

m, m,

7: 311062

3.14. dbra. A szemlélteto példa lokdlisan optimadlis struktirai és a hozza tartozo
koltség.
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PNS feladatokra bevezettem a lokalisan optimélis strukturdk fogalmat, amely
lehetové teszi az optimalis megoldésok mellett szuboptimalis megoldasok meghatéaro-
zasat. Kidolgoztam a kombinatorikusan gyorsitott algoritmus egy véltozatat, amely

képes ezen szuboptimalis megoldasok generaldsara.
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3.9. Gyakorlati tapasztalatok

Az eddig targyalt a szeparabilis konkav minimalizdlashoz kapcsolédd algoritmusokat
megvaldsitottam C++ nyelven. LP feladat megolddként a Fabian Csaba altal ki-
dolgozott és kutatasi célokra forraskodon rendelkezéstinkre bocsatott LINX megoldét

28] hasznaltuk.

3.9.1. Generalt tesztfeladatok

Minden feladatmérethez 200 generédlt PNS feladatot [6] oldottunk meg a kiilonb6z6

megoldé maddszerekkel.

Altaldnos médszer

A kordbban bevezetett particionalasi médszereket vizsgaljuk. A 3.2 — 3.5 tablazatok

tartalmazzak a kiilonb6zo méretii tesztfeladatokon végrahajtott futdsi eredményeket.

Néhdany megjeqyzés az oszlopokhoz

7 jeloli a Shectman és munkatérsai [89] altal bevezetett particionélast.

¢ jeloli a ”csusztatott” particiondalast.

Max jeloli a maximalis rés particionalast.

Erz. jeloli az érzékenységi vizsgalaton alapuld vagasi stratégiat.

1 Atlagolt megolddsi id8. (mp)

2 Megoldott LP-k atlagos szdma.

3 A felhaszndlt memoria dtlagos nagysiga. (MB)

4 Az optimadlis megoldédst hanyadik LP megolddsa utén lett azonositva.

5 Az id8korlat (10% db LP megolddsa) alapjan nem megoldott feladatok széama.

¢ A memdria korldt (300MB) alapjidn nem megoldott feladatok szdma.



3.2. tablazat. Altaldnos médszer: 20 miiveleti egység

Stratégia Idé!  #LP? Mem.> Opt.meghat.® Lim.LP° Lim.Mem®

7 0.19 639.83 0.04 49.5 0 0
£ 0.27 1007.32  0.01 72.9 0 0
Max 0.84 2541.55 0.1 27.9 0 0
Erz. 0.01  16.21  0.002 4.1 0 0

3.3. tdbldzat. Altaldnos médszer: 40 miiveleti egység

Stratégia  1d6' #LP? Mem.> Opt.meghat.* Lim.LP® Lim.Mem®

7 2248 9171  1.858 645.2 0 0
e 7.12 11131  0.291 2269.5 0 0
Max 11.51 16182  0.761 919.1 5 1
Erz. 0.13 49 0.011 8.5 0 0

3.4. tablazat. Altaldnos médszer: 60 miiveleti egység

Stratégia Id6' #LP? Mem.> Opt.meghat.* Lim.LP®> Lim.Mem®

T 139.07 49638 10.013 2400.7 16 1
£ 84.25 70621  2.894 2419.9 12 0
Max 121.92 44667  5.329 265.9 23 8
Erz. 2.07 394  0.069 8.1 0 2

3.5. tablazat. Altaldnos médszer: 80 miiveleti egység

Stratégia  Id6' #LP? Mem.®* Opt.meghat.* Lim.LP® Lim.Mem5

z 181.42 93845 10.291 17088 44 12
€ 168.58 108925  4.608 3397 43 0
Max 100.99 42020 4.441 3863 24 10

Erz. 13.122 1172 0.309 8 2 4
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Kombinatorikusan gyorsitott modszer

A kombinatorikusan gyorsitott eljarast (lasd 3.7 fejezet) teszteltiik a kiilonb6z6 par-
ticionalasi stratégiakkal. Az érzékenységi vizsgalaton alapulé vagasi modszer di-
rekt nem épitheté be a kombinatorikusan gyorsitott keretalgoritmusba a félfolytonos
valtozok miatt, igy az nem szerepel a listaban. Ezen stratégia kibovitése a jovo egyik
feladata. A 3.6 — 3.9 tablazatok tartalmazzdk a kiilonb6z6 méretii tesztfeladatokon

végrehajtott futdsi eredményeket.

Elemzés

Az atlagolt eredmények szamitdasakor csak az 6sszes megoldé médszer altal megoldott
feladatokat vettiik figyelembe. Ezzel sajnos a feladatokat jol megoldé moddszereket
,biintetjiikk”, hiszen az altaluk megoldott, de egy rosszabb mddszer altal nem megol-
dott feladatokat figyelmen kiviil hagyjuk, ezért a nem megoldott feladatok szamat

kilon kiemeltuk.

3.9.2. Valés ipari feladatok

Két valds ipari feladaton teszteltiik a médszereket (lasd 3.15 és 3.16 dbrék). A 3.10
— 3.13 tablazatok tartalmazzék az eredményeket. A feladatok lefrdsit a [39] tartal-

mazza.



3.6. tablazat. Kombinatorikusan gyorsitott modszer: 20 miiveleti egység

Stratégia Idé! #LP? Mem.* Opt.meghat.? Lim.LP® Lim.Mem"

z 0.11 309.2 0.044 93.2 0 0
€ 0.08 2275 0.022 15.6 0 0
Max 0.04 1241  0.003 7.3 0 0

3.7. tablazat. Kombinatorikusan gyorsitott modszer: 40 miiveleti egység

Stratégia  Id6' #LP? Mem.?> Opt.meghat.® Lim.LP® Lim.Mem®

z 22.23 8063  1.897 952 0 0
€ 6.22 4401  0.875 133 0 0
Max 0.181 246 0.015 12 0 0

3.8. tablazat. Kombinatorikusan gyorsitott modszer: 60 miiveleti egység

Stratégia Id¢t #LP? Mem.> Opt.meghat.* Lim.LP®> Lim.Mem®

T 160.72 68927 10.616 1816 6 1
€ 139.46 36848  9.984 651 0 4
Max 215 1952 0.146 146 0 0

3.9. tablazat. Kombinatorikusan gyorsitott médszer: 80 miiveleti egység

Stratégia Id6!  #LP? Mem.* Opt.meghat.* Lim.LP® Lim.Mem®

T 438.65 109955 31.273 3423 8 25
€ 351.08 87853 31.756 9402 0 25
Max 6.22 3685 0.497 437 0 0

89
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A6 A3 A4 Al4
4
3 5
A2 AL A27 A28 A29 A30
Al0 A2 A7 A19
2 9 10 11
A25
A9
A2 All A2 A3l
8 16 17
A21 A37 A4S
A38
A22 A3 A36 A39
2
15 23 24
Ad8
A49 Al 47
29 — 1
AS8 AS

AS7

A6l

3.16. dbra. Alpha feladat P-graf abrézolasa.



3.10. téblazat. Altalanos médszer: Alpha (41 miiveleti egység)

Stratégia  Idé(mp) #LP  Memoéria (MB)  Opt.meghat.
z 41.40 44765 10.63 295
€ 9.48 16639 0.30 359
Max 1.48 2592 0.04 793
Erz. 0.65 225 0.03 7
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3.11. tabldzat. Kombinatorikusan gyorsitott médszer: Alpha (41 miiveleti egység)

Stratégia  Idé(mp) #LP  Memoéria (MB)  Opt.meghat.
z 25.59 33779 11.63 21
€ 0.42 679 0.02 21
Max 0.57 1043 0.01 18

3.12. tdbldzat. Altaldnos médszer: Denmark (35 miiveleti egység)

Stratégia  Id6(mp)  #LP  Memoéria (MB)  Opt.meghat.
z 0.32 1022 0.285 1
€ 1.17 3521 0.051 1
Max 0.09 181 0.002 1
Erz. 0.01 1 0.001 1

3.13. tédblazat. Kombinatorikusan gyorsitott médszer: Denmark (35 miiveleti egység)

Stratégia  Id6(mp)  #LP  Memodria (MB)  Opt.meghat.
z 0.51 1322 0.47 1
€ 0.51 1042 0.17 1
Max 0.09 217 0.01 1
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3.10. Alkalmazas: ipari hoellaté rendszer optimalis

tervezése

Vegyipari rendszerek jellemzdje a nagy héenergiaigény. A hoéenergia sziikségletet az
esetek jelentds részében vizgéz kondenzaciéjaval biztositjak. A gézt kazanhdzakban
allitjak el6 vagy ellennyomaésos er6miibdl szolgaltatjak. A goz elballitasanak és fel-
hasznalasi helyének tavolsdga akar tobb kilométer is lehet, igy a gozellaté halozat
paraméterei (pl. cs6vezeték keresztmetszete, szigetelése) a halézat beruhdzasi- és
tizemeltetési-koltségét is jelentosen befolyasoljak.

Osszetett vegyipari rendszerekben a szakaszos tizemti és az idészakosan miikodte-
tett technologidknak koszonhetoen a felhasznaléds helyén fellép6 gozigény jelentos inga-
dozast mutathat. A gbzigény id6beni valtozasa tovabb neheziti az optimalis gézellato
rendszer meghatarozasat, hiszen a gozellaté rendszernek az idében valtozd gozigény
Osszességét tekintve kell optimalisan miikodnie, mikozben eléggé rugalmasnak kell
lennie ahhoz, hogy a fellépd igénymaximumokat is biztositani tudja.

Szamos kozlemény foglalkozik a valtozo igényti hoellatd haldézat optimalizalasaval.
Példaul egy multiperiodikus optimalizalas eljarast mutat be a [78], [79]; egy kombi-
natorikus optimalizaldsi mddszert ismertet a [76]; csak a géznyomds optimalizaldsat
végzi a [70].

A fejezetben ismertetett eljaras természetesen tetszoleges valtozo igényti PNS fe-

ladatokra is hasznalhato.

3.10.1. Gozhalézat, kiindulasi feltételek

A gozellaté rendszer eredeti strukturdjat a 3.17 abra szemlélteti. Az eromi és a
kazanhaz gozelosztokon keresztiil csatlakozik az S1, S2, O jeli vezetékekhez. Az
A, ..., FE iizemek az S1 és S2 csatlakozasa utan S2-bdl ledgazasokon keresztiil kapjak
a gbzt. Az iizemi leagazasok viszonylag kozel vannak egymashoz, mintegy 20-50m-re,
az eromi és az elsé ledgazas kozotti csOhossz kortilbelil 1800m, a kazdnhdz és az
erémi kozotti csOhossz pedig 2 km. Az O jeli vezeték eredetileg hasznalaton kiviil

van, csak az S1 és S2 vezetékeket hasznaljak a gozigény ellatasara.
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Héerdmi 82 Kazanhiz

3.17. 4bra. Az eredeti hdellatd rendszer sematikus dbrdzoldsa.

3.10.2. Alternativ megoldasi lehetoségek
Az elobbiek figyelembevételével a kovetkezo gézellatasi lehetoségeket fogalmaztuk
meg:

1. Megsziintetjiik a kazdnhdzat (hoellatas csak a héerémi altal torténik).

(a) Az aramlasi keresztmetszet novelése. Ez az O jelii vezeték iizembe he-
lyezésével és tovabbi csdvezetékek kiépitésével valosithato meg.
(b) A nyomésesés novelése.
i. Megnoveljiik a goz induldé nyomasat.
ii. A csOben a goézelvételi helyen a nyomas csokkentése.

2. A kazdnhéz tovabbi tizemeltetése.

(a) A tapvizellatds megvaltoztatasaval.

(b) A kazdnhéz idészakos tizemeltetésével.
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Q 1 [GI/] Q 1 [GJ/h]

t[h]

(a)

3.18. dbra. (a) Idében valtozé héigény trend. (b) A diszkretizalds eredményeként
kapott kumulativ hételjesitmény trend.

3.10.3. Moddszer

A valtozé hoigény miatt a korabban bemutatott halézatszintézis mddszerek kozvet-
leniil nem hasznédlhatok. A gozfogyasztd egységek Osszesitett hoteljesitmény-igé-
nyének az idobeni alakulasat kapjuk meg bemenetként. Hogy az optimalizalé mod-
szert alkalmazni tudjuk az aldabbiak szerint diszkretizaljuk, alakitjuk at a hoteljesit-

mény-igény trendet.

1. Megkeressiik a minimum és maximum hoteljesitmény-igény értékeket. A nullatél
a maximum értékig terjedé tartoményt felosztjuk n részre ugy, hogy a le-

galsé teljesitménysav fels6 hatara a taldlt minimum érték f616tt legyen (diszkre-

tizalds).

2. A trenden végighaladva az egyes hoteljesitmény-igény értékekhez tartozo ido-

tartamokat teljesitménysavonként Osszegezziik.

Ezzel az atalakitassal a hételjesitmény-igény trendbél n darab (6t) teljesitmény-
szintet kapunk a hozza tartozé idétartamokkal egyiitt, amit a hoteljesitmény-igény
trendhez hasonl6an teljesitmény - id6 koordindtarendszerben abrazolhatunk (3.18 ab-
ra).

Ennek alapjan mar egyszertien megfogalmazhaté a feladat: hatarozzuk meg azt
a gbzellatd rendszert, amely képes az n (6t) féle eltér6 teljesitmény egyenkénti biz-

tositdsara gy, hogy az egyes teljesitményszintekhez tartozo idétartamokkal stlyozott



95

koltségosszeg minimalis legyen. Az alternativ megoldasokbdl 1étrehozzuk a maximalis
strukturdt (3.19 dbra).

Egy termékhez (héigény szinthez) tartozé halézatot annyi példanyban kell ven-
niink, ahany termékiink van. Egy termékhez tartozé halézaton beliil az ismétlodo,
tobbszor eloforduld miveleti egységek koziil a megoldasstruktirdaban csak egy sze-
repelhet, hiszen egy adott idépillanatban az adott miiveleti egység nem dolgozhat
parhuzamosan onmagaval. A kiilonboz6 termékek kiilonbozé idépontokban torténd
gbzigényt elégitenek ki, igy a kiilonboz6 termékekhez tartozo héldézatok egyidejiileg is
tartalmazhatjiak ugyanazt a miiveleti egységet, esetleg megegyezo vagy eltér6 diszkrét
allapotban. Lényeges azonban, hogy minden miiveleti egység esetleges beruhazasi

koltsége csak egyszer szerepelhet a koltségfiiggvényben.

Matematikai modell

Sy < 1L keP i=12.. N
j=1
gy <Y yh =12 N j=12..mn
keP
yh < 2y, i=1,2,...,N, j=12,.....n; kEP
wy, < oyhuy, i=1,2,... N, j=12... n, keP
N n;
>N sual; = 0,1le M\ R\P, keP
i=1 j=1
N n;
S sual; > p keP
i=1 j=1
N ez
ZZ—sim?j < q,keP leR
i=1 j=1

Eves koltség:

N n N n;
3 (%m +> 7 (et + dijxi%t")> 2 (7«, 2 2.0 —Siltk$5j> ’

i=1 j=1 keP leR keP i=1 j=1

ahol
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3.19. dbra. Egy adott hételjesitményhez tartozé maximalis struktira.
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: bindris valtozo az ¢ miveleti egység 7 diszkretizdlt esetének létezése az adott

strukturaban, a k termék eloallitasanal,

: véltozo ( ;) az ¢ miveleti egység j diszkretizalt esetének kapacitdsa k termék

eléallitasdban, (xf; > 0),

.+ binaris valtozo, az ¢ miiveleti egység j diszkretizalt esetének a fixkoltség szami-

tasanal,

. az ¢ miveleti egység j diszkretizalt esetének kapacitas korldtja,
; + az i muveleti egység diszkretizalt eseteinek a szama,

. az ¢ muveleti egység j diszkretizalt esetének a beruhéazasi koltségének allando

része,

az ¢ muveleti egység j diszkretizalt esetének a miikodtetési koltségének allando

része,

.+ az 1 miiveleti egység j diszkretizalt esetének a kapacitassal aranyos miikodtetési

koltsége,

[ nyersanyag egységnyi mennyiségére vonatkozé koltsége, [ € R,

az | nyersanyagra megadott felsokorlat, [ € R,

a k termékre megadott teljesitményigény, k € P, t/hour,

k terméknek megfelelo teljesitményszint biztositasa érakban, k € P hour,

az | € M anyagnak az i miiveleti egység altal szolgédltatott (s; > 0) ilL
felhasznalt (s; < 0) gézteljesitménye (tonna/dra) egységnyi kapacitds mellet
(s = 0 esetén értelemszeriien az ¢ miiveleti egységnek nincs kapcsolédésa az [

anyaghoz),

: megtérilési id6 években.
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A modelliink 530 bindris valtozét tartalmaz; az eljarasunk 550.41 masodperc alatt
azonositotta az optimadlis halézatot egy PC-n (Athlon 1.33GHz, 1852 MFLOPS, 3687
MIPS), a megoldott LP feladatok szdma 115596 volt. Az éves koltség 143,905,000
HUF, amely 8 szazalékkal kevesebb, mint a jelenlegi koltség.



4. fejezet

A folyamat- és hocserélohalézat
egylttes szintézise

4.1. Bevezetés

A folyamathaldzat szintézisérdl korabban mar a 2. fejezetben részletesen irtunk. Be-

vezetésiinkben a hocserélohalézatokrdl tesziink emlitést.

4.1.1. Hocserélohalézat szintézis

A hécseréléhalézatok (HENS) szintézise az egyik legfontosabb teriilete a folyamatter-
vezés tudomanyanak. Az utébbi idoben az egyik legintenzivebben kutatott tertiletek
kozé tartozik, tobb szaz publikacié jelent meg e témédban az elmult évtizedekben. A
fontossdga annak is tulajdonithatd, hogy a vegyipari rendszerek koltségeinek jelentos
része az energiakoltség, ezen beliil is a héenergidé, aminek hasznositasa kiemelten
fontos.

Az els6 publikacid, amely a hécseréléhalézatok tervezésével foglakozik 1944-ben
jelent meg [93], az els6 teljes hécserélohalézat-tervezést 1965-ben publikaltak [52],

1969-ben jelent meg az elsé szigori matematikai leiras [71].

Az éaltalanos HENS problémat a kovetkezéképpen definialjuk:
Adottak:

e a meleg anyagdramok halmaza (F), melyeket a bemend hémérsékletrsl kell

99
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lehtiteni a kimeno homérsékletre;

e a hideg anyagdramok halmaza (F¢), melyeket a bemend hémérsékletrdl kell

felmelegiteni a kimend hémérsékletre;
e az anyagaram hokapacitasa és az anyagaram nagysaga;

e a rendelkezésre allo kiils6é meleg és hideg forrasok, a megfelel6 hémérsékletekkel

egyiitt, és ezen forrasok koltsége;
e hocserélok koltsége.

Cél: egy koltségoptimalis hocseréléhaldzat meghatarozasa, amely kielégiti a fenti
igényeket. A feladat nem konnyti, az altalanos hécserélohalozatok szintézise NP nehéz

probléma [41].

4.1.2. Az integralt folyamat- és hocserélohalézat szintézise

Integralt folyamat- és hécseréléhalozat szintézise soran a teljes folyamat- és hocseré-
16halézat meghatarozasa azonos idében torténik. A szekvencidlis modszerek esetében
el6szor meghatarozzak magat az optimalis folyamathalézatot és utana hatérozzak
meg az optimdlis hécseréld haldzatot. Konnyen lathatd, hogy az utébbi nem vezet
optimalis megoldashoz, hiszen az optimalis folyamathalézat meghatarozasakor figyel-
men kiviil hagyjak a hocserével kapcsolatos informaciokat.

A PNS feladatot vessziik alapul a feladat részletes ismertetéséhez. A PNS fela-
datot kibovitjiik 4j paraméterekkel, amelyek sziikségesek a HENS feladathoz (ldsd a
HENS definiciét).

Anyagaramhoz kapcsol6dé héaram

A kiterjesztett feladatban az anyagaramhoz tartozhat hémérséklet is. Ha egy miveleti
egység kimeno anyagarama kozvetleniil kapcsolodik egy masik miiveleti egység be-
meno anyagaramara és a definidlt homérsékletek kiilonbozoek, akkor hébevitel, illetve

hoelvitel vélik sziikségessé, az itt fellépé hé mennyisége az anyagarammal aranyos.
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Rejtett ho

Rejtett honek nevezziik azokat a hoigényeket, amikor a miiveleti egységgel gy valé-
situnk meg héforgalmat, hogy kozben a miiveleti egység homérséklete allandé marad.
Ilyen lehet példaul a halmazallapot-valtozast és a kémiai atalakulast kiséré ental-
piavaltozas. Egyes miveleti egység tipusoknal a miivelet soran betaplalt, illetve el-
vont rejtett hé mennyisége tobbszorose lehet annak a hoforgalomnak, amit a miiveleti
egységbe belépo, illetve kilépd anyagaramok képviselnek. Erre jo példa a rektifikalo
kondenzatora és kiforralgja, vagy egy erdsen exoterm illetve endoterm hdészinezetii
reaktor. FEzen okok miatt a folyamatszintézis hointegracioval valé kiterjesztésekor
sziikséges a rejtett ho figyelembevétele, és a matematikai modellbe valo beépitése. A
rejtett hot tipusatol fiiggetleniil igy definidljuk a modellben, hogy minden egyes eset-
ben megadjuk a hémérsékletet és azt a hdmennyiséget is, ami a rejtett ho forrasahoz

tartozik a miiveleti egység egységnyi kapacitasa mellett.

4.2. A szakirodalom attekintése

Eloszor az altalanos HENS mddszerek szakirodalmat tekintjiik at, majd az integrélt

modszerekrol szolunk.

4.2.1. Altalanos HENS médszerek

A HENS modszereket két {6 csoportra oszthatjuk: szekvencidlis modszerek és a teljes

HEN szintézis.

Szekvencialis szintézis

A szekvencidlis szintézis soran a feladatot olyan részfeladatokra bontjuk, amelyek
kiilonbozo cél szerint oldjak meg a problémat. A célok kozott egy sorrendet allitunk
fel, amely altaldban valamilyen heurisztikdn alapszik. A megfogalmazott részfelada-
tokat a célok szerint csokkend sorrendben oldjuk meg és az el6z0 feladat eredményét
alkalmazzuk a kovetkezd feladat megolddsakor. A hdécseréléhélézatok szintézise fo-

lyamén altalaban a kovetkezé harom célt szoktak hasznalni:
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1. a kiils6 meleg és hideg forrasok hasznalatanak minimalizalasa,
2. a hocserélok szamanak minimalizalasa,
3. a hdécserélo feliilet minimalizélasa.

fgy azt a megoldast kapjuk, amely minimaélis kiilsé forrast hasznal ezen beliil a leg-
kevesebb hécserélovel és ezen beliil a legkisebb hdcseréld feliiletet hasznélja [7].

A szekvencidlis mddszereket két f6 csoportra oszthatjuk:

1. Evoliciés mddszerek: pinch eljaras (PDM) [2], [64], [65]; dudlis hémérséklet
[13], [94]; és pszeudd-pinch eljaras [87], [94], [99].

2. Matematikai programozasi modszerek: vegyes egész linedris egyenletek megol-
désanak sorozatéra épiilnek a [12], [80], illetve nemlinedris optimalizaldsi fela-

datok megolddséra épiil a [32].

A pinch moédszer egy olyan grafikus eljaras, amely a homérséklet intervallumo-
kat felhasznalva szamolja ki a minimalisan felhasznalt kiilsé energia mennyiségét.
Az eljarés kozben a rendszer sziik keresztmetszeteit is megkapjuk, ezeket nevezziik
pinch pontoknak. A pinch pontok homérsékleti pontok, amelyeken keresztiil nem
torténik héatadas. A feladat a pinch pontok mentén felbonthaté részfeladatokra. A
dudlis hémérséklet mdédszer megengedi a hocserét a pinch pontokon keresztiil, ezaltal
a kapott halozat kevesebb hdcserélét tartalmaz, illetve a halézat strukturdja egysze-
risodik. A pszeudd-pinch tervezés szintén lazitja a pinch feltételt. A pinch pontok
mentén torténd particiondlasi stratégian alapszik a vertikdlis hocsere elv [47], [48].

A matematikai programozasi modszeren alapulo eljaras a kordbban emlitett harom
részfeladatot oldja meg. Egy részfeladat megoldasértéke paraméterként szolgal a
kovetkezd részfeladat szdmara. A minimélis kiilsé héforras meghatarozasara linedris
programozasi modellt frnak fel a [12], [80] szerzéi, vegyes egész linedris feladatot
(MILP) és vegyes egész nemlinedris feladatot (MINLP) hasznal [43], [44], amelyek
mar strukturalis megszoritasokat is tartalmaznak. A minimélis kiils6 héforrds meg-

hatérozasa mellett hécserét is meghatarozza a [12], [80].
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Teljes szintézis

A szekvencidlis szintézissel ellentétben itt az a cél, hogy a feladat dekomponadlasa
nélkiil hatdrozzuk meg az optimalis halézatot. Altaldban ezek vegyes egész nem-
linedris programozasi feladatot (MINLP) fogalmaznak meg a feltételektél fliggben.
Az egyik legkorabban publikalt HENS modell a [103], aminek a hatranya, hogy nem
engedélyezi a h6aramok megosztdsat. Egy méasik MINLP feladat a [31]-ban taldlhatd,
amely a homérsékleti intervallumok particiondldsédn alapszik. A [101)-ben publikalt
modell feltételezi, hogy egy megosztott héaram csak egy hdécserélén megy keresztiil,
igy a feltételrendszer linedris lesz. [20] szerz6i bevezettek egy médszert, amely képes

alsé és felsd korlat meghatarozasara egy HENS feladatnal.

4.2.2. Integralt folyamat- és h6cserélohalézat szintézise

A HENS feladatot megoldé médszerek kozvetleniil nem hasznéalhatok, mivel az anyag-
daramok nagysdga nem adott (lasd a HENS feladat definiciéjat), igy a héaramok
hétartalma ismeretlen. Az integralt PNS-HENS modszereket a folyamatszintézis
tipusa szerint kiillonboztethetjiikk igy meg, mint szakaszos és folytonos. A jelenlegi

munkank a folytonos tipushoz tartozik, de roviden kitérek a szakaszos esetre is.

Folytonos PNS-HENS integralt médszerek

Az integralt hocserélo- és folyamatszintézis modszerek altaldban mar meglévé HENS
és PNS eljarasok moédositasat hasznéljak. Az itt emlitett eljardsokat a HENS rész
szerint targyaljuk.

Pinch eljardson alapulé mddszerek: az [54] szerz6i a homérséklet-entalpia dia-
gramot terjesztik ki; a [66] a folyamattervezés feladatot vizsgélja a pinch mddszer
felhasznalasaval. A [104] dolgozatban gy valésitanak meg HENS retrofit tervezést,
hogy a kapcsolédé folyamatban a folyamértékek megvaltozhatnak. Az [51] is Pinch
technologiat alkalmaz, tobb kiillonb6zo folyamat kozos kiilsé hideg és meleg forrasainak
optimalizalasara.

Nemlineédris folytonos (NLP) modelleket vezet be a [25], ahol a modell egyszerre
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optimalizalja a folyamatot, minimalis kiils6 hideg vagy meleg forrast és a homér-
sékleteket. A szerzok tapasztalataik alapjan megéllapitjak a kordbban mar emlitett
észrevételt, hogy jelentOs eltérés van a koltségekben a szimultdan optimalizalas és a
szekvencialisan végrehajtott PNS-HENS kozott.

Vegyes egész linearis modellt alkalmaznak a kovetkezd munkdk. A [77]-ben be-
mutatott mddszer két {6 1épésbol all: egy belso 1épés a héintegraciot valdsitja meg,
és kozben egy kiils6 1épésben pedig a halézatot optimalizélja. A [19] cikk a szintézis-
feladathoz kapcsolodd keretalgoritmust mutat be, amely a rendszer részeit megfelel
esetekben egyesiti, illetve dekomponalja. Az eljarast egy desztilldlé rendszerre al-
kalmazza, maga a MILP modell azonos a [20]-ban leirt modellel. A mddszer képes
kiszlirni a lehetséges alternativak egy olyan részhalmazat, amely mar nem lehet op-
timalis.

Vegyes egész nemlinedris modellt (MINLP) alkalmaznak: a [102] feltételezi, hogy
csak egy meleg és hideg kiilsé hoforrds &ll rendelkezésre; a [46] szerzéi elemzik a
héintegracié nehézségeit, majd a [25]-ben szereplé MINLP modellt analizdlva jutnak
el a feladat egy 4j MINLP megfogalmazasihoz. A [21] egy kereteljardst ad a folyamat
hierarchikus dekompoziciéjara, az optimalizaciés lépések a dekompozicié altal meg-
hatarozott szintenként torténnek, ellentétben az eddigi moédszerekkel, amelyek egy
nagy MINLP feladatot definiadltak. Itt sok kis MINLP feladatot kell megoldani, igy
kérdéses, hogy a globalis optimumot mennyire tudja garantélni az eljaras.

Egyéb eljarasok: a [62] szekvencidlis folyamatszintézis mddszert haszndl, amely
egy interfészen keresztiil kapcsolodik a HENS megoldéhoz. A [91] szerz6i dttekintést
adnak a legijabb eredményekrol a folyamat integracioban, a munkaban kiilon fejezet

foglalkozik a hécseréld halézatokkal.

Szakaszos PNS-HENS integralt mdédszerek

A szakaszos folyamatok esetében neheziti a feladatot, hogy egyben titemezési problé-
mékat is meg kell oldanunk. MILP modell felirdsdval jutnak el a megoldésig a [96],
[105], [106] munkék. Heurisztikaval keres megoldast a [97], majd egy MINLP modell
felirasaval javitja a korabban megtalalt megoldast. Tisztan heurisztikus megkozelitést

alkalmaznak a [14] és [15] dolgozatok.
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hP-graf

my

meleg aram hideg aram

4.1. abra. Héaramok reprezentdalasa.

P-graf hP-graf

hébevitel

héelvonas

4.2. dbra. Rejtett ho reprezentélasa.

4.3. A hP-graf

A kordabban bevezetett P-graf reprezentaciot bovitjik ki gy, hogy képes legyen a
lehetséges hobevitelek és hoelvondsok reprezentalasara.

Az anyagaramhoz kapcsolédd héforgalom hP-graf reprezentdcidjat mutatja be a
4.1 abra. A miiveleti egységhez kapcsolédé rejtett hé hP-graf reprezentaciojat mutatja
be a 4.2 4bra.
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4.3. abra. Az anyag tipusu pont kiterjesztése

4.3.1. Az anyagpont kiterjesztése

Olyan esetekben, ahol m; anyagot tobb miiveleti egység is gyartja, illetve fogyasztja;
elképzelheto, hogy azt kiillonb6z6 hémérsékleten végzik. A P-graf figyelmen kiviil
hagyja az anyagok homérsékleti paramétereit, a tobb miiveleti egység altal termelt
anyagokat 0Osszekeveri, igy a homérsékletre vonatkozd paraméterek torzulnédnak. Ilyen
esetekben a hP-grafban minden termel6-fogyaszté miiveleti egység parra kiilon kell
meghatarozni a két mitveleti egység kozott ataramlott anyagmennyiséget. Ennek
érdekében az anyagpontot felbontjuk mesterséges anyagpontokka és mesterséges mii-

veleti egységekké. A kiterjesztésnek az dltalanos dbrajat mutatja be a 4.3 abra.

4.4. Kiindulasi adatok, halmazok

4.4.1. Hideg és meleg h6aramok

Jelolje prod(m;) az m; anyagot el6allito és feed(m;) az anyagot fogyaszté miiveleti

egységek halmazat, azaz

prod(m;) = {og:o0r = (a,p) € O,i € [},
feed(m;) = {or:0r = (a,5) € O,i € a}l.

Egy hoaramot egy harmassal jellemezhetiink attdl fiiggden, hogy melyik anyagrol

van sz0, és mely miiveleti egység bemenetén illetve kimenetén fordul el6. Figyelembe
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véve az anyagok homérsékleti paramétereit, a lehetséges hideg és meleg daramok:

Fi = {(z, kL) s 9 >y # 0,y # 0,m; € M, oy € prod(m;), o, € feed(mi)}
= {FH,,FH,,...,FH,,,},

FO o= (i k1) 3 <t yk # 0,y # 0,m; € M, o € prod(m;),o; € feed(m;)}
= {FC\,FCy,...FC,,.}.

A héaramokat definidlé indexek alapjan meg tudjuk mondani egy héaram kezdé- és
véghémérsékletét, példaul FC; = (i,k,1) € FCre t54, ti* kezdé- illetve véghSmér-

séklete. A konnyebb megértés céljabdl ezen kezdo- és véghomérsékleteket jelolje t(()i’k’l)

és tgi’k’l). Hasonléan FH; = (i, k,l) € F"-ra azzal a kikétéssel, hogy t[()i’k’l) jelentse
mindig a kisebb homérsékletet. (Meleg aramoknél a kezd6 hémérséklet a magasabb,

és ezt forditsuk meg a kés6bbi kénnyebb jelolés miatt.)

4.4.2. Rejtett ho

A feladat definidlasakor sziikséges megadni a rejtett hé paramétereit. Legyen oy €
O, és jelolje I, az op-hoz tartozo rejtett hoforrasok szamat. Jelolje hy; az i. rejtett
hoforrashoz tartozé paramétert, amely megmondja az o, egységnyi miikodésekor az
idoegységre es6 betaplalandd, illetve elvonandé hé mennyiségét. Legyen T My; az
i. rejtett ho homérsékleti paramétere (i = 1,..., ;).

A miveleti egységekhez kapcsolodd rejtett hét két indexszel jellemezhetjik. Az
els6 index megmondja, hogy mely miiveleti egységhez tartozik a rejtett hd, a masodik
pedig a miiveleti egységen beliili sorszamat jeloli. A lehetséges meleg és hideg rejtett

héforrasok halmaza legyen (L, £©).
L7 = {(k,j): hgj > 0,yx # 0,0, € O}y ={LH,y,...,LH,,,},
LY = {(k,j):hgj <0,y # 0,0, € O} ={LC,,...,LCy, .}

Egy (j, k) € L7 U L ra legyen t*7) a rejtett héforrashoz kapcsolédé hémérséklet.

4.4.3. A hideg aramok eltolasa

Minden hideg héaram, illetve hideg kiils6 forras homérsékleti paramétereit el kell tolni

pozitiv irdnyba minimadlis megkozelitési tavolsdggal (MT). A tovédbbiakban, amikor a



108

hideg aramok, rejtett hoforrasok homérsékleteirdl beszéliink, akkor mar a médositott
értékekkel dolgozunk. (i,k,1) € FC ra a ti"™ + MT, (k,j) € LC-re a t*:) + MT

értékekkel szamolunk.

4.4.4. Az elemi hoaramok

Megadjuk az elemi homérsékleti intervallumok fogalmét.

Elemi homérsékleti intervallumok

Definialjuk a kovetkezd sorozatot: ti,t,...,1,,, ahol a sorozat elemei az (i, k,l) €
FH U FC hédramhoz tartozé kezds- és véghémérsékletek, illetve (k,j) € £° U LA
a rejtett hoforrashoz tartozéd homérsékleti értékek egyszeres elofordulassal. Legyen a
sorozat rendezve (i > j = t; > t;). A hoéintervallumokat a ¢, sorozat szerint elemi

intervallumokra bontjuk. Legyen E, = [t,,t,11], p € [1,...,n.] egy elemi intervallum.

Az elemi héintervallumok alapjan tigynevezett elemi hédramokka (£, £9) bont-

juk fel az aramokat:

g {(@',k,l,p) (i, k1) € FH,tp > téz‘,k,l) & tyar < t(li,k,l)}
= {FSH,,...,FSH,,,},

£ = kL) (kD) € POty > 0 & 0 < 100
= {FSCy,...,FSC,

FSC} .

4.4.5. A részhoaramok

Az elemi héintervallumok felhasznalasaval a hoaramokat felbontjuk részhéaramokra.

Az (i, k1) € FOUFH [t{™D ) $07D] hgmérséklet intervallum felirhato [t,, ¢, 4] alak-

ban, ahol t, = t(()i’k’l), tprd = tgi’k’l). [tp, tpra) felbonthaté I, = [t,, tsi1] részintervallu-

d+1
2

Az elébb vazolt intervallumfelbontdsokat a hddramokra haszndlva részhdaramokat

mokra, ahol p < ¢ < s <p+d—1 (ez Gsszesen ( ) intervallum).
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kapunk:

" = {(%k,l,q, s): (i k1) e FH, & I, C [t[()hk,l)’tgi,k,l)]}
= {9SH,,SSH,,...,SSHyg,},

¢ = {(l}k,l,q, s): (i, k1) € FO, & I, C [t[()i,k,l)jtgi,k,l)]}
= {85C1,85C,,...,55C 4.} -

4.5. A matematikai modell

Fejezetiinkben a PNS modellt terjesztjik ki a HENS-hez kapcsolodé részekkel. Ko-
rabban mar definidltuk a PNS linedris modelljét (2.2.3 fejezet). A bevezetett HENS
modell fliggetlen magéatol a PNS részhez kapcsolédé modelltdl, igy a megértés konnyi-

tése céljabol hasznaljuk a PNS linedris modelljét.

4.5.1. Anyagponthoz tartozé matematikai modell

Fejezetiinkben a kiterjesztett anyagpontokhoz tartozo feltételeket részletezziik. Le-
gyen 7 azon anyagok halmaza, melyre létezik specifikalt hémérséklet. Legyen m; € T,

%

(ok,m;) € w(my) és (my,0) € wt(m;). Jelolje ¢} az m; anyag mint o, miiveleti
egység kimeneti anyagdnak hémérsékletét. Hasonléan jelolje 9 az m; anyag mint o,
miiveleti egység bemeneti anyagdnak hémérsékletét. Jeloljiik h¥'-vel az o, miiveleti
egységbol o, miiveleti egységbe daramlé m; anyaghoz tartozé mesterséges miiveleti
egységet a rajta dtaramlé anyag mennyiségét pedig jeldlje wi!. Jeldlje tovabbd m¥ az
o, miveleti egységhez tartozé 1j ,,mesterséges anyagpontot” (lasd 4.4 abra).

A kordbban adott m; anyagponthoz kapcsolodd feltételt 1j feltételekkel fogjuk
helyettesiteni. Jelolje KC; az m; anyagpont kiterjesztésével létrehozott 1] mesterséges
miveleti egységek halmazat, és M; az Gj anyagpontok halmazat. A mesterséges
miiveleti egységek egy input, illetve output anyaggal rendelkeznek. fgy két feltétel
tartozik egy miveleti egységhez.

A mesterséges miiveleti egységekre vonatkozo koltség és feltételrendszer:

Koltség:
foy=0mMeK;, ieT
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4.4. abra. Egy mesterséges miiveleti egység.

Feltételek:
g (@, wi) = 0, W ek ieT,
gt (xp,wf)y = 0,  hl'ek; ieT.

Itt legyen a¥ = (m¥, h¥) € w=(hM), al = (R¥, ml) € wt(hM), és jeldlje 2% = p(ak),

R %

1t = ¢(al) az élekhez tartozé véltozokat.

i

kl k 1kl kl k kl -

g; l(ykaylvxiahi ) = w; — T, h7, EICi, ZGT
kl k 1kl kl ! kl .

9; Yooy i, b)) = w — g, hi* € Ky, 1 €T

A mesterséges anyagpontokhoz tartozd koltség és feltételrendszer:

FFe(w™ (my), e(wh(my))) = 0, mF € M,,

g (p(w™(m), et (mf)) < 0, mi €M, o € prod(m),

g (Pl (mi)), p(w™(m)) < 0, mj €M, o€ feed(m,).

IN

Legyen oy, € prod(m;) és a, = (o, m¥) € wt (o),

g (e (mf)), plw (mi)) = Y wi — . (4.5.1)

o € feed(m;)
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Hasonléan o; € feed(m;) és a, = (mk, 0;) € wt (o),

g (plw™ (m), ot (m))) =2, — Y wl (4.5.2)

oxEprod(m;)
Felhasznalva a miveleti egységekhez tartozé (2.2.5) feltételeket, a (4.5.1) és (4.5.2)

formulék rendre a kovetkezo formaban irhatok:

gt (W™ (md), et (mi)) = > wl —ruz,

o € feed(m;)

g (pw™ (m), ot (m)) = rgz— Y, w

o Eprod(m;)
Modelliinkben kikiiszoboltiik az élekhez tartozé x valtozokat a z és w valtozok segit-

ségével.

4.5.2. Potencialis hocserék meghatarozasa

Minden dramhoz definialjuk az aramok egy részhalmazat, melyeknek képes hét atadni.
A meleg részaramokhoz rendeljiik a vele parosithaté hideg részaramokat.
JFF(SSH;) = {SSCj = (k. U'\q,s)eT: ¢<q,s<s},
SSH; = (i,k,1,q,s) € T
JFL(SSH;) = {LCy=(K,j)eL: t,<Twy},
SSH; = (i, k,l,q,s) € TV
JLE(LH;) = {SSC; = (", K,l'\q,s) €I Ty <tyui},
LH; = (k,j) e £
JLL(LH;) = {LH/—(k:’,j) e L’ <Tk//}
LH; = (k,j) e £
Minden elemi aramhoz, rejtett meleg és hideg forrashoz hozzarendeljiik a megfelelo
kiilso forrast.
JEU(FSC;) = {ueU” :UT,>t,.}, FSC; = (i,k,1,p) € £
JFU(FSH;) = {uelU®:UT,<t,}, FSH; = (i,k,1,p) € E”
JLU(LC;) = {ueU™ . UT,>Ty}, LC; = (k,j) € L
JLU(LH;) = {ueU®:UT, <Ty}, LH; = (k,j) € £"
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A nem parosithaté héaramok

Lehetnek olyan aramok, melyek valami okndl fogva nem pdrosithatok. A tiltott

hoatadasokat kivessziik a megfelel6 halmazokbdl.

4.5.3. Hoegyensulyi feltételek

A héegyensulyi egyenleteket az elemi héaramokra irjuk fel, a hécserék definidlasakor
a részhdaramokat, valamint a rejtett hideg és meleg forrasokat hasznéljuk.
A hoegyenstlyi feltételek definidlasakor meg kell hataroznunk az elvonandé illetve

betaplalandd h6 mennyiségét.

QFH; = cuwf(tyy —t,), FSH; = (i,k,1,p) € EX
QFC; = cl-wk (tpr1 — tp), FSC’] (i,k,l,p) € &c
QLHJ = hkzzku LH; = 72)

J

(ki) e L
QLC; = hyz, LC; = (ki) € LC

Ho6cserékhez tartozé valtozok

A valtozdk az egymashoz rendelt hideg és meleg részhGaram vagy a rejtett hdéaram
kozotti atvitt hdmennyiséget jelolik. A valtozdkat a hozzarendelések tipusainak meg-
felelen kiilonboztetjiik meg. A valtozoknak két f6 indexiik van: az elsé mindig
a meleg részhoaram azonositéja, a méasodik pedig a hozzarendelt hideg részhoaram

azonositdja.

QFF; : SSH;€TI" SSC; € JFF(SSH;)
QFL;; : SSH, €T LC; € JFL(SSH;)
QLF; : LH; e ", SSC; e JLF(LH;)
QLL;; : LH;e " LC;e JLL(LH;)

A kiilsé héforrasokat az elemi héaramokhoz rendeljiikk. Az ide vonatkozd valtozdk

esetében is az egyik index a héaramra vonatkozik, a masik a megfelel6 kiils6 forrasra.



Az indexek sorrendje a hoelvonds iranyat mutatja.

QFU,, : FSH;€&" we JFU(FSH;)
QUF, : FSC;e€&Y ue JFU(FSC)
QLU;,, : LH;€L" we JLU(LH,)
QUL : LC;€ L, ue JLU(LC)

A héegyensulyi feltételek:

H(FSH;)) = 0, FSH; € &¥

H(FSC;) = 0, FSC; € &¢

H(LH;) = 0, LH; € "

H(LC;) = 0, LC; € £°
Részletezziik az egyenletek bal oldalét:

bty —t
H(FSH;) = QFH,— ol e
(FSH;) = @Q > —

SSH;=(i,k,l,q,s)eTH s<p<q

> QFFj + > QF Lyjj

SSC; eJFF(SSH;) LC; €JFL(SSH;)
Y. QFU.,
uweJFU(FSH;)
FSH; = (i,k,1,p) € £,

H(FSCy) = QFCy + 3 by —

tys1 — t
SSCy=(i' k'l q' ') ETC ,s' <p'<q’' 7+l s

> QFFjj + > QLFj; | +

SSC,eJFF(SSH;) SSCj; € JLF(LH;)

Z QUFui/a

w€JFU(FSCy)
FSCy = (I, K,I',p) € &£°,

113
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H(LH;)) = QLH;— > QLE,; —
S$8C, eJLF(LH;)

> QLLu— > QLU,

LC,€JLL(LH;) w€JLU(LH;)
LH; € CH,

H(LCy) = QLCy+ Y QFLy-—

LC, €JFL(SSH;)

> QLLy+ ). QULu,

LC,€JLL(LH;)) weJLU(LCy)

LC; € L.

4.5.4. Hocserélok koltsége

A modellinkben a hdcserélo koltség a feliilettel aranyos. Az aranyossagi tényezoket
adjuk most meg a kiilonb6zo tipusi hocserék esetén.
1
YU LMTD(t, tysr, ty ty1)’
SSH; = (i,k,1,q,s) € T,

SSCy = (I, K, I',q,s') € JEF(SSH,;),

CFF,; = A

ahol A;; az m; és m; anyagok kozotti egységnyi feliileti hocserélo koltsége és Uy az
anyagok kozotti fajlagos héatadasi tényezd (mQLK) Az LMTD jeloli a részhéaramok
kozotti logaritmikus kézéphémérsékletet.

(z1 —y1) — (22 — 12)

Z1—Y1
r2—Y2

LMTD(x1,22,Y1,92) =

A rejtett forrdsok esetében a héatvitel valamilyen koztes anyagon keresztiil torténik.

Ilyenkor erre az anyagra vonatkoznak az anyagtol fiiggé paraméterek. Jelolje most



ezt az anyagot m.

CLE;; =

CLL;;
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1
Aim ,
UszMTD<tS, tq+1, Tk’i’, Tk:’i’)
SSH; = (i,k,l,q,8) € T LC; = (K,i')

1
Ami’
UmZ’LMTD(Tk‘Za Tk‘i7 ts’v 2(:q’—‘,-l)

LH; = (k,i) € £",SSCy = (', K',I',q,s") € JLF(LH;),

1 2
Amm
Umm (Tlm + Tk’i’)

LH; = (k,i) € L", LC; = (K',7') € JLL(LH;)

Kiils6 ho6 energia koltsége

A kiils6 meleg és hideg energia koltsége az idGegység alatt elvitt ho linearis fliggvénye.

u e UT UUC re a UC, jelentse a linedris koltséghez tartozé egyiitthatot.

4.5.5. Egyesitett matematikai modell

Osszefoglalva az eddigieket a matematikai modell a kovetkez8képpen néz ki

Célfiggvény:

minz f{—i—ij—i-

m;ER OjEO

> CFFjQFF+ Y CFLjyQFLjy+

QFF QFL;

> CLF;;QLF;y+ ) UCQFU, + (4.5.3)
QLEH/ QFU'Lu
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Feltételrendszer:

gi(p(w™(ma)), pw™(my))) < 0, my € M\ T

g9 (p(w™ (mf)), p(w*(m)))) < 0, mf € My, 0 € prod(m;) i € T

g (e(w™ (mh)), p(w*(ml))) < 0, mi € Mj, 0 € feed(m;) i € T
H(FSH;) = 0, FSH; € &¥ (4.5.4)
H(FSC;) = 0, FSC; € &°
H(LH;)) = 0, LH; e "
H(LC;) = 0, LC; € £°

4.6. Az integralt mddszer leirasa

A médszer az ABB algoritmus [40] médositottdsa. Az algoritmus kombinatorikus
része (szétvalasztds, kiterjesztések) véltozatlan. A korlatszamitdsi 1épés véltozik,
a matematikai modell béviil ki a hocseréhez tartozé valtozdkkal, egyenletekkel. A
feltételrendszereket a mar leirtak szerint kell generalni.

Az algoritmus az iterdcidk soran dont a miiveleti egységek bevételérél (y, = 1)
és kizarasardl (yr = 0). A modell felirdsakor a fixen kizért (yr = 0) miveleti
egységek jelentenek valtozasokat, az ahhoz kapcsolodd héaramok, rejtett meleg és

hideg forrasok nem keriilnek bele a modellbe.

4.6.1. A korlatozé LP feladat tulajdonsaga

A korlatozas 1épés soran egy LP feladatot kell megoldanunk. A feltételrendszer az
anyagokra és az elemi héaramokra vonatkoznak, a valtozok a miveleti egységekhez
és a hocserélékhoz vannak hozzarendelve. A potencidlis hécserélok szama az egy-
mashoz rendelheté részhéaramok és rejtett forrasok kombinacioitol fligg, ezért mar
kozepes feladatok esetében is nagyszamu potencidlis hocserélét kapunk. Ez tobb
nagysagrendben is eltérhet maguktél az elemi aramok szamatél. Ez azt jelenti, hogy
az LP feladat oszlopainak a szama joval nagyobb a sorok szamanal. Gyakorlati

példaknal nagyméreti LP feladatok meriilhetnek fel, amelyek kevés szamu feltételt
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és nagyszamu valtozét tartalmaznak. A SIMPLEX médszer ilyen tipusu LP felada-
tokra igen hatékony. Az optimalis megoldasban az Osszes hécserélo szamahoz képest
elenyész6 az optimalis megoldashoz tartozé hoatvitelek szama, igy a megoldasban sze-

replé nemzéro valtozok szama is joval kevesebb mint a modellhez tartozo valtozoszam.

4.7. Szemlélteto példa

Egy szemléltet6 példa alapjan fogjuk bemutatni algoritmusunk miikodését.

4.7.1. Altalanos leiras

A feladat maximalis strukturajanak reprezentaciéjat a 4.5 abra mutatja. A téglalapok
a muveleti egységeket, az irdnyitott élek az anyagaramokat abrazoljak. Az esetlegesen
sziikséges hoigényeket is feltiintettiik.

Célunk egy olyan koltségoptimadlis részstruktira megtalaldsa, amely kielégiti a
feltételeket. A feltételek lehetnek: termékekre megfogalmazott korlat, héigények kie-
légitése, anyagegyensiily feltételek.

A termék az M; anyag, melybél 100 t/év mennyiséget kell gyartani. A miiveleti

My | L
7 i 5 >
M,
11 M7 M4‘ 2 M2
. , M
g 4 [363 —>—1
M, 328 2 | M,
9 L
— 6 =<y Myy 3801 T
353
Megjegyzés: > -3§ 333

Hébevitel #27 M
H(’jelvonés* m—

4.5. dbra. Folyamatabra a szemlélteto feladathoz.
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4.1. tablazat. A lehetséges miiveleti egységek

Miiveleti Rejtett ho Bemeneti Kimeneti
egység  Hém. (K) Forrés eii. aramok aramok

01 — — M;(3,343) M;i(2), Mg(1,363)
09 — — M,(1.5) M; (1), M5(0.5)
03 353 20 Ms(1), M6(1,353) Ms;(2,333)
04 — — Mqg(0.3), M-(1.7)  M3(1,363), My(1)
05 — — M7(2), Ms(1) My (3)
0 — — My(1) Mg(1,328)
o7 — — Mi0(1.2), M;1(0.8) Ms(2)

egység modelljét leird paramétereket a 4.1 tablazat tartalmazza, a kapcsol6dd kolt-
ségparaméterek a 4.2 tablazatban talalhaték. A miiveleti egységekkel kapcsolatosan
felmeriil6 rejtett hé mennyiségét a forras egyiitthaté és a méret szorzata adja meg
(lasd a 4.1 tablazat megfelel6 oszlopai). Egy miiveleti egység egy bemeneti vagy kime-
neti anyagaramanak paraméterét az anyagnév utani zaréjelbe tett mennyiség jellemzi,

a masodik érték a homérsékletre vonatkozik. A koltségparamétereket a 4.2 tablazat

//////

4.2. tablazat. Koltségparaméterek a miveleti egységekre

Miiveleti  Beruhazasi koltség Miikodési koltség
egység Alland6  Viéltozé  Allandé  Valtozé
01 7500 1200 500 160
05 3800 1000 140 250
03 8000 1000 400 170
04 15000 1500 500 100
05 10000 1500 900 300
06 3000 750 200 100

o7 2000 800 700 160
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4.3. tablazat. Nyersanyagok
Név  Kbéltség [USD/t]  Limit [t/év]

M; 140 Nincs limit
M 200 Nincs limit
My 250 Nincs limit
My 50 Nincs limit
My, 70 Nincs limit

4.4. tablazat. Kiils6 hideg, meleg forrasok
Kiilsé forras  Tipus  Hémérséklet (K) Koltség (USD/MJ)

Hy Meleg 373.0 2.0
C Hideg 293.0 3.0

A nyersanyagok felsorolasat és a hozzd megfelels értékek a 4.3 tablazat tartal-
mazza.

A felhasznalhaté kiilsé hideg és meleg forrasokat 4.4 tabla tartalmazza a rendel-
kezésre all6 hémérséklet és a koltségadatokkal egytitt. A hdécserélé koltségét anyag-
paronként lehet definidlni, a példankban minden anyagpérra azonos koltséget adunk
meg: 5.0 USD/m?; hasonléan a héataddsi tényezd is egy anyagpdrra vonatkozik, most
itt minden pdrra 1.0 MJ/(h K m?).

hP-Graf

A feladat hP-graf reprezentaciéjat mutatja a 4.6 abra, ahol mar a lehetséges hocseréket

is feltuntettik.

ABB algoritmus

A feladatot a 2.3 fejezetben emlitett ABB moddszerrel lett megoldva, az algorit-
mus altal bejart BB kereséfa a 4.7 abran lathat6. A BB fa minden pontjdhoz

tartozik a miuveleti egységek egy osztalyozasa: Kkizart, bevélasztott, nem dontott
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4.6. abra. A szemlélteto példa hP-grafja.
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4.5. tablazat. Miveleti egység osztalyok

Cstcs Miiveleti egység
Nem dontott Bevalasztott Kizért
1 1,2,3,4,5,6 — —
1.1 3,4,6 1 2,57
1.1.1 6 1,3 2,4,5,7
1.1.1.1 — 1,3 2,4,5,6,7
1.1.1.2 — 1,3,6 2,4,5,7
1.1.2 6 1,4 2,3,5,7
1.1.3 6 1,3,4 2,57
1.2 4,5,6,7 2 1,3
1.3 3,4,5,6,7 1,2 —
1.3.1 6 1,2,3,5,7 4
1.3.2 5,6,7 1,2,4 3
1.3.3 5,6,7 1,2,3,4 —

miiveleti egységek. A 4.5 tablazat tartalmazza a BB faban a cstucsokhoz tartozo
osztéalyozasokat.
Tovébbiakban két csicsra, 1 (gyokérpont) és 1.1.1.2 (levélpont), részletezziik a

modell felirdsat.

4.7.2. Az 1. csucs

Az 1. cstcs a gyokér cstcsot reprezentdlja, még nem tortént dontés, igy minden
miiveleti egység a nem dontott osztalyban taldlhaté. Potencidlisan két meleg és két
hideg aram van, ezeket a 4.6 tablazat tartalmazza, tovabba rejtett hé a 3. miiveleti
egységhez tartozik, ennek a paramétereit a 4.7 tabldzat tartalmazza.

A meleg és hideg dramokat kaszkdd diagrammal abrézolhatjuk (14sd 4.8 abra),
ahol a hideg dramokat a minimélis megkozelitési tavolsdggal (10 K) mar eltoltuk. A
diagramban az Iy, I, ... I5 jeloli a homérsékleti intervallumokat.

A hémérsékleti intervallumok (Iq, I, . .. I5) a meleg és hideg dramokat elemi hé-

aramokka particionaljak (lasd a 4.8 tablazat).
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4.7. dbra. Az ABB algoritmus altal eléllitott leszamlalasi fa (a legrosszabb eset).

4.6. tablazat. Lehetséges hoaramok az 1. csicsnél

Aram Tipus

Anyag

Kezd6 hém. (K)

Vég hém. (K)

S meleg
S meleg
S hideg
Sy hideg

363.0
363.0
333.0
328.0

343.0
353.0
343.0
353.0

4.7. tablazat. Rejtett hoforrasok az 1. csticsnal

Aram Tipus

Miiveleti egység

Homérséklet (K)

LH, meleg

353.0




373
363
353

343
338

293

Kiilsé meleg forras
@
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I (M) (M) M,)

’ Sl SZ S4

A

] (M,)

4 LH, S,

°
: T
) 4

I,
I, Kiils§ hideg forras

4.8. abra. Kaszkad diagram a jellemz6 hoaramokrol az 1. csticsban.

4.8. tablazat. Lehetséges elemi hoaramok az 1. csticsban

Elemi héaramok Tipus Anyag Kezd6 hém. (K) Vég hém. (K)

FSH,
FSH,
FSH;
FSCy
FSC,
FSCs
FSCy

meleg  M;
meleg  M;
meleg Mg
hideg  M;
hideg Mg
hideg Mg

hideg Mg

363.0 353.0
353.0 343.0
363.0 353.0
343.0 353.0
338.0 343.0
343.0 353.0
353.0 363.0
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Részhéaramokat az elemi héaramok folytonos intervallumot alkoté kombindcidi
hatarozzak meg. A részhéaramok listaja a 4.9 tdblazatban lathaté.

Egy hécserél egy (hideg-meleg) részhédram parral adhaté meg, a JSS(SSH;) (i =
1,2,3,4) halmazok tartalmazzdk a SSH;-vel potenciélisan parosithaté részhéaramo-

kat, melyeket az alabbiakban részletezziik:

JSS(SSH;) = {SSC, SSCy, SSCy, SSCs 1,

JSS(SSHs) = {SSCy, SSCy, SSCy, SSCy, SSCs, SSCy, SSCr Y},
JSS(SSH;) = {SSCY, SSCy, SSCy, SSCs, SSCy, SSCy Y,
JSS(SSHy) = {SSCy, SSCy, SSCy, SSCy, SSCs, SSCy, SSC+}.

A rejtett hé ugy kezelhetd, mint egy részh6aram amelynek a kezd6- és véghémérséklete

ugyanaz:

JLS(LH,) = {SSC}, SSCy, SSCs, SSCs}

A kiils6 meleg, hideg forrasokat minden elemi héaramhoz hozza kell rendelniink:
JSU(FSH,) ={C:}, JSU(FSH,) = {Cy}, JSU(FSH3) = {C1},
JSU(FSH,) ={C1}, JSU(FSCy) ={H;}, JSU(FSCs) = {H,},
JSU(FSCs) = {H,}.

Itt C a kiilsé hideg forras és H; a kiils6 meleg forras. Hasonléan a rejtett hore:
JLU(LH,) ={C}.

Az anyagok hékapacitdsait a 4.10 tablazat tartalmazza.

Egy elemi hodaram szaméara betaplalandé illetve elvonandé hé mennyiségét a ho-
kapacitds az dram és a hémérsékleti intervallum szorzata adja (QFC;, i = 1,2,...,7).
A rejtett h6 mennyisége a kapcsolodd miiveleti egység méretének és rejtett ho pa-
raméterének szorzata (QLH;). Meleg héaramokra QF H; > 0, hideg héaramokra
QFC; < 0 teljesiil ez természetesen a rejtett hore is igaz.

A héatvitelhez kapesoldédd valtozdkat a megfelel részaramok vagy rejtett héara-
mok indexeivel azonositjuk, az elsé index a meleg aramra, a masodik index a hideg
aramra vonatkozik (lasd a 4.11 tablazatot).

Rejtett és elemi hoaramokhoz rendeljiik a kiils6 meleg és hideg energiaforrasokat,
a kiils6 energiahoz kapcsolodo véltozokat a 4.12 tabla tartalmazza.

A hécserék részhéaramok kézott mennek végbe, viszont a héegyensulyi feltételeket



4.9. tablazat. Lehetséges részhdéaramok az 1. csicsban
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Részhéaramok  Tipus

Anyag Intervallum Kezd6 hém. (K) Vég hém.(K)

SSH,
SSH,
SSH;
SSHy
SSCy
SSCy
SSCy
SSCy
SSCs5
SSCs
SSCr

meleg
meleg
meleg
meleg
hideg
hideg
hideg
hideg
hideg
hideg
hideg

I3
I

137 ]4

Iy
I3
I
I3
Iy

[27 [3
]37 ]4
M6 -[27-[37]4

353.0
363.0
363.0
363.0
338.0
343.0
338.0
343.0
338.0
343.0
338.0

343.0
353.0
343.0
353.0
353.0
343.0
353.0
363.0
353.0
363.0
363.0

4.10. tablazat. Anyagok hokapacitasai

Anyagnév  érték
M; 0.4
My 1.0
M 1.0

4.11. tablazat. Hocseréhez kapcsolédd valtozok az 1. csucsban

SSCy SSCy SSC4 SSCy SSCs SSCs  SSCr
SSHy  QFFy  QFF, QFFy - QFFs - -
SSHy  QFFn  QFFn  QFFy QFF QFFs  QFFx  Qx
SSHy  QFFy QFF3  QFFs; - QFF3;  QFFs Q37
SSHy  QFFy  QFF, QFFy  QFFy  QFF;  QFFg  Qu
LH, QLFn  QLF,  QLFy - QLF5 — -
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az elemi héaramokra szamitjuk, ezért fontos a részhéarambdl elvont hé elemi ho-
dramra esO részének a meghatarozasa (ldsd 4.9 dbra). A hédram egy téglalapnak
tekinthetd, a horizontalis mérete a fajhd és az anyagaram szorzata, a vertikalis hossz
pedig a kezdd- és véghdmérséklet kiilonbsége. A két oldal szorzata adja meg az
idoegység alatt elvonandé illetve betaplalandé hémennyiséget.

Tekintsiikk az FSHy (EFGH téglalap) elemi héaramot a hozzd kapcsolodé hé-
mérsékleti intervallummal [T5,T3]. Jeldlje a hozzd tartozé téglalap teriiletét QFy.
Legyen SSH; (ABCD téglalap) a részhéaram és SSC; a hécserében résztvevé masik
részhéaram. A [T1,Ty] az SSH;-hoz tartozé hémérsékleti intervallum és legyen az
atvitt ho mennyisége QFF;;. Az EFGH és ABCD téglalapok metszete jelzi az
FSHj -rél ténylegesen elvitt hémennyiséget, mely a kévetkezoképpen szamolhato:

s — 1T,
T, — T,

QI (4.7.1)

A megfelel6 héintervallumok aranya hatarozza meg, hogy a QF'F;; mennyiségii elvitt
ho mekkora hanyada szarmazik a kérdéses elemi részhéaramrol.

Tekintsiik az F'S H, elemi héaramot. Az F'S Ho-re vonatkozd héegyensulyi feltétel
meghatarozasaban a ra illeszked6 részhoaramokat kell figyelembe venniink, ezek most
az SSHy és az SSH3. Az SSH; részhoaram lehetséges parositasait a 4.10 abran
mutatjuk be. Hasonléan a SSHj3 részhoaram lehetséges parositasait a 4.11 abra

mutatja. Az F'SHs-re vonatkoz6 hoegyensiilyi feltétel a kovetkezoképpen néz ki:

0 = QFHy,— QFF,, — 0.5 QFFy — QFF1a — 0.5 QF Fyp — QF Fy3
—0.5 QF Fy3 — QF Fi5 — 0.5 QF Fiy5 — 0.5 QF Fis — 0.5 QF Fyr — QFUs,.

Hasonléan minden elemi hoaramra és rejtett hore felirhaté a héegyensulyi feltétel,

ezek egylitthatodit a 4.13 tablazat tartalmazza.

A hocserélo koltsége a feliilettel aranyos, ennek a kiszamitasahoz tekintsiink egy
hécseréldét, amely az SSH; és SSC; részhéaramok kozott van. A hdécseréhez tartozé

koltség a kovetkezo:
1

~ Yy, LMTD;
ahol QFFj; az atvitt hOmennyiség. A 4.14 tabldzat tartalmazza ezen c;; egyiitt-
hatokat.

cijQF Fj QFF;,
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4.12. tablazat. A kiils6 hideg és meleg energidhoz kapcsolddé valtozok a 1. csticsban
FSH, FSH, FSH;3; FSC, FSCy, FSC3 FSCy LH,

Ci QFU1l QFUy QFUs - - - - QLU
H, - - - QUFy QUFsy QUFs QUFp -
Ho6mérséklet
A Sn
r 4 B
. SSH. .
T, F QFEj
FSH, OF,
T, b G
T D C /
SSC,

A

4.9. dbra. Hbegyensuly az elemi dramokra.



Kiilsé meleg forras
@
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373
]5 (Mé) (M3) (MG)
S, > S,
363 A
I (MS)
355 Lo >
°
[, FSH }SSHl =4 { T SSC { SsC
3 2 " 3
| Kiilsé hideg forras
293 O
4.10. abra. Az SSH; részhoaram lehetséges parositasai az 1. csticsban.
Kiils6 meleg forras
373 Y
]5 (Ms) (M6) (Ms)
Sl SZ S4
363 A
7 SSH, (M,)
4 LH, S,
353 o
N\t
343 v
I
: I, Kiils6 hideg forras
293 —0
4.11. abra. Az SSHj részh6aram lehetséges parositasai az 1. csucsban.



4.13. tablazat. Hoéegyensulyi feltételek egyiitthatoi az 1. cstcsban
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Valtozok

QEH,

QI'H,

QI Hs

QEC,

QECy

QFCs

QEC

QLH,

QF Iy
QF Iy
QFF5
QFFy
QFFip
QF F
QF F
QF Fy
QFFis
QF Fys
QF F33
QF Fi
QF
QFFy
QFFis
QF s
QF F3s
QFFys
QF Fy
QF F3
QF Fi
QE Iy
QFF37
QFFy
QLF1
QLF
QLI3
QLI
QFUn
QF Uz
QFUs
QUIY
QUIy
QU3
QUFq
QLU

1
1/2

-1
-1/2

-1
-1/2
-1
-1
-1/2
-1/2

-1
-1/2

1
-1/2
-1
“1/2
-1

-1/2

-1/2

-1/2

-1/2

1

1
1
1

—_ = = =

1/3
1/3
1/3
1/3

1/5
1/5
1/5

1/3

—_ = = =

2/3
2/3
2/3
2/3
1/2
1/2
1/2
2/5
2/5
2/5

2/3

1/2
1/2
1/2
2/5
2/5
2/5

-1
-1
-1
-1
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A felirt matematikai programozasi modell linedris, a megoldéds egy alsé koltség-

korlatot ad a részproblémara nézve.

4.7.3. Az 1.1.1.2 cstucs

Az aktualis csics egy levélpont a BB faban. Az 1, 3 és 6 miiveleti egységek a
bevalasztott halmazban vannak, a tobbi miiveleti egység pedig a kizartakat tartal-
mazé halmazban (a nem dontott miiveleti egységek halmaza iires). A potencidlis
meleg és hideg aramokat a 4.15 tablazat, a rejtett hoket a 4.16 tablazat tartalmazza.
A 4.13 abréan lathaté a részfeladathoz kapcsolodé kaszkad diagram.

A 4.17 tablazat tartalmazza a meleg és hideg elemi héaramok listajat, a 4.18 tabla
pedig a részhéaramokat tartalmazza.

Megoldva az LP feladatot, 51534 USD lett az éves koltség. Egy levélpontban
voltunk, igy ez valédi koltséget jelent. Az ABB algoritmus miutdan bejarta a BB fa
egy részét, azonositja az optimélis megoldast, amely az 1.1.1.2 csticsban megtalalt
struktira (4.12 dbra). Az optimadlis struktura tartalmazza az 1, 3, és 6 miveleti

egységeket; méretiik rendre 50, 75, and 25. Az hocseréket az 4.14 abra mutatja.
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4.14. tablazat. A koltségfiiggvényhez tartozd paraméterek az 1. csicsban
Valtozé Egytitthato ¢;;  Valtozé  Egytitthato c;;

Q11 0.5000 QFF)s 0.4055
Qan 0.2500 QF Fy 0.2231
Qs 0.3465 QF Fy; 0.2877
Q1 0.2500 QF Fys5 0.2231
Q12 0.2876 QF Fg 0.3466
Q22 0.1823 QF Fyq 0.5000
(32 0.2310 QF Fy 0.3466
Qa2 0.1823 QF Fy, 0.3054
Q13 0.5000 QF Fy; 0.4055
(23 0.2500 QF Fy, 0.3054
@33 0.3466 QLFy 0.3466
Qa3 0.2500 QLF, 0.2231
Qa4 0.5000 QLF,; 0.3466
Qua 0.5000 QLFys 0.3054

4.15. tablazat. Potencialis hideg és meleg aramok az 1.1.1.2. cstcsban
Aram Tipus Anyag Kezdé hém. (K) Véghém. (K)

S meleg M 363.0 353.0
S hideg Ms 363.0 343.0
S hideg Mg 328.0 353.0

4.16. tablazat. Rejtett ho el6fordulasa az 1.1.1.2. cstcsban
Aram  Tipus Mivelet egység HOm. (K)
LH, meleg 3 363.0




4.12. dbra. Megoldas struktira az 1.1.1.2 cstcsban.

4.17. tablazat. Meleg és hideg elemi hédramok az 1.1.1.2. cstcsban

Elemi hédramok Tipus Anyag Kezd6 hém. (K) Vég hém. (K)

FSH,
FSCy
FSC,
FSCs
FSCy

meleg
hideg
hideg
hideg
hideg

Ms
Ms
Ms
Mg
Ms

363.0
333.0
338.0
343.0
353.0

353.0
343.0
343.0
353.0
363.0

132
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Kiilsé meleg forras
373 °

[5 (Me) (Mc)

S, S,
363
M)

I, l LH, N ’
353 . ;

; I
343 L
338

: I, Kiils6 hideg forras

293 o

4.13. dbra. Kaszkad diagram a jellemz6 hédramokrél az 1.1.1.2. cstcsban.

4.18. tablazat. Részhdaramok az 1.1.1.2. csicsban
Részhéaramok Tipus Anyag Intervallum Kezd6 hém. (K) Vég hém.(K)

SSH, meleg Ms 1y 363.0 353.0
SSCy hideg M; Iy 338.0 343.0
SSCy hideg Ms I 343.0 353.0
SSCy hideg Mg I, 353.0 363.0
SSCy hideg Ms I, I3 338.0 353.0
SSCs hideg Ms I3, 1, 343.0 363.0

SSO@ hldeg M6 [2,[3,[4 338.0 363.0
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Kiils6é meleg forras
@

]5 (Ma) (Ms)
S, S,

363 A
- l/ . (1\84\«[
353
N
343 \
\_/y{
338

S w hideg forras
293 o

4.14. abra. Az optimalis struktiurdhoz tartozé héatvitelek.

373

Gaz recirkulécio EgetésH,, CH,
H,, CH, ‘ + Benzén
R — E—
> Szeparacios
Toluol Reaktor > halozat Difenil
N — E—

I

Toluol recirkulacié

4.15. abra. HDA folyamat diagramja.

4.8. Alkalmazas: HDA folyamat

A szakirodalomban jol ismert probléma kiterjesztésére alkalmazzuk az eljarasunkat.
A HDA (toulene-hydrodealkylation) [22] folyamat magéba foglal egy reaktort és egy

szeparaciés halézatot (lasd 4.15 dbra). A reakcidk a kovetkezdk:

Tolulol + H, — Benzén + CH,
2 Benzén <« Difenil + H,

A nyersanyagok a toluol és hidrogén, amelyeket melegités utan a visszavezetett tolu-
ollal 6sszekeverve vezetik be a reaktorba. A reaktorbdl kijové anyagaram hidrogént,

metant, benzént, toluolt és a nem kivant difenilt tartalmaz. A hidrogént és a metan
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legnagyobb részét kondenzalassal kivonjak. Az igy kivont hidrogén csak egy részét
vezetik vissza, mert szennyezdanyagként metant is tartalmaz és a feldusulas elkeriilése
miatt a gaz egy részét elégetik. A termék a benzén, amit a szeparacios rész valaszt
el a nem kivant difeniltol és a toluoltdl, amit visszavezetnek. A szeparacids rész két
egyszerli (egy bemenet-két kimenet) és két Osszetett (egy bemenet-harom kimenet)
szeparatort tartalmaz (1dsd 4.16 abra).

A reaktor miikodési hémérséklete 895K igy a bemend anyagokat erre a homér-
sékletre kell melegiteni. A reaktort elhagyd anyagaramot hiiteni kell a kondenzécio
miatt. Minden szeparatorhoz tartozik egy kiforralé és egy kondenzald rész, amely
szintén hobevitelt vagy héelvitelt tesz sziikségessé. A reaktor exoterm hdszinezet,
igy hiitést igényel. A rendszer tartalmaz 4 meleg és 4 hideg héaramot tovabba 6 meleg
és 5 hideg rejtett hot. A meleg elemi héaramok szama 14, a hideg elemi héaramok
szama pedig 48. Ez 48+12 linedris feltételt jelent a HENS modellben. 105 hideg és 333
meleg részhoaram keletkezett, amely 10227 db potencialis hécserélét eredményezett.
Az eljarasunk 96.07 masodperc alatt azonositotta az optimalis halézatot egy PC-n
(Celeron 400MHz). Az optimélis halézatot a 4.17 dbra mutatja, amely 7 miiveleti

egységet és 18 hocserélét tartalmaz.

4.9. Az eredmény rovid osszefoglalasa

A 4 fejezet a 4. tézispontban megfogalmazott eredményeket tartalmazza.

Az integralt folyamathalézat- és hocserélohédlozat-szintézis feladat megoldasdhoz
a korlatozas és szétvalasztas algoritmus részprobléméinak matematikai modelljében a
héeseréléhalozat nemlinedris feltételeit kombinatorikus eszkozokkel linearissa transz-

formaltam, ezéltal a feladat megoldhatéva valt a MILP alapi PNS keretalgoritmussal.
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4.16. abra. A HDA folyamat maximalis struktiuraja.
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5. fejezet

U'j tudomanyos eredmények

Az értekezés 1j tudoményos eredményeinek tézisszerti 6sszefoglalasa.

1. A linearis feltételrendszerrel adott, valtozdiban szétvalaszthaté konkav pro-

gramozasi feladat megoldédsa soran felmeriilo szétvalasztds 1épésre két 1j parti-

cionalasi stratégiat dolgoztam ki, melyek szamitasigénye alacsony, és PNS fela-

datokon kedvez6 tulajdonsagokkal birhatnak nagyméreti feladatok esetén. A

két modszer viselkedését gyakorlati példakon illusztraltam.

(a)

A szakirodalombodl ismert és széleskoriien alkalmazott (Shectman és mun-
katdrsai [89]) particionélési stratégidt megvizsgdlva bemutattam a partici-
onalasi stratégia egyik kedvezotlen tulajdonsagat: a mddszer feleslegesen
sok olyan részproblémét generdl, ami tartalmazza az optimalis megoldést.
Az, hogy az optimalis megoldas sok aktiv részproblémaban szerepel, nagy-
ban megneheziti a megtalalt megoldas optimalitasanak bizonyitasat. A
bizonyitas igy teljes bindris fa bejarasat teszi sziikségessé, amelynek a
mélysége megegyezik az optimalis halézatban 1év6 csicsok szamaval.

Ennek a kedvezotlen tulajdonsagnak a kikiiszobolésére dolgoztam ki az
ugynevezett ”cstusztatott” szétvdlasztasi stratégiat, amelyben az optimalis
megoldast tartalmazo részproblémékat nem sokszorozzuk meg. A PNS fe-
ladatok megoldasara ez kiillonosen jol hasznalhato. A mddszer helyességét

bizonyitottam.

Kidolgoztam egy 1j szétvalasztasi stratégiat, amely a célfiiggvény és a

relaxacios fliggvény integralkiilonbségét minimalizalja, ezaltal a relaxacio
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élességét maximalisra noveli. Bizonyitottam a mddszer helyességét.

2. A linearis programozasi feladat érzékenységi vizsgdlatat felhasznalva 1j eljarast

dolgoztam ki a linearis feltételrendszerrel adott, valtozoiban szétvalaszthato

konkav programozasi feladat megoldasara.

(a)

(b)

Megadtam a linedris feltételrendszerrel adott, valtozoiban szétvalaszthato

konkav programozasi feladat egy elégséges optimalitasi kritériumat.

’

Uj eljarast dolgoztam ki a linearis feltételrendszerrel adott, véaltozéiban
szétvalaszthatd konkav programozasi feladat megoldasa soran felmerild
szétvalasztas 1épésre. Az eljaras a 2a tézispontban megfogalmazott opti-
malitési kritériumon alapulva végzi a részproblémak particiondlasat, illetve
a terminalis részproblémak meghatarozasat. A megfogalmazott algoritmus

helyességét igazoltam.

3. A linedris feltételrendszerrel adott, valtozdiban szétvalaszthaté konkav pro-

gramozasi feladat megoldasara kidolgoztam a szakirodalomban ismert korla-

tozas és szétvalasztas alapalgoritmus kombinatorikusan gyorsitott véltozatat.

A kombinatorikus gyorsitasok elsésorban a PNS feladatok megoldésara hatéko-

nyak, de ritka matrixszal adott, jol strukturalt feltételek esetében is jol alkal-

mazhatok.

(a)

A Friedler és munkatarsa altal kidolgozott P-graf moédszert felhasznalva
elkészitettem a linearis feltételrendszerrel adott szeparabilis konkav prog-
ramozasi feladatot megoldd algoritmus kombinatorikusan gyorsitott valto-

zatat.

PNS feladatokra bevezettem a lokalisan optimalis struktirak fogalmat,
amely lehetévé teszi az optimalis megoldasok mellett szuboptimalis me-
goldasok meghatarozzasat. Kidolgoztam a kombinatorikusan gyorsitott
algoritmus egy valtozatat, amely képes ezen szuboptimalis megolddsok ge-

neraldsara.
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Az integralt folyamathéldzat- és hocserélchalozat-szintézis feladat megoldasahoz
a korlatozas és szétvélasztas algoritmus részprobléméinak matematikai modell-
jében a hocserélohaldzat nemlinearis feltételeit kombinatorikus eszkézokkel line-
arissa transzforméltam, ezaltal a feladat megoldhatéva valt a MILP alapu PNS

keretalgoritmussal.
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