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TARTALMI KIVONAT 

Az információ-visszakeresésben a dokumentumokat indexkifejezésekkel 
reprezentálják, amelyeket vagy automatikusan a dokumentumból nyernek, vagy 
szakértők határoznak meg manuálisan. Attól függően, hogy melyik módszer 
használatos indexkifejezések megállapítására, más és más hatékonyságú lesz az 
információ-visszakereső rendszer. Szerző bevezet egy olyan eljárást indexkifejezések 
meghatározására és súlyszámításra, amely szélesebb körben használható és 
hatékonyabb visszakereső rendszert eredményez, mint az addigi hagyományos 
eljárás.  

Az információ-visszakereső rendszer által visszaadott dokumentumok 
relevanciájukban eltérnek egymástól. Ez a felhasználó számára fontos információ, 
ugyanis befolyásolja abban, hogy mely válaszokat és azokat milyen sorrendben nézze 
meg. Egy információ-visszakereső rendszer kategoricitási tulajdonsága azt mutatja, 
hogy a rendszer a válaszaiban mennyire kategorikus, azaz a visszaadott 
dokumentumok relevanciájukban egymástól mennyire különböznek. A kategoricitást 
lehet változtatni, azonban ez "költséges" (nagy számításigényű) eljárás. Mivel a 
kategoricitás — felhasználói szempontból — a rendszer fontos tulajdonsága, célszerű 
ennek változtatását minél alacsonyabb költségű módszerrel megvalósítani. Szerző 
megad egy új, kisebb számítási bonyolultágú eljárást kategoricitás változtatására, 
amelyhez egy új  hiperbolikus geometrián alapuló  információ-visszakereső 
modellt vezet be. 
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ABSTRACT 

In Information Retrieval (IR), the documents are represented by index terms created 
manually or automatically. The effectiveness of information retrieval system depends 
greatly on how the index terms are created. In the dissertation, a new method is 
proposed for the computation of term discrimination values, which presents 
advantages over the traditional vector-based calculation: it is faster and its application 
is not restricted to the Vector Space Model (VSM). 

The key goal of an IR system is to retrieve information for a given query, which 
might be useful or relevant to the user. The returned answers differ from one another 
in their relevance values. A new concept called retrieval "categoricity"is introduced in 
the dissertation, which means the spreading of the answers’ relevance values. 
Categoricity can be varied in the traditional VSM model, but it is a costly process. In 
the dissertation, a new and efficient way is proposed to vary retrieval categoricity 
using a new information retrieval technique based on hyperbolic geometry. 
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ABSTRAKT 

In der Informationswiedergewinnung (information retrieval) werden Dokumente 
durch manuell oder automatisch erstellte Schlüsselwörter (index terms) repräsentiert. 
Die Methode der Erstellung der Indexterme hat einen wesentlichen Einfluss auf die 
Effektivität des Informationswiedergewinnungssystems. In dieser Arbeit wird ein 
neuer Ansatz für die Bestimmung der Schlüsselwörter und die Berechnung derer 
Gewichte vorgeschlagen, welcher effizienter als die traditionelle, auf Vektoren 
basierende Berechnung ist und dessen Anwendung sich nicht nur auf das 
Vektorraummodell beschränkt. 

Für den Benutzer eines Informationswiedergewinnungsystems haben die als 
Ergebnis einer Abfrage zurückgelieferten Dokumente unterschiedliche 
Relevanzwerte. Die Kategorizität, die in der Dissertation eingeführte Eigenschaft des 
Informationswiedergewinnungsystems, gibt an, in welchem Ausmaß sich die 
Relevanzwerte der Abfrageergebnisse voneinander unterscheiden. Man kann die 
Kategorizität eines Informationswiedergewinnungssystems zwar anpassen, in dem 
traditionellen Vektorraummodell ist das aber ein rechenaufwändiges Vorgehen. Der 
in dieser Arbeit vorgestellte, neue, auf hyperbolischer Geometrie basierende 
Informationswiedergewinnungsansatz ermöglicht eine effizientere Anpassung der 
Systemkategorizität. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivations 

Recently, Information Retrieval (IR) has become one of the most important 
theoretical and practical research topics in information and computer science. 
Information retrieval deals with the representation, storage, organization of, and 
access to information items (Baeza-Yates and Ribeiro-Neto, 1999). The 
representation and organization of information should provide the user with easy 
access to the information in which he/she is interested. Essentially, IR means that 
there is a set of documents (or objects), and a person (user) asks a question (query) to 
which the answer is a set of relevant documents satisfying the information need 
expressed by his/her question. In IR several different models have been elaborated 
differing from each other in the way objects (documents and queries) are represented 
and in which retrieval itself is modelled. One of the most important, well-understood 
and extensively researched classical models is the Vector Space Model (VSM). 
(Baeza-Yates and Ribeiro-Neto, 1999; Dominich, 2001; Salton, 1966; Van 
Rijsbergen, 1979, 1987). 
 Note. Looking for information in natural language texts based on a query is 
obviously also a linguistic problem to a large extent. Such a problem raises many 
questions (e.g., reprensentation of the language space, what is information?, etc.) that 
go beyond the area of computer science per se. However, solution have been found 
that, of course, are not complete but make a computation-like treatment possible (for 
example, the Vector Space Model).    
 In information retrieval, the documents are represented by index terms created 
manually or automatically. The effectiveness of the information retrieval system 
depends, to a great extent, on how the index terms are created. The Term 
Discrimination Model (TDM) was introduced in (Salton, Yang, and Yu, 1974; Salton, 
Yang, and Yu, 1975) as a contribution to the automatic indexing theory in the Vector 
Space Model of information retrieval. I propose a new method for the computation of 
term discrimination values, which presents advantages over the traditional vector-
based calculation. It is faster and its application is not restricted to the Vector Space 
Model. 
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The key goal of an IR system is to retrieve information for a given query, which 
might be useful or relevant to the user. The returned answers also (called hits) differ 
from each other in their relevance values for a given query. A new concept called 
retrieval "categoricity" (i.e., how categorical the hits are) was introduced in my 
dissertation, which means the spreading of the answers’ relevance values. 
Categoricity can be varied in the traditional VSM model, but it is a costly process. I 
introduce a new and efficient way to vary retrieval categoricity using a new 
information retrieval technique based on hyperbolic geometry. 

1.2 Contributions 

The dissertation consists of 6 chapters. Chapter 1 is an introduction containing the 
motivation and the contribution of the dissertation, and it gives a brief literature 
overview of the most important books in information retrieval. Chapter 2 shows the 
methods applied and test collections used in my dissertation. Two standard test 
collections  named ADI and Reuters  further a Belief database including 
Hungarian belief texts as well as a Medical database developed by our research group 
(CIR = Center for Information Retrieval), are used in my experiments.  

The new results obtained in my research are presented in the forthcoming three 
chapters. Each chapter begins with the description of the motivation behind that 
research. This is followed by a presentation of the results needed for understanding 
the forthcoming sections. The layout of the dissertation and the main scientific 
contributions are described below: 
 Chapter 3 investigates the possibility of defining a VSM in a hyperbolic space. 
In general, Euclidean geometry is the only type of space used in the VSM. In 
information retrieval, non-Euclidean spaces are used for information visualisation 
(Phillips and Gunn, 1992; Phillips, Levy, and Munzner, 1993). In section 3.4, I 
introduce the HIR (Hyperbolic Information Retrieval) Model; the similarity measure 
is derived from the Cayley-Klein hyperbolic distance. In section 3.5, it is shown 
formally as well as experimentally  using Medical Database  that the HIR model 
is equivalent to the Cosine-based VSM using normalised weighting scheme. The 
application called NeuRadIR is also presented, which is the first application using the 
HIR model. 

 In Chapter 4, I investigate the retrieval categoricity of the VSM and the HIR 
model. Then, I introduce a new efficient way to vary retrieval categoricity. The 
concept of entropy is used to define an amount of uncertainty U associated with 
answers in the Vector Space Model of information retrieval, and to define the 
connected concept categoricity. In section 4.4, it is shown that any retrieval model or 
system based on positive RSV (Retrieval Status Value) may be conceived as a 
probability space that decreases the amount of the associated Shannon information. In 
section 4.6, I investigate the retrieval categoricity of the VSM  using different 
similarity measures and weighting schemes  and it is shown experimentally that in 
the VSM the only way to modify the retrieval categoricity is to take a different 
weighting scheme and/or similarity measure. Thus, the Cosine measure with a tfn 
weighting scheme  one of the most commonly used methods  is the least 
categorical in its answers. Therefore, it is not enough to change only the weighting 
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scheme or the similarity measure but both of them need to vary to obtain a more 
categorical sytem. This in turn yields costly re-computation of both weights and 
similarity measure values; while the same set of answers containing the same 
document with the same order cannot be guaranteed. In section 4.7, it is shown 
experimentally that in HIR  retrieval categoricity depends only on the radius of the 
space. Thus, increasing the radius of the hyperbolic space yields a less categorical 
retrieval system and conversely: decreasing the radius leads to more categorical 
answers. It is shown in section 4.8 that in HIR a modifiable categoricity can be 
obtained at much lower re-computation costs: only the similarity values need be re-
computed but not the weights, while rank order is preserved. 

 In Chapter 5, the concept of UDO (Uncertainty Decreasing Operation)  
defined in section 4.3  is proposed as a theoretical background for term 
discrimination power and it is applied to the computation of term discrimination 
values. Experimental evidence is given as regards such computation; the results 
obtained compare well to those obtained using vector-based calculation of term 
discrimination values. It is shown, that the UDO-based computation, however, 
presents advantages over the vector-based calculation: it is faster (section 5.4), easier 
to assess and handle in practice and its application is not restricted to the Vector 
Space Model, but it can be used in any positive RSV-based information retrieval 
system (section 5.3).  

 Chapter 6 gives a summary of the results obtained. 

1.3 Literature Overview 

Since the 1940s the problem of information storage and retrieval has become 
increasingly important: there are huge amounts of information to which accurate and 
speedy access is becoming more difficult (Van Rijsbergen,1979). The key goal of an 
information retrieval system is to retrieve information for a given query, which might 
be useful or relevant to the user.  

In the field of information retrieval a huge number of articles have been 
published in specialized journals (e.g. Information Retrieval, Information Processing 
and Management, Journal of the American Society for Information Science) and at 
conferences (ACM SIGIR, ECIR) dealing with many different aspects of IR. A 
number of books have also been written about IR with a broad (and extensive) 
coverage of the various topics in the field, for example: Van Rijsbergen, 1975; Salton 
and MacGill, 1983; Kowalski, 1997; Baeza-Yates and Ribeiro-Neto, 1999; Dominich, 
2001:  

"Information Retrieval" (C. J. Van Rijsbergen, 1979) can be considered as a 
reference book of this field. There is a Hungarian translation dated 1987. The aim of 
this book was to give a complete coverage of the most important ideas in various 
special areas of information retrieval. The major change in the second edition of this 
book is the addition of a new chapter on probabilistic retrieval. 

"Information Retrieval Systems: Theory and Implementation" (G. Kowalski, 
1997) provides a theoretical and practical explanation of the latest advancements in 
information retrieval and their application to existing systems. It takes a systems 
approach, and presents all aspects of an information retrieval system. The importance 
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of the Internet and its associated hypertext-linked structure, the human interface, and 
the importance of information visualization for identification of relevant information 
are also discussed.  

"Modern Information Retrieval" (R. Baeza-Yates, and B. Ribeiro-Neto, 1999) 
presents an overall view of research in IR from a computer scientist's perspective. 
This means that the focus of the book is on computer algorithms and techniques used 
in information retrieval systems, and on trying to understand how people interpret and 
use information as opposed to how to structure, store, and retrieve information 
automatically. Most of this book is dedicated to the computer scientist's viewpoint of 
the IR problem; the human-centred viewpoint is discussed to some extent in the last 
two chapters. Additionally, this book puts a great emphasis on the integration of the 
different areas, which are closely related to the information retrieval problem, and 
thus should be treated together. For that reason this book also discusses visualization, 
multimedia retrieval and digital libraries.  

"Mathematical Foundations of Information Retrieval" (S. Dominich, 2001) 
gives formal mathematical descriptions of the retrievals in the basic IR models in a 
unified mathematical style, format, language, and it creates an axiomatic, consistent 
mathematical framework.  

"The Geometry of Information Retrieval" (C.J. van Rijsbergen, 2004) is an 
attempt to create a general formal "language" for basic IR models (coordination level 
matching, vector space, probabilistic, ostensive) using the concept of the Hilbert 
space. 

The most important results  published in journal articles or conference 
proceedings  connected to the results of the dissertation are presented in the 
corresponding sections. 
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CHAPTER 2 

METHODS APPLIED AND TEST COLLECTIONS 

USED IN EXPERIMENTS OF MY DISSERTATION 

2.1 Retrieval Evaluation 

Beyond so much success, the Web has introduced new problems of its own. Finding 
useful information on the Web is frequently a tiring and difficult task. For instance, to 
satisfy an information need, the user might navigate the space of Web links searching 
for information of interest. However, since the Web is huge and almost unknown, 
such a navigation task is usually inefficient. For naive users, the problem becomes 
harder, which might entirely frustrate all their efforts. The main difficulty is the semi-
structured data model for the Web, which implies that information definition and 
structure are frequently of low quality. These difficulties have increased interest in IR 
and in its techniques as promising solutions. As a result, IR has gained a place with 
other technologies at the centre of the stage (Baeza-Yates and Ribeiro-Neto, 1999).  

Relevance is the concept on which the whole theory and practice of IR is based. 
Relevance is a complex and widely studied idea in several fields from philosophy to 
library science; so far it plays an important role not only in information retrieval, but 
e.g. in information science, too.  

Information retrieval systems require the evaluation of how precise the set of 
answers is. The evaluation measure for a given retrieval strategy quantifies the 
similarity between the set of documents retrieved and the set of relevant documents 
provided by the specialist. Simply, it points the goodness of the retrieval strategy. The 
following traditional measures are used to express how well (or badly) an IR system 
performs (Ret denotes the set of retrieved documents, and Rel denotes the set of 
relevant documents, and |.| denotes cardinality): 

- Precision: is defined as the ratio of the number of relevant and retrieved 
documents to the total number of documents retrieved (it shows the fraction 
of the retrieved documents which is relevant): 

Precision = 
Ret

RelRet I
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- Recall: is defined as the ratio of the number of relevant and retrieved 
documents to the total number of relevant documents (it shows fraction of 
the relevant documents which has been retrieved): 

Recall = 
Rel

RelRet I
 

- Fallout: is defined as the proportion of relevant and non-retrieved 
documents to the number of non-retrieved documents (it shows which 
fraction of the non-retrieved documents are relevant): 

Fallout = 
Ret

RelRet I
 

There is a relationship between all three measures via a parameter called generality 
(G), which is a measure of the density of relevant documents in the collection. The 
formula is: 

 Precision = ( )GFalloutGRecall
GRecall

−⋅+⋅
⋅

1
,  

 G = 
N

Rel
, where N denotes the number of documents 

There are many studies and book chapters (e.g. in C. J. Van Rijsbergen, 1979; 
Salton and MacGill, 1983; Kowalski, 1997; Baeza-Yates; and Ribeiro-Neto, 1999; 
Belew, 2000; Dominich, 2001.) on evaluating the effectiveness of a given retrieval 
strategy. 

In the evaluation of Web search engines recall is impossible to be evaluated. 
(Oppenheim, Morris and McKnight, 2000). However methods have been suggested to 
evaluate recall (Gordon and Pathak, 1999; Chu and Rosenthal,1996). (Leighton and 
Srivastava, 1999) elaborated and applied a method to evaluate and compare five Web 
search engines (Alta Vista, Excite, HotBot, Infoseek, Lycos) for precision on the first 
twenty results returned for fifteen queries. This method is described in details in 
section 3.6.2. 

2.2 Text Collections Used 

The evaluation in information retrieval usually based on a reference test collection 
and on an evaluation measure is called retrieval performance evaluation. Accordingly, 
in my dissertation test collections are used for experiments and demonstrations. A test 
collection consists of a collection of documents, a set of information requests, and a 
set of relevant documents for each information request. Many test collections have 
been created (Spark Jones, and van Rijsbergen, 1976).  
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A few of these collections are freely available on the web 
(http://www.dcs.gla.ac.uk/idom/ir_resources/test_collections/ or 
http://www.cs.utk.edu/~lsi/corpa.html) and are used by many researchers in 
information retrieval. The most popular standard test collections are: TREC, ADI, 
MED, CACM, CISI, TIME, REUTERS. These collections vary in size, topic and in 
the number of queries. Two popular and well-studied standard test collections (ADI 
and REUTERS) are used in my dissertation for my experiments. 

2.2.1  ADI Test Collection 

The ADI collection (http://www.dcs.gla.ac.uk/idom/ir_resources/test_collections/) is 
the smallest; it contains 82 homogeneous English articles from computing journals 
with 2086 index terms and 35 queries. The test collection contains the following files: 

− adi.all : documents,  
− adi.que : queries,  
− adi.rel : relevance assessments,  
− adi.bln : list of Boolean queries. 

Documents (adi.all) contain text articles and additionally some structured fields. 
Figure 2.1 shows the 6th document of the collection for illustration. The documents 
generally include the following fields: 

- .I : serial number of the document 
- .T: title of the document 
- .A: author/authors of the document 
- .W: text of the document. 

When the author/authors or other field of the articles is unknown, the corresponding 
field is missing from the document. 
 
.I 6 
.T 
a new centralized information-retrieval system for the petroleum industry including a computer search 
system and two manual indexes 
.A 
E. H. BRENNER 
B. H. WEIL 
N. E. RAWSON 
.W 
an integrated system was developed cooperatively to include a current awareness manual index, a dual 
dictionary, and a search tape; all three indexes are produced from a master computer tape.  updating, 
training, and advice will be provided companies for searching the abstracts and further indexing and 
merging of company internal information. 

Figure 2.1. Structure of the .I6 document 

 The ADI test collection contains 35 queries (adi.que). The structure of the query 
is similar to the documents (figure 2.2); implicitly it contains only the "serial number" 
(I), and the "text" (W) fields. Figure 2.2 illustrates the types of queries; .I3 is a mixed 
query including question and declarative sentence too, .I4 is a simple query including 
a declarative sentence and .I14 is a simple query including only a question.  

http://www.dcs.gla.ac.uk/idom/ir_resources/test_collections/
http://www.cs.utk.edu/~lsi/corpa.html)
http://www.dcs.gla.ac.uk/idom/ir_resources/test_collections/)
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.I 3 

.W 
What is information science?  Give definitions where possible. 

.I 4 

.W 
Image recognition and any other methods of automatically transforming printed text into computer-
ready form.  

.I 14 

.W 
What future is there for automatic medical diagnosis? 

Figure 2.2. Structures of the .I3, .I4, .I14 queries 

 The information retrieval systems cannot process natural language queries; 
therefore it is necessary to process the queries to the appropriate form (e.g. to Boolean 
form in case of Boolean retrieval system). Figure 2.3 shows the Boolean forms of the 
queries in Figure 2.2. 

 

#q3= #and ('information',#or ('science', 'definition')); 

#q4= #or (#and ('image', 'recognition'), #and ( #or ('printed', 'text'),  #or ('methods', 'automatically', 
'transforming', 'computer-ready') ) ); 

#q14= #and ('medical', #or ('future', 'automatic')) ; 

Figure 2.3. Boolean form of the I.3, I.4, I.14 queries 

 The ADI test collection includes the relevance assessments (adi.rel). Figure 2.4 
shows a fraction of this file illustrating which answers are relevant to which queries 
(documents .I3, .I43, .I45, .I60 are relevant to the query .I3).  

3       3    
3     43    
3     45    
3     60    
4     29    
4     63    
14   20    
14   33    

Figure 2.4. Relevance assessments to the query I.3, I.4, I.14 

In my experiments, terms were selected from the ADI documents (number of 
term was 915). These documents were TIME stoplisted 
(http://www.dcs.gla.ac.uk/idom/ir_resources/test_collections/time/) and  to reduce 
a word to its stem or root form, thus, to represent the key terms of a query or 
document by stems instead of the original words  Porter stemmed 
(http://www.tartarus.org/~martin/PorterStemmer/). 

2.2.2  Reuters Database 

Reuters-21578 text categorisation test collection (http://www.research.att.com/~lewis) 
is another standard test collection; a part of it was used in my dissertation. It is a 

http://www.dcs.gla.ac.uk/idom/ir_resources/test_collections/time/)
http://www.tartarus.org/~martin/PorterStemmer/)
http://www.research.att.com/~lewis)
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resource for information retrieval, machine learning and other corpus-based research. 
It is a public collection.  

The documents in the Reuters-21578 collection appeared on the Reuters 
newswire in 1987. The documents were assembled and indexed with categories by 
personnel from Reuters Ltd. (Sam Dobbins, Mike Topliss, Steve Weinstein) and 
Carnegie Group, Inc. (Peggy Andersen, Monica Cellio, Phil Hayes, Laura Knecht, 
Irene Nirenburg) in 1987. 

In 1990, Reuters and CGI made the documents available for research purposes 
to the Information retrieval Laboratory (W. Bruce Croft, Director) of the Computer 
and Information Science Department at the University of Massachusetts at Amherst. 
David D did formatting of the documents and production of associated data files in 
1990. Lewis and Stephen Harding at the Information Retrieval Laboratory. David D. 
Lewis and Peter Shoemaker at the Center for Information and Language Studies, 
University of Chicago did further formatting and data file production in 1991 and 
1992. This version of the data was made available for anonymous FTP as "Reuters-
22173, Distribution 1.0" in January 1993. From 1993 through 1996, Distribution 1.0 
was hosted at a succession of FTP sites maintained by the Center for Intelligent 
Information retrieval (W. Bruce Croft, Director) of the Computer Science Department 
at the University of Massachusetts at Amherst. At the ACM SIGIR '96 conference in 
August 1996 a group of text categorisation researchers discussed how published 
results on Reuters-22173 could be made more comparable across studies. They 
decided on producing a new version of collection with less ambiguous formatting, 
and including documentation carefully spelling out standard methods of using the 
collection. The opportunity would also be used to correct a variety of typographical 
and other errors in the categorization and formatting of the collection. 

Steve Finch and David D. Lewis did this cleanup of the collection September 
through November of 1996, relying heavily on Finch's SGML-tagged version of the 
collection from an earlier study. One result of the re-examination of the collection 
was the removal of 595 documents, which were exact duplicates (based on identity of 
timestamps down to the second) of other documents in the collection. The new 
collection therefore has only 21,578 documents, thus called the Reuters-21578 
collection.  

The Reuters-21578 collection is distributed in 22 files. Each of the first 21 files 
(reut2-000.sgm through reut2-020.sgm) contains 1000 documents, while the last 
(reut2-021.sgm) contains 578 documents. The files are in SGML format. 

In my experiments, only a part of the Reuters Database was used with 7000 
documents and 32589 index terms. The text pre-processing was carried out 
automatically. After the automatic removal of the stop words using the TIME stop list 
(http://www.dcs.gla.ac.uk/idom/ir_resources/test_collections/time/), terms were 
generated automatically, without stemming. Stemming was not necessary for these 
experiments, because the database was not being used for retrieval. The average 
number of terms per document was 73. 

http://www.dcs.gla.ac.uk/idom/ir_resources/test_collections/time/)
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2.2.3  Belief Database 

Currently, there is no standard test collection containing Hungarian texts, but several 
scientific fields created their own text collections.  

One example is the Belief Database including 2704 Hungarian belief texts, 
(http://www.oszk.hu/hun/publ/konferencia/konf2001/finn/finn_daranyi_hu.htm). This 
collection was also used in my experiments.  

This collection has several specialities:  

- it is not a standard one,  
- it was special in using different spellings: contemporary Hungarian; for 

instance, “Ha kis gyermeknek komoly baja van, akkor szenes vizzel mossák meg. 
A meleg vizbe 9 drb. szenet tesznek, megkenik a vizzel a gyermek homlokát és 
ezt mondják: Ha férfi, kalap alá; ha leány párta alá; ha asszony fejkötô alá, az 
atya, fiú, szentlélek nevében. Amen.” 

- a mixture of older Hungarian spelling and dialect was used; for example, “Ha a 
tehenet merrontya a boszorkány, vësznek egy új fëlliteres cserepbëgrét; abba 
belëtësznek ecs csomaócskát a tehen gannajjábó. Azután szöget vernek a kény 
belsejébe s erre felakasztyák a bëgrét. Etteô aszt meggyön a tehen haszna.” 

- many different word forms were used.  
Due to these characteristics the text pre-processing operations were carried out 

manually. A number of 1,551 stop words (e.g., pronouns, adverbs, articles, attributes, 
verbs, present participles, rarely used chemical words, as well as conjugated/declined 
forms) were identified manually as baring no or very little significance for beliefs, 
and gathered in a list. For example, the personal pronoun “aki”, meaning “who”, has 
many different declined forms such as: “aki, akié, akiébe, akiért, akihez, akijé, akik, 
akiknek, akin, akinek, akinél, akire, akiről, akit, akitől, akivel, akki, akkinek, akkire”. 
After the automatic removal of the stop words there remained 14,286 word forms. 
The word forms were then stemmed manually. For example, the following declined 
word forms: “csont, csontjával, csontja, csontig, csontok, csontjait, csontnak, 
csontokat, csontra, csontjai, csontom, csont, csonton, csontját, csontokbúl, csontot, 
csonttal” were all stemmed to “csont” meaning “bone”. A further difficulty stemmed 
from the very many composed words, which are typical of the Hungarian language 
(just like in German or Finnish, for instance). A further and very special difficulty 
was posed by old synonym words, which are not being used anymore in 
contemporary Hungarian; for example, the words “betyöleges, bíszbányosok” were 
replaced by the word “varázs” meaning “magic”.  

The result was a number of 2,602 terms in a correct contemporary Hungarian 
spelling, which were used as index terms for the belief texts. The average number of 
terms per text was 15. 

http://www.oszk.hu/hun/publ/konferencia/konf2001/finn/finn_daranyi_hu.htm)
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2.2.4  Medical Database 

A medical database1,  which was developed in the Department of Computer 
Science within the Cost Effective Health Preservation Consortium Project , was 
used for some experiments in Chapter 3, and 4. This medical database is a part of the 
system called NeuRadIR. NeuRadIR is a NeuroRadiological Information Retrieval 
system to brain CT image and report retrieval. It was developed by our center, the 
CIR (Center for Information Retrieval). The implemented system enables physicians 
(both radiologist and general practitioners) to use medical text and image database 
over the Web in order to facilitate health preservation but also to assist diagnosis and 
patient care. The details of the system can be found in section 3.5.1. 

The medical database contains 40 medical cases denoted by a number (1-20) 
and a letter (a, or b). Every number has "a" and "b" version meaning that an early 
(denotes by "a"), and a late (denotes by "b") examination belong to every case. The 
database was created in English using ACTILYSE program.  

Each case includes two parts (figure 2.5 shows an example):  

(i) Computer Tomography (CT) images of the human patients’ brains (each case 
contains from 10 to 14 image slices),  

(ii) Textual information (scanning time, patient age, patient gender, patient notes, 
paresis information) and case report (the demographic data in this paper is not 
real to ensure anonymity). 

 
 

Slices  (1 through 14: cross sections from the bottom to the top of the head)  
 

 
 1 2 3 4 5 6 7 

 
 8 9 10 11 12 13 14 
Patient: 70-year old woman 
Patient notes: She was not aphasic and was fully conscious. The patient had a severe left-sided 
hemiparesis.  
Case Report: There are no signs of hyperdensity, large infarct or hyperdense artery. The infarct extent 
is under 33%. Patient suitable for thrombolysis. 
 

Figure 2.5. A patient’s case in the database (example for illustration purposes only): fourteen slices 
and a short radiological report. 

                                                
1 Used in the NeuRadIR retrieval system at http://dcs.vein.hu/CIR. 

http://dcs.vein.hu/CIR
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The cases were indexed using relevant medical terms (figure 2.6.a) in the written 
reports and a set of criteria relative to image content (figure 2.6.b). The database 
contains 68 index terms. A controlled vocabulary was created based on both textual 
reports and standard specialist queries. 
 

Coronary artery stenosis Aphasia 
   sudden 
   global 

Eye deviation 
   conjugated 

Bedridden Palsy gaze 
Cardiac arrhythmia Myocardial infarction 
Collapse 
   Sudden 
Coma 

Orientation 
   undisturbed 
   impaired 
   completely  disturbed 
Somnolence Consciousness 

   undisturbed 
   impaired 

Stupor 

Hemiparesis 
progressive  
severe  
sudden  
slight 

    moderate 
    very severe 
    global 
    facial 
    subacute 
    left-sided 
    right-sided  

Figure 2.6. a) Examples of relevant medical terms in written reports used as index terms. For example, 
the term ‘palsy gaze’ has Boolean values (Yes, No), whilst the term ‘moderate hemiparesis’ has the 

weight 0.5 in the original document-term matrix. 

Hyperdensity, 
Haemorrhage, 
Infarction, 
Hyperdense artery, 
Hypodensity, 
Thrombolysis, 
Tissue volume, 
Deformation, 

Figure 2.6. b) Examples of criteria expressing relevant image features. 
Both the medical terms and criteria were assigned weights. Thus, a term-by- 
document matrix D was constructed, where di,j denoted the numeric value assigned to 
term (or criteria) i for case j (corresponding to a ‘document’ Dj). Table 2.1 shows a 
partial term-by- document matrix  with ten documents (from document 7b to 
document 12a) and ten index terms (from t28 to t37)  of the medical database using 
term frequency weighting scheme.  

Table 2.1. Partial term-by-document matrix of the medical database 

 D7b D8a D8b D9a D9b D10a D10b D11a D11b D12a 
w28 1 0 0 0 1 0 0 0 1 0 
w29 1 1 1 1 1 1 1 1 1 1 
w30 0 0 0 0 0 0 0 0 0 0 
w31 1 1 0 1 1 1 1 0 0 1 
w32 0 0 0 0 0 1 0 0 0 0 
w33 0 0 0 0 0 0 0 0 0 0 
w34 1 1 0 1 0 1 1 1 0 1 
w35 1 0 0 0 0 0 1 0 0 0 
w36 0 0 0 1 0 0 0 0 0 0 
w37 1 1 1 1 1 1 1 1 1 0 
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CHAPTER 3  

HYPERBOLIC INFORMATION RETRIEVAL  

In this chapter the HIR (Hyperbolic Information retrieval) Model is introduced, where 
the similarity measure is derived from the Cayley-Klein hyperbolic distance. It is 
shown formally, as well as experimentally that the HIR model is equivalent with the 
Cosine-based Vector Space Model using normalised weighting scheme. The first 
application using the HIR model  called NeuRadIR  is also presented. 

3.1  Motivation 

One of the most widely used models of information retrieval to process texts 
efficiently and retrieve information is the Vector Space Model (VSM). The Euclidean 
geometry has been the only type of space used in the VSM in general, but non-
Euclidean geometry is becoming increasingly important in modern science and 
technology. The application of non-Euclidean spaces to information processing in 
general seems to experience its beginnings: they are used for information 
visualisation. In a hyperbolic space the area of a circle grows exponentially with 
respect to its radius, whereas in Euclidean space the area only grows quadratically. 
Thanks to this property a convenient way to visualize exponentially growing trees can 
be derived (Phillips and Gunn, 1992; Phillips, Levy and Munzner, 1993). They draw 
3D hyperbolic pictures of large hierarchies or graphs (such as the Web) in the interior 
of a ball, use Euclidean straight lines, but the way distance is measured is changed. 
Thus, an effective way to visualise structures is obtained (more can be represented in 
less space, although in a distorted way; in a "fisheye" view style). 

This chapter investigates the possibility of defining a VSM in a hyperbolic 
space. A non-Euclidean space is applied to IR by defining a VSM in the hyperbolic 
space with a hyperbolic similarity measure. It is shown that the new model (HIR = 
Hyperbolic Information Retrieval) is equivalent with the Cosine-based VSM with 
normalised weighting scheme.  

3.2  Vector Space Model 

All theoretical and practical research in IR is based on a few basic models which have 
been elaborated over time. Depending on how the documents, query and retrieval are 
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modelled different formal methods can be distinguished in IR. These models are 
based on ideas and techniques form different scientific fields such as mathematics, 
logics, information science, artificial intelligence and quantum theory (Dominich, 
2002).  
  The first models of IR are based on mathematical techniques because using 
mathematical knowledge was well known and understood, so these models could be 
created easily. In these models, retrieval of information is based on the mathematical 
concept "distance" (or similarity) between the query and objects. Different specific 
versions of these models are used in commercial retrieval system, so these models are 
considered to be classical models of IR, namely Boolean, Vector Space and 
Probabilistic Model. Models applying logics and information science are relatively 
new, where the retrieval of information is based on some inference processes or flow 
of information between the query and the objects to be searched. These models are 
called non-classsical models (Dominich, 2002): Information Logic, Situation Theory 
and Interaction Information retrieval Model. The models of IR applying different AI 
(Artificial Intelligence) or AI-related methods are called alternative models. They 
enhance the classical models of IR. In models that are based on ideas and principles 
from Quantum Mechanics, retrieval of information is a result of an effective and real 
interaction between the query and the objects to be searched. The alternative IR 
models are: Cluster Model, Fuzzy Model, Latent Semantic Indexing Model, 
Alternative Probabilistic Model (Inference Network Model (Turtle and Croft, 1990, 
1991), Belief Network Model (Ribeiro-Neto and Muntz, 1996)) and Artificial 
Intelligence Based Model.  

In the field of information retrieval, the Vector Space Model (VSM) is an 
important, well-understood and extensively researched classical model, which has 
been widely used to process texts efficiently and retrieve information for some forty 
years (Salton, 1966). It is called VSM because each document and query is mapped to 
a point in the feature space based on frequencies of keywords appearing in the text. 
The feature space is mathematically modelled by the orthonormal Euclidean space, 
i.e., the space (or geometry) is defined by a system of pairwise perpendicular 
coordinate axes corresponding to index terms. Retrieval is based on whether the 
"query vector" and the "document vector" are close enough.  

Given a finite set D of elements called documents:  

Dj, , j = 1, …, m ∈ N (N denotes the set of natural numbers), 

and a finite set T of elements called index terms: 

ti, i = 1, …, n ∈ N (N denotes the set of natural numbers). 

In the Vector Space Model (van Rijsbergen, 1979; Salton and McGill, 1983; Baeza-
Yates and Ribeiro-Neto, 1999), briefly VSM, of information retrieval, every 
document Dj is assigned a vector:  

wj = (wij)i=1,...,n of weights,  
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where wij ∈ R (R denotes the set of real numbers) denotes the weight of term ti for 
document Dj.  

The matrix W = (wij)n×m is called the term-by-document matrix.  

3.2.1 Weighting Schemes 

The general form of a weighting scheme (Berry and Browne, 2000) is as follows:  

wij = local_weightij × global_weighti × normalisationj = lij × gi × nj 

The types of local term weights lij are as follows: 

- b (Binary): χ( fij) 

- l (Logarithmic): log (1+fij) 

- t (Term frequency): fij 

- n (Augmented normalized term frequency):  (χ( fij)+( fij / maxk fkj))/2 

Generally used formulas for global term weights gi are as follows: 

- x (None):  1 

- e (Entropy): ( ) 
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Formulas for document normalisation  nj, are as follows:  
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- x (None):  1 

- c (Cosine): ( )
21
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The choice for:  
(i) the local weight lij depends on the vocabulary (e.g., technical, scientific, 

journal articles, magazines, encyclopaedia) or words used, 
(ii) the global weight gi depends on the change rate (static, often changing) of 

the collection,  
(iii)  the normalisation nj depends on document length.  

Widely used weighting schemes are as follows:  

- f (term frequency):  wij = lij = fij 

- maxNorm : wij = lij = 
kjk

ij

f
f
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- tf-idf (term_frequency × IDF):  wij = lij × gi = 
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where, fij denotes the number of occurrences of term ti in document Dj,  

Fi is the number of documents in which the term ti occurs.  

For convenience 
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probability pij  = ∑
=

m

j
ijij ff

1

/ .  

 For technical or scientific vocabularies schemes of the form xnx, with 
normalised term frequencies are generally recommended. For more general 
vocabularies simple term frequencies (t**) may be sufficient. When the term list is 
relatively short, such in case of controlled vocabulary, binary term frequencies (b**) 
are useful (Berry and Browne, 2000). 

3.2.2 Similarity Measures 

Let Q denote a user’s query and  
q = (qi)i=1,...,n the corresponding query weight vector.  

The vectors wj and q belong to the En Euclidean orthonormal space, in which the 
weights wj and q are regarded as Cartesian coordinates (of points corresponding to 
document Dj and query Q). In other words, each term ti is assigned to an axis xi, all 
the axes intersect each other in one common point O (called the origin), they are 
pairwise perpendicular to each other in the origin, and the weight wij corresponds to a 
point on the axis xi (one separate point for each document Dj). Thus, every document 
Dj (j = 1, …, m) is represented by a vector wj, which defines a point in the space En.  

The relevance of document Dj relative to query Q is given by the value of a 
similarity measure σ(wj, q), whose general form is as follows: 

σ(wj, q) = 
∆

qw j  

where wjq denotes the inner  or dot  product of the vectors wj and q.  

A function σ(w, q) is similarity if it satisfies the three similarity properties (Van 
Rijsbergen, 1979), i.e.,  

σ: D × D → R 

− normalisation:  0 ≤ σ(w, q) ≤1, 

− symmetry:  σ(w, q) = σ(q, w), ∀q, w; i.e., the order in which the query and 
the document are considered when computing the similarity value is 
indifferent; 

− reflexivity: w = q ⇒ σ(w, q) = κ; i.e., the value of the similarity measure 
is equal to a predefined and fixed maximal value κ if the query and the 
document are exactly the same; the reverse is not necessarily true; for example, 
if σ is normalised then κ may be taken as being equal to 1. 

 

Depending on the formula used to calculate the denominator ∆ several well-
known similarity measures have been proposed over time such as:  
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Jaccard’s coefficient: σ (wj, q) = 
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Overlap coefficient: σ (wj, q) = 







 ∑∑

∑

==

=
n

i
i

n

i
ij

n

i
iij

qw

qw

11

1

,min
 

In what follows, the Cosine measure will be used; namely, its explicit formula 
is ∆ = ||wj||⋅||q|| (||.|| denotes the Euclidean norm of a vector).  
EXAMPLE 3.1 (based on Berry and Browne, 2000) 
 Given a small collection of book titles (7 documents Dj) with 9 index terms ti, 
and a query Q as illustrated in table 3.1: 
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Table 3.1. Collection of book titles with the index terms 

Terms Documents Query 

T1 Baby D1 Infant and Toddler First Aid  
T2 Child D2 Babies and Children’s Room (For your Home) Child 
T3 Guide D3 Child Safety at Home  
T4 Health D4 Your Baby’s Health and Safety: From Infant to Toddler   
T5 Home D5 Baby Proofing Basics Home 
T6 Infant D6 Your Guide to Easy Rust Proofing Infant 
T7 Proofing D7 Beanie Babies Collectors Guide Proofing 
T8 Safety   Safety 
T9 Toddler    

Using tfn weighting scheme, the term-by-document matrix, and the term-by-query are 
the following: 
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Similarity values for the given Q using Cosine, Dice and Jaccard similarity measures 
are illustrated in table 3.2. It shows, that document D3 is the most relevant to the 
user’s query. 

Table 3.2. Similarity values of VSM model using Cosine, Dice or Jaccard measures 

Similarity measure 
Document 

Cosine Jaccard Dice 

D1 0.316 0.092 0.087 
D2 0.516 0.142 0.13 
D3 0.775 0.224 0.195 
D4 0.4 0.094 0.089 
D5 0.316 0.092 0.087 
D6 0.316 0.092 0.087 
D7 0 0 0 
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3.2.3 Rank Order Preservation  

Given any two documents (objects) D1 and D2, and any two similarity measures σ1 and 
σ2. If the two documents (objects) are ranked in the same order by these measures 
relative to any query Q, i. e.,  

 σ1 (w1, q) ≤ σ1 (w2, q) ⇔ σ2 (w1, q) ≤ σ2 (w2, q), ∀ D1, D2, Q, 

then the similarity measures σ1 and σ2 are said to preserve the rank order. The 
importance of rank order preservation consists in that all rank order preserving 
similarity measures are equivalent with each other. In other words, any of them can 
replace the others, or equivalently, they all can return the same documents (objects).  

In the VSM, in general, the similarity measures do not preserve the rank order 
of the retrieved documents. Only practice and experimentation but no sound 
theoretical argument can recommend which one to use in order to obtain better (more 
relevant) results.  

EXAMPLE 3.2  
Given the following term-by-document matrix and the term-by-query: 
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Similarity values for the given Q using Cosine, Dice and Jaccard similarity measures 
are illustrated in table 3.3. Figure 3.1 shows these values in graphical form. It can be 
seen clearly, that these measures do not preserve the rank order (e.g. Cosine1 > 
Cosine2 but Jaccard2 > Jaccard1, where Cosinei denotes the similarity value of the 
document Di using Cosine measure, and respectively Jaccardi denotes the similarity 
value of the document Di using Jaccard measure). 
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Table 3.3. Similarity values of VSM model using Cosine, Dice or Jaccard measures 

Similarity measure 
Document 

Cosine Jaccard Dice 

D0 0.676 0.149 0.138 

D1 0.845 0.191 0.173 

D2 0.632 0.198 0.173 

D3 0.775 0.224 0.195 

D4 0.258 0.068 0.065 

D5 0.316 0.092 0.087 

D6 0 0 0 

D7 0 0 0 

D8 0.447 0.157 0.138 

D9 0.447 0.157 0.138 
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Figure 3.1. Visualization of rank order in Cosine, Jaccard and Dice measures using tfn 
weighting scheme.  

It can be seen that, for example the Cosine measure and Jaccard coefficient do not preserve the 
rank order. 
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3.2.4 The σ-Space 

All the similarity measures may be viewed as normalised versions of the Dot product, 
which is a measure of how many index terms the query Q and document Dj have in 
common, and to what extent; i.e., a measure of how many times qi ≠ wji. All the 
similarity measures are normalised (Cosine, Dice, Jaccard).  

The concept of a σ-space, introduced in (Dominich, 2001), is a formal 
generalisation of the VSM in order to emphasize the fact that retrieval is based on 
similarity measures. A set D of objects with a symmetric and reflexive similarity 
measure, i.e., 

σ: D × D →  R 

− symmetry:  σ(a, b) = σ(b, a), ∀a, b ∈ D; i.e., the order in which the query 
and the document are considered when computing the similarity value is 
indifferent; 

− reflexivity: a = b ⇒ σ(a, b) = κ; i.e., the value of the similarity measure is 
equal to a predefined and fixed maximal value κ if the query and the document 
are exactly the same; the reverse is not necessarily true; for example, if σ is 
normalised then κ may be taken as being equal to 1. 

is referred to as a σ-space. It was shown that the following holds (Dominich, 2001), 
stated here without proof: 

THEOREM 3.1 (Dominich, 2001) Let 〈E, µ〉 be a (pseudo-) metric space (µ is 
normalised, which is always possible). Then,  

(i) the induced topological space is a σ-space on E, and  

(ii) 〈E, 1 − µ〉 is a σ-space. ♦ 

The importance of  Theorem 3.1 consists in that it allows for constructing a similarity 
measure from a given (pseudo-) metric, and this property will be used in my thesis. 

3.3 Cayley-Klein Hyperbolic Geometry 

In this section, the Cayley-Klein hyperbolic geometry is briefly described in a form 
used in my dissertation. 

3.3.1 Non-Euclidean Geometry 

Non-Euclidean geometry (Bolyai, 1987) is a geometry that is different from the 
Euclidean (Classical) geometry in that Euclid’s fifth postulate (in plane, there exists 
exactly one parallel line to a given line through a given point that is not on the given 
line) does not hold. One of the most useful non-Euclidean geometries is elliptic or 
spherical geometry, which describes the surface of a sphere. It replaces the parallel 
postulate with the statement "through any point in the plane, there exist no lines 
parallel to a given line".  
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 The other non-Euclidean geometry is called hyperbolic (or 
Bolyai−Lobachevsky) geometry, which is a "curved" space. Hyperbolic geometry 
satisfies Euclid’s postulates except the fifth, i.e. for any hyperbolic line l, and point p 
not on l, there exist at least two hyperbolic lines through p and parallel to l.  

3.3.2 Cayley-Klein Model 

The Cayley-Klein hyperbolic geometry or space (C-KHS)  or model  is an 
example for hyperbolic geometry. 

Let Rn denote the Euclidean (orthonormal) space (Császár, 1974).  

Let A and B denote two points in Rn, and (x1, x2, ..., xn) and (y1, y2, ..., yn) denote their 
Cartesian coordinates, respectively.  

The Euclidean distance ( )ABdE  between the points A and B is defined as follows 
(Patterson and Rutherford, 1965): 

( ) ( )∑
=

−=
n

i
iiE yxABd

1

2  (3.1) 

Let  

( ) ( )








<= ∑
=

n

i
in rxxxxPrOS

1

22
21 ,...,, ,  (3.2) 

denote the interior of a hyper-sphere S having its centre in the origin O of the space 
Rn, and radius r ∈ R, r > 0.  
The S(O, r) hyper-sphere is the C-KHS space. 

The points P of the C-KHS are all the points of S(O, r), i.e, P ∈ S(O, r).  

The lines of the C-KHS space are open chords of the hyper-sphere S deprived of their 
endpoints. If the lines m and q have a common endpoint (on the boundary of the 
hyper-sphere in the Euclidean space) they are referred to as asymptotically parallel 
(figure 3.2.a). The scientific role and importance of non-Euclidean geometries is well-
known (Anderson, 1999). In my context, however, the hyperbolic distance rather than 
parallelism will play an important role. 
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(a)        (b) 

Figure 3.2. a) m, p, q, t are lines in the C-KHS. Notice that the endpoints do not belong to the C-KHS, 
nor do the points of the circle (the circle is only drawn to show the ‘limits’ of the 
hyperbolic space). The lines p and q are asymptotically parallel to line m: m || p, m || q. 
The line t is divergently parallel to line m: m || t. 

b) Example for a line segment AB in the C-KHS. 

 

Note: The C-KHS space satisfies Hilbert’s axioms on incidence, ordering and 
congruence, as well as Archimedes’ and Cantor’s axioms on continuity (Hilbert and 
Cohn-Vossen, 1932), and is thus a continuous absolute space.  

The concept of a distance is defined using that of a cross ratio.  

The hyperbolic length ( )ABdH of the line segment AB is defined as the cross-ratio of 
the points U, A, B, V (figure 3.2.b) as follows:  

( ) ( ) ( )
( ) ( )BUdAVd

BVdAUdkABd
EE

EE
H ⋅

⋅
⋅= ln  (3.3) 

where k ∈ R is a positive constant,  

U and V are the points of intersection of the Euclidean line through the points A and 
B with the hyper-sphere.  

In the following, it will be assumed, without loss of generality, that k = 1.  

The hyperbolic distance satisfies the properties of the metric:  

-         Non-negativity: the hyperbolic distance is non-negative (immediate from its 
definition): 

( )ABdH  ≥ 0, ∀ A, B ∈ C-KHS (3.4) 

-  Symmetry: the hyperbolic distance is symmetric: 
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          ∀ A, B ∈ C-KHS (3.5) 

-  Reflexivity: the hyperbolic distance is reflexive: 

A = B ⇒ ( )ABdH = ( )AAdH ⇒ ( )BUdE = ( )AUdE  

and ( )BVdE = ( )AVdE  

⇒ln 1 = 0 (3.6) 

-  Triangle inequality: the hyperbolic distance satisfies the triangle inequality: 

( )ABdH + ( )BCdH = 
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∀ A, B, C ∈ C-KHS (3.7) 
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From the hyperbolic distance  because it satisfies the metrics properties  a 
similarity measure can be derived using Theorem 3.1.  

3.4 Hyperbolic Information Retrieval (HIR) Model [THESIS 1.a] 

The Hyperbolic Information Retrieval (HIR) Model is proposed in [P1, P6] using a 
similarity measure derived from the hyperbolic distance. 
Given a VSM.  

Let R’n denote the n-dimensional Euclidean space obtained by translating the space 
Rn into the query-point Q, i.e., the origin O of Rn is translated into Q.  

Let us consider the following C-KHS:  

( ) ( )( ) ( ) ( )








<−=′=′′ ∑
=

n

i
iinni rqddddDrqqqqQSrOS

1

22
21,21 ,...,, ,...,,...,,,  (3.8) 

So the radius r of the C-KHS must be the following; because it is required to use all 
the documents for retrieval: 

r > 
D

max ( )QDd E  

Using the definition of the hyperbolic distance, the hyperbolic distance ( )QDdH  in 
the translated space S’(Q, r) is as follows: 

( ) ( ) ( )
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2
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2
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Based on Theorem 3.1, the C-KHS space S’(Q, r) can be turned into a σ-space as 
follows: 

(i) the hyperbolic distance dH is normalised, for example, by taking δH = dH / (1 
+ dH); this is required for the similarity measure to be positive and smaller 
than unity; 

(ii) a function σH  is defined as follows: 

σH(w, q) = 1 − δH(QD) 
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Thus, the explicit form of the Hyperbolic similarity measure σH(w, q) is as follows: 
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It is shown that:  

THEOREM 3.2 The function σH is a similarity measure.  

Proof: 

Based on (Van Rijsbergen, 1979), the function σH(w, q) is a similarity measure if it 
satisfies the three similarity properties: 

-  Normalisation:  0 ≤ σ(w, q) ≤1,  
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 - Symmetry:  σ(a, b) = σ(b, a), ∀a, b ∈ D 

( )QDdE = ( )DQdE ⇒ σH(Q, D) = σH(D, Q)  (3.12) 

-  Reflexivity:  a = b ⇒ σ(a, b) = κ, ∀a, b∈D 

Q = D ⇒ ( )QDd E = ( )QQdE = 0 ⇒ σH(Q, Q) = 

11)(ln1))(ln( =−=−⋅ e
r

r
e

 (3.13) 
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Hence, σH is a similarity measure.♦ 

An additional property of the hyperbolic distance used in chapter 4.6 is as follows : 
dH becomes infinitely large when either (point B)of the points approaches the surface 
(point V) of the hyper-sphere, i.e., 

  B→V ⇒  ( ) ( )ABdBVd HVBE →
⇒= lim0  = +∞ (3.14) 

HIR model based on Cayley-Klein hyperbolic geometry was introduced in this 
chapter. The measure σH was derived from the hyperbolic distance, and it was proved 
that it satisfies the properties of the similarity measure.  

Hereafter, let denote Hyp(w, q) the similarity measure: σH(w, q). 

3.5 VSM and HIR: Equivalent Models [THESIS 1.b] 

It is shown (formally, and experimentally) in [P1, P5] that the HIR model and the 
VSM equipped with the Cosine measure are equivalent in an important practical case. 

3.5.1 Equivalence of VSM and HIR: Formal Proof 

Two IR models or systems are equivalent if they produce the same ranking 
(Dominich, 2001). As known (e.g., Meadow, Boyce and Kraft, 1999; Berry and 
Browne, 2000), for technical disciplines, the usage of the tfn (normalised term 
frequency) weighting scheme is recommended as yielding good results. It is shown 
that the Cosine similarity measure and the Hyperbolic measure preserve the rank 
order of documents under this weighting scheme.  

THEOREM 3.3: The Cosine and Hyperbolic similarity measures preserve the rank 
order under the tfn weighting scheme. 
Proof: 
Let fi,j mean the number of occurrences of term ti in document Dj. (fij could be any 
other value, in fact.) The normalised weighting scheme means that the terms are 
assigned normalised weights wij as follows: 

wij 

∑
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=
n

i
ij

ij

f

f

1

2

 (3.15) 

The query terms are assigned weights similarly.  

Because ∑
=

n

i
ijw

1

2  = 1, ∑
=

n

i
iq

1

2 = 1 under this weighting scheme, the Cosine and 

Hyperbolic measures Hypj become: 
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respectively.  
Thus, one can write the following equivalence: 
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and using the property of r radius of C-KHS, that: 

 r > 
D

max ( )QDdE  

it follows: 

Cosinej ≤ Cosinek  ⇔  Hypj ≤ Hypk ♦ (3.19) 

In other words, a given VSM based on the Cosine measure and using the tfn 
weighting scheme can be replaced with a hyperbolic IR model (producing exactly the 
same answers and ranking). 

3.5.2  Equivalence of VSM and HIR: Experimental Results 

Experiment using a part of the medical database (section 2.2.4) is performed to 
illustrate of the rank order preservation in VSM and HIR.  

Ten documents (from document 7b to document 12a) and ten index terms (from 
t28 to t37)  with the connected weights (from w28 to w37)  were used for the 
experiments. The query terms are: t28,  t30,  t31,  t36,  t37.  The term-by-document matrix 
(table 3.4), and the term-by-query vector (figure 3.3) using tfn weighting scheme were 
computed by Mathcad 2001i Professional Software. 
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Table 3.4. Term-by-document matrix using tfn weighting scheme. 

 D7b D8a D8b D9a D9b D10a D10b D11a D11b D12a 

w28 0.408 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.577 0.000 

w29 0.408 0.500 0.707 0.447 0.500 0.447 0.447 0.577 0.577 0.577 

w30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

w31 0.408 0.500 0.000 0.447 0.500 0.447 0.447 0.000 0.000 0.577 

w32 0.000 0.000 0.000 0.000 0.000 0.447 0.000 0.000 0.000 0.000 

w33 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

w34 0.408 0.500 0.000 0.447 0.000 0.447 0.447 0.577 0.000 0.577 

w35 0.408 0.000 0.000 0.000 0.000 0.000 0.447 0.000 0.000 0.000 

w36 0.000 0.000 0.000 0.447 0.000 0.000 0.000 0.000 0.000 0.000 

w37 0.408 0.500 0.707 0.447 0.500 0.447 0.447 0.577 0.577 0.000 
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Figure 3.3. Term-by-query vector using tfn weighting scheme. 

 

The computation of the cosine and hyperbolic similarity values for the query q was 
also performed using Mathcad. For the hyperbolic values the radius of the C-KHS 
was defined as 1.218 (r = 1.218). Table 3.5 shows the cosine and hyperbolic 
similarity values, while figure 3.4 illustrates these values in a graphical form. The 
solid line represents the similarity values of the Cosine measure and the dotted line 
shows the hyperbolic values. It can be seen clearly that for every two documents the 
similarity values follow the same order, i.e., the documents are ranked in exactly the 
same order. E.g. document D9b is the most relevant to the query Q in the Cosine 
measure (0.671), and in the Hyperbolic measure (0.383) too. 
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Table 3.5. Cosine and hyperbolic (r = 1.218) similarity values 

 D7b D8a D8b D9a D9b D10a D10b D11a D11b D12a 

Cosine 0.548 0.447 0.316 0.600 0.671 0.400 0.400 0.258 0.516 0.258 

Hyp 0.323 0.277 0.204 0.348 0.383 0.254 0.254 0.029 0.309 0.029 

 

The returned hit lists are the following:  

D9b, 

D9a, 

D7b, 

D11b, 

D8a, 

D10a, 

D10b, 

D8b, 

D11a, 

D12a 

It can be seen clearly, that the rank is the same in both cases. 

 

7b-12a

1

0

Cosinedocuments

Hyperbolicdocuments

101 documents

 
 

Figure 3.4. Visualisation of rank order preservation in VSM and HIR using tfn weighting scheme. 

3.6 Application: NeuroRadiological Information Retrieval System 

The application called NeuRadIR  in [P2, P4, P5, P7]  is a NeuroRadiological 
Information Retrieval System using the HIR model  besides two other retrieval 
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techniques in order to satisfy different information need  to brain CT image and 
report retrieval. It was developed by our center named CIR (Center for Information 
retrieval) at the Department of Computer Science within the Cost Effective Health 
Preservation Consortium Project. The implemented system enables physicians (both 
radiologist and general practitioners) to use medical text and image database over the 
web in order to facilitate health preservation but also to assist diagnosis and patient 
care.  

In medical practice most image retrieval systems are designed to help 
experienced physicians in diagnostic tasks and require that users have prior 
knowledge of the field and not capable for educational purpose (Guy, and Fftyche, 
2000.).  

The results of our research from the application viewpoint: 
(i) Enhance the quality of specialist consultation as well as medical education. 

(ii) General practitioner medical doctors may confirm a diagnosis or explore 
possible treatment plans through a consultation to the CT retrieval system over 
the Web.  

(iii) Medical students may have images and would like to explore possible 
diagnoses or would like to see images corresponding to different pathological 
cases such as lesion, bleed or stroke. 

3.6.1. System Description of NeuRadIR 

The NeuRadIR application consists of computer program modules written in several 
languages as well as related documentation. The communication between the Web 
server and the search program is based on the CGI protocol. The Report Editor makes 
it possible to create/edit reports. The CT Base Editor makes it possible to create and 
modify the database containing the images and reports. The Validation Module 
consists of program, which carry out formal and consistency validation and statistics. 
The Search Module works online on the Web. Figure 3.5 illustrates the functional 
description of the retrieval system using UML use case diagram, and figure 3.6 shows 
the architecture of the implemented application.  

Two databases  an English and a Hungarian one  were created for the 
NeuRadIR. English version was based on training material containing 40 cases. This 
medical database was described in section 2.2.4; it was used for some experiments in 
Chapter 3, and 4. A controlled vocabulary was created based on both textual reports 
and standard specialist queries in both language.  
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Figure 3.5. Functional description of the NeuRadIR using UML use case diagram. 
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Figure 3.6. System architecture of the NeuRadIR 
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The search module is used online on the Web. Figure 3.7 shows "Search 
screen" of the application on which the user can enter the query. The query, i.e., 
medical terms (for example, brain) can be selected from the vocabulary or freely 
entered from the keyboard in the query line. By clicking on the SEARCH button the 
effective search is initiated in a local database on a server. Clicking on the BACK TO 
MAIN PAGE button takes us back to the title page. The user has two choices for 
selecting searching strategies by clicking on the "SEARCH associative" (using 
interaction information retrieval) or on the "SEARCH terms" (using HIR model) 
button.   

 

 
 

Figure 3.7. Search screen of NeuRadIR 
 

Figure 3.8 shows the returned hit list, and by clicking on any hit the textual 
information as well (figure 3.9) as the CT images (figure 3.10) are displayed. 
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Figure 3.8. Returned hit list of NeuRadIR. 

 
 

 
 

Figure 3.9. Result screen of the first hit 
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Figure 3.10. CT images of the first hit. 

3.6.2 Evaluation of NeuRadIR Using the Leighton-Srivastava Method 

(Leighton and Srivastava, 1999) elaborated and applied a method to compare five 
Web search engines (Alta Vista, Excite, HotBot, Infoseek, Lycos) for precision on the 
first twenty results returned for fifteen queries. Because their method allows for 
evaluating a real search application on the Web, it has been used to evaluate the 
precision of NeuRadIR using HIR model as a search method.  

 Although the application NeuRadIR does not have the complexity of a usual 
Web search engine (like those above), the method can be adopted based on the 
formula (Dominich et al, 2001) to compute precision can be developed; these are 
described in the following. The tests were carried out during March 2004. 

3.6.2.1 Search Method 

The database was stable in the test period. 
The search method used was that of NeuRadIR i.e., the hyperbolic information 

retrieval with tfn weighting schemes. The parameters are the following: 
The hyperbolic values are computed using this formula: 

  

Ar
ArHyp

−
+

+
=
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where radius r is the following (because we suppose, that it is needed a categorical 
retrieval system): 

r = Amax  + 10-10 (3.21) 

A cutoff – value (cv) was introduced to exclude the hits which does not include any 
query terms:    

cv
1

max
maxln
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3.6.2.2 Evaluation Method 

A set of criteria (Relevance Categories) was established first, before evaluating any 
links. The relevance was defined in two different ways supposing two different types 
of user. Separate searches were performed for each query. The returned hits were 
evaluated: placement in a relevance category and calculation of numeric precision. 

(Xu, 1999) reported that from 1996 to 1999, for more than 70 % of the time, user 
only views the top ten results. Corresponding to this report the suggested formula of 
(Dominich at al, 2001) evaluating the first ten hits is used. 

3.6.2.3 Relevance Categories 

The relevance categories suggested by (Leighton and Srivastava, 1999) are the 
following:  

– Category 0: duplicate links, inactive links (file not found, forbidden, server 
not responding), irrelevant links 

– Category 1: technically relevant links  
– Category 2: potentially useful links, 
– Category 3: a most probably useful links. 

A document is either in a category or not in the category.  

The suggested formula for the metric begins by converting the categories into 
binary values of zero or one. The links in categories 1, 2, and 3 are assigned as one in 
the formula, and the links in category 0 are assigned zero. The first twenty links are 
divided into three groups: the first three links (multiplied by 20), the next seven links 
round out the user’s first result page (multiplied by 17), and the last ten (multiplied by 
10), make up the second page of result. The formula is the following: 

 

      Links1-3 × 20 + Links4-10 × 17 + Links11-20 × 10 
             (3.23) 
                           279 − (missing_links × 10) 
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In the suggested formula of (Dominich et al, 2001) evaluating the first ten hits 
the classes and their weights for the first ten precision cases are as follows: 
(i) Class 1: contains the first two links and has weight 20, 
(ii) Class 2: contains the next three links and has weight 17. 
(iii) Class 3: contains the last five links and has weight 10. 
Taking the classes into account, and following the line for the first five precision 
cases the final formula in this case is as follows: 

 

      Links1,2 × 20 + Links3,4,5 × 17 + Links6-10 × 10 
            (3.24) 
                     141 − missing_links × 10 
 

Because NeuRadIR does not have the complexity of a usual Web search engine, 
and the documents consists of the database contain only some sentences, fewer 
categories than those suggested sufficed. They are as follows: 
– Category 0: inactive links (file not found, forbidden, server not responding), 

duplicate links 
– Category 1: irrelevant hits 
– Category 2: relevant hits, (either technically, i.e., the document contains the 

search expressions, and/or the document is judged to be relevant due to its 
content). 

 
The conversion of categories to values was made in two different ways depending on 
the definition and judgement of relevance: 
− Version A (traditional, suggested by Leighton and Srivastava) called "rigorous" 

user-based: 
• Category 0: inactive links (file not found, forbidden, server not responding), 

duplicate links  
• Category 1: irrelevant hits, meaning all the hits that do not satisfy the 

complex queries, i.e. they do not contain all the query terms. 
• Category 2: relevant hits meaning all the hits which contain all the query 

terms. 
 
Thus, the hits of "Category 0", or "Category 1" are assigned zero and the hits of 
"Category 2" are assigned 1. 

 

− Version B (modified Leighton and Srivastava formula) called "permissive" user-
based, or partial relevance: 

It is assumed that the users are mostly satisfied with the results containing all of 
the index terms of the query but they want to see also these results that contain 
only a part of the query. For that case, a new category was introduced, thus the 
categories are the following: 
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• Category 0: inactive links (file not found, forbidden, server not responding), 
duplicate links 

• Category 1: irrelevant hits (all the hits which does not contain any index terms 
of the query) 

• Category 2: partial relevant hits, (all the hits which contains only a part of the 
query). 

• Category 3: relevant hits (all the hits containing all of the index terms of the 
query, i.e. it contains the complex query) 

 
Thus, the hits of "Category 0", or "Category 1" are assigned zero, and the hits of 
"Category 2" are 0.5 and the hits of "Category 3" are 1. 

3.6.2.4 Test Suite 

Because the target users of NeuRadIR are  typically but not necessarily restricted to 
 medical practitioner doctors, the queries are complex queries, e.g. they want to 
know the connections between the symptoms and diseases. Additionally, 
corresponding to the results of (Spink and Xu, 2000) and (Jansen at al, 1998, 2000), 
that on average, a user query contains 2.21 terms, the test queries of this experiment 
contained two index terms.  

In order to try and minimise biases (it is well known that biases, both conscious 
and unconscious, do affect any such test to a certain extent, and this cannot be totally 
excluded), different numbers of verbal requests of  randomly selected  users 
were recorded, appropriate queries were formulated, and retrievals were performed 
accordingly in order to establish the exact search expressions and their number. 

A number of 30 queries were decided on; fewer queries proved to have a 
considerable biasing effect, more queries did not yield better results. The precision 
was computed by the suggested formula of (Dominich et al, 2001) in the form of 
(3.23). 

3.6.2.5  Results and Discussion  

The results of the experiments are summarized in table 3.6 using version "A", and 
"B" to compute the precision. Every row assigns a query. The columns give the 
number of the retrieved hits, the relevant, irrelevant and partial relevant hits and the 
precision of the method for a given query, and for the version "A", and "B". The 
values of the average precision can be seen in the last row. It can be clearly seen that 
the NeuRadIR application based on HIR model  with the precision of 0.578, and 
0.77  meets very well users’ satisfaction. 
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Table 3.6. Results of the experiments version A, and B. 

  Version A Version B 

Query Number 
of hits 

Relevant 
hits 

Irrelevant 
hits Precision 

Relevant 
hits 

Partial 
relevant hits 

Irrelevant 
hits Precision 

1. 16 1-4 5-16 0.525 1-4 5-16 - 0.762 
2. 18 - 1-18 0 - 1-18 - 0.5 
3. 27 1-6 7-27 0.716 1-6 7-27 - 0.858 
4. 16 1-2 3-16 0.284 1-2 3-16 - 0.642 
5. 18 1-2 3-18 0.284 1-2 3-18 - 0.642 
6. 25 1-10 11-20 1 1-10 11-20 - 1 
7. 33 1-11 12-30 1 1-11 12-30 - 1 
8. 20 1-10 11-20 1 1-10 11-20 - 1 
9. 20 0 1-20 0 0 1-20 - 0.5 

10. 28 1-12 13-28 1 1-12 13-28 - 1 
11. 16 1-2 3-16 0.284 1-2 3-16 - 0.642 
12. 14 1-2 3-14 0.284 1-2 3-14 - 0.642 
13. 26 1-5 6-26 0.645 1-5 6-26 - 0.823 
14. 16 0 1-16 0 0 1-16 - 0.5 
15. 16 1-2 3-16 0.284 1-2 3-16 - 0.642 
16. 26 1-7 8-26 0.787 1-7 8-26 - 0.894 
17. 34 1-8 9-34 0.858 1-8 9-34 - 0.929 
18. 18 0 1-18 0 0 1-18 - 0.5 
19. 28 1-10 11-28 1 1-10 11-28 - 1 
20. 26 0 1-26 0 0 1-26 - 0.5 
21. 28 0 1-28 0 0 1-28 - 0.5 
22. 31 1-12 13-31 1 1-12 13-31 - 1 
23. 26 1-2 3-26 0.284 1-2 3-26 - 0.642 
24. 28 1-2 3-28 0.284 1-2 3-28 - 0.642 
25. 33 1-12 13-33 1 1-12 13-33 - 1 
26. 34 1-20 21-34 1 1-20 21-34 - 1 
27. 26 1-4 5-26 0.525 1-4 5-26 - 0.762 
28. 36 1-14 15-36 1 1-14 15-36 - 1 
29. 35 1-17 18-35 1 1-17 18-35 - 1 
30. 29 1-3 4-29 0.4 1-3 4-29 - 0.702 

Average  0.548  0.77 
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CHAPTER 4 

VARYING RETRIEVAL CATEGORICITY 

In this chapter, the concept of entropy is used to define retrieval categoricity. Then, 
retrieval categoricity of the VSM and the HIR model is investigated, and a new 
efficient way to vary retrieval categoricity is introduced.  

4.1 Motivation  

Claude Shannon, in his classical paper (Shannon, 1948), defined the concept of 
information as one’s freedom of choice (to select from alternatives). He also 
introduced a measure for information which has maximum value when one has total 
freedom of choice, and has minimal value when has no freedom in selection. In other 
words, when it is known exactly what to select then uncertainty is decreased, but 
when we are free to choose any alternative we want then uncertainty increases. The 
concept of and formula for entropy has been used in information retrieval in a number 
of ways. 

As early as 1969 (Meetham, 1969), and somewhat later in (Guazzo, 1977), the 
concepts of entropy and Shannon information have been applied to IR evaluation as 
better alternatives to precision and recall. In the 1980’s, the maximum entropy 
principle (MEP) was applied to IR (Cooper and Huizinga, 1982; Kantor, 1984). 
Formally, MEP can be expressed as a constrained optimisation problem, in which one 
wishes to determine the probability distribution associated to a random variable over 
a discrete space which has the greatest entropy subject to constraints (these express 
the knowledge that we impose upon this distribution).  

In IR, MEP can be formulated as follows: 

Let an elementary event ω denote the observation of a document with respect to a 
given query. The probability p(ω) of an event depends on whether the document is 
relevant or not, and on whether it contains query terms or not.  
The retrieval system aims at maximizing the associated entropy: 

( ) ( )ωω
ω

pp log⋅∑   
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is subject to constraints (such as, e.g., the probabilities of relevant/non-relevant 
documents to contain query terms). 

MEP proves useful as a formal research tool; (Greiff and Ponte, 1998) show 
that MEP can be applied as a formal framework in which the probabilistic IR model 
(Robertson and Sparck Jones, 1977) can be obtained. At the same time, it seems to be 
less effective when applied to retrieval in practice: extensive experiments show that 
MEP works well for small document collections but seems to be progressively worse 
for larger ones (Kantor and Lee, 1998). However, MEP proved useful in text 
classification tasks as shown by experiments carried out in (Nigam, Lafferty and 
McCallum, 1999). Entropy has been applied to other IR tasks as well. In (Fujii and 
Ishikawa, 2001) the associated entropy  where C denotes a cluster of documents, 
and p(C) the probability that a relevant document belongs to cluster C  can be used 
as a measure of the clustering process. Let p(y) denote the probability of a word y as 
its frequency (i.e., its count over total number of words). Then, a measure of the 
reduction in uncertainty about whether the word y will be the next word in a sequence 
of text (given that x was the previous word) can be expressed by entropy (Berger and 
Lafferty, 1999). In (Yoo et al., 2002) etropy is used for texture modelling in image 
indexing and retrieval. The information content of a collection of documents 
consisting of  not necessarily disjoint  classes is the entropy associated to class 
cardinalities, which is being reduced, in the retrieval process, from its maximum 
(Baclawski and Simovici, 1996). (Tan et al., 2002) have used MEP for text 
categorisation, and showed that the use of bigrams in addition to single words can 
increase performance.  

It can hence be seen that entropy (Shannon information) has been used to 
formalise the probabilistic IR model, to construct practical retrieval systems, to 
cluster documents, to model texture in image retrieval. My dissertation aims at 
applying it for a different purpose. The concept of entropy is used to define an 
amount of uncertainty U associated with answers in the Vector Space Model of 
information retrieval, and to define the connected concept categoricity. Based on this 
concept the retrieval categoricity of the VSM  equipped different similarity 
measures and weighting schemes  and of the HIR model is investigated and a new 
effective way to vary retrieval categoricity is introduced in this chapter. In Chapter 5 
it will be shown that a retrieval system using positive RSV (Retrieval Status Value) 
for retrieval may be conceived as a probability space in which the quantity of the 
associated amount of Shannon information is being reduced. This result will be 
applied to the calculation of term discrimination values. 

4.2 Information Theory and Entropy  

In this section, in order to fix the ideas, the concept of a probability space is briefly 
recalled (Kolmogoroff, 1933). This will be followed by a short review of the concept 
of Shannon (1948) information and its measure.  
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4.2.1 Probability Space 

In order to fix the ideas in Chapter 4 and 5, the concept of a probability space is 
briefly recalled (Kolmogoroff, 1933): 

Given a set Ω called universe; let its elements be called elementary events. 

A set ℑ ⊆ ℘(Ω) is called a σ-algebra if  Ω ∈ ℑ, and  

         A ∩ B ∈ ℑ,    A ∪ B ∈ ℑ,    Ω \ A ∈ ℑ,  ∀ A, B ∈ ℑ  

A probability measure is a function P: ℑ → [0; 1] satisfying the following properties: 

        P(Ω) = 1;   A ∩ B = ∅ ⇒ P(A ∪ B) = P(A) + P(B);   ∀A, B ∈ ℑ  

The triple (Ω, ℑ, P) = Ψ is called a probability space. 

4.2.2 Amount of Shannon Information  

Shannon’s creation (1948) of the subject of information theory is one of the great 
intellectual achievements of the twentieth century. Information theory has had an 
important and significant influence on mathematics, particularly on probability 
theory, but he did his work primarily in the context of communication engineering. 
The formula proposed as a measure for information is an expression of the quantity of 
Shannon information, which is called entropy. While entropy is interpreted as a 
measure of uncertainty, information is viewed as a reduction in the level of 
uncertainty. Thus, the amount of Shannon information may also be viewed as a 
certain expression of uncertainty level, they can, in principle, be used as equivalent 
concepts; when it is known exactly what to select then uncertainty is decreased, but 
when we are free to choose any alternative we want then uncertainty is highest. 

The definition (Shannon, 1948) of a measure for information is the following:  

Given events (alternatives) Ej, j = 1,…, m ∈ N (N denotes the set of natural numbers);  

let pj denote the probability to select alternative (probability of occurrence of the 
event) Ej.  

A measure H for information is defined as follows: 

H = ∑
=

⋅⋅−
m

j
jj ppk

 1
2log , 

where k is a positive constant, which amounts to a choice of a unit of measure; in 
what follows k will be taken as being equal to 1. Thus, 
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H = ∑
=

⋅−
m

j
jj pp

 1
2log , (4.1) 

The quantity H satisfies the following properties: 

- The amount of information is zero if and only if exactly one alternative is 
selected: 

0lim
,0

1
=

≠∀→
→

H
kjp

p

j

k
  ⇔   ( pk = 1;    pj = 0,   ∀j ≠ k ) (4.2) 

- The amount of information is maximal and equal to log2 m if all pj are equal 
to 1/m: 

 ( pj = 
m
1 ,    j = 1,…, m ) ⇒ H = max H = log2 m 

(4.3) 

- The farther apart pj from each other the smaller the amount of information: 

              P < P’        ⇒      H > H’ 

where the deviation of the probabilities pj from each other can be 
defined in the following form of P: 
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(4.4) 

The property (4.4) will play an important role in the present paper, thus, 
without restricting its general validity, let us have a closer look at the case m = 2.  

THEOREM 4.1.  P < P’  ⇒  H  > H’.  

Proof: 
Let p1 = p, p2 = q. The condition P < P’ means that  

(0.5 − p)2 + (0.5 − q)2 < (0.5 − p’)2 + (0.5 − q’)2. 

We can assume that p’ = p + a, q’ = q − a. From this we obtain p − q + a > 0. From  

q − a < p   and   log(1/( q − a)) > log(1/p) 

it follows that  

p⋅log(1/p) > (q − a)⋅log(1/( q − a)); 
whereas from  
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q < p + a   and   log(1/q) > log(1/(p + a)) 

it follows that  

q⋅log(1/q) > (p + a)⋅log(1/( p + a)). 

Hence p⋅log(1/p) + q⋅log(1/q) > p’⋅log(1/p’) + q’⋅log(1/q’), i.e., H > H’.♦ 
 In other words, if the probabilities pj change such that they deviate more from 
1/m (some are closer to 1 while the others closer to zero) the amount of information 
(or uncertainty) becomes smaller, i.e., the freedom to select becomes more restricted.  

Thus, for example, if one has total freedom to choose from two alternatives then 
the amount of information associated to this situation is considered to be unity (i.e., 1 
bit).  

4.3 Uncertainty Decreasing Operation (UDO) 

The meaning of the property (4.4) in other words is the following: if the probabilities 
pj change such that they deviate more from 1/m (some are closer to 1 while others are 
closer to zero) the amount of information (or uncertainty) becomes smaller, i.e., the 
freedom to select becomes more restricted. This entitles us to introduce the following: 

DEFINITION 4.1 An operation (procedure, process, mechanism), which 
spreads the probabilities pj, is called an Uncertainty Decreasing Operation (UDO).♦ 

Thus, any operation that constrains the freedom (and thus reduces the 
uncertainty) to select is an UDO.  

EXAMPLE 4.1  
(i) Numerical minimisation of a function based on the gradient method: the 

freedom to select a direction to follow is decreased because only that given by 
the gradient can be followed.  

(ii) Breadth-first search algorithm: the freedom to move to a next vertex is 
constrained because a downward walk is not allowed as long as there are 
unexplored breadth vertices. 

(iii) A person on diet does not (or should not) have total liberty to choose the bread 
or meat he/she would like, so far his/her uncertainty in choosing foods are 
decreased. 

In cases like these, the freedom of choice to select from alternatives is 
constrained, some of the alternatives are/should be selected with higher probabilities 
in the detriment of the others, and thus the total amount of information (and 
uncertainty) associated to the selection situation as a whole is decreased. 
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4.4 Retrieval Status Value-based Retrieval as Uncertainty 
Decreasing Operation [THESIS 2.a] 

Information retrieval systems typically rank documents according to their "retrieval 
status values" (RSV) with respect to a given query at a given time. The higher the 
RSV of a document for a given query means the higher chance of the document to be 
selected as an answer.  

EXAMPLE 4.2  
(i) In the Boolean Model RSVs are either zero ore one. A document with a RSV-

value of "one" means that the document is a hit for a given query; in the other 
hand, a document with "zero" RSV-value means that the document is not a hit 
for a given query.  

(ii) Fuzzy retrieval allows for RSVs in the interval [0,1]. For a given query a 
document with 0.75 RSV precedes the document with 0.25 RSV-value in the 
ranked hit list. 

Based on the concepts of a probability space and UDO, it is shown in [P2] that any 
retrieval model or system based on positive RSV  e.g., vector space, probabilistic, 
Boolean, coordination level matching, fuzzy, connectionist interaction, link analysis 
retrieval models (Dominich, 2001)  may be conceived as a probability space that 
decreases the amount of the associated Shannon information, i.e., it is an UDO 
probability space.  

It is first proved that a probability space having its probability measure defined 
in a certain way (normalised so that its values sum up to unity) is an UDO. 

LEMMA 4.1 Let Ψ = (Ω, ℑ, P), |Ω| = m, denote a probability space with the 
probability measure P defined as follows: 
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(4.5) 

where not all ρj are equal to each other, i.e., ∃ k ≠ s such that ρk ≠ ρs. (An explicit 
formula for P’ does not play any role in this context. It was defined only pro forma) 
Then the probability space Ψ is an UDO.  

Proof: 

By assumption, not all ρj are equal to each other,  

i.e., ∃ k ≠ s such that ρk ≠ ρs  in other words: 
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The space Ψ is an UDO if it spreads the probabilities from 1/m (Def. 4.1), 
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It is proved that the probability space defined in (4.5.) is an UDO (the freedom of 
choice to select from alternatives is constrained), because it spreads the probabilities.  

 Now it can be shown that any RSV-based retrieval system can be conceived as 
a probability space that decreases the amount of information. 

THEOREM 4.2. Any positive RSV-based retrieval system is an UDO probability 
space Ψ. 

Proof: 
Given an RSV-based retrieval system.  

Let ρj denote the RSV of document Dj relative to query Q. In other words, ρj 
may be viewed as representing a degree of the choice of document Dj as a response to 
query Q. The higher the value of ρj the higher the chance of document Dj to be 
selected as an answer.  

A sequence 〈ρ〉 = ρj, …, ρm can be defined, which represents the choices of all 
documents relative to query Q. (The no-hit case, i.e., when all the ρj are null, can be 
excluded as trivial.) Using the sequence 〈ρ〉, a sequence 〈P〉 = p1, …, pm, where  

pj = 
∑

=

m

k
k

j

1

ρ

ρ
,  j = 1,…, m 

is defined, which can be viewed as the probabilities to select the documents as 
answers in the following probability space 

Ψ = (Ω, ℑ, P),  Ω = {D1, …, Dm}, 

P(Dj) = pj,     P(X) = P’(X)  if  X ≠ Dj. 

 

Hence (Lemma 4.1), the positive RSV-based retrieval system because it can 
be viewed as a probability space  is an UDO.♦ 
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4.5 Categoricity  

Using the concept of Shannon amount of information (4.1), an amount of uncertainty 
U associated with answers in VSM was defined as:  

 ∑
=

−=
m

j
jj ppU

1
2log ,  

where probabilities pj are in the following form: 

∑
=

= m

k
k

j
jp

1

ρ

ρ
 j = 1,…, m (4.6) 

ρj denotes the RSV (retrieval status value) of document Dj relative to query Q.  

EXAMPLE 4.3. The following example illustrates the computation of uncertainty U. 
Let us consider three documents: D1, D2 and D3, m = 3, two terms: t1 and t2, n = 2.  

Let the term-by-document matrix be as follows: 







=

2
1

3
1

0
2

W .  

Let Q denote a query and the corresponding term frequencies be (0, 1).  
For computational convenience, matrix notation is used.  

• If the retrieval function ρ is the dot product, then the chances ρ1, ρ2 and ρ3 
are  

WTq = 















=








×

















2
3
0

1
0

2
3
0

1
1
2

, while the corresponding probabilities are 
















4.0
6.0

0
.  

The associated amount of information is decreased to 0.971 from the 
maximum log23 = 1.585.  

• If the retrieval function is the Cosine measure and the weights are max 

normalised, the chances ρ1, ρ2 and ρ3 are 
















847.0
923.0
0

,  

 

whilst the corresponding probabilities are 
















479.0
521.0
0

.  

 The associated amount of information is decreased to 0.999 from the maximum 
log23 = 1.585. 
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A concept of categoricity has been introduced connected to the uncertainty.  
DEFINITION 4.2. Let "A" and "B" denote two different and positive RSV-based 
retrieval methods; UA, and UB denote the uncertainty associated with answers. 
Retrieval system based on the "A" method is more categorical, than "B" in its 
answers, if UA  < UB. 
Thus, a retrieval system is categorical in its answers if it decreases uncertainty, so, it 
is known exactly what to select from the answers. In other words categoricity means 
the spreading of the answers' relevance values. 

EXAMPLE 4.4. The following example illustrates uncertainty, categoricity and the 
parallel between them. Using the Google Search with its Page Rank toolbar, the 
experiment with two different queries was carried out on the 2nd of January 2004. 
"Seat" and "North Sea" query terms were issued. Dj denotes the j-th document in the 
ranked hit list, and ρj its relevance values for a given query. The results are the 
following:  

Case 1.: answers (Dj) and their relevance values (ρj) for the query "Seat", as follows: 

  (D2; ρ2 = 0.5), (D5; ρ5 = 0.5), (D9; ρ9 = 0.5).  

Case 2.: answers (Dj) and their relevance values (ρj) for the query "North Sea", as 
follows: 

  (D1; ρ1 = 0.7), (D2; ρ2 = 0.6), (D3; ρ3 = 0.5). 
In the first case the answers are less categorical, they have the same relevance values, 
so the user is more uncertain than in the second case.  

4.6 Method for the Study of the Relationship between Entropy 
Reduction, Weighting Scheme and Similarity Measure [THESIS 
2.b] 

Based on Theorem 4.2  any positive RSV-based retrieval system is an UDO 
probability space  a method is developed in [P3] for the practical study of the 
relationship between entropy reduction, weighting scheme, and similarity measure in 
RSV-based retrieval systems. The first step of the method is the implementation of 
the IR model, and after the query formulation the entropy and the entropy reduction 
can be computed. The second step is the study of the RSV-based IR model using 
different weighting schemes, and similarity measures. 

4.6.1 Steps of the method 

Method for the study of the relationship between entropy reduction, weighting 
scheme, and similarity measure is the following: 
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Step 1. Computation of categoricity as entropy reduction:  
Given the following: 

- a database with a fixed number of index terms, documents, 
- a query, 
- a weighting scheme,  
- an RSV computation method. 

1.1. Compute the maximum value of entropy as Umax = log m (formula 4.3). 

1.2. Implement the IR model under focus:  
1.2.1. Generate the term-by-document matrix. 

1.2.2. Formulate a query Q. 
1.2.3. Compute the RSV-values. 

1.3. Compute entropy U (formula 4.6). 

1.4. Calculate entropy reduction as Umax − U (alternatively as %). 

Step 2. Study of RSV-based IR model: 
Given the following: 

- a database with a fixed number of index terms, documents, 
- a query, 
- different weighting scheme,  
- different RSV computation methods. 

2.1. Perform step 1.2 –1.3. for each weighting scheme and RSV computation 
 method. 

2.2. Calculate average values of entropy U for each weighting scheme and  
RSV computation method. 

2.3. Calculate entropy reduction as Umax − average values of U (alternatively  
as %) for each weighting scheme, and RSV computation method. 

2.4. Create a table with the results obtained. 

2.5. Draw conclusions. 
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4.6.2 Experiments 

Based on the method described in section 4.6.1 two experiments  using the medical 
database of the NeuRadIR (section 2.2.4)  are performed to study of the entropy 
reduction, and thus the categoricity property of the VSM model with different 
similarity measures (Cosine, Dice, Jaccard, Dot) and weighting schemes (frequency, 
maxNorm, term-frequency normalized):  

Case 1.: Binary local term weights (χ(fij)) were used as weighting scheme, 
Case 2.: Term occurrences (fij) were used as weighting scheme. 

Whilst the medical database contains 68 index terms, 40 documents, and six different 
weighting schemes were used, hence six 68×40 term-by document matrices were 
generated using Mathcad, thus the step 1.2. of the method was repeated six times. 
Step 1.3 was repeated 24 times (because of six weighting scheme, and four RSV 
computation method). Step 2.2, and step 2.3 were repeated for all weighting scheme, 
and RSV computation method, thus 14 times. The computation was performed using 
Mathcad. The table  step 2.4 , which shows the results of the experiments, can be 
found in table 4.1. It shows the amount of information U in case of four retrieval 
measures with three weighting schemes  using two local terms weights  and the 
percentages of the decrement of U in every case over the medical database. 
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Table 4.1. Decrement of the amount of information in VSM over the Medical Database of the 

NeuRadIR. 

Amount of information U if retrieval 
measure is: Weighting 

scheme 
Cosine Dice Jaccard Dot 

Average values 
of U U max 

U 
decreased 

by (%) 

Medical Database using binary local term weights  

frequency 
χ(fij) 

5.151 5.15 5.043 5.128 5.118 3.8 

maxNorm 
( )

( )kjk

ij

f
f
χ

χ

max
 5.151 5.15 5.043 5.128 5.118 3.8 

tfn 
( )

( )∑
=

n

i
ij

ij

f

f

1

2χ

χ  
5.151 5.159 5.15 5.151 5.153 3.2 

Average 
values of U 5.1151 5.153 5.079 5.136 

U decreased 
by (%) 3.3 3.3 4.6 3.5 

 

5.322 

 

Medical Database using term frequency (occurrences) local term weights 

frequency 
fij 

5.161 5.16 5.058 5.134 5.128 3.7 

maxNorm 

kjk

ij

f
f

max
 5.161 5.145 5.03 5.097 5.108 4 

tfn 

∑
=

n

i
ij

ij

f

f

1

2

 
5.161 5.169 5.161 5.161 5.163 3 

Average 
values of U 5.161 5.158 5.083 5.13 

U decreased 
by (%) 3 3.1 4.5 3.6 

 

5.322 

 

 

So, it is shown experimentally that the quantity U varies depending on the 
similarity measure (Cosine, Dot product, Jaccard’s and Dice’s coefficient) and 
weighting scheme (frequency, maxNorm and tfn) used. The experiments show the 
following results: 
(i) The usage of the Cosine/Dice similarity measures resulted in the least entropy 

reduction for every weighting scheme. 
(ii) The usage of the tfn (normalised frequency) weighting scheme reduces entropy 

to the greatest extent for every similarity measure. 
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(iii) The usage of the Jaccard similarity measure reduces entropy to the greatest 
extent for every weighting scheme. 

(iv) The usage of the maxNorm scheme yielded the least entropy reduction for every 
similarity measure and collection of text. 
From the point of view of the user, a parallel can be drawn between uncertainty 

and categoricity. Uncertainty appears as a degree to which the retrieval system is 
categorical in its answers: it is less categorical for the Cosine/Dice measure and tfn 
scheme, and most categorical for Jaccard’s coefficient with maxNorm scheme. In 
other words, such a VSM is less categorical as regards its answers.  

Albeit in the VSM ranking determines the sequence order of answers, users 
may prefer categorical answers as well, as these may be more convincing and they 
help the user select answers. However, in the VSM the only way to modify it is to 
take a different weighting scheme and/or similarity measure. Unfortunately, the rank 
order and the same answer set cannot be guaranteed.  
Section 4.7, and 4.8 investigates that in the hyperbolic similarity measure-based (it 
was introduced in chapter 3) information retrieval system the categoricity can be 
varied with less computation, than in the VSM by just varying the radius of the space. 

4.7 Radius of Space as a Control Variable for Categoricity [THESIS 
2.c] 

It is investigated in [P1] that in the hyperbolic similarity measure-based information 
retrieval system the categoricity can be varied by just varying the radius of the space. 

4.7.1 Radius of the Hyperbolic Space 

It is shown that in Hyperbolic Information Retrieval Model the higher the radius r of 
the C-KHS the closer the hyperbolic similarity Hyp to unity, i.e. 

( )
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This means that the higher the radius r the closer the amount of uncertainty U to its 
maximum, because the "distance" between the answers are decreased (the relevance 
degrees of the answers are very close to each other). In other words, increasing the 
radius of the hyperbolic space yields a less categorical retrieval system and 
conversely: decreasing the radius leads to more categorical answers.  

How much can the radius be reduced? 
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It it shown first that the categoricity of HIR can be varied by changing the radius r 
between the following limits:  

r = 
D

max dE(QD) + ε,  

where 0 <  ε  <<  +∞  , and 

 "<<" symbol means "much less than" 

In theory, if r becomes equal to 
D

max  )(QDd E , i.e., the document-vector finds itself on 

the boundary of the space, the document simply ‘disappears’ in the infinity of the 
hyperbolic space as shown by the following derivation based on (3.14): 

D→V ⇒  +∞=
→

)(lim QDd HVD  ⇒  

0
)(1

)(
1lim))

)(

)(
(ln(lim)(lim

1 =
+

−=
−

+
⋅=

→

−

→→ QDd

QDd

QDdr

QDdr
eQDHyp

H

H

VDE

E

VDVD
 

Hence, changing its radius r between the following limits:  

 D
max dE(QD) + ε  <  r  < +∞ 

the categoricity of the answers can be varied.  
So increasing the radius of the hyperbolic space yields less categorical retrieval 

system and the answers are more categorical if the radius becomes close to the 
)(QDd E .  

4.7.2 Experimental Results 

Experiments were carried out on a part of the medical database (section 2.2.4) to 
demonstrate, that in HIR, changing the radius of the space can vary categoricity of the 
answers.  

Ten documents (from document 7b to document 12a) and ten index terms (from 
t28 to t37)  with the connected weights (from w28 to w37)  were used for the 
experiments. The term-by-document matrix (table 4.2), and the term-by-query vector 
(figure 4.1) using tfn (term frequency normalised) weighting scheme were computed 
by Mathcad 2001i Professional Software. 
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Table 4.2. Term-by-document matrix using tfn weighting scheme. 

 D7b D8a D8b D9a D9b D10a D10b D11a D11b D12a 

w28 0.408 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.577 0.000 

w29 0.408 0.500 0.707 0.447 0.500 0.447 0.447 0.577 0.577 0.577 

w30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

w31 0.408 0.500 0.000 0.447 0.500 0.447 0.447 0.000 0.000 0.577 

w32 0.000 0.000 0.000 0.000 0.000 0.447 0.000 0.000 0.000 0.000 

w33 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

w34 0.408 0.500 0.000 0.447 0.000 0.447 0.447 0.577 0.000 0.577 

w35 0.408 0.000 0.000 0.000 0.000 0.000 0.447 0.000 0.000 0.000 

w36 0.000 0.000 0.000 0.447 0.000 0.000 0.000 0.000 0.000 0.000 

w37 0.408 0.500 0.707 0.447 0.500 0.447 0.447 0.577 0.577 0.000 

 

q

0.447

0

0.447

0.447

0

0

0

0

0.447

0.447


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
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

=

 
Figure 4.1. Term-by-query vector using tfn weighting scheme. 

The computation of the uncertainty U and the similarity values  cosine, and 
hyperbolic  were performed on Mathcad. 

The uncertainty U was computed in the following form:  
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where jσ  denotes the similarity  Hyperbolic, and Cosine  measure. 

Table 4.3 shows the similarity values of Hyperbolic measure with 4 different radii 
and Cosine measure.  

 
Table 4.3. Hyperbolic similarity values with different radii, and uncertainty of Cosine and Hyperbolic 

measures. 

Cosine measure uncertainty = 3.254 (VSM) 

 D7b D8a D8b D9a D9b D10a D10b D11a D11b D12a 

 0.548 0.447 0.316 0.600 0.671 0.400 0.400 0.258 0.516 0.258 

Hyperbolic measure  

 D7b D8a D8b D9a D9b D10a D10b D11a D11b D12a 

r= max dE + 10-15 

uncertainty = 3.092 
0.323 0.277 0.204 0.348 0.383 0.254 0.254 0.029 0.309 0.029 

r= max dE + 10-2 

uncertainty = 3.264 
0.326 0.281 0.212 0.351 0.386 0.259 0.259 0.154 0.312 0.154 

r= max dE + 1 

uncertainty = 3.318 
0.522 0.492 0.460 0.539 0.566 0.480 0.480 0.448 0.512 0.448 

r= max dE + 100 

uncertainty = 3.322 
0.982 0.980 0.977 0.983 0.984 0.979 0.979 0.976 0.981 0.976 

 

Table 4.3 and figure 4.2 illustrates the modification of categoricity as a function of 
radius in two different forms.  
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7b-12a

1

0

Cosinedocuments

Hyperbolic documents

101 documents

 
(a) 

uncertainty = 3.254 (VSM) 
uncertainty = 3.092 (HIR, radius = max dE + 10-15) 

 

 

7b-12a

1

0

Cosinedocuments

Hyperbolic documents

101 documents

 
(b) 

uncertainty = 3.254 (VSM) 
uncertainty = 3.264 (HIR, radius = max dE + 10-2)  

 
Figure 4.2. a)-b) Change of categoricity in HIR. The dotted line shows categoricity in HIR.  

It can be seen nicely how it flattens out as the space radius is increased. 
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7b-12a

1

0

Cosinedocuments

Hyperbolic documents

101 documents

 

 
(c) 

uncertainty = 3.254 (VSM) 
uncertainty = 3.318 (HIR, radius = max dE + 1) 

 

7b-12a

1

0

Cosinedocuments

Hyperbolic documents

101 documents

 

 
(d) 

uncertainty = 3.254 (VSM) 
uncertainty = 3.322 (HIR, radius = max dE + 100) 

 
Figure 4.2. c)-d) Change of categoricity in HIR. The dotted line shows categoricity in HIR.  

It can be seen nicely how it flattens out as the space radius is increased. 
 

In Figure 4.2 the X-axis denotes the documents (from the "7.b" document to the 
number "12.a" document) and Y-axis the similarity values. The solid line represents 
the categoricity of the VSM, which is unchanged in all cases (a-d). The dotted line 
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shows the extent of categoricity in HIR model. The radius rises from case (a) to case 
(d). It can be seen clearly that the line is the flattest in the case (d), which means that 
the system is uncertain, i.e., its categoricity is the lowest. It demonstrates that the 
system becomes more uncertain by increasing the radius.  

4.8 Modifiable Categoricity at Lower Re-Computation Costs by 
Using HIR [THESIS 2.d] 

Uncertainty appears as a degree to which retrieval system is categorical in its 
answers. In the traditional VSM model, it depends on the similarity measure and/or 
the weighting scheme. It is shown, in [P1], that modifiable categoricity can be 
obtained at much lower re-computation costs using HIR model.  

Table 4.1 shows the categoricity of four VSM similarity measure and three 
weighting scheme. Based on this table, it can be clearly seen that: 

(i) the usage of the Cosine/Dice similarity measures resulted in the least entropy 
reduction for every weighting scheme; 

(ii) the usage of the tfn (normalised frequency) weighting scheme reduces entropy 
to the greatest extent for every similarity measure. 

So far, Cosine measure with tfn weighting scheme  one of the most commonly used 
VSM measures in practice  is the less categorical in its answers. Additionally, it 
can be seen from table 5.1: 

(iii) that the amount of information U does not depend on the weighting scheme 
using Cosine measure,  

(iv) and the amount of information U only slightly depends on the similarity 
measure using tfn weighting scheme.  

Therefore, it is not enough to change only the weighting scheme or the similarity 
measure, but both of them need to vary to obtain a more categorical system. This in 
turn yields costly re-computation of both weights and similarity measure values; and 
the same answers set containing the same document with the same order cannot be 
guaranteed, because the similarity measures do not preserve the rank order. 

4.8.1 Computational Complexities to Obtain Different Categoricities 

It was shown in chapter 4.5 that in HIR the categoricity could be varied without 
taking another weighting scheme and without changing the similarity measure: it will 
suffice to vary the radius of the space in order to change the categoricity of answers. 
Due to this property, HIR represents the advantage of being a means to make the 
categoricity of the Cosine- and tfn-based VSM adjustable depending on only one 
control variable, namely the radius of the C-KHS. Thus, a modifiable categoricity can 
be obtained at much lower re-computation costs: only the similarity values need to be 
re-computed but not the weights. In addition, the rank order and the same answer set 
could be guaranteed, because the HIR and Cosine-based VSM are equivalent using 
tfn weighting scheme. 
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 Let us assume that the user wants to retrieve the same answers set, i.e., same 
documents, same ranking, but having different categoricities. It is shown that for this 
purpose it is more advantageous to use HIR than the traditional Cosine measure with 
tfn weighting scheme. 

Given a finite set D of elements called documents:  

Dj, , j = 1, …, m ∈ N (N denotes the set of natural numbers) 

and a finite set T of elements called index terms: 

ti, i = 1, …, n ∈ N (N denotes the set of natural numbers) 

and a query Q. 

 It will be estimated the computational complexities to obtain different 
categoricities: 

• In HIR, based on formula of the Hyperbolic similarity measure Hyp (it was 
introduced in chapter 3.3) is the following:  
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So far, to obtain a different categoricity system only the similarity values Hyp 
need to be computed m times, without the computation of A, because only the 
radius changes and the weighting scheme is unvaried.  
So the computational complexity is: 

mK = O(m),  
where K is a constant corresponding to the time required by additions and 
multiplications. It can be clearly seen that it simply depends on the number of 
documents.  

• In VSM  based on Cosine measure with tfn  it is not enough to change only 
the weighting scheme or the similarity measure, but both of them need to vary to 
obtain a more categorical system. So maxNorm scheme, with the simplest 
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similarity measure: Dot product was selected, because maxNorm scheme yields to 
the most categorical system. 

Dot = ∑
=

⋅
n

i
iij qw

1

, and maxNorm wij = 
kj

ij

f
f

max
 

So far, to obtain a more categorical system the Dot measure needs to be computed 
n×m times, and the weights also n×m times, because the weighting scheme also 
changes. 

So the computational complexity is: 

2nm + C = O(mn),  
where C is a constant corresponding to the time required by additions and 
multiplications. It can be clearly seen that it depends on both the number of 
documents and the number of index terms.  

 

It follows that using HIR for changing the categoricity is faster, i.e.,  

2n + α = O(n) (where α is a constant),  
than using VSM for this purpose. Thus, a modifiable categoricity can be obtained at 
lower re-computation costs: only the similarity values need to be re-computed but not 
the weights. Additionally, the same answers set containing the same document with 
the same order could be guaranteed. 

4.8.2 Experimental Results 

Experimental results illustrate also that using HIR for changing the categoricity is 
faster, than using VSM. For these purpose three term-by-document matrices were 
used. The first matrix includes about the same number of documents and index terms. 
The second matrix includes much more index terms, than documents. The third 
matrix includes much more documents, than index terms. The matrices are the 
following: 

(i) It derives from the Belief Database (section 2.2.3) containing 2704 belief text 
and 2607 index terms (n=m). The average number of terms per text was 15. 

(ii) It derives from a part of Reuters Database (section 2.2.2) containing 7000 
documents and 32589 index terms (n>>m). The average number of terms per 
document was 73.  

(iii) It is a simulated  not related to a real database  term-by-document matrix 
to examine the influence of a database containing much more documents than 
index terms. For this purpose a term-by-document matrix was generated using a 
program written in C language. The dimension of the matrix is 2000 x 100000 
simulating 100000 documents, and 2000 index terms (n<<m). The average 
number of terms per document is 15, which was generated by RAND (random 
number variable) function.  
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A computer program written in the C language was implemented to determine the 
computational time of the weights (tfn, maxNorm) and similarity values (Cosine, 
Hyperbolic, Dot). The computational time was measured by using the clock function. 
The time is given in seconds and one clock tick is 1 ms.  

The computational time of the weights  for three different weighting scheme, 
and similarity values  for three different similarity measures , and its sums can 
be seen in table 4.4 (for Belief Test Database), in Table 4.5 (for Reuters Test 
Collection) and in table 4.6 (for the simulated term-by-document matrix).  

Table 4.4. Running time (in seconds) of the weights and similarity values computation for Belief 
Database containing 2704 documents, and 2607 index terms 

(on AMD ATHLON 1.9 GHz, 512 MB RAM computer) 

Computational time of weights Computational time of similarity values 

tfn maxNorm Cosine Dot Hyperbolic 
0.5548 s 0.539 s 1.2354 s 1.2354 s 1.3064 s 

Computational time of weights + similarity values  

tfn + Cosine 1.7902 s 
maxNorm + Dot 1.7744 s 

tfn + Hyperbolic 1.8612 s 
 

Table 4.5. Running time (in seconds) of the weights and similarity values computation for Reuters 
Database containing 7000 documents and 32589 index terms 

(on AMD ATHLON 1.9 GHz, 512 MB RAM computer) 

Computational time of weights Computational time of similarity values 

tfn maxNorm Cosine Dot Hyperbolic 
6231.4 s 4684.4 s 2102.7 s 2109.9 s 2294.5 s 

Computational time of weights + similarity values  

tfn + Cosine 8334.1 s 
maxNorm + Dot 6794.3 s 

tfn + Hyperbolic 8525.9 s 
 

Table 4.6. Running time (in seconds) of the weights and similarity values computation for simulated 
term-by-document matrix containing 100000 documents and 2000 index terms 

(on AMD ATHLON 1.9 GHz, 512 MB RAM computer) 

Computational time of weights Computational time of similarity values 

tfn maxNorm Cosine Dot Hyperbolic 
3299.3814 s 573.972 s 377.1814 s 273.1468 s 362.1048 s 

Computational time of weights + similarity values  

tfn + Cosine 3676.5628 s 
maxNorm + Dot 847.1188 s 

tfn + Hyperbolic 3661.4862 s 

 The result of the comparison (running time of varying uncertainty for the 
same ranking order) can be seen in Table 4.7.  
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Table 4.7. Running time (in seconds) of computing the similarity values to obtain different categoricity 

in HIR, and VSM. 
(on AMD ATHLON 1.9 GHz, 512 MB RAM computer) 

 for Belief Database for Reuters Database for  simulated term-by-
document matrix 

Hyperbolic measure 1.8612 8525.9 3661.5 

VSM measure 
(from Cosine with tfn 
to Dot with maxNorm) 

3.5646 
(1.7902+1.7744) 

15128.4 
(8334.1+ 6794.3) 

4523.8 
(3676.6+847.2) 

 
Table 4.7 shows that the time of modifying categoricity in HIR is much less than in 
the VSM (from Cosine with tfn to Dot with maxNorm). In HIR to obtain different 
categoricity, only the radius of the space must be changed (e.g., from r = max dE(QD) 
+ 30 to r = max dE(QD) + 10-15), so only a part of the similarity measure needs to be 
re-computed. In VSM the weighting scheme and similarity measures are both 
changed  from Cosine measure with tfn weighting scheme to Dot product with 
maxNorm weighting scheme , so they both need to be re-computed. It can be seen 
that it is more advantageous to use HIR, than traditional Cosine measure with tfn 
weighting scheme; Cosine measure is replaceable with HIR using tfn, because they 
are equivalent to each other (it was proved in chapter 3.4.1).  
 

Table 4.8.  Time reduction obtained by using HIR for a modifiable categoricity system. 
(on AMD ATHLON 1.9 GHz, 512 MB RAM computer) 

 for Belief Database for Reuters Database for simulated term-by-
document matrix 

Running time in HIR 52 % 56.35 % 80.9 % 

Running time in VSM  100 % 100 % 100 % 

Acceleration 48 % 44 % 19 % 
 

Table 4.8 illustrates that using HIR for a system with modifiable categoricity a time 
reduction of 20-50 % can be obtained. Consequently, a system with modifiable 
categoricity  with fixed answers set and rank order  can be obtained at much 
lower re-computation costs by just changing the radius in HIR.  
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CHAPTER 5 

EFFICIENT WAY TO COMPUTE TERM 

DISCRIMINATION VALUES  

In this chapter the concept of UDO (Uncertainty Decreasing Operation) is proposed 
as a theoretical background for term discrimination power, and it is applied to the 
computation of term discrimination values. It is shown that the UDO-based 
computation is faster and its application is not restricted to the Vector Space Model. 

5.1 Motivation  

The concepts of Shannon information and entropy have been applied to a number of 
information retrieval tasks such as to formalise the probabilistic model, to design 
practical retrieval systems, to cluster documents (Fujii and Ishikawa, 2001), and to 
model texture in image retrieval (Yoo et al., 2002).  

In my dissertation, the concept of entropy is used for a different purpose. It was 
shown in theorem 4.2, that any positive RSV-based (Retrieval Status Value) retrieval 
system may be conceived as a special probability space in which the amount of the 
associated Shannon information is being reduced; in this view, the retrieval system is 
referred to as UDO (Uncertainty Decreasing Operation). The concept of UDO will be 
proposed as a theoretical background for term discrimination power, and it will be 
applied to the computation of term discrimination values in any RSV-based retrieval 
model. The UDO-based computation, however, presents advantages over the vector-
based calculation: it is faster, easier to assess and handle in practice and its 
application is not restricted to the Vector Space Model. 

5.2 Term Discrimination Model 

The Term Discrimination Model (TDM) was introduced in (Salton, Yang, and Yu, 
1974; Salton, Yang, and Yu, 1975) as a contribution to the automatic indexing theory 
in the Vector Space Model of information retrieval. The TDM is based on the 
underlying assumption that a "good" term causes the greatest possible separation of 
documents in the vector space, whereas a "poor" term makes it difficult to distinguish 
one document from another. Each term under focus is assigned a Term 
Discrimination Value (TDV) defined as the difference between space "densities" 
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before and after removing that term. The space "density’" ∆ is defined as the average 
pairwise similarity σ between documents Dj (j = 1…m): 

∑
≠

=−
=∆

m

kj
kj

kj DD
mm 1,

),(
)1(

1
σ   (5.1) 

Alternatively, a space density ∆ can be computed  faster  as the average 
similarity between documents and a centroid document (defined as one in which the 
terms have frequencies equal to their average frequencies across the collection of 
documents). Let ∆bi and ∆ai denote the space "densities" before and after removing 
term ti respectively; then the TDVi of term ti is defined as follows: 

TDVi = ∆bi − ∆ai   (5.2) 

The best discriminators generally have positive TDVs, whereas the worst 
discriminators usually have negative TDVs. Terms having TDVs around zero do not 
modify the space density considerably when used as index terms. The TDV can be 
used for the following purposes:  

(i) To decide which terms should be used as index terms (Yu, and Salton, 1977): 
terms with average document frequencies (between approximately m/100 and 
m/10) usually have positive TDVs, and can be used directly for indexing 
purposes; terms whose document frequency is too high generally have negative 
TDVs, and are worst discriminators; too rare or specific terms have TDVs near 
zero, and should not be used directly as index terms.  

(ii) Weights computation for terms (Salton, 1986): while the Inverse Document 
Frequency (IDF) method prefers low frequency terms, they are not preferred in 
the TDM; thus, in the TDM, the weight wij of term ti in document Dj should be 
computed as wij = fij⋅TDVi (instead of wij = fij⋅IDFi).  

(iii) Thesaurus construction (Crouch, and Yang, 1992): TDVs of terms are used to 
construct thesaurus classes.  
Practical research carried out in TDM has since highlighted several insights as 

follows. Crouch and Yang (1992) and Dubin (1995) have found that there is no direct 
and exact correlation between discrimination value on the one hand, and documents 
and term frequency on the hand. The computation of the TDV (formula 5.2) is 
expensive, which hinders its practical application; Willett (1985) developed a faster 
method, he also showed that whether a term is a poor or good discriminator depends 
on the similarity measure used: the dot product yields a monotonically decreasing 
relationship between TDV and document frequency, the Euclidean distance leads to 
an increasing relationship. As shown also in (Dubin, 1995) the TDV depends not only 
on the similarity measure used but also on the weighting method and stop list used. In 
light of these results, it turns out that there are different correlations between TDV, 
weighting schemes and similarity measures.  
 The TDM is based on topological concepts such as: separation, distinguishable, 
density and sparsity. This view is being applied to the Vector Space Model whose 
typical space is the n-dimensional orthonormal linear space, i.e., each dimension 
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corresponds to a term, the documents are represented as vectors of weights, the fact 
that the terms are considered to be independent of one another is modelled by the 
pairwise perpendicular coordinate axes, the usual similarity measures (Dot product, 
Cosine measure, Dice’s coefficient, Euclidean distance) make sense because the 
space is Euclidean. Thus, the TDM as a theory and the TDV as a computation method 
cannot be applied to other  than the Vector Space Model  RSV-based 
information retrieval model which does not use linear or Euclidean space, and hence 
whose similarity is not based on inner  or dot  product. However, both from a 
practical and theoretical point of view, it would be useful to have a means to compute 
terms TDV in any RSV-based retrieval model. 

5.3 Experiment: UDO as an Entropy-Based Theory for Term 
Discrimination and its Computation [THESIS 3.a] 

The concept of UDO introduced in chapter 4.2 is valid for any RSV-based retrieval 
model; it does not necessarily assume the existence of a linear space. It is proposed in 
[P3] that the UDO view of RSV-based retrieval models be applied to the study and 
computation of "discriminatory" or "separation" power of individual terms. 
 Let Qi denote a single term query containing exactly one term, ti, where the 
term ti is selected from a list of index terms. Then the corresponding entropy Hi 
(computed using formula 5.1) will be a measure of the extent to which the term tk is 
able to reduce the retrieval system’s uncertainty in selecting documents (for returning 
answers). Thus, in the UDO view, the TDV of a term is based on how much it 
reduces this entropy  associated to a probability space  rather than how much it 
reduces space density in Euclidean  and hence topological  space.  

In what follows, experimental evidence will be shown using the ADI test 
collection described in section 2.2.1, for the computation of UDO-based TDV, and 
how it compares to vector-based TDV. Table 5.1 shows the ADI statistics  
containing 82 homogeneous articles from the information science with 915 index 
terms  for the experiments. The terms were selected automatically, they were TIME 
stoplisted, and Porter stemmed.  
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Table 5.1. Statistics for the ADI test collection used in the UDO-based TDV computation. 

 
 

 

 

The experiment was performed using Mathcad in the following form: 

given a finite set D of elements called documents:  

Dj, , j = 1, …, 82 ∈ N (N denotes the set of natural numbers), 

and a finite set T of elements called index terms: 

ti, i = 1, …, 915 ∈ N (N denotes the set of natural numbers), 

every document Dj is assigned a vector:  

wj = (wij)i=1,...,915 of weights,  

where wij ∈ R (R denotes the set of real numbers) denotes the weight of term ti for 
document Dj.  

The similarity measure used was the Cosine measure: 
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normalised inverse document frequency scheme was used to compute the weights: 
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where, fij denotes the number of occurrences of term ti in document Dj,  
Fi is the number of documents in which the term ti occurs.  

In the experiment the term discrimination values are computed in the following ways: 

Case 1.: UDO-based term discrimination values are computed as entropy reductions, 
i.e.,: 

Hmax − H (in %) 

Subject Area Information Science 

Type Homogeneous 

No. of Documents 82 

No. of Terms 915 
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 where, Hmax =log2 m  

H = ∑
=

⋅−
m
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jj pp

 1
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and probabilities pj are in the following form: 
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 ρj denotes the RSV (retrieval status value) of document Dj relative to query Q.  
The UDO-based TDVs of terms can be seen in figure 5.1. E.g., the 150th term, 
reduces entropy by 30%.  

Case 2.: The vector space term discrimination values are calculated as space density 
variation (formula 6.2), i.e.: 

TDVi = ∆bi − ∆ai   

where ∆bi and ∆ai denote the space ‘densities’ before and after removing term ti 
respectively. 

The space ‘density’ ∆ is defined as the average pairwise similarity σ between 
documents Di (i = 1…82): 
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Figure 5.2 shows the vector-based TDVs calculated as space density variations 
using centroid document. E.g. the 150th term has negative values meaning that it 
is a poor discriminator.  

It can be seen from figure 5.1 a-c that about half the terms have their UDO-based 
TDV equal to 100%, and figure 5.3 a-c shows that the frequency of each such term is 
equal to 1, i.e., each such term occurs in exactly one document. The vector-based 
TDV of every such term is positive with a mean value of 6.4 × 10-6. These terms are 
good discriminators. This result can be seen in figure 5.2 a-c, and figure 5.4. 
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Figure 5.1. a) UDO-based TDV for the ADI test collection for the index terms (1-300). 

Discrimination values of terms are computed as entropy reductions. On the horizontal axis, term k means term tk (the kth term in the list of index terms). On the 
vertical axis, the corresponding TDV is shown as the percentage of entropy reduction from the maximum entropy value. The Cosine similarity measure, and the n-idf 

weighting scheme were used. E.g., the 150th term, reduces entropy by 30%.
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Figure 5.1. b) UDO-based TDV for the ADI test collection for the index terms (301-600). 

Discrimination values of terms are computed as entropy reductions. On the horizontal axis, term k means term tk (the kth term in the list of index terms). On the 
vertical axis, the corresponding TDV is shown as the percentage of entropy reduction from the maximum entropy value. The Cosine similarity measure, and the n-idf 

weighting scheme were used. 
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Figure 5.1. c) UDO-based TDV for the ADI test collection for the index terms (601-915). 

Discrimination values of terms are computed as entropy reductions. On the horizontal axis, term k means term tk (the kth term in the list of index terms). On the 
vertical axis, the corresponding TDV is shown as the percentage of entropy reduction from the maximum entropy value. The Cosine similarity measure, and the n-idf 

weighting scheme were used.  
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Figure 5.2. a) Vector-based TDV of the terms (1-300) for the ADI test collection.  

On the horizontal axis, term k means term tk, i.e., the kth term in the list of index terms.  
On the vertical axis, the corresponding TDV is shown computed using centroid document.  

The Cosine similarity measure and the normalised inverse document frequency weighting scheme were used
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Figure 5.2. b) Vector-based TDV of the terms (301-600) for the ADI test collection.  

On the horizontal axis, term k means term tk, i.e., the kth term in the list of index terms.  
On the vertical axis, the corresponding TDV is shown computed using centroid document.  

The Cosine similarity measure and the normalised inverse document frequency weighting scheme were used
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Figure 5.2. c) Vector-based TDV of the terms (601-915) for the ADI test collection.  

On the horizontal axis, term k means term tk, i.e., the kth term in the list of index terms.  
On the vertical axis, the corresponding TDV is shown computed using centroid document.  

The Cosine similarity measure and the normalised inverse document frequency weighting scheme were used. 
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Figure 5.3. a) Document frequency of the terms (1-300) in the ADI test collection.  

On the horizontal axis, term k means the kth term in the list of index terms.  
On the vertical axis, the document frequency of term k is shown, i.e., the number of documents in which the term k occurs. 

 



 86 
 

350 400 450 500 550 600

10

20

30

40

term k

no
. o

f d
oc

um
en

ts
 te

rm
 k

 o
cc

ur
s i

n

40   
Figure 5.3. b) Document frequency of the terms (301-600) in the ADI test collection.  

On the horizontal axis, term k means the kth term in the list of index terms.  
On the vertical axis, the document frequency of term k is shown, i.e., the number of documents in which the term k occurs. 
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Figure 5.3. c) Document frequency of the terms (601-915) ADI test collection.  

On the horizontal axis, term k means the kth term in the list of index terms.  
On the vertical axis, the document frequency of term k is shown, i.e., the number of documents in which the term k occurs. 
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Figure 5.4. Vector-based TDV of those terms whose UDO-based TDV is 100% (ADI test collection). The document frequency of every term is equal to 1. The mean 

value of TDVs is equal to 6.4 × 10-6 with a standard deviation of 0 
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Figure 5.5 shows the vector-based TDV of terms whose UDO-based TDV is 
less than 100% and greater than 80%. The mean of vector-based TDV is equal to 
6.056×10-6 having zero standard deviation. The document frequency of every such 
term is 2. Most of these terms have positive vector-based TDV. 

Figure 5.6 shows the vector-based TDV of those terms whose UDO-based TDV 
belongs to the interval [40%; 80%]. The vector-based TDV is practically zero for 
every such term. Document frequency has a mean equal to 5.066 with standard 
deviation equal to 2.406. 

A few terms reduce entropy with less than 40%, they are poor discriminators. 
Their document frequency is high, with a mean value of 25 and standard deviation of 
8.93. Their vector-based TDV are negative and low values. The dotted line in figure 
5.7 shows the document frequencies of terms (scaled for representation and 
comparison purposes), whereas the solid line shows the vector-based TDVs. There 
appears to be a symmetry, hence a direct proportionality between document 
frequency and vector-based TDV in this case. 
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 Figure 5.5. The vector-based TDV of terms whose UDO-based TDV is less than 100% and greater than 80%.  

The mean of vector-based TDV is equal to 6.056×10-6 having zero standard deviation. The document frequency of every such term is 2 
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Figure 5.6. The vector-based TDV of those term whose UDO-based TDV belongs to the interval [40%; 80%].  

The vector-based TDV (shown as solid line segments along the horizontal axis) is practically zero for every such term. 
 Document frequency (shown as dots) has a mean equal to 5.066 with standard deviation equal to 2.406. 
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Figure 5.7. Vector-based TDV of those terms whose entropy reduction is below 40% (ADI test collection). TDV is shown as solid line, and the corresponding 
document frequency as dotted line. 
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The results of using the UDO-based TDVs method can be summarised as follows: 

- the terms that reduce entropy almost entirely, i.e., in the interval (80%; 
100%], are very good discriminators and have very low document 
frequency, 

- the terms that hardly reduce entropy, i.e., in the interval [0%; 40%), are poor 
discriminators and have very high document frequency, 

- the terms that reduce entropy in the middle range, in the interval [40%; 
80%], are indifferent discriminators and have relatively medium document 
frequency. 

Similar results can be obtained using the vector-based TDV computation, however, 
the entropy-based TDV calculation method presents the following advantages: 

- the UDO-based view does not assume the existence of any linear space like 
the traditional TDM does; 

- the UDO-based view can be applied to compute term TDVs in any RSV-
based retrieval model (not just in the Vector Space Model); 

- the numeric results (i.e., the entropy reduction values given as %) are easier 
to assess and handle than the vector-based TDV expressed as fractional real 
numbers with exponent; 

- it is faster than the computation of vector-based TDV with formula 5.2. 
(more details in chapter 5.4). 

5.4 UDO-Based TDV Calculation Method as a Faster Method 
[THESIS 3.b] 

It is shown in [P3] that using the new entropy-based TDV calculation  introduced in 
section 5.3  to compute term discrimination values is faster than using the 
traditional TDM model.  

5.4.1 Computational Complexities of the UDO-Based, and Vector-Based 
Term Discrimination Method 

Comparing the UDO-based TDV and the vector-based TDV computation method in 
the computational complexity aspect, one can state the following:  

Given a finite set D of elements called documents:  

Dj, , j = 1, …, m ∈ N (N denotes the set of natural numbers), 

and a finite set T of elements called index terms: 

ti, i = 1, …, n ∈ N (N denotes the set of natural numbers). 

Case 1.: Term discrimination values are computed as entropy reductions (UDO-based 
TDV computation method):  
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Let Qi denote a single term query containing exactly one term, ti, where the term 
ti is selected from a list of index terms.  
Then the corresponding entropy Hi will be a measure of the extent to which the 
term ti is able to reduce the retrieval system’s uncertainty in selecting 
documents: 

Hi= ∑
=

⋅−
m

j
jj pp

 1
2log ,  

probabilities pj are of the following form: 

∑
=

= m

k
k

j
jp

1

ρ

ρ
j = 1,…, m  

 ρj denotes the RSV (retrieval status value) of document Dj relative to query Q.  
 Entropy reduction can be given in the following form: 

Hmax − H (in %) 

 where, Hmax =log2 m  

So far, the similarity measure  to obtain the RSV values ρj  needs to be 
computed m times; i.e. for all the documents.  

So, the complexity of the computation the term discrimination value of a term ti 
is: 

O(m) 
Case 2.: Term discrimination values are calculated as space density variation (vector-

based TDV computation method): 

TDVi = ∆bi − ∆ai   

where ∆bi and ∆ai denote the space ‘densities’ before and after removing term ti 
respectively. 

The space ‘density’ ∆ is defined as the average pairwise similarity σ between 
documents Dj: 

∑
≠

=−
=∆

m

kj
kj

kj DD
mm 1,

),(
)1(

1
σ . 

So far, the σ similarity measure needs to be computed for all the documents.  
So, the complexity of the computation the term discrimination value of a term ti 
is: 

O(m2). 
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It follows that using the UDO-based method as term discrimination method is faster, 
i.e., O(m), than using vector-based TDM for this purpose. Thus, the term 
discrimination values can be computed at lower re-computation costs by using UDO-
based method. Additionally, the UDO-based method can be used in any RSV-based 
retrieval system, not only in the Vector Space Model. 

5.4.2 Experimental Results 

Comparing the UDO-based TDV and the vector-based TDV computation method in 
the computational complexity aspect an experiment was performed based on ADI 
standard test collection (section 2.2.1) using Mathcad. 

Given a 82 documents:  

Dj, , j = 1, …, 82 ∈ N (N denotes the set of natural numbers), 

and 915 index terms: 

ti, i = 1, …, 915 ∈ N (N denotes the set of natural numbers). 

The similarity measure used was the Cosine measure: 

σ (wj, q) = 

∑∑

∑

==
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⋅
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iij
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and the tfn weighting scheme was used to compute the weights: 

wij 

∑
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=
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2

 

Case 1.: Term discrimination values are computed as entropy reductions (UDO-based 
TDV computation method):  

In section 5.5.1 it was shown that the Cosine similarity measure  to obtain the 
RSV values ρj  needs to be computed m times; in this case m was 82. 
So the computational complexity is: 

O(m) 

Mathcad needs  on AMD ATHLON 1.6 GHz, 512 MB RAM computer  
approximately 40s to compute the Cosine similarity measure 82 times.  

Case 2.: Term discrimination values are calculated as space density variation (vector-
based TDV computation method): 

In section 5.5.1 it was shown that the σ measure needs to be computed for all 
the documents, i. e.,  
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( )
2

1−mm  times, where m = 82; i.e 3321 times. 

So the computational complexity is: 
O(m2). 

Mathcad needs  on AMD ATHLON 1.6 GHz, 512 MB RAM computer  
approximately 1620s to compute the Cosine similarity measure 82 times. 

It is shown experimentally also, that using the UDO-based method as term 
discrimination method is faster, than using vector-based TDM for this purpose. Thus, 
the term discrimination values can be computed at lower re-computation costs by 
using UDO-based method. 
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CHAPTER 6 

CONCLUSIONS 

The main contributions and the proposed dissertation  both in English and  
Hungarian  are summarized in the next sections, and then the publications related to 
this dissertation are listed. 

6.1 Theses 

1. Vector Space Model in Non-Euclidean Space 

In general the Euclidean geometry is the only type of space used in the VSM. In 
information retrieval non-Euclidean spaces are used for information visualization 
[21][22]. In my dissertation the Vector Space Model was defined over Cayley-Klein 
Geometry. [P1][P2][P6]  

(a) HIR (Hyperbolic Information Retrieval) Model was defined; the similarity 
measure was derived from the Cayley-Klein hyperbolic distance. [chapter 
3.4] 

(b) It was shown  formally and experimentally , that the HIR Model is 
equivalent to the traditional Vector Space Model using a normalized weighting 
scheme. [chapter 3.5] 

2. Efficient method to vary retrieval categoricity  
The retrieval categoricity of the VSM, and HIR model was investigated and a new 
efficient way to vary retrieval categoricity was introduced. [P1][P3] 

(a) It was shown that any retrieval model or system based on positive RSV 
(Retrieval Status Value) may be conceived as a probability space that 
decreases the amount of the associated Shannon information. [chapter 4.4] 

(b) It was shown experimentally that the retrieval categoricity of a VSM depends 
on the similarity measure, and the weighting scheme. Thus, in the VSM the 
only way to modify the retrieval categoricity is to take a different weighting 
scheme and/or similarity measure. So far, the Cosine measure with tfn 
weighting scheme  one of the most commonly used  is the least 
categorical in its answers. Therefore, it is not enough to change only the 
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weighting scheme or the similarity measure, but both of them need to vary to 
obtain a more categorical system. This in turn yields costly re-computation of 
both weights and similarity measure values; and the same answers set 
containing the same document with the same order cannot be guaranteed, 
because the similarity measures do not preserve the rank order. [chapter 4.6] 

(c) It was shown experimentally that in HIR the retrieval categoricity depends on 
the radius of the space. So far, increasing the radius of the hyperbolic space 
yields a less categorical retrieval system and conversely: decreasing the radius 
leads to more categorical answers. [chapter 4.7] 

(d) HIR represents the advantage of being a means to make the categoricity of the 
Cosine- and tfn-based VSM adjustable depending on only one control 
variable, namely the radius of the space. Thus, a modifiable categoricity can 
be obtained at much lower re-computation costs: only the similarity values 
need to be re-computed but not the weights. In addition, the rank order and the 
same answer set could be guaranteed, because the HIR and Cosine-based 
VSM are equivalent using tfn weighting scheme. [chapter 4.8] 

3. Efficient method to compute term discrimination values  

In information retrieval the documents are represented by index terms created 
manually or automatically. TDM (Term Discrimination Method) is an automatic 
method for creating the index terms. In the thesis a new method was developed to the 
computation of term discrimination values, which presents advantages over the 
traditional vector-based calculation. It is faster and its application is not restricted to 
the Vector Space Model. [P3]  

(a) Based on (2.a) a new method was developed to the computation of term 
discrimination values, which is not restricted to the Vector Space Model; it 
can be used in any positive RSV-based information retrieval system. [chapter 
5.3] 

(b)  It was shown that the (3.a) method is faster, than the traditional vector-based 
TDM method. [chapter 5.4] 

 

6.2 Tézisek magyar nyelven 

Az értekezés új tudományos eredményei az alábbiakban foglalhatók össze:  

1. Vektortér modell nem-euklideszi térben 

A vektortér modellt hagyományosan euklideszi térben definiálják. Az információ-
visszakeresésben nem-euklideszi teret eddig csak vizualizálásra használtak [21][22]. 
A dolgozatomban megadtam a vektortér modellt Cayley Klein-féle térben. 
[P1][P2][P6] 

(a) Megadtam a hiperbolikus információ-visszakereső (HIR=Hyperbolic 
Information Retrieval) modellt, ebben a hasonlósági mértéket a Cayley-Klein 
hiperbolikus távolságból származtattam. [chapter 3.4] 
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(b) Megmutattam  mind formálisan mind kísérleti úton , hogy a HIR modell 
ekvivalens a vektortér modellnek a gyakorlatban leginkább használatos 
változatával. [chapter 3.5] 

2. Hatékony módszer megadása a válaszok kategoricitásának változtatására  
A vektortér modellnek nem-euklideszi térben való megadásán túlmenően 
megvizsgáltam a HIR modell alkalmazását információ-visszakereső rendszer 
kategoricitási tulajdonságának változtatására, és megadtam egy hatékony módszert a 
válaszok kategoricitásának változtatására. [P1] [P3]  

(a) Megmutattam, hogy egy pozitív RSV (Retrieval Status Value)-alapú 
információ-visszakereső rendszerhez bizonytalanság (Shannon-féle 
információ) rendelhető hozzá, és ez csökken a válaszadás során. [chapter 4.4] 

(b) Kísérletileg kimutattam, hogy a hagyományos vektortér modell különböző 
hasonlósági mértékek és különböző súlyszámítási sémák esetében különböző 
kategoricitású válaszokat ad vissza. Így adott információ-visszakereső 
rendszer kategoricitásának változtatása a hasonlósági mérték és/vagy a 
súlyszámítási séma változtatásával valósítható meg. A gyakorlatban leginkább 
használatos vektortér modell legelterjedtebb hasonlósági mértéke  a Cosine-
mérték tfn súlyszámítással - rendelkezik a legrosszabb kategoricitási 
tulajdonsággal, azaz a válaszok itt a legkevésbé kategorikusak. Ahhoz, hogy 
kategorikusabb rendszert kapjunk, a hasonlósági mérték megváltoztatásán 
túlmenően egy másik súlyszámítási sémára való áttérés is szükséges; ez magas 
számítási bonyolultságot jelent, ráadásul ez esetben a rangsortartás és a 
válaszhalmaz azonossága sem garantált. [chapter 4.6] 

(c) Kísérletileg kimutattam, hogy a HIR modellben a válaszok kategoricitási 
tulajdonsága a sugár változtatásával módosul, mégpedig úgy, hogy a sugár 
növelésével a válaszokra vonatkozó bizonytalanság is nő, ami a kategoricitás 
csökkenéséhez vezet. [chapter 4.7] 

(d) Megmutattam, hogy ha változtatható kategoricitású rendszert akarunk 
megvalósítani, akkor a Cosine-mértékkel tfn súlyszámítási sémával 
rendelkező vektortér modell helyett gazdaságosabb a HIR modell 
alkalmazása, mert a kategoricitási tulajdonsága csupán a sugár változtatásával 
módosítható más súlyszámítási séma, illetve más hasonlósági mértékre való 
áttérés nélkül, és ez alacsonyabb számítási bonyolultságot jelent; ezen 
túlmenően a rangsor és a válaszhalmaz változatlan marad. [chapter 4.8] 

3. Kifejezések diszkriminálási értékeinek hatékony kiszámítása  

Az információ-visszakereső rendszerekben indexkifejezések megállapítására többféle 
módszer ismert. Ezek közül az egyik automatikus eljárás a TDM (Term 
Discrimination Method) módszer. A dolgozatomban egy olyan új módszert 
fejlesztettem ki kifejezések diszkriminálási értékeinek (TDV= Term Discrimination 
Value) meghatározására, amelynek alkalmazása hatékonyabb információ-visszakereső 
rendszert eredményez, mint a hagyományos TDM alapú rendszer. [P3]  
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(a) A (2.a)-ban megadott tulajdonságra alapozva kidolgoztam egy olyan módszert 
kifejezések szétválasztási értékeinek kiszámítására, amely nemcsak vektortér 
alapú, hanem bármely, RSV-alapú információ-visszakereső rendszerben 
használható. [chapter 5.3] 

(b) Megmutattam, hogy a (3.a)-ban megadott módszer hatékonyabb eljárás 
kifejezések diszkriminálási értékeinek meghatározására, mint a hagyományos 
vektor-alapú TDM módszer. [chapter 5.4] 

6.3 Publications and Citations 

6.3.1.  Publications directly related to the thesis 

Papers in international journals: 
[P1] GÓTH, J., and SKROP, A. (2005). Varying Retrieval Categoricity Using 

Hyperbolic Geometry, Information Retrieval Vol. 8, no 2, pp. 265-283 (SCI JIF 
= 1.185), ISSN: 1386-4564. [thesis 1,2] 

[P2] DOMINICH S., GÓTH, J., KIEZER, T. (2005). NeuRadIR: A Web-Based 
NeuroRadiological Information Retrieval System. ERCIM (European 
Community in Information Technology) News No 61, pp. 52-53, ISSN: 0926-
4981. [thesis 1] 

[P3] DOMINICH, S., GÓTH, J., KIEZER, T., and SZLÁVIK, Z. (2004). An 
Entropy-Based Interpretation of Retrieval Status Value Based Retrieval, and Its 
Application to the Computation of Term and Query Discrimination Value. 
JASIST (Journal of the American Society for Information Science and 
Technology) Vol. 55, no 7, pp. 613-627 (SCI JIF = 2.086), ISSN: 1532-2882. 
[thesis 2, 3] 

Paper in Hungarian journals: 

[P4] DOMINICH S., GÓTH, J., KIEZER, T., and SZLÁVIK, Z. (2003). NeuRadIR: 
Neuroradiológiai Információ-visszakereső Rendszer. IME (Informatika és 
Menedzsment az Egészségügyben,) II. évf. 1. szám, 2003. január-február, 41-45. 
oldal, ISSN:1588-6387. 

Conference papers: 

[P5] SZABÓ, T., GÓTH, J., DOMINICH, S., KOZMANN, GY., SZOLGAY, P., and 
BÁRSONY, P. (2003). Novel Neuroradiological Image Processing and 
Information Retrieval in a Telestroke System. Baud, R. at al.: The new 
navigators: from Professionals to Patients, pp. 298-303, IOS Press, Amsterdam, 
ISBN: 1-58603-347-6. 

[P6] GÓTH, J. (2002). Hyperbolic Information Retrieval. Proceedings of the 25th 
Annual International ACM SIGIR Conference on Research and Development in 
Information Retrieval, MF/IR, pp. 61-77, Tampere, Finland, August 11-15. 

[P7] DOMINICH, S., and GÓTH, J. (2002). Retrieval of Brain CT Reports and 
Images Using Interaction Information Retrieval. Surjan, G. at al.: Health Data 
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in the Information Society, pp. 325-330, IOS Press, Amsterdam, ISBN: 1-
58603-279-8. 

6.3.2. Conference talks directly related to the thesis 

International conferences: 
1.  SZABÓ, T., GÓTH, J., DOMINICH, S., KOZMANN, GY., SZOLGAY, P., 

and BÁRSONY, P. (2003). Novel Neuroradiological Image Processing and 
Information Retrieval in a Telestroke System. MIE2003 (XVIIth International 
Congress of the European Federation for Medical Informatics), St. Malo, 
France, May 4-7. 

2.  GÓTH, J. (2002). Hyperbolic Information Retrieval. Proceedings of the 25th 
Annual International ACM SIGIR Conference on Research and Development in 
Information Retrieval, MF/IR, Tampere, Finland, August 11-15. 

3.  DOMINICH, S., and GÓTH, J. (2002). Retrieval of Brain CT Reports and 
Images Using Interaction Information Retrieval. MIE2002 (XVIIth International 
Congress of the European Federation for Medical Informatics), Budapest, 
Hungary, August 25-29. 

Hungarian conferences: 
1. DOMINICH, S., GÓTH, J., KIEZER, T., and SZLÁVIK, Z. (2002). 

NEURADIR: Neuroradiológiai információ-visszakereső rendszer. VEAB- 
NJSZT Orvosbiológiai Szakosztály közös rendezvénye, Veszprém, 2002. 
december 11. 

2.  GÓTH, J., KIEZER, T., and SZLÁVIK, Z. (2002). Képvisszakeresés az orvosi 
informatikában. Matematikus, fizikus és informatikus doktorandusok 4. 
regionális találkozója. Veszprémi Egyetem, Veszprém, 2002. május 30. 

6.3.3 Other publications relevant to the thesis 

[E1] DOMINICH, S., GÓTH, J., HORVATH, M., KIEZER, T. (2005): Beauty of the 
World Wide Web—Cause, Goal, or Principle. in David E. Losada, Juan M. 
Fernández-Lun., Advances in Information Retrieval, (Lecture Notes in 
Computer Science, Vol: 3408, Springer) pp. 67-80 (SCI JIF = 0.515), ISBN: 3-
540-25295-9. 

[E2] DOMINICH, S., GÓTH, J., and SKROP, A. (2003): A Study of the Usefulness 
of Institutions’ Acronyms as Web Queries. in: Sebastiani F., Advances in 
Information Retrieval, (Lecture Notes in Computer Science, Vol: 2633, 
Springer) pp.580-587, (SCI JIF = 0.515), ISBN: 3-540-01274-5. 

[E3] GÓTH, J. (2001). Szoftvertesztelés (Alapfogalmak, technikák). Magyar 
Távközlés, XII. évfolyam, 2. szám, 2001. február, 28-33 oldal. ISSN: 0865-9648. 

6.3.4. Citations 

1. Cited paper: 
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[P7] DOMINICH, S., and GÓTH, J. (2002). Retrieval of Brain CT Reports and 
Images Using Interaction Information Retrieval. Surjan, G. at al.: Health Data 
in the Information Society, pp. 325-330, IOS Press, Amsterdam, ISBN: 1-
58603-279-8. 

Citing paper: 
BÁRSONY, P., and MAYER, I. (2002). Telestroke rendszer (agyérbetegségek 
intézetközi távkonzultációs rendszere). IME (Informatika és Menedzsment az 
Egészésgügyben), I. évfolyam 5. szám 2002. december, 28-32. oldal, ISSN: 1588-
6387. 

2. Cited paper: 

[P5] SZABÓ, T., GÓTH, J., DOMINICH, S., KOZMANN, GY., SZOLGAY, P., and 
BÁRSONY, P. (2003). Novel Neuroradiological Image Processing and 
Information Retrieval in a Telestroke System. Baud, R. at al.: The new 
navigators: from Professionals to Patients, pp. 298-303, IOS Press, Amsterdam, 
ISBN: 1-58603-347-6. 

Citing paper: 
ALBERTS, M., J., at al. (2005). Recommendation for Comprehensive Stroke 
Centers: A Consensus Statement From the Brain Attack Coalition. Stroke No 36, 
pp. 1597-1618, (SCI JIF = 5.748), ISSN: 0039-2499. 

3. Cited paper: 

[P4] DOMINICH S., GÓTH, J., KIEZER, T., and SZLÁVIK, Z. (2003). NeuRadIR: 
Neuroradiológiai Információ-visszakereső Rendszer. IME (Informatika és 
Menedzsment az Egészségügyben,) II. évf. 1. szám, 2003. január-február, 41-45. 
oldal, ISSN:1588-6387.  

Citing paper: 

KOZMANN, Gy. (2005). Új információs technológiák az egészségügyben  
Lehetőség a minőségi, gazdaságossági és versenyképességi elvárások 
teljesítésére. IME (Informatika és Menedzsment az Egészségügyben,) IV. évf. 3. 
szám, 34-39. oldal, ISSN:1588-6387.  

4. Cited paper: 

[P3] DOMINICH, S., GÓTH, J., KIEZER, T., and SZLÁVIK, Z. (2004). An 
Entropy-Based Interpretation of Retrieval Status Value Based Retrieval, and Its 
Application to the Computation of Term and Query Discrimination Value. 
JASIST (Journal of the American Society for Information Science and 
Technology) Vol. 55, no 7, pp. 613-627 (SCI JIF = 2.086), ISSN: 1532-2882. 

Citing paper: 
IANEWA, T., Boldareva, L., Westerweld, T., Cornacchia, R., Hiemstra, D., and de 

Vries, A.P. (2004). Probabilistic approaches to video retrieval, Proceedings of 
TRECVID Conference, National Institute of Standards, NIST, USA. 
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[P3] DOMINICH, S., GÓTH, J., KIEZER, T., and SZLÁVIK, Z. (2004). An 
Entropy-Based Interpretation of Retrieval Status Value Based Retrieval, and Its 
Application to the Computation of Term and Query Discrimination Value. 
JASIST (Journal of the American Society for Information Science and 
Technology) Vol. 55, no 7, pp. 613-627 (SCI JIF = 2.086), ISSN: 1532-2882. 

Citing paper: 
LAFOUGE, T., Prime-Claverie, C. (2005). Production and use of information. 

Characterization of informetric distributions using effort function and density 
function. Exponential informetric process. Information Processing and 
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