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fejlesztése
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Készült a Pannon Egyetem Vegyészmérnöki Tudományok Doktori Iskolája
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Kivonat

A matematikai modellezés napjainkra a szennyv́ıztiszt́ıtó telepek tervezésének

és üzemeltetésének fontos részévé vált, mivel seǵıtségével pontosan bemu-

tathatók az üzemeltető részére a telepen lejátszódó folyamatok, felhasználható

a tervezési fáziban különböző technológiai megoldások kiértékelésére és a

meglevő telepek üzemeletetésének optimalizálásához is. Így dolgozatomban

a biológiai szennyv́ıztiszt́ıtás modellezésére és hatékonyabb üzemeltetésére

szolgáló módszereket vizsgálok meg. Az elő́ırt határértékeknek megfelelő

üzemeltetés érdekében a levegőztetés hatékonyságát jav́ıtó módszereket dol-

goztam ki, majd az irodalomban található modellek alkalmazhatóságával,

összehasonĺıtásával foglalkoztam.

Egy optimalizálási módszert fejlesztettem ki, mely a befogadóba kerülő

szennyezőanyag-terhelést csökkentő oly módon, hogy az optimális levegőzte-

tési időtartamot meghatározza ciklikus levegőztetésű szennyv́ıztelepek esetén.

A esettanulmány szimulációs eredményei azt mutatják, hogy a elfolyó v́ızben

levő szennyezőanyagok mennyisége akár 10%-al is csökkenthető a hagyomá-

nyos szabályozási stratégiához képest.

Az oldottoxigén-koncentráció szabályozására egy modell predikt́ıv szabá-

lyozási algoritmust vizsgáltam, melynek feladta az oxikus reaktorban az oxi-

génkoncentráció egy adott szinten tartása. A szimulációs eredmények azt

mutatják, hogy a módszer hatékonyan alkalmazható az oxigénkoncentráció

szabályozására: a koncentráció maximális eltérése az elő́ırt értéktől 0.2 mg/l

alatt maradt a jelentősen változó mennyiségű és összetételű befolyó szennyv́ız
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ellenére.

A biológiai reaktorrész bármilyen jó hatásfokkal is működhet, ha az üleṕıtő

nem képes megfelelően visszatartani a lebegő részecskéket a telep működésé-

ben jelentős zavarok keletkezhetnek. Az utóüleṕıtő modellezésére szolgáló hat

matematikai modellt mutattam be és hasonĺıtottam össze munkámban egy

szimulációs protokoll seǵıtségével. A dinamikus szimulációk eredményei azt

mutatták, hogy az irodalmi adatok paramétereivel alkalmazott üleṕıtőmodel-

lek jelentős eltéréseket eredményezhetnek a becsült elfolyó lebegőanyag-kon-

centráció tekintetében.

Végül a matematikai modellezés alkalmazhatóságát egy esettanulmányon

mutatom be. Egy telep működése során jelentős foszforkoncentráció emel-

kedés volt megfigyelhető bizonyos időszakokban, s ennek a problémának a

kivizsgálására és azonośıtására alkalmaztunk számı́tógépes szimulációt. Szá-

mı́tógépes szimuláció alkalmazásával a jelenség okai könnyen azonośıthatók

voltak és megoldási javaslatot lehetett adni a probléma kezelésére is.



Abstract

Mathematical modelling is a significant part of wastewater treatment sys-

tem design since it can enhance the process understanding of the operator,

it can be used for process design and it can be used for the optimization of

the process. For these reasons, modelling and control tools have been de-

veloped and applied to the biological wastewater treatment process in this

thesis. In order to comply the industry standards during the operation, dif-

ferent methods have been introduced to enhance the efficiency of the aeration,

furthermore, applicability and comparison of wastewater treatment models

available in literature have been assessed.

An optimization procedure has been introduced to reduce the effluent

pollution load in the receiving body by determining the adequate aeration

cycle lengths. It was found that applying this stochastic optimization method

on an intermittently aerated activated sludge process using simulated case

study approach, the effluent pollution load can be reduced by more than 10%

compared to traditional methods.

In another study, model predictive control has been applied to control

the dissolved oxygen concentration in an aerobic reactor of a wastewater

treatment plant. The results show that this method can be efficiently used

for dissolved oxygen control: the maximum deviation of the concentration

from the pre-defined setpoint remained under 0.2 g O2/m3 in spite of the

significantly changing quality and quantity of incoming wastewater.

The biological reactor might be meeting the required effluent standards,
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however, by not capturing the suspended solids adequately, could cause a

possible failure in the operation of the facility. For this reason, six one-

dimensional secondary settler models have been introduced and compared

based on a Simulation Benchmark. The results of the dynamic simulations

showed that significantly differences suspended solids concentrations can be

estimated with the different models using the published model parameters.

Finally, the applicability of the mathematical modelling is introduced by a

case-study approach. The phenomenon of a drastic phosphorus concentration

increase in the effluent was investigated and identified using computer-aided

simulation technique. The practical results justified that wastewater treat-

ment modelling can be efficiently used in the case of operating facilities as

well.



Abstrait

Modeler mathématique est une partie significative de system̀es de traitement

des eaux résiduaires puisqu’il peut augmenter l’arrangement de processus de

l’opérateur, il peut être employé pour la conception de processus et il peut

être employé pour l’optimisation du processus. Pour ces raisons, modeler et

outils de commande ont été développés et appliqués au processus biologique

de traitement des eaux résiduaires.

Un procédé d’optimisation a été présenté pour réduire la charge effluente

de pollution dans le corps de réception en déterminant à longueurs propor-

tionnées de cycle d’aération. On l’a constaté qu’appliquant cette méthode

stochastique d’optimisation à une approche simulée employante de processus

par intermittence aérée d’étude de cas de boues activées, la charge efflu-

ente de pollution peut être réduite par plus de 10% comparé aux méthodes

traditionnelles.

Dans une autre étude, la commande prédictive de modèle a été appliquée

pour commander la concentration dissous en oxygène dans un réacteur aérobie

d’une usine de traitement des eaux résiduaires. Les résultats prouvent que

cette méthode peut être efficacement employée pour la commande dissous

d’oxygène : la déviation maximum de la concentration du setpoint prédéfini

est demeurée au-dessous de 0.2 g O2/m3 malgré la qualité et la quantité

changeantes de manière significative d’eau usagée entrante.

Le réacteur biologique pourrait répondre aux normes effluentes exigées,

cependant, en ne capturant pas les solides en suspension en juste proportion,
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a pu causer un échec possible dans l’opération du service. Pour cette rai-

son, six modèles secondaires unidimensionnels de colon ont été présentés et

comparés basé sur un ’Simulation Benchmark’. Les résultats des simulations

dynamiques ont prouvé que sensiblement des concentrations suspendues par

différences en solides peuvent être estimées avec les différents modèles en

utilisant les paramètres modèles édités.

En conclusion, l’applicabilité de modeler mathématique est prouvée par

cas-étude. Le phénomène d’une augmentation énergique de concentration en

phosphore de l’effluent a été étudié et résolu en utilisant la technique assistée

par ordinateur de simulation. Les résultats pratiques ont justifié que modeler

de traitement des eaux résiduaires peut efficacement être aussi bien employé

dans le cas des équipements de fonctionnement.



PhD theses

Within the framework of my PhD research, a biological wastewater treatment

simulator program has been developed in Matlab/Simulink program. This allowed

the modelling of the activated sludge wastewater treatment process based on the

Activated Sludge Model No. 1 and the modelling of the secondary settling tank

based on different one-dimensional settling tank models. By using this simulator

program, the following scientific results were achieved:

1. It was found that the effluent nitrogen pollution load of inter-

mittently aerated wastewater treatment plants can be reduced by

more than 10% using optimal aeration periods in certain cases

based on the results of computer simulation.

Since the operation of the intermittently aerated wastewater treatment process

is challenging both for economical and technical reasons, an operational op-

timization method has been introduced for the efficient operation of these

facilities. The goal of the introduced procedure is to reduce the effluent pol-

lution load in the receiving body by determining the adequate aeration cycle

lengths. It was found that applying this stochastic optimization method on

an alternating activated sludge process using simulated case study approach,

the effluent pollution load can be reduced by more than 10%. It can be also

concluded, that the TKN and NO3-N can be reduced with more than 10%

(0.2–0.5 g/m3), while the COD/BOD5 reduction is not so significant.
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2. It has been shown that model predictive control algorithm can be

efficiently applied for the dissolved oxygen level control of aerated

basins, furthermore, gives better tunability than traditional con-

trol methods.

Activated sludge wastewater treatment processes are difficult to be con-

trolled because of their complex and nonlinear behaviour, however, the con-

trol of the dissolved oxygen level in the reactors plays an important role

in the operation of the facility. For this reason a new approach has been

studied: model predictive control has been applied to control the dissolved

oxygen concentration in an aerobic reactor of a wastewater treatment plant.

The proposed control approach has been tested on a pre-denitrification plant

and on an alternating activated sludge process using simulated case-study

approach. The results show that this method can be efficiently used for dis-

solved oxygen control: the maximum deviation of the concentration from the

pre-defined setpoint remained under 0.2 g O2/m3 in spite of the significantly

changing quality and quantity of incoming wastewater.

3. Different published one-dimensional settling tank models give sig-

nificantly different estimation of the over- and underflow suspended

solids concentration, however, the solids distributions around the

inlet point are similar at all models.

The biological reactor might be meeting the required effluent standards, how-

ever, by not capturing the suspended solids adequately, could cause a possi-

ble failure in compliance with the COD (BOD5), total N and P standards.

The applied mathematical models allow the influences of inlet arrangement,

sludge collection systems and sludge density currents to be modelled accu-

rately. For this reason, six one-dimensional secondary settler models have

been introduced and compared (the model of Takács, Härtel, Otterpohl,

Dupont, Hamilton and a reactive model) based on a Simulation Benchmark.

The results of the dynamic simulations – under dry and wet weather condi-

tions with daily and weekly change in the influent wastewater composition

and quantity – showed that significantly differences suspended solids con-

centrations can be estimated with the different models using the published



model parameters. The highest effluent solids concentration is estimated

by the Dupont model (30-35 g/m3), the lowest concentration is predicted

by the Otterpohl model (10 g/m3) while the Takács model defined in the

Simulation Benchmark approximated 12.5 g/m3 effluent concentration.
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List of symbols

Abbre- Name Unit
viation

AE Aeration energy kWh/d
Bi Weight factor for effluent quality index -
bH Decay rate coefficient for heterotrophic organisms d−1

bA Decay rate coefficient for autotroph organisms d−1

BOD5 Biochemical oxygen demand – 5 days mg O/L
COD Chemical oxygen demand mg O/L
E.Q. Effluent quality index -
fns Fraction of biomass yielding (inert) particulate products -
fp Fraction of total influent which is unsettleable -
iXB Mass N/mass COD in biomass -
iXP Mass N/mass COD in products from biomass decay -
Jclar Special flux function for the clarification

zone of the settler g/(m2 d)
Jdiff Flux due to an effective diffusion process g/(m2 d)
Jdn Downward flux of SS due to downward bulk flow g/(m2 d)
KNO Nitrate half-saturation coefficient for

denitrifying organisms mg N/L
KNH Ammonia half-saturation coefficient for autotrophs mg N/L
KO,A Oxygen half-saturation coefficient for autotrophs mg O/L
KO,H Oxygen half-saturation coefficient for heterotrophs mg O/L
KS Half saturation coefficient for heterotrophs mg COD/L
KX Half-saturation coefficient for for hydrolysis

of slowly biodegradable substrate mg COD/L
ka Ammonification rate mg N/mg N
kLa Oxygen mass transfer coefficient d−1
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Abbre- Name Unit
viation

Ntot Total nitrogen concentration mg N/L
Q0 Influent flow rate m3/d
Qa Internal recycle flow rate m3/d
Qe Effluent flow rate m3/d
Qr Sludge recycle flow rate m3/d
Qw Wastage flow rate m3/d
Qu Underflow rate m3/d
rh Settler model parameter for hindered settling m3(g SS)−1

rp Settler model parameter for low solids
concentrations m3(g SS)−1

PE Pumping energy Wh d−1

SALK Alkalinity molar unit
SI Inert soluble organic matter mg COD/L
SS Readily biodegradable substrate mg COD/L
SNH Ammonia and ammonium nitrogen mg N/L
SNO Nitrate and nitrite nitrogen mg N/L
SND Soluble biodegradable organic nitrogen mg N/L
SO oxygen mg O/L
SS Suspended solids concentration mg/L
v0 Maximum (theoretical) settling velocity m/d
v′0 Maximum (practical) settling velocity m/d
XB,A Active autotrophic biomass mg COD/L
XB,H Active heterotrophic biomass mg COD/L
XI Particulate inert organic matter mg COD/L
XND Particulate biodegradable organic nitrogen mg N/L
XS Slowly biodegradable substrate mg COD/L
XP Particulate products arising from biomass decay mg COD/L
YA Autotroph yield coefficient mg COD/mg N
YH Heterotroph yield coefficient mg COD/mg COD
ηg Correction factor for anoxic growth of heterotrophs -
ηh Correction factor for anoxic growth of autotrophs -
µA Maximum specific growth rate for

autotrophic organisms d−1

µH Maximum growth rate for heterotrophs d−1
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Chapter 1

Motivation

Wastewater treatment processes can be considered as the largest industry

in terms of treated mass of raw materials. In the European Community,

for instance, a daily wastewater volume of approximately 40·106 m3 has to

be processed . However, studies have shown that even well attended WWT

plants fail to meet the required effluent quality standards up to 9% of the

operation time, not including the short upsets lasting less than one day.

The U.S. Environmental Protection Agency estimated that one out of three

treatment works were not in compliance with discharge limitations and in

Germany and the Netherlands clarification problems were found to occur in

almost half of the evaluated treatment. Besides poor design, overloading and

inadequately trained operators, a lack of process control leading to excessive

effluent quality variations, was reported as the main cause.

Over the last decade, the increased public awareness, as reflected in more

stringent effluent regulations, has considerably increased the requirements

imposed on treatment plants. Not only the organic carbon pollution of a

wastewater must today be eliminated but also nutrients (i.e., nitrogen and

phosphorus). With biological nutrient removal being the most economic way

of treatment (in most cases), rather complex process configurations have

resulted.
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A closer look at the current operation of wastewater treatment plants

shows that automation and control, while introduced in the late sixties, can

still be considered minimal. Few plants are equipped with more than a

few elementary sensing elements and control loops, mostly concerning flow

metering and control, and for monitoring the basic plant performance over

longer periods of time. For this reason, automation and control techniques

are also addressed in this work.

1.1 Goals

The activated sludge wastewater treatment process consists of two main

parts: the biological part and the clarification-thickening part. In the bi-

ological part the most frequently used control variable is aeration intensity

which is important also from the aspect of energy consumption. For the

simulation of the secondary settler, still traditional distributed parameter

models are applied based on empirical settling velocity functions. These two

sub-processes will be addressed in this thesis from a certain aspect.

The aeration control is of great importance due to the generally large

energy consumption of the aeration system. In spite of their widespread use,

many small-size wastewater treatment plants are still operated on the basis

of pre-determined air-on/air-off sequences, where the duration of each stage

is identical from one day to another. More flexibility of the aeration strategy

can be obtained by specifying switching conditions from the measurements

of the dissolved oxygen concentration or the redox potential.

Although these strategies result in considerable performance improve-

ments, it is not rare however that the concentration of either the organic

or nitrogen compounds largely exceeds the standards defined by the Euro-

pean Union. An alternative method to improve the activated sludge process

performances is to apply dynamic optimization techniques based on detailed

mathematical models. These methods aim at rigorously determining the best
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transient control profile that minimizes a given objective function, on a given

time horizon, and satisfies a (possibly empty) set of constraints.

A similar approach is going to be studied in this work based on a certain

stochastic optimization technique. Genetic algorithms have proved to be a

robust and fast solution for global minimum (maximum) problems. There-

fore, it is going to be investigated how it could enhance the optimal aeration

of intermittently aerated wastewater treatment plant where the length of

the aerated periods determines both the effluent quality and the energy con-

sumption of the plant.

Besides intermittently aerated wastewater treatment plants, the control

of the dissolved oxygen concentration plays a significant role in the aerated

basin of the activated sludge process. It has to be high enough to maintain

efficient nutrient removal, however, unnecessarily high rate of aeration wastes

significant amount of energy. Nowadays, basic control methods are applied

in the real-life applications, therefore, the applicability of a more advanced

control technology, model predictive control, is going to be studied in this

thesis.

While the presence or absence of dissolved oxygen has a determining part

in the process rate of the bio-chemical reactions in the biological part of the

activated sludge process, the biological mechanisms are often neglected in

the mathematical model of the secondary settling tank where the separation

of the clarified water and the activated sludge takes place. Several empirical

models have been suggested in literature for describing the settling of the

suspended solids since the beginning of the 1990s, however, no comparative

study of these models can be found in literature. It is going to examined

in this thesis how these models operate under the same conditions. The

suspended solids concentration profile under steady-state conditions and the

daily change of the effluent sludge sludge concentration are also addressed in

this study.
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1.2 Methods

Using mathematical modelling, the validation and verification of the applied

model is inherent part of the simulation method. Furthermore, parameter

estimation can also be a time consuming part of modelling. However, in

the area of activated sludge wastewater treatment internationally accepted

standard mathematical models enhance the work of the modelling engineer.

The first activated sludge wastewater treatment models were published in

the 1980s and the model development has been continuously going since that

time as it will be introduced in Chapter 2. Furthermore, besides standard-

ized models, the appearance of a simulation benchmark has improved the

acceptance of innovating control strategies. This simulation benchmark –

introduced in Section 4.5 – also creates a solid basis for the proposed control

strategies in this thesis and provides a good environment for the comparison

of different secondary settler models.

This simulation benchmark defines a platform independent model of a

wastewater treatment plant, however, issues arising at different modelling

tools (e.g. GPS-X, Matlab, Fortran) are also discussed in that manual. For

the results presented in this thesis, the simulator package of Matlab/Simulink

has been selected and all results are based on this simulation environment.

Matlab/Simulink is a widely accepted simulator program in academic re-

search and provides a visual interface for the better understanding of the

simulated processes. However, since the simulation of a complete model of

a wastewater treatment plant requires the solution of more then 100 dif-

ferential equations, large part of the model has been implemented in C++

program code using the Matlab standard functions. Hence, the advantage

of the graphical interface and efficient computation could be exploited using

this approach.
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Chapter 2

Introduction to the

mathematical modelling of

biological wastewater treatment

Over the last decades, increasing awareness of the adverse impact that waste-

water discharges have on the aquatic environment (e.g. eutrophication) has

led to the introduction of more stringent legislation controlling the qual-

ity of the effluents discharged from wastewater treatment plants. To comply

with the more stringent effluent quality standards, new wastewater treatment

systems have been developed and older ones have been improved. Activated

sludge systems have been extended from carbonaceous energy (COD, BOD5)

removal only to include nitrogen removal by nitrification and denitrification,

furthermore, the biological removal of excess phosphorus. Additionally, the

system is required to produce a good clarifying and settling sludge by floc-

culating well and controlling the proliferation of filamentous organisms.

As a result, the activated sludge system configuration and its opera-

tion have increased in complexity and concomitantly, the number of physi-

cal, chemical and biological processes and compounds influencing the efflu-

ent quality has increased to decrease chemical or biological oxygen demand
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(COD, BOD5), free and saline ammonia, nitrate (NO3-N), nitrite (NO2-N),

total and orthophosphorus (TP and PO3−
4 ) and suspended solids (SS) con-

centrations.

The modelling of biological wastewater treatment systems has also passed

through the above sequences: first, the removal of organic matter only; sec-

ond, for nitrification; and third, for nitrogen removal by biological denitrifica-

tion. Wastewater treatment practice has now progressed to the point where

all of these can be accomplished in a single-sludge system. Because of the

interactions within such systems, the mathematical models depicting them

are quite complex, which has detracted from their use. This is unfortunate

because it is with such complex systems that the engineer has the most to

gain from the use of mathematical models.

Modelling is an inherent part of the design of a wastewater treatment

system, regardless of the approach used. At the fundamental level, a design

model may be merely conceptual; that is the engineer reduces the complex

system with which he is dealing with a conceptual image of how it functions.

That image then determines the design approach employed. Often, however,

the engineer recognizes that the conceptual model alone does not provide

sufficient information for design and thus he constructs a physical model,

such as a lab-scale reactor or a pilot plant, upon which various design ideas

can be tested. Given sufficient time for testing, such an approach is entirely

satisfactory. However, the engineer may find that time and money limita-

tions prevent exploration of all potentially feasible solutions. Consequently,

the designer often turns to the use of mathematical models to define further

design alternatives. Empirical models may be devised which incorporate a

statistical approach to mimic the end results obtained by studies on the phys-

ical model, or if the conceptual understanding expands sufficiently, he may

attempt to formulate mechanistically based models which seek to account for

the major events occurring within the system itself.

These mechanistic models are more powerful since they allow extrapola-
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tion of the design space to conditions beyond that experienced on the physi-

cal model. In this way, many potentially feasible solutions may be evaluated

quickly and inexpensively, thereby allowing only the more promising ones to

be selected for actual testing in the physical model.

Realizing the benefits to be derived from mathematical modelling, while

recognizing the reluctance of many engineers to use it, the International As-

sociation on Water Pollution Research and Control (IAWPREC) formed a

task group in 1983 to promote the development, and facilitate the applica-

tion of, practical models to the design and operation of biological wastewater

treatment systems. The first goal was to review existing models and second

one was to reach a consensus concerning the simplest one having the ca-

pability of realistic predictions of the performance of single sludge systems

carrying out carbon oxidation, nitrification and denitrification. The model

was to be presented in a way that made clear the processes incorporated into

it and the procedures for its use.

2.1 Model applications

The purpose for wastewater treatment plant (WWTP) model studies can be

[46, 73] : (1) learning, i.e. use of simulations to increase process understand-

ing, and to develop people’s conception of the system; (2) design, i.e. to

evaluate several design alternatives for new WWTP installations via simula-

tion; (3) process optimisation and control, i.e. to evaluate several scenarios

that might lead to improved operation of existing WWTPs. The two latter

ones are applications of the model in a service role. An application of the

model in an analysis role can for example be a study where the suitability

to describe a particular process is evaluated for several modelling concepts

enclosed in different activated sludge models.
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WWTP model simulations for learning

Simulations with WWTP models can be applied in different ways to increase

the process understanding of the user. For the WWTP operator, simulations

might for example be useful to indicate the consequences of process operation

modifications on the activated sludge composition and the WWTP effluent

quality. Similarly, simulations with e.g. the benchmark plant [17] for different

weather disturbance scenarios are very informative to get an idea of the

behaviour of a WWTP under variable weather conditions.

WWTP model simulations for design

During the design phase, process alternatives can be evaluated via simula-

tion. Such a model study was presented e.g. by Salem et al. [80], where

different alternatives for the upgrade of a biological N removal plant were

evaluated with a focus on appropriate treatment of sludge reject water. The

WWTP model simulations provided the knowledge basis that was needed to

decide on full-scale implementation of one of the proposed alternatives. In

this context, modelling can substantially reduce the scale-up time, because

different options can be evaluated before a pilot plant is built.

WWTP model simulations for process optimisation

Process optimisation can be used in different contexts. Off-line process opti-

misation refers to applications where off-line simulations with the calibrated

model are used to determine how to optimally run the process, whereas the

result is later on implemented and tested on the full-scale plant. In on-line

process optimisation simulations with the calibrated model are applied in

an on-line optimisation scheme, for example in the frame of a plant-wide

supervisory control system. Off-line process optimisation is often needed be-

cause new stricter demands are imposed to existing WWTPs, or considerable

changes in the plant load have occurred, or deficiencies have appeared dur-
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ing WWTP operation such that the initially required effluent quality cannot

any longer be obtained. In this context, simulations are often used to eval-

uate whether the pollutant removal efficiencies can be improved within the

existing plant lay-out, e.g. via improved process control.

2.2 Mathematical models of the activated sludge

process

In this section the most frequently used activated sludge models will be

introduced. Particular attention will be devoted to the ASM1 model, since

it is still used as a state-of-the-art model nowadays, furthermore, significant

part of the latter chapters will be based on the application of this model.

Furthermore, the ASM3, the ASM2 and ASM2d, and the TUDP models will

be considered in this chapter. Introduction of these models is based on the

Scientific and Technical Report of the International Water Association [41]

and other papers [17, 30].

2.2.1 ASM1

The Activated Sludge Model No. 1 [38] can be considered as the reference

model, since this model triggered the general acceptance of WWTP mod-

elling, first in the research community, later in the industry. This evolution

was undoubtedly enhanced by the availability of more and more powerful

computers.

Even today, the ASM1 model is in many cases still the state-of-the-art

for modelling activated sludge systems [79]. ASM1 has become a major ref-

erence for many scientific and practical projects, and has been implemented

in almost every commercially available WWTP simulation software. Copp

[17] reports on experiences with ASM1 implementations on different software

platforms.
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The development of activated sludge theory was inhibited for a long time

by the lack of a consistent measure of the concentration of organic mater-

ial in wastewater. Three measures have gained acceptance and are widely

used: biochemical oxygen demand (BOD), total organic carbon (TOC), and

chemical oxygen demand (COD). Of these, COD is the superior measure

because it alone provides a link between electron equivalents in the organic

substrate, the biomass and the oxygen utilized. Furthermore, mass balances

can be made in terms of COD. Consequently, the concentrations of all or-

ganic materials, including biomass, are in COD units in the following model.

The organic matter in a wastewater may be subdivided into a number of

categories [21]. The first important subdivision is based on biodegradability.

Non-biodegradable organic matter is biologically inert and passes through

an activated sludge system unchanged in form. Two fractions, depending on

their physical state, can be identified: soluble and particulate. Inert soluble

organic matter, SI, leaves the system at the same concentration that it en-

ters. Inert suspended organic matter, XI, becomes enmeshed in the activated

sludge and is removed from the system through sludge wastage. Because the

waste sludge flow rate is smaller than the system inflow rate, a mass bal-

ance requires the concentration of XI in the system to be higher than in the

influent.

Biodegradable organic matter may be divided into two fractions: read-

ily biodegradable and slowly biodegradable. For purposes of modelling, the

readily biodegradable material, SS, is treated as if it were soluble, whereas

the slowly biodegradable material, XS, is treated as if it were particulate. It

should be recognized, however, that some slowly biodegradable material may

actually be soluble. The readily biodegradable material consists of relatively

simple molecules that may be taken in directly by heterotrophic bacteria and

used for growth of new biomass. A portion of the energy (COD) associated

with the molecules is incorporated into the biomass, whereas the balance is

expended to provide the energy needed for the synthesis. The electrons asso-
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ciated with that portion are transferred to the exogenous electron acceptors

(oxygen or nitrate). In contrast, the slowly biodegradable material, consist-

ing of relatively complex molecules, must be acted upon extracellularly and

converted into readily biodegradable substrate before it can be used. It is

assumed that conversion of slowly biodegradable substrate into the readily

biodegradable form (hydrolysis) involves no energy utilization and thus there

is no utilization of electron acceptor associated with it.

The specific rate of hydrolysis of slowly biodegradable substrate is usually

considerably lower than the specific rate of utilization of readily biodegrad-

able substrate, so that it becomes the rate-limiting factor in the growth of

biomass when XS alone is present as substrate. Furthermore, the rate of

hydrolysis is lower under anoxic conditions (only nitrate available as the ter-

minal electron acceptor) than under aerobic conditions [89]. The division

of substrate into two forms provides a built-in lag in uptake of electron ac-

ceptor which allows space-time dependent variations in oxygen and nitrate

utilization to be modelled. Heterotrophic biomass is generated by growth

on readily biodegradable substrate under either aerobic or anoxic conditions,

but is assumed to stop under anaerobic conditions. Biomass is lost by de-

cay, which incorporates a large number of mechanisms including endogenous

metabolism, death, predation and lysis. For reasons to be explained later,

decay is assumed to result in the conversion of biomass into slowly biodegrad-

able substrate and particulate products, XP, which are inert to further bio-

logical attack [21]. The loss of biomass by decay is assumed to occur at a rate

which is independent of the nature or concentration of the electron acceptor

present, but the conversion of the resultant slowly biodegradable substrate

to a form that can be used for regrowth of new cells is influenced by the

nature of the electron acceptor as discussed in the preceding paragraph. Ni-

trogenous matter in a wastewater, like carbonaceous matter, can be divided

into two categories: non-biodegradable and biodegradable, each with further

subdivisions. With respect to the non-biodegradable fraction, the particulate

16



portion is that associated with the non-biodegradable particulate COD; the

soluble portion is usually negligibly small and is not incorporated into the

model. The biodegradable nitrogenous matter may be subdivided into: ’am-

monia’ (both the free compound and its salts), SNH ; soluble organic nitrogen,

SND; and particulate organic nitrogen, XND. Particulate organic nitrogen is

hydrolysed to soluble organic nitrogen in parallel with hydrolysis of slowly

biodegradable organic matter. The soluble organic nitrogen is acted on by

heterotrophic bacteria and Ionverted to ammonia nitrogen. The ammonia

nitrogen serves as the nitrogen supply for synthesis of heterotrophic bio-

mass and as the energy supply for growth of autotrophic nitrifying bacteria.

For simplicity, the autotrophic conversion of ammonia nitrogen to nitrate

nitrogen is considered to be a single step process which requires oxygen.

The nitrate formed may serve as terminal electron acceptor for heterotrophic

bacteria under anoxic conditions, yielding nitrogen gas. Cell decay of either

autotrophic or heterotrophic biomass leads to release of particulate organic

nitrogen which can re-enter the cycle. Both heterotrophic and autotrophic

biomass may be present in the wastewater itself, thereby having a strong

effect upon system performance. However, the prevalence and intensity of

this occurrence is still unknown and thus it was not considered by the task

group in developing the model. It should be noted, however, that the only

change required for its inclusion would be the addition of input terms to the

appropriate mass balance equations.

Processes in the model

The fundamental processes incorporated into the model are listed in the

leftmost column of Table 2.1, while their rate expressions are listed in the

rightmost column. Basically, four processes are considered: growth of bio-

mass, decay of biomass, ammonification of organic nitrogen, and ’hydrolysis’

of particulate organics which are entrapped in the biofloc. To facilitate mod-

elling, readily biodegradable material is considered to be the only substrate
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Table 2.1: The Petersen-matrix of the ASM1 model from [38]
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for growth of the heterotrophic biomass. Slowly biodegradable material is

considered to be removed from suspension instantaneously by entrapment in

the biofloc. Once there, it is acted upon by reactions which convert it into

readily biodegradable substrate. These reactions are simply called ’hydroly-

sis’ in the model, although in reality they are likely to be much more complex.

The net result of their inclusion is to introduce a time delay into the utiliza-

tion of oxygen since it is only associated with the growth of the organisms at

the expense of readily biodegradable substrate. Decay is assumed to result

in the transformation of active biomass into inert particulate products and

into slowly biodegradable substrate which re-enters the cycle of hydrolysis,

growth, etc. This allows more straightforward expression of decay under the

various environmental conditions encountered in a single sludge system. It

also has several important ramifications with respect to the values of the

parameters, as will be discussed later.

First consider process 1, aerobic growth of heterotrophic biomass.

ρ1 = µ̂H

(
SS

KS + SS

) (
SO

KO,H + SO

)
XB,H (2.1)

On studying the equation defined in row 1 of Table 2.1, it can be concluded

that of row 1 shows that growth occurs at the expense of soluble substrate

and results in the production of heterotrophic biomass. This is associated

with the utilization of oxygen. (See left side of Fig. 2.1.) Since COD units

are used for both substrate and biomass, and since oxygen may be consid-

ered to be negative COD, continuity requires that the oxygen requirement

equal the net COD removal (soluble substrate removed minus cells formed).

Ammonia nitrogen will be removed from solution and incorporated into cell

mass. The kinetics of aerobic growth of the heterotrophic biomass are as-

sumed to be subject to double nutrient limitation, with the concentrations of

both readily biodegradable substrate and DO being rate determining. The

primary purpose of the oxygen term is as a switching function which stops
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aerobic growth at low DO concentrations and thus the value of the satura-

tion coefficient, KO,H, is small. Removal of readily biodegradable substrate

is considered to be proportional to growth. No provision is made for the

storage of soluble substrate because that phenomenon is limited to only a

few substrates such as soluble monosaccharides and acetate. However, it is

widely recognized that substrates can be removed without associated bio-

mass growth. This event is handled in the model through the immediate

entrapment of slowly biodegradable substrate.

Row 2 of Table 2.1 represents anoxic growth of the heterotrophic biomass

with nitrate nitrogen as the terminal electron acceptor.

ρ2 = µ̂H

(
SS

KS + SS

) (
KO,H

KO,H + SO

) (
SNO

KNO + SNO

)
XB,H (2.2)

Like aerobic growth it occurs at the expense of readily biodegradable sub-

strate and results in heterotrophic biomass. Nitrate nitrogen serves as the

terminal electron acceptor and its removal is in proportion to the amount of

readily biodegradable substrate removed minus the quantity of cells formed.

As in aerobic growth, ammonia nitrogen is converted into organic nitrogen

in the biomass. The rate expression for anoxic growth is analogous to the

one for aerobic growth. In fact, the effect of readily biodegradable substrate

on the rate is identical, including the value of the saturation coefficient, KS.

However, that the maximum rate of substrate removal under anoxic condi-

tions is often less than it is under aerobic conditions. This could either be

because µ̂H is lower under anoxic conditions or because only a fraction of the

heterotrophic biomass is able to function with nitrate as the terminal electron

acceptor. It is currently impossible to differentiate between these possibili-

ties. Thus, from a modelling standpoint, the easiest way to incorporate the

effect is to add an empirical coefficient, ηg, to the rate expression, where

ηg < 1.0. Anoxic growth depends upon the concentration of nitrate nitrogen

in a manner analogous to the way in which aerobic growth depends upon
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the dissolved oxygen concentration. Furthermore, anoxic growth is inhibited

when oxygen is present and the term KO,H/(KO,H + SO) is incorporated to

reflect that fact. The coefficient KO,H has the same value as in the expres-

sion for aerobic growth so that as aerobic growth declines, anoxic growth

increases. Like the other similar terms, its primary use is as a switching

function.

Aerobic growth of autotrophic biomass is depicted in row 3 of Table 2.1.

ρ3 = µ̂A

(
SNH

KNH + SNH

) (
SO

KO,H + SO

)
XB,A (2.3)

Soluble ammonia nitrogen serves as the energy source for growth of the nitri-

fiers resulting in autotrophic cell mass and nitrate nitrogen as end products.

(See left side of Fig. 2.1.) In addition, a small amount of ammonia is in-

corporated into the biomass. Oxygen is used in proportion to the amount of

ammonia nitrogen oxidized. A double saturation function is used to express

the dependency of the autotrophic specific growth rate upon the soluble con-

centrations of both ammonia nitrogen and oxygen, with the latter serving as

a switching function. Both the saturation coefficients, KNH and KO,A, are

small. Although aerobic growth of autotrophic biomass is known to be influ-

enced by the pH of the wastewater in which the organisms are growing, this

dependency was not included in the rate equation because of the difficulty of

actually predicting the pH in a bioreactor. Rather, any potential problems

with pH should be checked through use of the alkalinity term, as discussed

earlier.

The approach adopted for modelling decay of the heterotrophic biomass

is basically the death-regeneration concept and is depicted in row 4 of Table

2.1.

ρ4 = bHXB,H (2.4)

There it can be seen that the adopted rate expression is quite simple, i.e.

first order with respect to the heterotrophic biomass concentration. The
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rate coefficient, however, is different in both concept and magnitude from

the usual decay coefficient. In this case, decay acts to convert biomass to

a combination of particulate products and slowly biodegradable substrate.

(See left side of Fig. 2.1.) No loss of COD is involved in this split and

no electron acceptor is utilized. Furthermore, decay continues at a constant

rate regardless of the environmental conditions (i.e. bH is not a function of

the type of electron acceptor or its concentration). The slowly biodegrad-

able substrate formed is then hydrolysed, as depicted in row 7 of Table 2.1,

releasing an equivalent amount of readily biodegradable COD. If conditions

are aerobic, that substrate will be used to form new cells with concomitant

oxygen uptake. If conditions are anoxic, cell growth will occur at the expense

of nitrate nitrogen. If neither oxygen nor nitrate nitrogen are availabie, no

conversion occurs and slowly biodegradabie substrate will accumulate. Only

when aerobic or anoxic conditions are resumed will it be converted and used.

The magnitude of the decay coefficient used herein will be different from

that of the more usually encountered rate constant because of the recycling

of substrate which occurs. In the usual technique, the loss of one unit of cell

mass COD leads to the utilization of one unit of oxygen minus the COD of the

inert particulate products formed. In this model, the loss of one unit of cell

mass COD results in the ultimate formation of one unit of COD due to readily

biodegradable substrate minus the COD of the inert particulate products

formed. When the readily biodegradable COD is used for cell synthesis,

only a fraction of a unit of oxygen will be required because of the energy

incorporated into the cell mass. That cell mass must in turn undergo decay

etc. before the unit of oxygen is finally removed. Consequently, to give

the same amount of oxygen utilization per time due to decay, the decay

coefficient must be larger. This has the result of increasing the turnover rate

of cell mass, thereby making the actual microbial growth rate higher far a

given solids retention time.

The decay of autotrophs, given in row 5 of Table 2.1, is handled in exactly
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the same manner as the decay of heterotrophs.

ρ5 = bAXB,A (2.5)

The justification for this is the likelihood that the decay observed in enrich-

ment cultures of autotrophic bacteria is actually due to predation and lysis,

with subsequent growth of adventitious heterotrophic bacteria upon the lysis

products. While it is likely that the magnitude of the decay coefficient for

autotrophic bacteria will be less than that for heterotrophic bacteria, even

more questions can be raised about this process.

Another impact of biomass decay is to recycle nitrogen through the sys-

tem. The conversion of biomass to slowly biodegradable substrate and then

to readily biodegradable substrate has associated with it a parallel conver-

sion of organic nitrogen to ammonia: soluble organic nitrogen is converted to

ammonia nitrogen through the reaction depicted in row 6 of Table 2.1.

ρ6 = kaSNDXB,H (2.6)

This simple first order equation is empirical in nature but has been found

to be adequate for modelling the conversion when coupled with the process

rate equation for hydrolysis of entrapped organic nitrogen [22].

Rows 7 and 8 in Table 2.1 show the models that have been adopted for

hydrolysis of slowly biodegradable organic matter and biodegradable organic

nitrogen.

ρ7 = kh

XSX
−1
B,H

KX + XSX
−1
B,H

[(
SO

KO,H + SO

)
+ ηh

(
KO,H

KO,H + SO

) (
SNO

KNO + SNO

)]
XB,H

(2.7)

ρ8 = ρ7XNDX−1
S (2.8)

The degradation of slowly biodegradable organic matter is very important

to realistic modelling of activated sludge systems because it is primarily re-
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sponsible for the attainment of realistic space-time and real time dependent

electron acceptor profiles. Consequently, a great deal of effort was devoted to

this topic by the task group. Within the past few years, the major changes

and innovations in activated sludge modelling have been directed toward the

development of equations depicting the fate of entrapped particulate or stored

soluble substrates. Careful examination of all of the available literature re-

vealed that very little experimental work has been conducted specifically on

the kinetics and mechanisms of degradation of particulate organic material.

Most studies in the wastewater treatment field have been done as part of

complex model systems, thereby making it difficult to verify independently

the portions dealing with hydrolysis and degradation of particulates. Nev-

ertheless, it was evident that certain features were required in order for the

overall system models to give realistic electron acceptor profiles. One aspect

was that the rate was first order with respect to the active heterotrophic bio-

mass present. Another aspect was that the rate appeared to saturate as the

amount of entrapped substrate became large in proportion to the biomass.

Finally, because of the need for enzyme synthesis it was supposed that the

rate would be dependent upon the concentration of electron acceptor present.

It is assumed that the rate decreases to zero in the absence of both oxygen

and nitrate. Examination of row 7 in Table 2.1 shows that all of these fea-

tures were incorporated. The organic nitrogen was assumed to be uniformly

distributed throughout the slowly biodegradable substrate so that the rate

of hydrolysis of entrapped organic nitrogen would simply be proportional to

the rate of hydrolysis of slowly biodegradable substrate.

Model assumptions and limitations

• Temperature: Kinetic model parameters are temperature dependent,

and consequently one has either to estimate the model parameters

when calibrating the model for a specific temperature, or to develop

appropriate temperature correction factors to include the temperature
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dependency of the reaction kinetics in the simulations. Henze et al. [38]

provided two sets of typical parameters for 10 and 20 ◦C, respectively.

Later models, such as ASM2 [39] and the TUDP model [91], use an

Arrhenius type temperature dependence. Different reactions have dif-

ferent temperature dependencies, where nitrification is generally most

sensitive.

• pH : In ASM1, it is assumed that the pH is constant and near neu-

trality. Including alkalinity as one of the state variables in the model

allows detection of possible pH problems. For some reactions, specific

functions can be added to the model to describe inhibitory pH effects.

• Toxic components : Nitrification is especially sensitive to inhibition by

toxic components. In ASM1, the nitrification parameters are assumed

to be constant. This means that any inhibitory effect of the wastewater

on the nitrification kinetics is assumed to be included in the calibrated

nitrification parameters. It is thus only possible to represent an ”aver-

age inhibitory effect” of the wastewater. Alternatively, the nitrification

rate equation can be extended to represent sudden acute inhibition

by specific chemicals. It is then up to the modeller to select the best

inhibition kinetics model for the actual inhibition problem.

• Wastewater composition: The activated sludge models were developed

for simulation of municipal WWTPs. Model modifications are typically

needed for WWTP systems where industrial contributions dominate

the wastewater characteristics. Acute nitrification inhibition by toxic

components related to industrial activity is one of the model modifica-

tions that are often necessary.

• The net growth rate or SRT of the biomass must be within the range

that allows a flocculent biomass to develop. For example if the SRT

falls below 3 days, there are likely to be severe problems with sludge
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settleability in an activated sludge system. Since the model does not

consider sludge settling, the suer must ensure that all conditions em-

ployed will result in a sludge which settles properly.

• Proper sludge settling is also dependent upon the concentration of

solids entering the finall settler. Thus, while it is possible mathemati-

cally to make the reactor hydraulic retention time small by making the

activated sludge concentration very large, such a trade-off may not work

in practice because it may be difficult to get the highly concentrated

sludge to settle sufficiently to obtain a clear effluent.

2.2.2 ASM3

During the years of application of ASM1 several defects had become obvi-

ous and the IAWPRC Task Group decided on correcting these defects by

publishing ASM3. These disadvantages were the followings:

• ASM1 does not include kinetic expressions that can deal with nitrogen

and alkalinity limitations of heterotrophic organisms.

• ASM1 includes biodegradable soluble and particulate organic nitrogen

as model compounds. These cannot easily be measured and made the

use of ASM1 complicated.

• The kintecs of ammonification in ASM1 cannot be easily quantified,

moreover the process is fast and therefore hardly affects model predic-

tions.

• ASM1 differentiates inert particulate organic material depending on its

origin, influent or biomass decay, but it is impossible to differentiate

between this two fractions in reality.

• Lysis combined with hydrolysis and growth is used to describe the

lumped effects of endogenous respiration of, for example, storage com-
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pounds, death, predation and lysis of the biomass. This may lead to

further difficulties in the evaluation of kinetic parameters.

The ASM3 model [33] was also developed for WWTPs biological N re-

moval, with basically the same goals as ASM1. The ASM3 model was in-

tended to become the new standard model, correcting for a number of defects

that have appeared during the usage of the ASM1 model. The reason was

that in 1985, when ASM1 was first published, computing power was still

scarce. The simplest description possible saved computation time. Today,

as computation is not limiting in simulation, a more realistic description of

decay processes is introduced in ASM3: the major difference between the

ASM1 and ASM3 models is that the latter recognises the importance of

storage polymers in the heterotrophic activated sludge conversions. In the

ASM3 model, it is assumed that all readily biodegradable substrate (SS) is

first taken up and stored into an internal cell component (XSTO) prior to

growth (see Fig. 2.1). The heterotrophic biomass is thus modelled with

an internal cell structure, similar to the phosphorus accumulating organisms

(PAOs) in the biological phosphorus removal models. The internal compo-

nent XSTO is subsequently used for biomass growth in the ASM3 model.

Biomass growth directly on external substrate as described in ASM1 is not

considered in ASM3.

A second difference between ASM1 and ASM3 is that the ASM3 model

should be easier to calibrate than the ASM1 model. This is mainly achieved

by converting the circular growth-decay-growth model, often called death-

regeneration concept, into a growth-endogenous respiration model (Fig. 2.1).

The complexity of ASM3 is comparable to ASM1. There is a shift of

emphasis from hydrolysis to storage of organic substrates, a process, which

has been postulated and observed by many researchers. Characterization

of the wastewater must consider this change. Readily available organic sub-

strates (SS) should be estimated based on the storage rather than the growth

process.
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Figure 2.1: Substrate flows for autotrophic and heterotrophic biomass in the
ASM1 and ASM3 models

ASM3 includes cell internal storage compounds what requires the biomass

to be modelled with cell internal structure. Decay processes (which include

predation) must include both fractions of the biomass, hence four decay

processes are required (aerobic and anoxic loss of XH as well as XSTO) and

the kinetics of the growth processes (aerobic and anoxic) must relate to the

ratio of XSTO/XH.
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Whereas in ASM1 effectively all state variables are directly influenced by

a change in a parameter value, in ASM3 the direct influence is considerably

lower thus ensuring a better parameter identifiability. Koch et al. [55] con-

cluded that ASM1 and ASM3 are both capable of describing the dynamic

behaviour in common municipal WWTPs, whereas ASM3 performs better in

situations where the storage of readily biodegradable substrate is significant

(industrial wastewater) or for WWTPs with substantial non-aerated zones.

The ASM3 model can be extended with a bio-P removal module.

2.2.3 Models including biological phosphorus removal

The overview of models including bio-P will start with the ASM2 model [39],

which extends the capabilities of ASM1 to the description of biological phos-

phorus removal. In addition, chemical P removal via precipitation was also

included. The ASM2 publication mentions explicitly that this model allows

description of bio-P processes, but does not yet include all observed phenom-

ena. For example, the ASM2d model [40] builds on the ASM2 model, adding

the denitrifying activity of PAOs which should allow a better description of

the dynamics of phosphate and nitrate. Bio-P modelling in ASM2 is illus-

trated in Fig. 2.2: the PAOs are modelled with cell internal structure, where

all organic storage products are lumped into one model component (XPHA).

PAOs can only grow on cell internal organic storage material; storage is not

depending on the electron acceptor conditions, but is only possible when fer-

mentation products such as acetate are available. In practice, it means that

storage will usually only be observed in the anaerobic activated sludge tanks.

Processes of phosphorus-accumulating organisms

It is assumed that PAO may release phosphate (SPO4) from poly-phosphate

(XPP) and utilize the energy which becomes available from the hydrolysis

in order to store cell external fermentation products (SA) in the form of
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Figure 2.2: Substrate flows for storage and growth of PAOs in the ASM2
model

cell internal organic storage material (XPHA). (See left side of Fig. 2.2.)

The process is primarily observed under anaerobic conditions. However, the

process has also been observed under aerobic and anoxic conditions.

Storage of ortho-phosphate (SPO4) in the form of cell internal poly-phosphates

(XPP) requires the PAO to obtain energy which may be gained from the res-

piration of XPHA. The regeneration of poly-phosphates is a requirement for

the growth of PAO, because the organic substrates are stored only upon the

release of poly-phosphate.

These organisms are assumed to grow only at the expense of cell internal

organic storage products (XPHA). As phosphorus is continuously released by

the lysis of XPP, it is possible to assume that the organisms consume ortho-

phosphate as a nutrient for the production of biomass. Growth of PAO is

modelled as an obligate aerobic process. (See right side of Fig. 2.2.)

Whereas ASM1 was based entirely on COD for all particulate material, as
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well as the total concentration of the activated sludge, ASM2 includes poly-

phosphates, a fraction of the activated sludge which is of prime importance

for the performance of the activated sludge process, but which does not exert

any COD. For this reason, total suspended solids (TSS) is introduced in the

model.

The TUDP model [7, 91] combines the metabolic model for denitrify-

ing and non-denitrifying bio-P with the ASM1 model (autotrophic and het-

erotrophic reactions). Contrary to ASM2/ASM2d, the TUDP model fully

considers the metabolism of PAOs, modelling all organic storage components

explicitly (XPHA and XGLY). The TUDP model was validated in enriched

bio-P sequencing batch reactor laboratory systems over a range of sludge

retention time values, for different anaerobic and aerobic phase lengths, and

for oxygen and nitrate as electron acceptor [64].
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Chapter 3

Aeration optimization of a

wastewater treatment plant

using genetic algorithm

The results introduced in this chapter are party based on the article Aer-

ation optimization of a wastewater treatment plant using genetic algorithm

published in the journal Optimal Control Applications and Methods [42].

This chapter discusses the aeration optimization problem of an intermit-

tently aerated wastewater treatment plant by the application of a stochastic

optimization approach, genetic algorithm (GA). In the alternating activated

sludge process the alternating aerobic and anoxic conditions needed for nitro-

gen removal is realized in a single basin by switching the aeration sequentially

on and off. Since the operation of these plants may be challenging both for

economical and technical reasons, several previous work have investigated

the possibility of reduction of the operating cost, however, it turned out that

for long-term application these methods can save only limited percent of the

cost. Furthermore, these investigations also had to make problem simplifi-

cations in order to use optimization methods which usually need significant

computational effort to give – only a local optimum – of the problem. The
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objective of this chapter is to demonstrate an optimization procedure to min-

imize the pollution load in the receiving water body using a complete model

of the treatment process. The results were evaluated based on rigorous eval-

uation criteria and showed that using GA-based optimization strategy an op-

timal solution can be efficiently found where both pollution load and energy

consumption savings can reach up to 10% compared to traditional control

strategies.

3.1 Introduction

The activated sludge wastewater treatment process is the most widely used

biological wastewater treatment process. While in the beginning it served

to remove mainly organics and ammonium from the wastewater, the need

for total nitrogen removal has risen partly due to the increasing attention

to eutrophication in the aquatic environment, party due to the stepwise in-

troduction of the European Directive 91/271/EEC in the European Union.

Total nitrogen removal is often realized in small-size wastewater treatment

plants (<20,000 p.e.) by a modification of the activated sludge process, the

so-called intermittent aeration or – often referred as the – alternating acti-

vated sludge (AAS) process, where both nitrification and denitrification take

place in a single basin resulting in low investment cost.

The typical setup of an AAS treatment plant consists of a unique aer-

ation tank where the incoming wastewater is mixed with the recycled ac-

tivated sludge and the biological reactions take place; and a settler where

the settleable fraction is separated from the treated water by sedimentation.

A certain amount of sludge is removed from the system with the wasted

activated sludge to maintain a constant biomass concentration in the sys-

tem. Despite the spatial separation in traditional activated sludge processes,

the aerobic and anoxic conditions needed for the total nitrogen removal are

separated in an AAS in time by running the turbines sequentially. During
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aerobic conditions the ammonium is oxidised into nitrate by the autotrophic

organisms (nitrification step), while during anoxic conditions the produced

nitrate is transformed into nitrogen gas by heterotrophic organisms (denitri-

fication step). Organic compounds are eliminated under both conditions by

the heterotrophic biomass.

Investigating the efficiency of a wastewater treatment plant (WWTP),

two operational parameters have to be investigated. On one hand, the oper-

ation of the process has to satisfy the effluent requirements defined by state

or other regulations (e.g. the aforementioned EU directive). For example,

the maximum concentration for the most restrictive component, the total

nitrogen, is generally 10 mg/l. Furthermore, the pollution load should be

kept at low level because of the environmental fee. On the other hand, oper-

ational costs have to be kept as low as possible. This generally includes the

cost for the disposal of the wasted sludge, the cost for the energy consumed

for the aeration and the pumping the recycled sludge. However, aeration en-

ergy makes up to 50–60% of the global operational cost, therefore, control of

the aeration is essentially important [49, 103]. In practice, several feed-back

control strategies exist based on the following assumptions: fixed and equal

cycle length are used and the aeration is running until a specified condition

is met (e.g. maximal concentration of the dissolved oxygen or a threshold

concentration of ammonium is reached). Wastage flow rate can also be used

to influence the organic and nitrogen removal process, however, Vaccari et

al. have shown [88] this is unsuitable for active control.

Several previous works have been focusing on the energy consumption

minimization while satisfying effluent quality standards [3, 34, 37, 45, 52],

however, in this contribution, the effluent quality optimization is addressed

to the keep environmental fee low. The case study used for illustration in

this work has been investigated by several papers, therefore, the results are

particularly appropriate for comparison. In the first paper investigating this

optimization problem, Chachuat et al. have found an aeration profile that
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lead to a reduction in the energy consumption of 30% [14]. In their work,

the hybrid dynamic optimization problem was converted into a non-linear

programming (NLP) problem then solved by gradient method. However, in

a later work of Chachuat et al. [12] it was discussed that this operating

mode eventually leads to a biomass washout for longer application time and

long time horizon optimization guaranteeing durable functionality results in

lower (10–15%) savings. The minimization of the nitrogen discharge was also

investigated in another work of Chachuat et al. [13] where the solution was

found with SQP (gradient-based method). Finally, for the optimization of the

aforementioned case-study two feedback rules were proposed [27]. Based on

their optimal stationary state profiles, the feedback policy has been related

the start and stop of the aeration to nitrate and dissolved oxygen level,

respectively.

The problem of effluent quality optimization of an AAS-WWTP is ad-

dressed in this paper. Previous works had to make model simplifications

in order to use their optimization methods which usually need significant

computational effort to give a local optimum of the problem. However, in

this work simulations are carried out considering long-term horizons and full

model of the wastewater treatment plant is used (including biological re-

actions and one-dimensional settler model). Since both require substantial

computational effort, a efficient and robust optimization method (genetic

algorithm) has been applied to solve this problem.

Genetic algorithms (GAs) originated from the studies of cellular au-

tomata, conducted by John Holland and his colleagues. Until the early 1980s,

the research in genetic algorithms was mainly theoretical with few real ap-

plications. This period is marked by ample work with fixed length binary

representation in the domain of function optimisation. From the early 1980s

the community of GAs has experienced an abundance of applications which

spread across a large range of disciplines [31]. Applications in the field en-

vironmental engineering were also spreading: groundwater monitoring [78],
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surface water flow forecasting [61] and real-time control of wastewater treat-

ment plants [77]. Specifically, in the field of biological wastewater treatment,

GAs have been applied for the calibration of the stoichiometric and kinetic

parameters of the ASM1 model by Kim et al. [53]. In their work steady-

state and dynamic data of the simulation benchmark [17] and measured data

sets from the Haeundae wastewater treatment plant were used for calibration.

Furthermore, Doby et al. developed a framework for design and optimization

of biological nutrient removal WWTPs [20]. A multiobjective optimization

was introduced in their work by generating a tradeoff curve between cost

and total nitrogen in the effluent. According to their results, the GA-based

approach is practical in WWTP design and it outperforms classical program-

ming routine both with respect to solution quality and robustness [62]. In

our contribution we are going to show that GA-based optimization can be

efficiently used for AAS-WWTP design as well.

3.2 Genetic algorithms in the optimization of

WWTPs

Classical optimization approaches with nonlinearities can be categorized into

those where derivates can and cannot be calculated easily. If they can be cal-

culated easily, they can be solved easily with classical nonlinear programming

methods. If not, derivatives can be estimated through parametric evalua-

tions, although these evaluations can be computationally very intensive. If

the problem has a discrete aspect as well, computational need may be even

larger. It is into this last category, where WWTP optimization problems

fall, therefore other, more effective optimization algorithms should be con-

sidered. In this dissertation, a relatively novel optimization method, genetic

algorithm is used for the solution of the problem.

Genetic algorithms are stochastic search techniques based on the mechan-

ics of natural selection and natural genetics. The GA is a stochastic global
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Figure 3.1: Simple genetic algorithm structure

search method that mimics the metaphor of natural biological evolution. GAs

operate on a population of potential solutions applying the principle of sur-

vival of the fittest to produce (hopefully) better and better approximations

to a solution. At each generation, a new set of approximations is created

by the process of selecting individuals according to their level of fitness in

the problem domain and breeding them together using operators borrowed

from natural genetics. This process leads to the evolution of populations of

individuals that are better suited to their environment than the individuals

that they were created from, just as in natural adaptation.

Individuals, or current approximations, are encoded as strings, chromo-

somes, composed over some alphabet(s), so that the genotypes (chromosome

values) are uniquely mapped onto the decision variable (phenotypic) domain.

The most commonly used representation in GAs is the binary alphabet {0,

1} although other representations can be used, e.g. ternary, integer, real-
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valued etc. In our example, the two variables (the length of the air-on and

air-off period, x1 and x2), may be mapped onto the chromosome structure

(Fig. 3.2) where x1 and x2 are both represented on 10 bits. The chromosome

representation itself is independent from the problem to be solved, it is only

with the decoding of the chromosome into its phenotypic values that any

meaning can be applied to the chromosome structure.

Figure 3.2: Coding the aeration profile into chromosomes

The algorithm of a classic GA can be seen in Fig. 3.1. After having

decided on the representation, the first step in the GA is to create an initial

population. This is usually achieved by generating the required number

of individuals using a random number generator that uniformly distributes

numbers in the desired range.

The selection algorithm selects individuals for reproduction on the basis

of their relative fitness. The applied selection technique employs a ”roulette

wheel” mechanism to probabilistically select individuals based on some mea-

sure of their performance. The basic roulette wheel selection method is sto-

chastic sampling with replacement. Here, the segment size and selection

probability remain the same throughout the selection phase and individuals

are selected according to the procedure outlined above.
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Having decoded the chromosome representation into the decision variable

domain, it is possible to assess the performance of individual members of a

population. This is done through an objective function that characterizes

an individual’s performance in the problem domain. In our example, the

fitness of an individual is measured by the effluent quality index defined in

Section 3. Thus, less pollution load belongs to higher fitness value. Once

the individuals have been assigned a fitness value, they can be chosen from

the population, with a probability according to their relative fitness, and

recombined to produce the next generation. Genetic operators manipulate

the characters (genes) of the chromosomes directly, using the assumption

that certain individual’s gene codes, on average, produce fitter individuals.

The recombination operator is used to exchange genetic information between

pairs, or larger groups, of individuals.

Mutation is generally considered to be a background operator that ensures

that the probability of searching a particular subspace of the problem space

is never zero. After recombination and mutation, the individual strings are

then, if necessary, decoded, the objective function evaluated, a fitness value

assigned to each individual and individuals selected for mating according to

their fitness, and so the process continues through subsequent generations. In

this way, the average performance of individuals in a population is expected

to increase, as good individuals are preserved and bred with one another and

the less fit individuals die out.

3.3 Illustrative case study

In this work a complete industrial-scale AAS wastewater treatment plant

is considered as a case-study described by [12]. This setup consists of an

aeration basin (V = 2050 m3) equipped with three surface aerators (P = 3

× 30 kW, kLa = 4.5 h−1) which provide oxygen for the organisms and mix

the incoming wastewater with the recycled activated sludge (Fig. 3.3). The
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settler is a flat bottom cylindrical tank with the surface of 855 m2 and the

depth of 2.8 m. The sludge from the bottom of the settler is either recycled

to the aeration tank (Qrec = 7600 m3/d) or extracted from the system with

the flow rate of Qw = 75 m3/d.

Figure 3.3: The wastewater treatment plant setup

The influent average flow rate (Qin) is about 3050 m3/d and the average

organic (COD ) and nitrogen (TN) concentrations are 343 g/m3 and 33

g/m3, respectively. The daily variations are approximated by their Fourier

rows using the following weighting functions:

Qin(t) = τQ(t)Qin (3.1)

where

τQ(t) =
3∑

k=1

[ak cos(2kπt) + bk sin(2kπt)]





a1 = −0.32; b1 = −0.18

a2 = 0.23; b2 = −0.01

a3 = −0.06; b3 = −0.01

and

CODin(t) = τCOD(t)CODin (3.2)
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where

τCOD(t) =
3∑

k=1

[ck cos(2kπt) + dk sin(2kπt)]





c1 = −0.32; d1 = −0.18

c2 = 0.23; d2 = −0.01

c3 = −0.06; d3 = −0.01

Since the concentration of total nitrogen in the influence shows little

variations, it is assumed that TNin is constant:

TNin = TNin. (3.3)

The influent flow rate and organic reach their maximum and minimum at

the same time at 11:00 a.m. (Fig. 3.4). This unusual behavior is due to the

significant industrial activity between 9:00 and 5:00. The average wastewater

composition is presented in Table 3.1 where the mass fractions are related to

the state variables of ASM1 (see Table 1 in Appendix).

Table 3.1: Fractions of the incoming wastewater

COD Mass-fraction(%) TN Mass-fraction(%)
fS,I 5 fS,NH 66
fS,S 35 fS,NO 0
fX,I 10 fS,ND 3
fX,S 35 fX,ND 32
fX,BH 15
fX,BA 0

3.3.1 Model of the aeration tank

The aeration tank is modelled as a continuously stirred tank reactor (CSTR)

where the mixing of the incoming wastewater and the recycled activated

sludge and the biological reactions take place according to the following mass
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Figure 3.4: Influent daily variations

balance:

dxi

dt
=

Qinxin
i + Qrecxrec

i − (Qin + Qrec)xi

V
+ ri(xi) (3.4)

where: ri is the reaction rate of component xi [102]. To model the complete

wastewater treatment process two internationally accepted models were cho-

sen: the Activated Sludge Model No. 1 [38] was chosen to simulate the

biological reactions under aerobic and anoxic conditions and the double-

exponential settling velocity function of Takács et al. [84] has been applied
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to model the clarification and thickening processes in the secondary settler

of the wastewater treatment plant.

Since the first introduction of the Activated Sludge Model No. 1 (ASM1)

several modifications have been suggested (ASM2, ASM2d, ASM3) and there

are several limitations with ASM1, however, its universal appeal and prac-

tical verification overshadow these limitations (see Section 2.2.1). Basically,

the removal of organic substances and nitrogen compounds are modelled in

ASM1. ASM1 has 13 components (state variables) and 8 processes; they are

related by stoichiometric and kinetic parameters. The values used for simu-

lation can be found in the Appendix. The values approximate those that are

expected at 15 ◦C.

3.3.2 Model of the secondary settler

The model of the secondary clarifier is based on a traditional one-dimensional

model applying flux-theory. It is assumed that the horizontal velocities pro-

files are uniform and that horizontal gradients in concentrations are neg-

ligible. Consequently, only processes in vertical dimensions are modelled.

Biological reactions are also neglected. The transport of solids takes place

via the bulk movement of the water and the settling of the sludge relative to

the water. The differential conservation equation describing this process is:

− ∂X

∂t
= v

∂X

∂y
+

∂vsX

∂y
(3.5)

with t as time, y as vertical coordinate with origin to the surface, X as

solids concentration and V as the vertical bulk velocity. The two terms of

the right-hand side refer to the bulk flux and the settling flux. Assuming

constant horizontal cross section A over the entire depth, the bulk velocity

V depends only on whether the observed cross section is in the underflow
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region or in the overflow region above the inlet position yin:

V =





vun = QR

A
if y ≤ yin

vov = −QE

A
if y > yin

(3.6)

where QR and QE are the underflow and effluent flow rates, respectively. The

settling velocity vs is determined according to the actual settling approach,

which relates vs to the sludge concentration, the sludge volume index and in

some cases also to the position y. The settling velocity function is related only

to the suspended solids concentration according to the double-exponential

settling velocity function of [84]:

vs(X) = max[0, min{v′0, v0(exp−rh(X−Xmin)− exprp(X−Xmin))}] (3.7)

where v′0 is the maximum settling velocity, Xmin is the minimum attainable

suspended solids concentration and rh and rp are the hindered and flocculant

zone settling parameters. The exact parameters used for the simulation can

be found in the Appendix.

3.4 Optimization problem statement

In this section we will define the goal of the optimization, introduce two cost

functions (effluent quality, aeration energy) for the evaluation of different

solutions and at last, we will impose certain constraints on our problem to

satisfy assumptions concerning our model.

The removal of nitrogen and organic compounds from the wastewater is

realized by switching the aeration on and off what results in an alternating

aerobic and anoxic environment. During the aerobic conditions the growth

heterotrophic biomass occurs at the expense of soluble substrate and dis-

solved oxygen; and the autotrophic biomass growths where soluble ammonia

serves as energy source. During the switched-off periods, anoxic growth of the
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heterotrophic biomass takes place with nitrate nitrogen as terminal electron

acceptor.

Therefore, the aeration profile can be seen as a sequence of cycles where

each cycle consists of one aerated and one non-aerated period. The goal of

the optimization process is to find an aeration profile (the number of cycles

and the length of the aerated and non-aerated periods) which minimizes the

pollution load in the receiving body. Since in previous works it was found that

aeration energy consumption can be reduced with less than 10–15%, effluent

quality improvement is addressed in this work, rather than minimization

of the energy consumption. In order to compare the results of different

simulations, quantitative evaluation of the results have been selected: the

pollution load is measured by an effluent quality index [87] and the energy

consumption is measured by the cost functions defined in the Simulation

Benchmark [17].

3.4.1 Effluent quality index

The effluent quality index (EQ) is used to quantify into a single term the

effluent pollution load into the receiving water body.

EQ =
1

1000

∫ t=1day

t=0
BSS × SSe(t) + BCOD × CODe(t) + BNKj × SNKj,e(t)

+ BNO × SNO,e(t) + BBOD5 ×BOD5,e(t)dt (3.8)

where EQ is the effluent quality index (kg poll. unit/d), Bi are weighting

factors, SS is the suspended solids concentration, COD and BOD are the

chemical and biological oxygen demands, SNO is the nitrite- and nitrate con-

centration and STKN is the total Kjeldahl nitrogen (all concentrations are in

g/m3).
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Table 3.2: Weighting factors for the different types of pollution
Factor Value
BSS 2
BCOD 1
BNKj

20
BNO 20
BBOD5 2

3.4.2 Aeration energy

The aeration energy is the amount of energy used by the turbines for the

aeration of the activated sludge basin per day.

AE = 24
∫ t=1day

t=0

n∑

i=1

[0.62(KLai(t))
2 + 12.06KLai(t)]dt (3.9)

where: KLa is the mass transfer coefficient in h−1 of the compartment. It

is important to remember that extra-power consumption during the actua-

tion the turbines is not accounted in this model, therefore, the final energy

consumption is proportional to the daily operating time.

3.4.3 Constraints

Further constraints have to be imposed in order to prevent the turbines from

early deterioration, satisfy the assumptions made for the modelling process

and define the search space for the optimization algorithm. Lower limits

are defined for the air-on and air-off periods in order to avoid too frequent

switching of the turbines. Moreover, lower limit of the air-on period ensures

the assumption of the completely mixed reactor, since short aeration time

may lead to the settling of the sludge to the bottom of the basin during the

non-aerated period. Though, it was shown [90] in pilot-scale experiments

that the assumption of complete mixing without aeration is valid for 33% of

the hydraulic retention time. Hence, low limits of 15 min for the air-on and
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air-off periods are sufficient.

Maximal air-on time prevents the early deterioration the turbines, while

maximal air-off time helps maintain the homogeneous particle distribution

in the basin. Therefore, the maximal time has been set to 120 min in both

cases.

During the optimization approaches used in AAS optimization, one cru-

cial question is the investigation of the long-term effect of an aeration profile.

Using short-term optimization, the optimal aeration profile is determined

from given initial concentrations. However, these aeration profiles may fail

to work for longer periods (several weeks) because of the wash-out phenom-

enon. In this case, the certain part of the biomass would gradually decrease

due to the dominance of aerobic and anoxic periods. In Fig. 3.5 the dom-

inance of anoxic periods (30% air-on and 70% air-off with 2 hours cycles)

leads to the washout of the nitrifying biomass from the system, what leads

to the significant dominance of TKN in the effluent over nitrate and nitrite.

Therefore, the simulation time has to be chosen long enough to take into

account the slow biological processes also.

3.4.4 Chromosome representation of the 24-hour

aeration profile

As a general approach the lengths of the aerated and non-aerated periods

are all independent variables to be optimized. In this work the number of

cycles is kept constant during an optimization, which is in agreement with

the approach of Chachuat et al. [12]. Determining the length of all aerated

and non-aerated periods requires significant computational effort, however,

one optimization is finished within one hour on an ordinary PC (2.6 GHz).

In this case the number of variables is 2Nc (Nc is the number of cycles) since

each cycle consists of air-on and air-off period. One of the challenges inher-

ent applying GAs to any problem is determining an appropriate manner of

representing design genes. During our first approach to solve the AAS opti-
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Figure 3.5: Washout phenomenon of the autotrophic biomass
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Figure 3.6: Best effluent quality index vs generation number

mization problem with 2Nc variables, a commonly used representation of the

vector consisting the 2Nc variables was used: single level binary string. To

encode the variables, Gray-code was applied to overcome the hidden represen-

tational bias in conventional binary representation as the Hamming distance

between adjacent values is constant.

A crucial point in the problem was to maintain the 24-hour profile during

chromosome mutation. Since mutation randomly changes the value of a few

variables, the length of the complete profile may be longer or shorter than

24 hours. To avoid this problem, the following procedure was used: the

chromosomes are decoded into their phenotypic values before and after the

mutation to determine which values have been modified. The modifications

are summed, then proportionally extracted from (added to) the phenotypic

values not influenced by the mutation. Finally, the values are encoded to

chromosomes again. Using this algorithm, it can be assured that the length

of the aeration profile can be kept at 24 hours.
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In order to reduce the computational effort needed to compute optimal

aeration profiles, a simplification of the problem can be used which reduces

the number of variables to be optimized. Instead of varying length of cycles,

equal cycle length can be considered which reduces the number of parameters

from 2Nc to Nc. To maintain the 24-hour aeration profile is relatively simple

in this case, the effect of genetic mutation is extracted from (added to) the

next air-off period. It will be shown in the next section that this approach

gave similar results to the previous one in spite of the reduction of variable

number.

3.5 Optimization results

In this section we will introduce the results based of the GA-based optimiza-

tion, compare the optimized performance with a traditional oxygen-based

feedback control and finally we give a summary on the advantages and dis-

advantages of GA-based wastewater aeration optimization.

Chacuat et al. has applied successive quadratic programming (SQP) to

solve the presented optimization problem. While this problem have been

addressed in their several papers [12, 13], unfortunately, little information

can be found either on the run of the solver, or on the computational time

needed to solve the problem. However, it is mentioned in [12] that they had

to face usually large computational time which contained several hundreds

of SQP iterations where each SQP iteration takes 10–20 seconds for one-day

long simulation (PIII-500MHz). Since, getting more realistic realistic results

requires several weeks of dynamic simulation, they made simplifications to

the optimization problem, however, the computational complexity after this

is not addressed in their article.
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Table 3.3: GA parameters

GA parameter Parameter value
Population size 20
Initialization Random feasible
Selection Random wheel
Crossover operator Single point
Mutation rate 0.01
Generation gap 0.5
Termination criterion 100 generations

3.5.1 Optimal aeration strategies

Optimal aeration profiles have been computed using the previously described

optimization approach for 2Nc variables applying simple enumeration. The

corresponding optimized values (effluent quality index and aeration energy)

can been found in Fig. 3.7. It can be seen that the effluent quality index is

decreasing as the number of cycles increases. Using 10 cycles a day (i.e. 10

air-on and 10 air-off periods) an effluent load of 467 kg/d and an aeration

energy consumption of 744 kWh/d can be reached. Increasing the number

of cycles up to 26 per day, the effluent load reduced to 405 kg/d while the

energy consumption of the aeration also decreased somewhat, down to 718

kWh/d. After 26 cycles per day, the effluent quality cannot be improved due

to the constraint imposed on the minimal length of the air-on period. The

different aeration strategies had insignificant effect on the amount of excess

sludge produced for disposal, it remained at a constant value of 298 kg/d.

The influence of the length of the air-on period has also been investigated.

The simulation results with 25 cycles and different air-on minimal time are

shown in Table 3.4. Increasing the minimal time of air-on period over 20

minutes significantly worsened the effluent quality, however, the air-on time

under 20 minutes had little effect on the effluent quality index. It is due to

the fact that optimal air-on time is between 15 and 25 minutes for this cycle
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Figure 3.7: Optimization results vs cycle number

number.

Table 3.4: The effect of minimal air-on time on the effluent quality

Minimal air-on time 5 10 15 20 30
Best effluent quality index 403 405 405 405 483
Aeration energy 716 718 715 718 723

During the experiments the computation of one iteration (one simula-
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tion for a 10-day optimization period) requires 15 seconds. Assuming 15

individuals and 50 generations during the GA, computational time may hit

1 hour (Personal Computer, 2.6GHz CPU). This is due to the small time

steps during the numeric integration and the high dimension of state vari-

ables. Therefore, optimization horizon must be sufficiently long to consider

the slowest dynamics in the system (e. g. growth of autotrophic biomass)

and as short as possible to save computational time. To overcome these

difficulties two techniques will be introduced here.

• To examine the long-term effect of the aeration profile, however, to

avoid large computational time, initial concentrations have to be se-

lected carefully. It was found that using the final steady-state con-

centrations of a simulation with the same number of cycles as to be

optimized - but with 50% aerobic and 50% anoxic time – as initial

concentration will result in steady-state conditions in a few days (7–

10 days) compared to the 60 days simulation recommended by [12].

Consequently, for an optimization with a certain cycle number, the ini-

tial concentrations are determined first and used afterwards during the

optimization.

• Another simplification of the optimization problem was investigated.

The number of variables can be reduced by using fixed length cycles,

that is to say 1440/Nc minutes a cycle. Using this approach, only

the lengths of the air-on periods have to be optimized, the lengths of

the air-off periods are determined by the difference between the air-on

periods and the full lengths of the cycles. With this simplification the

number of variables to be optimized is reduced to half which results in

faster convergence to the optimal result.

53



3.5.2 Comparison between a traditional oxygen based

aeration strategy and the optimized operating

mode

In order to evaluate the potential benefits of the optimal aeration profile

it should be compared to traditional aeration techniques. In practice, rule-

based operating modes are applied with fixed and equal cycle length where

the aeration is running until a specified condition is met (e.g. maximal

concentration of dissolved oxygen or minimal concentration of ammonium

is reached) [54, 69]. In this subsection we compare our results to a rule-

based operation mode which switches on the aeration every second hour and

switches off if the dissolved oxygen reaches up to 2 mg/l concentration (Fig.

3.8).

It has to be emphasized that the studied traditional aeration strategy is a

feedback control, therefore, a measurement has to be carried out before any

action is taken [100, 101, 47, 48]. This method provides more flexibility to

the control strategy to adapt to new conditions, however, it will be shown

that significantly better results can be achieved with optimization. Summing

up the results of the comparison it can be seen, that using the oxygen based

feedback control, the energy consumption of the aeration is high, and still

grows with the number of cycles (grows from 755 kWh/d to 770 kWh/d). On

the contrary, using the pre-optimized aeration strategy the energy consump-

tion is to some extent lower at 10 cycles a day, and is expected to be even

lower at higher number of cycles. On the other hand, the effluent quality

behaves in a similar manner in both cases, monotonically decreasing until

25 cycles per day. Though, the effluent quality is somewhat better (5–10%

in the effluent quality index) in the pre-optimized case at all cycle numbers.

Both the biological oxygen demand (BOD) and the chemical oxygen demand

(COD) improved, however, the most significant improvement can be found

at the nitrogen compounds. Nitrate- and nitrite-nitrogen concentration in
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the effluent decreased with 40%, the total Kejldahl nitrogen decreased with

15% (Fig. 3.9).
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Figure 3.8: Aeration profile using traditional control and in an optimized
case

3.5.3 Advantages and disadvantages of GA-based

optimization methods

The major advantage of GA-based optimization is its global nature, its abil-

ity to outperform a nonlinear programming procedure in certain cases. An-

other advantage of GA-based optimization is flexibility, since GAs alleviate

the representation of objectives and constraints in the strict mathematical

manner required by classical optimization procedures. This can be outstand-

ingly useful in WWTP optimization where complex chemical and biological

processes are incorporated. Computational intensity was found to be one

the drawbacks which results from the fact that each individual is tested dur-

ing the algorithm in every generation [20] which can sum up to thousands of

55



0 4 8 12 16 20 24
200

400

600

800

E
ffl

ue
nt

 q
ua

lit
y 

in
de

x 
[k

g/
d]

0 4 8 12 16 20 24
1.5

1.6

1.7

1.8

B
O

D
5 [g

/m
3 ]

0 4 8 12 16 20 24

28.6

28.8

29

C
O

D
 [g

/m
3 ]

0 4 8 12 16 20 24

3

3.5

T
K

N
 [g

N
/m

3 ]

0 4 8 12 16 20 24
7.9

7.95

8

8.05

8.1

S
S

 [g
/m

3 ]

0 4 8 12 16 20 24
1

1.5

2

2.5

S
N

O
 [g

N
/m

3 ]

Figure 3.9: Effluent quality parameters using traditional control (solid line)
and in an optimized case (dashed line)

simulations. Notwithstanding, classical programming techniques may require

even higher computational time if the gradients are computed parametrically.

On the other hand, our experiments showed that the adequately chosen ini-

tial concentrations and other techniques can keep the computational time –

therefore, generation and individual number – low.

Since the dynamic model of the WWTP is nonlinear, the problem may

exhibit several local optima, therefore, the global optimality of the aeration

profile cannot be guaranteed with traditional techniques (e. g. gradient

method). GAs also have the limitations of converging to suboptimal solu-
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tions, though, the mutation operator ensures that the probability of searching

a particular subspace of the problem is never zero, therefore, inhibits the con-

vergence to a local optimum, rather than the global optimum. Eventually,

proper GA parametrization (e. g. population and generation size, mutation

rate, initial population, etc.) can help avoid local optimal solutions and make

efficient algorithm usage.

3.6 Conclusions

In this contribution, an optimization problem of the so-called AAS process

was investigated. Since this problem possesses several characteristics which

make it difficult to solve with traditional optimization methods, a stochastic

optimization method (genetic algorithm) was used to solve this problem.

The goal was to find the most efficient aeration method (length of the air-on

and air-off periods) which minimizes the pollution load of the effluent in the

receiving body. Other operational parameters (energy consumption of the

aeration, the disposal of excess sludge) were also taken into account.

During the optimization only solutions with long time horizon were used

in order eliminate solutions which do not take into consideration the slow

dynamics in the wastewater process. However, to efficiently handle the large

computational intensity of the long time horizon simulations, different tech-

niques have been presented. It was found that adequate determination of

the initial concentration for the simulation and proper selection of the GA

parameters can keep the computational time reasonably low. Summarizing

our results, it was found that using GA approach optimal solutions can be

efficiently found, furthermore, the optimized result can reduce the pollution

load with 10%. The energy consumption for the aeration also decreased,

nevertheless, the effect of frequent switching of turbines at short aeration

periods are not taken into consideration.

In order to validate the results achieved with this optimization method
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further investigations should be carried out both for pilot-scale and full-scale

treatment plants. These should include the aeration optimization together

with the stoichiometric and kinetic parameter estimation from experimental

data, even though, the results may still fail to give the expected results under

large flow rate and load variations. Optimization should always be used as a

powerful planning, analysis and design tool for human-based modifications.

Speeding the GA computations by parallelizing and applying hybrid GAs

can be subject of further research. The latter approach can the advantage

of GA’s robust search at the beginning of the optimization procedure, then

switches to local search when the algorithm has converged sufficiently.
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Chapter 4

Dissolved oxygen control using

model predictive control

In this chapter, a dissolved oxygen control problem will be addressed like

it is in the previous chapter, however, here not the length of the aerated

period will be controlled but the aeration intensity will be tuned in order

to reach better effluent quality. The results presented in this chapter are

party based on the article Dissolved oxygen control using model predictive

control accepted for publication in 2007 to the journal Computers & Chemical

Engineering.

Activated sludge wastewater treatment processes are difficult to be con-

trolled because of their complex and nonlinear behavior, however, the control

of the dissolved oxygen level in the reactors plays an important role in the

operation of the facility. For this reason a new approach is studied in this

paper using simulated case-study approach: model predictive control (MPC)

has been applied to control the dissolved oxygen concentration in an aerobic

reactor of a wastewater treatment plant. The control strategy is investi-

gated and evaluated on two examples using systematic evaluation criteria:

in a simulation benchmark – developed for the evaluation of different control

strategies – the oxygen concentration has to be maintained at a given level
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in an aerobic basin; and a changing oxygen concentration in an alternating

activated sludge process is controlled using MPC technique. The effect of

some MPC tuning parameters (prediction horizon, input weight, sampling

time) are also investigated. The results show that MPC can be effectively

used for dissolved oxygen control in wastewater treatment plants.

4.1 Introduction

Wastewater treatment plants are large non-linear systems subject to signif-

icant perturbations in flow and load, together with variation in the com-

position of the incoming wastewater. Nevertheless, these plants have to be

operated continuously, meeting stricter and stricter regulations. The tight

effluent requirements defined by the European Union a decade ago (European

Directive 91/271 ”Urban wastewater”) become effective in 2005 and are likely

to increase both operational costs and economic penalties to upgrade exist-

ing wastewater treatment plants in order to comply with the future effluent

standards. Many control strategies have been proposed in the literature but

their evaluation and comparison, either practical or based on simulation is

difficult. This is partly due to the variability of the influent, to the com-

plexity of the biological and biochemical phenomena and to the large range

of time constants (from a few minutes to several days) but also to the lack

of standard evaluation criteria (among other things, due to region specific

effluent requirements and cost levels). A benchmark has been proposed by

the European program COST 624 for the evaluation of control strategies in

the wastewater treatment plants [17, 93]. This study is in agreement with

the benchmark methodology especially from the viewpoint of control perfor-

mances.

In the literature several extensive surveys based on simulation can be

found on activated sludge process control [16, 18]. Dissolved oxygen concen-

tration, internal recycle flowrate, sludge recycle flowrate and external carbon
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dosing rate are the frequently investigated manipulated variables in these

systems [8, 15, 63, 98, 99]. Nevertheless, the dissolved oxygen (DO) control

is the most widely-spread in real-life, since the DO level in the aerobic reac-

tors has significant influence on the behavior and activity of the heterotrophic

and autotrophic microorganisms living in the activated sludge. The dissolved

oxygen concentration in the aerobic part of an activated sludge process should

be sufficiently high to supply enough oxygen to the microorganisms in the

sludge, so organic matter is degraded and ammonium is converted to nitrate.

On the other hand, an excessively high DO, which requires a high airflow

rate, leads to a high energy consumption and may also deteriorate the sludge

quality. A high DO in the internally recirculated water also makes the deni-

trification less efficient. Hence, both for economical and process reasons, it is

of interest to control the DO. Several control strategies have been suggested

in the literature. As a basic strategy, a linear PI controller with feedfor-

ward from the respiration rate and the flow rate was presented [28, 10, 11].

[4] based their design on a recursively estimated model with a linear oxy-

gen mass transfer coefficient, but the excitation of the process was improved

by invoking a relay which increases the excitation. [11] have applied auto-

tuning controller based on the on-line estimation of the oxygen transfer rate.

A strategy for designing a nonlinear DO controller was developed by [60]. [9]

have developed a multicriteria control strategy with Takagi–Sugeno fuzzy-

supervisor system to decrease the total cost although keeping good perfor-

mances. In this paper, a model predictive control is depicted to maintain

the dissolved oxygen concentration at a certain setpoint based on a linear

state-space model of the aeration process.

Model predictive control (MPC) refers to a class of computer control algo-

rithms that utilize an explicit process model to predict the future response of

a plant. Originally developed to meet the specialized control needs of power

plants and petroleum refineries, MPC technology can now be found in a wide

variety of application fields including chemicals, food processing, automotive,
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and aerospace applications [5, 29]. In recent years the MPC utilization has

changed drastically, with a large increase in the number of reported applica-

tions, significant improvements in technical capability, and mergers between

several of the vendor companies. Qin and Badgwell gives a good overview

of both linear and nonlinear commercially available model predictive control

technologies [74]. Model predictive control has also been implemented on sev-

eral complex nonlinear systems [24, 82, 97, 104], furthermore, Ramaswamy et

al. [75] have recently applied MPC to control a non-linear continuous stirred

tank bioreactor. Steffens et al. [83] already applied model predictive control

on an activated sludge system, however, their work has been based on the

assumption of a multivariable control problem rather than focusing on the

dissolved oxygen control. Consequently, this control method seems to be a

good candidate for the oxygen control of wastewater treatment plants, too.

4.2 Modelling aspects

4.2.1 Modelling the biological reactions

In the simulation studies two internationally accepted models were chosen

to simulate the processes in the wastewater treatment plant: the Activated

Sludge Model No. 1 [38] was chosen to simulate the the biological reactions

in the aerobic and anoxic reactors and double-exponential settling velocity

function of [84] has been applied to model the clarification and thickening

processes in the secondary settler of the wastewater treatment plant.

4.2.2 Modelling the aeration process

Aeration is a crucial part of the whole activated sludge process, because

microorganisms have to be supplied with enough oxygen so that they have

enough electron acceptor capacity for their metabolism process. The equip-

ment used to deliver oxygen to the aeration system is typically provided by
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surface mechanical type aerators or diffused aeration systems. Some common

types of mechanical surface aeration equipment include low speed mechani-

cal aerators, direct drive surface aerators, and brush type surface aerators.

Diffused aeration systems include a low pressure, high volume air compres-

sor (blower), air piping system, and diffusers that break the air into bubbles

as they are dispersed through the aeration tank. The most commonly used

blowers are positive displacement type blowers, and centrifugal blowers (sin-

gle and multi-stage).

The whole process while oxygen transports from the air bubbles to the

cells of the microorganisms is complex, which can be divided into several

subprocesses: convective mass transfer within the air bubble to the gas–liquid

border surface; getting through the phase border; mass transfer within the

liquid phase to the microbial flocs. Within the flocs, after getting to the cell

wall the oxygen has to diffuse through the cell wall. Nevertheless, the slowest

of these processes is the second one (transfer through the phase border), so

it soon becomes the determining factor for the whole transfer process. This

complex process can be described with the oxygen mass transfer coefficient

(KLa) which is used as a manipulated variable during the simulations.

The aeration details of the model are introduced as a dissolved oxygen

mass balance on a completely stirred tank reactor. This is shown by the

following equation:

dSO

dt
=

Q× SO,in −Q× SO + KLa(Ssat − SO)

V
+ rSO (4.1)

where: V is the rector volume; SO is the concentration of dissolved oxygen

in the reactor; Q is the flow rate; SO,in is the DO concentration entering

the reactor; KLa is the overall mass transfer coefficient; Ssat is the DO sat-

uration concentration and rSO is the rate of use of DO by biomass. The

flows, concentrations and reaction rates are known from the activated sludge

model, therefore, saturated oxygen concentration and oxygen mass transfer

coefficient have to be calculated.
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The saturated oxygen concentration can be calculated by using Henry’s

law:

Ssat =
k × β × ρ× PO2

HO2

(4.2)

where: k is a unit conversion factor; β is a salts and ions correction factor;

ρ is water density; PO2 is the corrected partial pressure of the oxygen and

HO2 is the Henry’s law constant for DO. During the simulation KLa is used

for the description of the aeration process, which should be corrected to the

temperature according to the following equation:

KLa(T ) = αKLa(20◦C)θ(T−20) (4.3)

where: KLa(20◦C) is the mass transfer coefficient at temperature 20◦ C, θ is

the temperature correction factor and α is a coefficient.

Control of the dissolved oxygen concentration

In order to maintain the dissolved oxygen concentration at a given level,

the following process model is used. The dissolved oxygen concentration is

measured by an ideal sensor (assuming no measurement error) in the reactor;

the concentration value is processed by the control method to calculate KLa;

the KLa is corrected according to the temperature if needed; finally KLa is

applied to change the oxygen concentration level in the biological reactor.

Using this value, the cost for the aeration and the volume of air blown by

the diffusors can also be calculated.

4.3 Model predictive control

Model predictive control refers to a class of algorithms that compute a se-

quence of manipulated variable adjustments in order to optimize the future

behavior of a plant. At each control interval the MPC algorithm attempts

to optimize future plant behavior by computing a sequence of future ma-
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Figure 4.1: Schematic view of the dissolved oxygen control process

nipulated variable adjustments. The first input in the optimal sequence is

then sent into the plant, and the entire calculation is repeated at subsequent

control intervals.

Figure 4.2: Model predictive control

For any assumed set of present and future control moves ∆u(k), ∆u(k +

1), . . . , ∆u(k + m − 1) the future behavior of the process outputs y(k +

1|k), y(k + 2|k), . . . , y(k + p|k) can be predicted over a horizon p. The m
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present and future control moves (m < p) are computed to minimize a

quadratic objective of the form:

min
∆u(k),∆u(k+1),...,∆u(k+m−1)

∑p
l=1 ‖Γy

l [y(k + l|k)− r(k + l)]‖2 + (4.4)

∑m
l=1 ‖Γu

l [∆u(k + l − 1)]‖2

subject to inequality constraints:

y ≤ y(k + j) ≤ y j = 1, . . . , p

u ≤ u(k + j) ≤ u j = 0, . . . , m− 1

∆u ≤ ∆u(k + j) ≤ ∆u j = 0, . . . ,m− 1

Here Γy
l and Γu

l are weighting matrices to penalize particular components

of y or u at certain future time intervals. r(k + l) is the (possibly time-

varying) vector of future reference values (setpoints). Though m control

moves ∆u(k), ∆u(k + 1), . . . , ∆u(k + m − 1) are calculated, however, only

the first one (∆u(k)) is implemented. At the next sampling interval, new

values of the measured output are obtained, the control horizon is shifted

forward by one step, and the same computations are repeated. The predicted

process outputs y(k+1|k), . . . , y(k+p|k) depend on the current measurement

(y(k)) and assumptions we make about the unmeasured disturbances and

measurement noise affecting the outputs.

4.3.1 Controller design

The state-space model for the controller design model is generated by the

linearization of the aeration process in the ASM1 model at a steady-state op-

erating point of the wastewater treatment plant. The steady-state is reached

by applying constant concentration parameters for the influent for 100 days,

which can be also used as a starting point for later simulations. The exact

parameters can be found in the simulator manual [17], however, they are
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beyond the scope of this paper.

From the point of view of process modeling for model predictive control,

the following input variables can be separated: manipulated variables, un-

measured disturbances and measured disturbances. Moreover, measurement

noise can also be added to the plant output. In the investigated example, the

concentration of the dissolved oxygen is considered as the plant output, the

manipulated variable is the oxygen mass transfer coefficient (KLa, [d−1]), all

the other inputs to the reactor are considered as unmeasured disturbances.

No noise on the value of the measured dissolved oxygen concentration is sup-

posed which is also falls in with the recommendations of the benchmark: the

oxygen sensor is ideal, neither sampling, nor delay time, the low detection

limit is zero and no measurement noise is taken into consideration.

Using sampling time low enough to capture the dynamic properties of

the system, the dissolved oxygen concentration has been determined around

the steady-state at different aeration intensity. This resulted in the following

continuous-time state-space model:

dx

dt
= Ax + Bu (4.5)

y = Cx + Bu

where: x is the state vector, u and y are the input and output vectors and

A,B,C and D are the state-space matrices. A second-order model proved to

be a good representation of the aeration process.

State-space models of the aeration process have been set up around dif-

ferent steady states of the wastewater treatment plant using prediction error

method based on iterative minimization. State-space models can be charac-

terized by their step response: step response at high dissolved oxygen level

is depicted by the dashed line (Step response 2) in Fig. 4.3. Responses at

lower dissolved oxygen level gave results of lower amplitude (Step response 1

at 1.5 mg/l, response 2 at < 1mg/l). Since in the dissolved oxygen concentra-
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Figure 4.3: Step response of the identified model at different steady-states of
the system

tion generally has to be maintained about 2 mg/l, the following continuous

spate-space matrices were selected for the simulation:

A =


 −100.03 115

167.77 −211.47


 B =


 0.87

−1.55


 (4.6)

C =
[

7.55 0.32
]
D = 0

A number of tuning parameters such as control and prediction horizons,

weight matrices, influence the performance of the controller. Trial-and-error
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method was used for the identification of these parameters.

For the tuning process a setpoint-change at t = 0.03 d and an input

disturbance (reducing the input dissolved oxygen concentration with 1 mg/l)

at t = 0.07 d were used. In Fig. 4.4 the responses of the contolled and

manipulated variables to the setpoint change and the input disturbance can

be seen at different tuning parameters. The setpoint can be seen in the upper

figure marked with dashed line. The continuous line represents the response

of a controller with sampling time ∆t = 2.5 · 10−4 day and controller tuning

parameters: Γy = 1, Γu = 0.01,m = 1 and p = 10. Reducing the prediction

horizon gave the response marked with dotted line in Fig. 4.4 and increasing

the input weight resulted in the line marked with dashed-dotted line. The

simulation studies show the lower prediction horizon gave faster responses

but significantly increasing the overshot amplitude, while larger input weight

increased both response time and overshoot.

4.4 Performance assessment

The process assessment is performed at two different levels: IAE (integral of

absolute error) and ISE (integral of square error), maximal deviation from

setpoint and error variance serve as a proof that the proposed control strategy

has been applied properly. In this paper emphasis is put on the first level

of assessment, however, assessment of a activated sludge treatment process

(effluent quality, costfactor for operation) in the benchmark example is also

carried out for the sake of comparison. Length of the observation period is

7 days in the first example as defined in the benchmark and 12 hours in the

second example.
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Figure 4.4: Controller response to input disturbance and setpoint change at
different parameters (dotted line shows fast response and semi dotted line
shows slow response

4.4.1 Controller performance

Integral of absolute error is defined as:

IAE =
∫ t2

t1
|e|dt (4.7)

where: e is the error (e = ysetpoint − ymeasured) and t1 and t2 is the beginning

and the end of the observation period, respectively.
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The integral of square error can be computed using the following formula:

ISE =
∫ t2

t1
e2dt (4.8)

Moreover, maximal deviation from the setpoint is given as follows:

Devmax = max{|e|} (4.9)

and variance of error:

V ar(e) = (e2)− (e)2 with e =

∫ t2
t1

e dt

T
(e)2 =

∫ t2
t1

e2 dt

T
(4.10)

Maximum deviation in the manipulated variable

max(DevMV ) = umax − umin (4.11)

where: u is the manipulated variable and the maximum and minimum are

determined over the observation period.

Maximum deviation in the change of the manipulated variable

max(∆u) = max(|u(t + ∆t)− u(t)|) (4.12)

where: ∆t is the sampling period.

4.4.2 Effluent quality index and operating cost

At the second level of the controller assessment, effluent quality operating

cost is defined in the simulation benchmark. Effluent quality index represents

the levies or fines to be paid due to the discharge of pollution in the receiving

bodies. The effluent quality is averaged in the first example over a 7-day

observation period based on a weighting of the effluent loads of compounds.
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EQ =
1

1000T

∫ t2

t1
BSS × SSe(t) + BCOD × CODe(t) + BNKj × SNKj,e(t)

+ BNO × SNO,e(t) + BBOD5 ×BOD5,e(t)dt (4.13)

where: EQ is the effluent quality index (kg poll. unit/d), Bi are weighting

factors, SS is the suspended solids concentration, COD and BOD are the

chemical and biological oxygen demands, SNO is the nitrite- and nitrate

concentration and STKN is the total N (all concentrations are in g/m3). The

energy needed for the aeration is of special interest in this study, which is

determined by the following formula:

AE =
24

T

∫ t2

t1

n∑

i=1

[0.4032(KLa(t))2
i + 7.8408KLai]dt (4.14)

where: KLa is the mass transfer coefficient in h−1 of the i-th compartment.

The sludge production to be disposed (Psludge) is calculated from the total

solid flow from wastage and the solids accumulated in the system over the

7-day period. The pumping energy is calculated as:

PE =
0.04

T

∫ t2

t1
(Qa(t) + Qr(t) + Qw(t))dt (4.15)

where: Qa is the internal recirculation flow rate, Qr is the sludge recirculation

and Qw wasteage flow rate, all expressed in m3/d.

4.5 Application example I: Control of the

Simulation Benchmark

To enhance the acceptance of innovating control strategies the evaluation

should be based on a rigorous methodology including a simulation model,

plant layout, controllers, performance criteria and test procedures. The

72



COST 682 Working Group No.2 has developed a benchmark for evaluat-

ing by simulation, control strategies for activated sludge plants [17]. The

benchmark is a simulation environment defining a plant layout, a simulation

model, influent loads, test procedures and evaluation criteria. For each of

these items, compromises were pursued to combine plainness with realism

and accepted standards. Once the user has validated the simulation code,

any control strategy can be applied and the performance can be evaluated

according to certain criteria.

The layout is relatively simple: it combines nitrification with pre-denitri-

fication, which is most commonly used for nitrogen removal. The benchmark

plant is composed of a five-compartment reactor with an anoxic zone and a

secondary settler. A basic control strategy is proposed to test the benchmark:

its aim is to control the dissolved oxygen level in the final compartment of the

reactor by manipulation of the oxygen transfer coefficient and to control the

nitrate level in the last anoxic compartment by manipulation of the internal

recycle flow rate. In this paper, only the control of the dissolved oxygen level

is selected for the demonstration of the efficiency of the MPC controller.

The plant layout can be seen in Fig. 4.5. The first two compartments

makes up the anoxic zone with individual volume of 1000 m3, and 3 com-

partments create the aerobic zone with individual volume of 1333 m3. The

oxygen mass transfer coefficient rate is set to 240 d−1, while the KLa at

the last compartment is controlled in order to maintain the dissolved oxygen

concentration at 2 mg/l. The flowrate of the internal recirculation is kept at

55338 m3/d. The secondary settler has a conical shape with the surface of

1500 m2 and the depth of 4 m. The flowrate of the sludge recirculation is

18446 m3/d and the excess sludge is removed from the settler at 385 m3/d.

Since disturbances play an important role in the evaluation of controller

performances, influent disturbances are defined for different weather condi-

tions. In this paper, dry-weather data are considered containing 2 weeks of

influent data at 15 minutes sampling interval. Parameters for the second
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Figure 4.5: Simulation benchmark plant layout

week influent are depicted in Fig. 4.6. Diurnal variations and weekly trends

(lower peaks in weekend data) are also depicted by these data. The primary

goal of the control is to maintain the dissolved oxygen concentration at the

2 mg/l level in the last compartment.

The controller tuning process in described in Section 4.4, but it is em-

phasized that sampling time has a significant effect on the effectiveness of

the controller. Sampling time was selected at ∆t = 10−3 day ≈ 1 min 25

sec, later simulations were carried out at ∆t = 2.5 · 10−4 day ≈ 20 sec what

resulted in considerable effect on the performance of the controller. Parame-

ters of the controller were tuned by trial-and-error method. On one hand, the

main goal was to maintain the dissolved oxygen concentration at the desired

level, on the other hand, high energy consumption and rapid changes in the

air flow rate should be avoided.

Data of the second week of a 2-week dry weather dynamic simulation

are of interest, preceding days are used for stabilization of the system. The

assessment – as described in Section 4.4 – can be seen in Figs. 4.7 and 8.1 and

in Tables 4.1 and 4.2 compared to the PI controller described originally in the

benchmark for process control. It has to be noted, that internal recycle flow

control was also applied in the benchmark besides the DO control, however,

for the sake of direct evaluation only DO control has been applied in this

simulation, recycle flow rate is kept at constant flowrate. Using this setting,

better effluent quality index was achieved, nevertheless, pumping energy is

almost double of that achieved with control. The energy consumptions for
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Figure 4.6: Influent characteristics

the aeration are approximately the same using either control strategy.

The performance of the model predictive controller – largely determined

by the parameters of the controller, like sampling time, prediction horizon

and input weight – is compared to the benchmark results. PI controller

performance is also influenced by the parameters, the values presented here

are the average results taken from the simulator manual. In this simulation,

two sampling times were used for evaluation. It can be seen from Table 4.2

that that reducing the sampling time to its one-fourth, (from 10−3 to 2.5·10−4

day) reduced the integral of absolute error with more than 50% and reduced
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Table 4.1: Performance of the activated sludge process

PI control DO MPC DO MPC
benchmark ∆t = 10−3d ∆t =

2.5 · 10−4d
Influent quality
(kg poll. unit/d) 42042 42042 42042
Effluent quality
(kg poll. unit/d) 7605 7560 7560
Sludge production
(kg SS) 17100 17117 17116
Aeration energy
(kWh/d) 7248 7277 7277
Pumping energy
(kWh/d) 1458 2966 2966

the integral of square error with more than 80%. Maximum deviation from

setpoint and variance also descreased as the absolute error is significantly

less during the whole observation period.
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Table 4.2: Performance of the oxygen controller

PI control DO MPC DO MPC
benchmark ∆t = 10−3d ∆t =

2.5 · 10−4d
Controlled variables (SO,5)
Setpoint (gCOD/m3) 2 2 2
Integral of absolute error
(gCOD/(m3d)) 0.15 0.1950 0.0892
Integral of square error
((gCOD/(m3d))2) 0.02 0.0128 0.0026
Max deviation from setpoint
(gCOD/m3) 0.21 0.1648 0.0781
Variance of error
(gCOD/m3) 0.04 0.0427 0.0196
Manipulated variable (KLa5)
Max deviation of MV (d−1) 204.5 187.39 187.19
Max deviation of ∆MV (d−1) 28.71 33.12 18.89
Variance of MV 59.85 59.79 59.76
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Figure 4.7: The dissolved oxygen concentration and the oxygen mass transfer
coefficient in the third aerobic basin (solid line ∆t = 2.5 · 10−4; dashed line
∆t = 10−3)
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4.6 Application example II: control of an

alternating sludge process

Most municipal wastewater treatment plants use an activated sludge process.

More specifically, for small-size treatment facilities the process generally con-

sists of a single aeration basin configuration in which oxygen is either sup-

plied by surface turbines or diffusers, and is known as the alternating acti-

vated sludge (AAS) process. Nitrogen removal is realized simply switching

the aeration system on and off to create continuous alternating aerobic and

anoxic conditions, respectively. During switched-on periods, ammonium is

converted into nitrate which is subsequently used to remove organic carbon in

switched-off periods. An important feature of the AAS process is its flexible

control ability which makes it suitable for optimization of operating costs.

Since the process consists of alternating aerated and nonaerated periods and

the aeration induces 60–80% of the global energy consumption (and subse-

quently operating costs) of a treatment plant, oxygen control is therefore of

great importance.

In this study, an industrial-scale AAS treatment plant is considered de-

scribed in literature [14]. The process consists of a unique aeration tank

(V = 2050m3) equipped with three mechanical surface aerators (turbines)

which provide oxygen (P = 3× 30kW, KLa = 4.5h−1) and mix the incoming

wastewater with biomass (Fig. 4.8). The settler is a cylindrical tank where

the solids are either recycled to the aeration tank (Qrec = 7600m3/d) or ex-

tracted from the system (Qw = 75m3/d). During the simulation constant

influent flow rate and composition were supposed in order to evaluate the

efficiency of the controller subject to rapid setpoint changes.

In this simulation the alternating sludge process is realized by changing

the dissolved oxygen setpoint between 0 and 2 mg/l in the bioreactor at

72 minutes (0.05 day). The manipulated variable (oxygen mass transfer

coefficient) is varied between 0 and 240 d−1 to reach the desired DO-level
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Figure 4.8: The alternating activated sludge process

using model predictive control. The controller is based on a linear state-space

model of the aeration process assuming ideal controller and measurement

described in Section 4.4. The changing dissolved oxygen concentration can

be seen in Fig. 4.9 and in Table 4.3 with different prediction horizons of the

controller.

Simulations were carried out at several parameter settings to evaluate the

performance of the controller during the 0.5 day observation period. Sam-

pling time was 2.5 · 10−4 day (≈ 20 sec). The output weight was fixed to

1, while the input weight was varied between 0.001 and 0.01. The control

horizon was also fixed to 1, the prediction horizon was changed between 3

and 100. The results showed that lower prediction horizon reduced signifi-

cantly the integral of absolute and square error, however, input weight had

insignificant effect on the error according the prediction horizon (Fig. 4.11).

Reducing the prediction horizon from 10 to 3 moves (Γu = 0.005), decreased

the integral of absolute error with more than 40%, nevertheless, maximal

change in the manipulated variable between two sampling times increased

from 45 to 157 d−1. It can be observed in Fig. 4.10 that both lower predic-

tion horizon and lower input weight can significantly increase the maximum
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Table 4.3: Performance of the oxygen controller in the alternating activated
sludge process

Prediction horizon p = 3 p = 5 p = 10
Controlled variables (SO)
Setpoint (gCOD/m3) 0/2 0/2 0/2
Integral of absolute error(gCOD/(m3d)) 2.08·10−2 2.18·10−2 3.48·10−2

Integral of square error ((gCOD/(m3d))2) 9.46·10−3 5.99·10−2 1.33·10−2

Max deviation from setpoint (gCOD/m3) 2.32·10−2 2.73·10−2 4.55·10−2

Manipulated variable (KLa)
Max deviation of MV (d−1) 240 240 240
Max deviation of ∆MV (d−1) 157.28 126.05 45.38

deviation in the change of KLa, at Γu = 0.001 and p = 3 the change in the

value of the KLa reaches 240 d−1, which is near to its maximal value (270

d−1).
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Figure 4.9: Dissolved oxygen control in the alternating activated sludge
process (solid line: p = 3; dashed line: p = 10; dotted line: p = 20)
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coefficient over the 12 h simulation period

4.7 Conclusions

Model predictive control strategy of the dissolved oxygen concentration has

been quantitatively investigated on two simulated case-studies: the dissolved

oxygen concentration has to be maintained at 2 mg/l in the an aerobic basin

of a pre-denitrification process with influent disturbances and an alternating
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Figure 4.11: Integral of absolute error over the 12 h simulation period

dissolved oxygen level has to be kept up in an alternating activated sludge

process. To evaluate the results systematic performance criteria were set

up and calculated during the simulations concerning the performance of the

controller. Several tuning parameters of the controller (input weight, predic-

tion horizon, sampling time) were also investigated. Based on the simulation

results presented in this chapter, model predictive control can be effectively

applied in the control of dissolved oxygen concentration of wastewater treat-

83



ment plants.

Results from the first case-study show that the performance of the con-

troller can be considerably enhanced by decreasing the sampling time, how-

ever, this improvement has no significant impact either on the the whole

activated sludge process, or the energy consumption used for the aeration

process. The integral of absolute error decreased with 40% by reducing the

sampling time from 1 min 25 sec to 20 sec, however, the effluent quality in-

dex remained at 7560 kg (pollution unit)/day and the energy for the aeration

remained at 7277 kWh/d.

The goal of the alternating sludge process simulation was to investigate

how efficiently model predictive control can follow the rapidly changing dis-

solved oxygen setpoint. From the results it can be concluded that lower

prediction horizon and input weight can decrease the error between the set-

point and the dissolved oxygen concentration, however, this will increase

overshot and cause rapid moves of the manipulated variable what can be

avoided imposing constraints on the manipulated variable.
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Chapter 5

Mathematical modellig of

secondary settling tanks

The results presented in this chapter are party based on the article Compar-

ison of one-dimensional secondary settling tank models published in 2006 to

the Journal of the European Water Association [43].

Whereas the major developments over the past decades have focused on

the biological reactor, e.g. biological N and P removal, the secondary set-

tling tank (SST) has a major role in achieving the increasing stringent effluent

quality standards. The biological reactor might be meeting the required ef-

fluent standards, however, by not capturing the suspended solids adequately,

could cause a possible failure in compliance with the COD (BOD5), total N

and P standards. Indeed, at many wastewater treatment plants significant

improvements in effluent COD, TN and TP concentrations can be achieved

by reducing effluent SS concentrations. In many cases this can be done with-

out the increased cost of effluent filtration, but with improved SST design

and operation in general and improved flocculation features in particular.

Earlier SSTs were designed only by empirical hydraulic criteria such as

overflow rate that do not take into consideration sludge concentration and

settleability. Today there are available not only much improved design pro-
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cedures but also hydrodynamic models for simulating the distribution and

flows of water and solids in full-scale SSTs. These models allow the influences

of inlet arrangement, sludge collection systems and sludge density currents,

all of which can affect the effluent SS concentration, to be modelled with

remarkable accuracy.

Malfunction of the secondary settling tanks may also be the bottleneck of

the whole activated sludge wastewater treatment process. Therefore, when

using computer simulation for the design and optimal operation of wastewa-

ter treatment plants, the SST model has to be selected adequately besides

the model describing the activated sludge process. For this reason, six SST

models are introduced and compared in this chapter using the framework of

the Simulation Benchmark developed by the COST ’Integrated Wastewater

Management’ 682 group [17]. The Takács-model is described in the Bench-

mark in detail, combination of it with the Härtel–Pöpel correction function

is investigated is this study. The models of Otterpohl and Dupont having

three component fractions, the model of Hamilton which adds a diffusion

term to the convective process description and a reactive SST model are also

simulated and analysed in this contribution.

5.1 Introduction to secondary settling tanks

In the activated sludge process, the biological sludge mass has to be separated

from the treated water to produce clear final effluent. This solid-liquid sep-

aration process is usually achieved by gravity sedimentation in traditional

secondary settling tanks (SSTs, often referred as secondary settlers, final

clarifiers or secondary thickeners).

From the biological reactor the mixed liquor enters the secondary clarifier

where it should be sufficiently clarified in order to produce an effluent of ac-

ceptable quality. The sludge should also be adequately thickened so that the

desired solids level in the bioreactors can be maintained through sludge re-
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circulation. Furthermore, secondary settlers should function as storage tanks

to store sludge under high solids loading rate and high surface overflow rate

typically under peak wet weather conditions. Should any of these functions

fail, suspended solids (SS) will be carried over the effluent weirs and escape

with effluent. Besides the resulting poor effluent quality, excessive loss of SS

may result in the decrease of mixed-liquor suspended solids and hence the

sludge age, what affects the whole biological process (e.g. nitrogen removal

efficiency can significantly decrease).

The behaviour of the secondary settler in its clarification, thickening and

storage function is influenced both by the settling tank design features (e.g.

flow rate, inlet arrangement) and the conditions in the biological reactor.

For example, under-aeration can decrease the settleability and thickenabil-

ity of the sludge owing to the proliferation of filamentous bacteria, which

leads to bulking. However, over-aeration can lead to poor flocculation and

pinpoint floc formation, which result in poor clarification even though the

sludge might otherwise have good settling characteristics. Therefore, the

functions of the SST and biological reactor are closely related to each other,

so the design and operation of one cannot be undertaken independently of

the other. Mathematical modelling used for plant design and operation also

has to take into account the physical and biological processes in the SST since

practical experience showed that that the SST is often the main bottleneck

of the entire activated sludge process.

5.2 One-dimensional secondary clarifier

models

Common one-dimensional models are based on the sedimentation flux theory

of Kynch [59]. It is assumed that in clarifiers the profiles of horizontal veloci-

ties are uniform and that horizontal gradients in concentration are negligible.

Consequently, only the processes in the vertical dimension are modelled. The
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resulting idealized settling cylinder is treated as a continuous flow reactor.

Fig. 5.1 shows the flow scheme. At the inlet section, the inflow and the

introduced suspensions are homogeneously spread over the horizontal cross

section and the suspension is diluted by convection as well as other transport

processes. The flow is divided into a downward flow towards the underflow

exit at the bottom, and an upward flow towards the effluent exit at the top.

[56] Both liquid and suspended solids enter the cylinder through the inlet

cross section and are withdrawn at the bottom and at the top. Further

assumptions are also taken into consideration:

• The concentration of SS is completely uniform within any horizontal

plane within the settler;

• The bottom of the solids-liquid separator represents a physical bound-

ary to separation and the solids flux due to gravitational settling is zero

at the bottom;

• There is no significant biological reaction affecting the solids mass con-

centration within the separator.

Under steady-state conditions the flow and mass balances are:

QF = QE + QR

QFXF = QEXE + QRXR

with Q and X as flow rate and SS concentration, respectively, and the sub-

scripts F, E and R for feed, effluent and recycle, respectively.

The transport of solids take place via the bulk movement of the water

relative to the side wall and the settling of the sludge relative to the water.

The total flux JT consists of the bulk flux JB = vX and the settling flux

Js = vsX and becomes

JT = vX + vsX (5.1)

88



Figure 5.1: Flux directions of the one-dimensional SST model approach

where v denotes the vertical bulk velocity, vs the settling velocity of the

sludge and X the sludge concentration. The form of differential conservation

equation describing this process is:

− ∂X

∂t
= v

∂X

∂y
+

∂vsX

∂y
(5.2)

with t as time and y as vertical coordinate with the origin at the surface. The

two terms on the right-hand side refer to the bulk flux and the settling flux.

This equation does not include any inlet source or outlet sinks. Assuming

constant horizontal cross section A over the entire depth, the bulk velocity

v is dependent only on whether the observed cross section is in the overflow

region over the inlet position or in the underflow region.

The flux theory is made operational in computer programs by splitting up

the tank into a number of horizontal layers and by discretizing the differential
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conservation equation on these layers. The bulk and settling fluxes out of

any layer i and j are always related to the concentration Xi or Xj in the

respective layer. For continuity reasons the fluxes must be identical with

those of the neighboring layers through the common boundary. The full set

of mass balance equations will be presented below. First, let us consider the

top layer (see top layer in Fig. 5.2). Suspended solids are removed from this

layer with the effluent and by gravity sedimentation, however, SS is arriving

from the layer below. Therefore, the mass balance for the top layer can be

formulated as:
∂X1

∂t
=

Jup,2 − Jup,1 − Js,1

z1

(5.3)

where

Jup,i = vupXi

vup =
Qe

A

Js,i =





Js,i ifXi+1 < Xt

min(Js,i, Js,i+1) ifXi+1 > Xt

An empirical threshold concentration Xt was defined in order to describe

the behaviour in the upper section of the settler. Whenever the solids con-

centration is greater than Xt is was assumed that the settling flux in that

layer will affect the rate of settling within adjacent layers. It was presumed

that the threshold concentration corresponded to the onset of hindered set-

tling behaviour. The top of the sludge blanket was determined by the highest

layer with solids concentration equal to or greater than Xt.

In the clarification zone (between the top layer and the inlet layer, from

layer 2 to m− 1) the following equation can be used:

∂Xi

∂t
=

Jup,i+1 − Jup,i + Js,i−1 − Js,i

zi

(5.4)

90



Figure 5.2: General description of the traditional one-dimensional secondary
settler layer models
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since SS arrive with the upwards flux from the layer below and the settling

flux the layer above and SS are removed by settling and with the upward

flux from the examined layer.

In the feed layer (m) there is a bulk fluid movement upward with ve-

locity vup and downward with velocity vdn, additionally, the incoming SS

have to considered with the assumption of instant homogenous distribution.

Therefore, the mass balance equation is in the form below:

∂Xm

∂t
=

QfXf

A
− Jup,m − Jdn,m + Js,m−1 − Js,m

zm

(5.5)

where

Jdn,i = vdnXi

vdn =
Qu

A

For the thickening zone layers (below the feed layer, from layer m + 1 to

n − 1) a downward flux has to be considered due to the sludge removal at

the bottom of the settling tank instead of the upward flux of the clarification

zone.
∂Xi

∂t
=

Jdn,i−1 − Jdn,i + Js,i−1 − Js,i

zi

(5.6)

For the bottom layer

∂Xn

∂t
=

Jdn,n−1 − Jdn,n + Js,n−1

zn

(5.7)

where the recycled and wasted sludge concentration is defined to be Xn.

Since X1 represents the effluent SS concentration, top and bottom layers are

treated likewise. The settling flux of the calculated domain is zero at the

effluent or at the underflow. Only the bulk flux is considered as a boundary

flux. Therefore, the concentrations in the boundary layers are equal to the

respective effluent or recycle concentrations which practically mean that the

92



sludge concentration at the bottom after the thickening process is the same

as in the recycle flow to the aeration tank.

A load increase simulated accordingly to the equations above will cause

shock wave propagation from the inlet layer towards the bottom of the tank.

These waves remain sharp and mathematically discontinuous and are not

dampened with time. [19] Moreover, the boundary conditions at the bottom

and the top do not include any expression of the settling and thus do not

absorb the shock waves. The full reflection of the shock waves at the top

and bottom boundaries induce a complex wave pattern that finally leads to

numerical instability. This difficulty is the main reason that the existing

layer models introduce some kind of restriction of the settling flux relative to

that of the layer below. In widely applied rigid approaches, the settling flux

of a certain layer is bound to that of the layer below. Thus, the settling flux

Js,i out of layer i is defined as:

Js,i = min(vs,iXi, vs,i+1Xi+1) (5.8)

This equation ensures that a shock wave cannot be created downward and

that the concentration profile will never show an inverse gradient within the

underflow and overflow region.

The model described above functions as a framework for practically all

layer models today. However, in its original form it deals mainly with under-

flow concentration, leaving realistic effluent suspended solids concentration

prediction to empirical or statistical models. This was partly because the set-

tling velocity function used in the original model was of a type that predicted

unreasonably high settling velocities for low solids concentration. A number

of empirical settling velocity functions have been proposed in literature, ma-

jority of the functions are based either on the exponential (vs = ke−nX) or

the power function (vs = kX−n).
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5.2.1 The Takács-model

The most wildly used model is that of Takács et al. who based his work

on the Vesilind model [92] but suggested a new, so-called double-exponential

settling velocity which is capable of predicting the effluent SS concentration

more realistically than the exponential function of Vesilind. He based his

results on the measurements of the Pflanz full scale data [71]. The double-

exponential settling velocity function proposed by Takács:

vs = max[0, min{v′0, v0(exp−rh(X−Xmin)− exprp(X−Xmin))}] (5.9)

where v0 and v′0 are the maximum theoretical and practical settling velocity,

respectively, rh and rp are the hindered and flocculant zone settling parame-

ters. Xmin is the minimum attainable suspended solids concentration in the

effluent and is a function of the influent SS concentration to the settler:

Xmin = fnsXf (5.10)

where fns is the non-settleable fraction of Xf . The inclusion of Xf will directly

influence the behaviour of the settler, especially within the clarification zone.

While Abusam and Keesem showed that parameters have little effect on

SS in the underflow [1], at higher load the hindered settling parameter will

determine the compactibility of the sludge, the return concentration that can

be achieved and the loading when the clarifier will fail.

The function divides the settling velocity into four regions in order to

describe the behaviour of the different sludge fractions (unsettleable frac-

tion, slowly settling fraction, rapidly settling fraction). For X < Xmin the

settling velocity is zero since in this case the concentration is under min-

imum achievable effluent SS concentration. When Xmin < X < Xlow the

settling velocity is dominated by the slowly settling particles. For low con-

centrations of SS, Patry and Takács showed that the mean particle diameter

increases as the solids concentration in the free settling zone of the clarifier

94



gets higher [70]. An increasing particle diameter implies a higher settling

velocity and this effect is reflected in the behaviour of the settling velocity

within the region Xmin < X < Xlow. When Xlow < X < Xhigh (usually from

200 to 2000 g/m3) the settling velocity is considered to be independent of

the concentration as the flocs reach their maximum size. Finally, when the

SS concentration grows above Xt the model uses the traditional exponential

velocity function describing the effects of hindered settling.

The original model proposed by Takács et al. does not take into account

the effect of sludge volume index (SVI) explicitly, however, incorporation of

SVI is possible through the modification of the settling velocity parameters.

E.g. rh can be estimated with a correlation between SVI and rh (rh =

a + bSV I + cSV I2 where a, b, c are the SVI correlation coefficients).

5.2.2 The Härtel correction function

In the proposal of Härtel and Pöpel [36] a correction of the settling function

was suggested besides the boundedness of the settling flux to that of the

lower layer. The correction function is based on empiricism and is dependent

on the sludge volume index (SV I), the vertical position (y), the position of

the inlet layer (h0) and the feed solids concentration (Xf). The settling flux is

smoothly reduced through the Ω function from a height somewhat below the

inlet layer downward and reaches zero at the bottom. The inconsistency at

the bottom layer is overcome by having a settling flux tending towards zero

near the bottom. Therefore, the settling flux equation can be reformulated

as:

Js,i = Ω(y, SV I, h0, Xf) min(vs,iXi, vs,i+1Xi+1) (5.11)

In Fig. 5.3 the value of the Ω function can be observed at different SVIs in

the function of the settler height.
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5.2.3 Model of Dupont and Dahl

The mixed liquor is a flocculent suspension in which larger particles can be

formed by the coalescening of particles which have collided. These larger

particles generally enhance settling characteristics. The particle distribution

is bimodal with primary particles (miroflocs) in the 0.5 to 5 µm and flocs

(macroflocs) in the 10 to 5000 µm range. The settling properties of a sludge

depends both on the distribution of primary and floc particles and on how

easily the primary particles are entrapped into larger flocs.

Therefore, the components of the influent to the settling tank are divided
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into three fractions according to the model of Dupont and Dahl [25]: solu-

ble components, non-settleable particulate components (referred as primary

particles) and settleable components (macroflocs). Soluble components and

primary particles are considered to follow the hydraulic flow in the settling.

The transport of macroflocs in the settling tank is modelled according to

the traditional flux theory. The model selected for estimating the amount

primary particles is describing the concentration of primary particles in the

influent to the settling tank as a function of the effluent flow rate:

XPP = SSInit + K1

(
Qefl

A

)K2

(5.12)

The parameter values in the work of Dupont and Dahl are 3 mg/l, 1.6 and

3 for SSInit, K1 and K2, respectively. Consequently, the concentration of

macroflocs in the influent to the settling tank is given by:

XSS = XSS,I −XPP (5.13)

Settling velocities of the macroflocs for both free and hindered sedimenta-

tion were measured and a new model for the settling velocity was proposed.

The model was validated with data measured at the wastewater treatment

plant Lynetten, Copenhagen, Denmark. The settling velocity has an increas-

ing value for increasing concentrations at low suspended solids concentrations

(free settling zone where the mean particle diameter increases with increas-

ing SS concentration) and a decreasing value for increasing concentrations at

high suspended solids concentration (hindered settling). The mathematical

formulation selected by Dupont and Dahl for the description of the settling

velocity is the log normal function of the total concentration of particles

(XSS + XPP) in the suspension. It is emphasised that the calculation of

the settling velocity depends on the total concentration, while the settling
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velocity refers only to the macroflocs (XPP) of the suspension.

vs = v0 exp


−0.5


 ln

(
XSS+XPP

n1

)

n2




2

 (5.14)

The suggested model parameters are 8.9024 m/h, 630 m3/g and 1.065 for v0,

n1 and n2, respectively.

A model for the phenomenon of short-circuiting is also proposed in the

work of Dupont and Dahl. Differences in the density of the influent and the

density of the suspension in the settling tank will induce density currents in

the tank. In the inlet zone the density current will cause a vertical transport

of the influent through the settling tank. Together with the vertical flow

caused by the return sludge removal, a substantial part of the influent is

transported to the return sludge pit without taking part in the actual settling

process. Hereby the suspension withdrawn from the bottom of the settling

tanks is diluted to give the actual suspended solids concentration in the

return sludge. The proposed model divides the whole influent into two parts:

one part makes up the actual influent to the settling part of the settling tank

model; the other part of the influent makes up the short-circuiting flow which

bypasses the settling part of the settling tank model.

5.2.4 The Otterpohl and Freund model

Otterpohl and Freund also proposed a three components model in their work

[67] which can describe the behaviour of the secondary settler under dry and

wet weather flows. In their work, experiments were made at three municipal

wastewater treatment plant operating with different sludge ages. Activated

sludge drawn from the effluent of the aeration tank was settled in 1 litre

cylinders. The supernatant was analysed for its solids content both by tur-

bidity measurement and filtration at different dilution rates. The results of

measurements for small solids components (microflocs) relative to the solids
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concentration in the aeration tank is given in the following function:

fl = f0e
−aX (5.15)

where fl is the fraction of small solids in the aeration tank, f0 and a are

parameters (0.04 and 0.78, respectively). According to their observations,

the settling speed of small sludge flocs is constant and

vs,microflocs = 0.01m/h (5.16)

This proved not to be a sensitive parameter until the effluent flow becomes

very small. For the estimation of the settling velocity of the macroflocs, the

results of Härtel were used. The settling velocity function for macroflocs:

vs,macroflocs = (17.4e−0.00581SV I + 3.931)
(
e−(−0.9834e−0.00581SV I+1.043)X

)
(5.17)

Furthermore, the settling flux is multiplied with the Ω correction function of

Härtel. Therefore, the resulting settling flux can be formulated as:

Js,i = Ω(y, SV I, h0, Xf) min(vs,iXi, vs,i+1Xi+1) (5.18)

in the thickening zone.

5.2.5 Model of Hamilton

To treat the phenomenon of propagating shock wave a conceptual hydrody-

namic approach was used by Hamilton et al. [35] and other authors [2, 68].

An additional eddy diffusion term was added, therefore, the conservation

equation can be rewritten as:

− ∂X

∂t
= v

∂X

∂y
+

∂vsX

∂y
−D

∂2X

∂y2
(5.19)
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Takács and Otterpohl

where D is the pseudo-diffusivity coefficient. Owing to the diffusion term,

the gradient of a shock wave front is decreased while the propagation and

the numerical procedure become stable. Nevertheless, it has to be empha-

sized that D is pseudo-diffusivity coefficient which not only describes the real

physical diffusion process, but incorporates turbulent diffusivity, 2-D and 3-D

dispersion, errors introduced by numerical methods and the sludge removal

process. The introduction of a diffusion term also changes the partial dif-

ferential equation from convective to convective-diffusive, which makes the

final solution become independent of the initial conditions. The model is
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constructed in the same way as the other models: the mass balance equation

is discretized by dividing the settler into a number of layers. In this case, the

mass balance for layer i in the thickening zone (m < i < n):

∂Xi

∂t
=

Jdn,i−1 − Jdn,i + Js,i−1 − Js,i + D(Xi+1 −Xi)/zi −D(Xi −Xi−1)/zi

zi
(5.20)

The suggested model parameter for D is 0.54 m2/h by Hamilton. [35]

5.2.6 Reactive one-dimensional models

All the aforementioned models used the assumption that biological reactions

are negligible within the secondary settling tank, only the physical reactions

were considered. However, in some cases investigation of the biological re-

actions can be necessary because high denitrification rate can lead to the

appearance of nitrogen bubbles and therefore, to the rising of the sludge

[81]. Modelling the biological reactions as well as the physical processes in

the SST, each layer has to be considered as a continuously stirred tank re-

actor where biological reactions take place, soluble components are carried

by the hydraulic movement and SS are carried by sedimentation and bulk

movement. Propagation of the soluble components can be described by the

following equation in the thickening zone:

dSi

dt
=

vdn(Si−1 − Si)

zi

where vdn =
Qe

A
(5.21)

For the description of the biological processes traditional activated sludge

models can be used like ASM1, ASM2, ASM2d, ASM3. In our contribution

the ASM1 model [38] is applied for modelling the biological processes while

the physical settling process is still described by the Takács model.
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5.2.7 Further model developments

Certainly, several new one- (or even two or three) dimensional models can be

found in literature. Jeppsson and Diehl [19, 50, 51] proposed the application

of the analytical Godunov approach for the treatment of the propagating

shock wave phenomenon. Their calculation is numerically stable, however,

it is possible to observe a very sharp front in the upwards direction. Since

their procedure is combined with zero-volume boundary layers, the resulting

concentration profile is not bounded by the effluent and recycle values. It

was also shown in their work, that the model of Takács et al. is dependent

on the number layers, while the model of Jeppsson is not.

Ossenbrugen and McIntire [66] assigned a maximum total flux at the level

referring to a certain, high sludge concentration, which again results in the

settling flux curve reaching zero at some high concentrations. A numerical

method was applied where an initial sludge profile had to be prescribed and

in which a second-order term was introduced causing numerical diffusion for

stability reasons.

Randall et al. [76] introduced a model with a dispersion term dependent

on concentration and feed velocity. Motivation for their model derived from

the analysis of a model employing a constraion on the gravity flux which

has been shown to give excellent fits to a previously published data set. It

was also observed that the gravity flux constraint disappears as the level of

discretization increasing, a difficulty that this model can overcome.

5.3 Simulation benchmark

For the purpose of comparison of the different secondary settling tank mod-

els, the Simulation Benchmark has been used. The COST 682 Working

Group No. 2 has developed a benchmark for evaluating by simulation, con-

trol strategies for activated sludge plants [17]. The benchmark is a simulation

environment defining a plant layout, a simulation model, influent loads, test
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procedures and evaluation criteria. Detailed description of this simulation

environment can be found in Section 4.5.

Figure 5.5: Wastewater treatment plant setup

The plant layout can be seen in Fig. 5.5. The first two compartments

makes up the anoxic zone with individual volume of 1000 m3, and 3 com-

partments create the aerobic zone with individual volume of 1333 m3. The

oxygen mass transfer coefficient rate (KLa) is set to 240 d−1, while the KLa

in the last compartment is 80 d−1. The flowrate of the internal recirculation

is kept at 55338 m3/d. The secondary settler has a conical shape with the

surface of 1500 m2 and the depth of 4 m. The flowrate of the sludge recir-

culation is 18446 m3/d and the excess sludge is removed from the settler at

385 m3/d.

Since influent quality and flow rate disturbances play an important role

in the operation of wastewater treatment plant, influent disturbances are

defined for different weather conditions. In this paper, both dry weather data

and wet weather conditions are considered containing 2 weeks of influent data

at 15 minutes sampling interval. Parameters for the second week influent are

depicted in Fig. 5.6. Diurnal variations and weekly trends (lower peaks in

weekend data) are also depicted by these data.
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Figure 5.6: Influent flow characteristics under dry and wet weather

5.4 Simulation results

Simulations were carried out using the framework of the Simulation Bench-

mark but substituting the secondary settler model with the currently investi-

gated model. Both dry and wet weather dynamic simulations were examined.

The SST was divided into 10 vertical layers in all cases as described in the

Benchmark. Finally six models were compared: the originally described

Takács-model; combination of the Takács-model with the Härtel–Pöpel cor-

rection function (applied earlier also by [32]); the three fraction models of

Otterpohl and Dupont, however, the short-circuiting model was omitted from
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the Dupont model for better evaluation; the Hamilton-model and a reactive

model.

5.4.1 Steady-state results

Investigating a secondary settler model, the initial step is to examine the

steady-state SS profile in the secondary settler which can be the starting

point for other dynamic simulations. Since, steady-state solvers often fail to

find a steady-state solutions, the steady-state is achieved by using a constant

influent until the system reaches the steady-state. It was found that 100–200

days simulation is enough and the final values can be accepted as steady-state

values.

The resulting steady-state profiles can be seen Fig. 5.7. The effluent SS

concentrations are usually between 10 and 30 g/m3 according to the 12.5

g/m3 of the Simulation Benchmark which applies the Takács-model. The

lowest concentration is predicted by the Otterpohl & Freund model (9.77

g/m3) which is unambiguously due to the settling velocity model estimating

very high settling velocity at low SS concentrations (see Fig. 5.4). The high-

est effluent SS concentration (31.0 g/m3) is predicted by the Dupont & Dahl

model because of the low settling velocity at very low SS concentration. It

can be concluded from Fig. 5.7 that that the inlet layer (1.6–2.0 m depth)

is dominated by the influent concentration, its concentration moves between

340–360 g/m3 for all models except the Otterpohl model which predicts lower

concentration due to very high settling velocity in the 0–500 g/m3 SS con-

centration range. The underflow SS concentrations ranges between 5700 and

6400 g/m3 according to settling velocity in the thickening zone, however, the

distribution of the sludge in the thickening zone shows significant difference:

the Härtel, Hamilton and Otterpohl model gives a smooth distribution, the

sludge concentration gradually increases with depth. On the other hand,

the Takács settling function, the Dupont and the reactive model results in

a considerably uniform sludge distribution (350–360 g/m3) in the thickening
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Figure 5.7: Sludge distribution in the secondary settling tank under steady-
state conditions (note the logarithmic scale)

zone.

5.4.2 Dynamic simulations

After having found the steady-state solution, dynamic simulations can be

carried out using the influent data depicting the variations in the influent

flow and load. Starting from the steady-state the dry weather influent data

are used for a 14-day simulation. From the states achieved, further 14 days

are simulated using the dry weather and rain event influent data. That is,

for any system at steady-state a 28-day dynamic simulation is performed,
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Figure 5.8: Effluent SS concentration under dry and wet weather conditions

from which the data of the last seven days are used for process evaluation.

The predicted effluent SS concentrations can be seen in Fig. 5.8. The

daily and weekly load variation can be well observed from the results: the

diurnal daily deviation and the low weekend flow determine the effluent qual-

ity. As expected from the steady-state results, the Dupont and the Hamilton

models estimate the highest effluent SS concentrations and the highest daily

variation. The second two plots depict the effect of a rain event on the efflu-

ent. According to the Dupont model, the SS in the effluent may reach up to

50 g/m3 during the rain, while the lowest predicted concentration (Otterpohl

model) remains below 15 g/m3.

The underflow SS concentrations were also investigated during the sim-

ulation, since these are also important parameters as the recycled sludge is
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Figure 5.9: Underflow SS concentration under dry and wet weather condi-
tions

used to maintain the SS in the biological reactors, furthermore, the cost for

the sludge disposal can be estimated knowing the wasted sludge quantity.

The resulting underflow sludge concentration is mainly influenced by the

settling velocity value at high sludge concentration in the thickening zone.

The highest concentration is predicted by the Otterpohl model which esti-

mated the lowest effluent SS concentration. This is due to the characteristic

of the exponential settling velocity model: very high settling velocity in the

clarification zone and very low settling velocity in the compression zone. The

lowest concentrations are predicted by the Dupont and the Hamilton models.

The change in the sludge concentration profile during a 7-day dynamic

simulation can be seen in Fig. 8.2. The first figure depicts the profile change
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during a dry weather scenario and on the second figure a significant rainfall

results in the SS concentration increase in the thickening zone of the SST.

5.5 Conclusion

The application of one-dimensional models coupled with the activated sludge

models gives a good approximation of the sludge balance and of the sludge

shift from the aeration tank to the SST where it is partly stored during

wet weather loading. Furthermore, application of these models does not

require less computation capacity then 3-D models. However, in real plants

there exists several phenomena that cannot be reflected in 1-D models like

the geometry of the SST (e.g. inlet and outlet arrangement), flow (e.g.

short-circuits from the inlet to the outlet; re-suspension of the settled sludge

blanket) and the sludge removal process (the sludge at the bottom of the

tank is diluted). Nevertheless, one-dimensional models are widely used and

accepted in computer simulation of wastewater treatment plants nowadays.
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Chapter 6

Case study of a computer-aided

wastewater treatment plant

reconstruction

The results presented in this chapter are party based on the article Effect

of long retention time in the settler on phosphorus removal from commu-

nal wastewater published in 2005 to the journal Environmental Science &

Pollution Research [23].

The objective of the chapter is to illustrate the solution of a chronic

problem occurring in a wastewater treatment facility with a capacity of 120

000 inhabitant equivalent. Drastic phosphorus concentration increase (two

or three times higher than the Hungarian limit of 1 mg/l) was observed in the

wastewater treatment facility for a long time (12–24 h) with changing time

periods indicating malfunctioning in the operation of the facility. Computer

aided simulation technique was used to develop a solution for the treatment of

the problem using a software developed by the Department of Environmental

and Chemical Engineering, University of Veszprém, Hungary.

The simulation studies show that if the nightly inflow is less than 200

m3/h at least for two hours, then the system doesn’t receive enough fresh
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nutrients which can cause a deficiency in the nutrient uptake of the PAOs in

the anaerobic zones. This can result in the fact that the PAOs accumulate

less phosphorus in the aerobic zones. Long retention time (10h) is the reason

of the problem, namely – under special conditions – the phosphorus in the

sludge of the settling tank of the wastewater treatment plant. The problem

was caused by phosphorus dissolution from the sludge of the settling tank

during the undesirably long retention time.

6.1 Introduction

Controlling phosphorus discharged from municipal and industrial wastewater

treatment plants is a key factor in preventing eutrophication of the surface

waters. The theory of luxury uptake of phosphorus by organisms is now well

developed. It has been shown that exposing the mixed liquor to an anaer-

obic/aerobic sequence in the biological reactor selects microorganisms that

accumulate higher levels of intracellular phosphorus than other microorgan-

isms.

At a Hungarian wastewater treatment facility drastic periodic phospho-

rus concentration increase (two or three times higher than the Hungarian

limit of 1 mg/l) was observed for a long time (10 h) with changing time peri-

ods. At first, the source of the problem had to be identified. The analytical

monitoring of the inlet wastewater did not support the notion that the il-

legal wastewater discharges into the sewage caused the sudden phosphorous

concentration change. As another possibility, hidden toxicity was hypothe-

sized, however, the available data and information failed to prove it. The

real source of the problem was identified by using computer aided simulation

and the appropriate treatment process has been devised for eliminating the

problem.
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Figure 6.1: Scheme of the wastewater treatment plant

6.2 Description of the wastewater treatment

facility

The inflow of the wastewater treatment plant is about 12,000–13,000 m3/d.

95% of the wastewater is municipal wastewater and remaining 5% comes

from stock-farm sources. The whole tank-capacity of the plant is 11,100

m3. 10% of the capacity (1,000 m3) is anaerobic, 15% (1,700 m3) is anoxic,

and the remaining 75% (8,400 m3) is aerobic tank capacity. The capacity

of the settler is 5,000 m3. Figure 6.1 shows the scheme of the wastewater

treatment plant. Considering the model of the plant, it can be realized that

the operation of the plant is very doubtful since the internal and sludge

recirculation are also connected into the anaerobic tank. In such a design,

the nitrate present in the mixed liquor will to a large extent consume carbon

source which otherwise could have been used to form storage materials in

the PAOs (Petersen et al., 1998) and theoretically the anoxic zone has no

functionality, since no nitrate-rich stream is directed to the tank. In spite of

these facts, the wastewater treatment plant is capable of removing efficiently

the pollution from the wastewater.

Effluent quality of the plant is much better than Hungarian limit of load

as shown in Table 6.1. It can be due to oversizing of the facility, because

a wastewater treatment facility with the capacity of 8,000 m3d−1 would be

sufficient for this amount of influent.
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Table 6.1: Limit value of the Hungarian 1st category, special limit of this
plant and similar EU category of water quality and the inflow concentration
parameters

Parameter Unit Hungarian Special limit EU limit Measured inflow
limit of this plant

COD mg/l 150 150 125 900
BOD5 mg/l 75 100 25 560
NH4–N mg/l 10 10 Σ15 Σ62
NOX–N mg/l 5 5

Σ P mg/l 1 1,2 2 11

Table 6.2: Main operating parameters of the wastewater treatment plant
Parameter Unit Value

Quantity of inflow wastewater (in a day) m3/h 300–900
Sludge recirculation % (of influent) 100
Internal recirculation m3/h 2,000

% (of influent) 666–222
Sludge concentration mg/l 5,500

As shown in Table 6.2, the quantity of the inflow has been extremely

alternating. It is caused by the city that is a ”dormitory” type. During

the low load period, anaerobic zones are formed in bottom sludge zones of

aerobic tanks. It may cause major fermentation.

The quality of the inflow is very stable. Table 6.1 includes the main inflow

parameters. This can be due to the separated rainwater collecting system,

the extended wastewater-system using temporary reservoirs and the entire

absence of industrial facilities. These values changed only by 10% during the

test run.
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6.3 Problem identification

Data from the laboratory measurements had been examined by the operating

staff, and it was concluded that the biological phosphorus removal efficiency

decrease unaccountably frequently, about once a month. It lasted from a few

hours till several days. This effect manifested as an increased phosphorus

concentration in the effluent, occasionally it reached up to 2 mg/l. After a

long term examination it turned out that neither chemical materials (e. g.

toxicity), nor psychical effects (e. g. detergents) could cause this problem.

After this resolution a computer aided simulation analysis was requested for

the purpose of solving this operating anomaly.

During the study, a wastewater treatment expert system was used devel-

oped by the Department of Environmental Engineering and Chemical Tech-

nology, University of Veszprém and with the involvement of one of the largest

Hungarian computer programming firm. This software is able to model –

and optimize – every communal wastewater treatment plant using any of

the IAWQ models. The IAWQ Task Group for Mathematical Modelling for

Design and Operation of Biological Wastewater Treatment introduced the

Activated Sludge Model No. 1 in 1987 which allows the simulation of the

behaviour of nitrifying and denitrifying activated sludge systems which treat

primarily domestic wastewater. Model No. 1. [38] has become a major ref-

erence for further research work and is the basis for many packages applied

for design and operation of treatment plants.

For the modelling of the secondary settler the double-exponential model

of Takács [84] and another model based on the settling velocity functions of

the particulate components have been applied within the frame of simulation

software. Using the latter model, the settler is divided into two parts accord-

ing to the speed of the upwards flow and the distribution of the particulate

and soluble components is computed in the upper (”clear”) and the lower

(”sludge”) phase. The main advantage of this method is the fact that the

biological processes can be modelled more easily.
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6.4 Problem solution

In order to fasten and simplify the modelling process, the scheme of the

wastewater treatment plant has been simplified during the first step of the

simulation. Serially connected reactors with the same functionality are con-

sidered as one, what resulted in 1 anaerobic reactor having a volume of 1005

m3, 1 anoxic reactor of 1700m3, and aerobic reactor of 8400m3 and one settler

with the volume of 5000m3.

Using typical values of the daily inflow rate (Figure 6.2), the result of

the simulation shows the fact that the analyzed wastewater treatment plant

should work perfectly. As Figure 6.3 shows, the effluent parameters of the

plant are predominantly below the limit.

During the analysis of the reactors it was noticed that the wastewater had

a very long retention time – occasionally 12 hours – in the settlers because

of the oversizing of the wastewater treatment plant according to the interna-

tionally accepted standards. It may cause significant phosphorus dissolution

from the sludge into the cleaned water. Phosphorus transports to the begin-

ning of the wastewater treatment process by the recycle stream raised the

inflow concentration. Usually this increase doesn’t cause a problem whereas

phosphorus accumulating organisms (PAOs) can accumulate phosphorus un-

der favourable conditions.

It is currently not well understood how the DO setpoint andthe level of

oxygen supply affects the overall phosphorus removal performance. How-

ever, the evidence available in the literature seems to suggest that a low DO

concentration and/or aerobic volume is more favorable. It is obvious that

the presence of oxygen in the anaerobic reactors negatively affects phospho-

rus release thus deteriorating overall phosphorus removal performance. It is

known that the presence of oxygen and nitrate/nitrite inhibits the phospho-

rus release. However, it is also possible that the negative effect over a longer

period may result from the competition between the ordinary heterotrophic

organisms with phosphorus accumulating organisms for the limited volatile
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fatty acids available. This is suggested because significant phosphorus release

is observed to occur even under aerobic/anoxic conditions so long as acetate

is present. Regardless what the mechanism is, the recirculation of oxygen

from the aerobic zone to the anaerobic phase should be minimized.

During the external factor analysis it was realized that the quantity of

nutrients in the inflow at night is just enough to support the continuous

phosphorus cycle. Since the measurements showed steady wastewater qual-

ity therefore, it was examined what happened to the wastewater treatment

plant if the nightly inflow was decreased below the measured minimum. The

simulation studies show that if the nightly inflow is less than 200 m3/h at

least for two hours, the system doesn’t get enough fresh nutrients. This

causes a deficiency in the nutrient uptake of the PAOs in the anaerobic

zones. Therefore, PAOs accumulate less phosphorus in the aerobic zones, so

the effluent phosphorus concentration rises. If the inflow is low for a longer

period of time - at least for 3 hours - then the normal effluent phosphorus

concentration of the wastewater treatment plant will be restored only 12–48

hours later. Figures 6.2 and 6.3 give an example for this ”critical time” case.

Figure 6.3 shows a phosphorus concentration increase by the morning of

the third day as there was a major influent decrease, occasionally decreased

down to 200m3/h (over three hours during the second night (Figure 6.2)).

This concentration increase terminates by the end of the third day.

After the measurements and the simulation, a difficulty had to be elimi-

nated similar to the one that Krühne and Temmink had described [58, 86]:

after of a long time period of low load the system has to restore its normal be-

haviour, in addition, high phosphorus concentration can be observed in the

influent. Generally PAO releases phosphorus to gain maintenance energy

under anaerobic conditions and to take up any volatile fatty acid produced

by anaerobic fermentation of the organic carbon substrates by ordinary het-

erotrophs [65]. Considering the recommendation of Brdjanovic [6] concerning

the problems connected to the P removal problems after weekends, the re-
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Figure 6.2: Change of the volumetric load of the plant (2nd day 1000–1400
min)

moval one of the settlers seemed to be the best solution. This mechanism,

often referred as the ”Monday Phenomenon”, – that phosphorus removal

performance deteriorates after weekend, during which a low carbon supply

from the influent wastewater is coupled with a high DO concentration – is

due to the fact that extensive aeration in the aerobic reactor results in over

consumption of the PAO intracellular carbon storage (polyhydroxyalkanoates

or PHA). Obviously, an aerobic reactor should not run devoid of oxygen and

nitrate to avoid secondary phosphorus release.

According to the simulation results, reducing the settler capacity to half

of the original capacity reduced the hydraulic residence time, which proved

to be short enough to prevent from the phosphorus re-dissolution and to

prevent from the abnormally high phosphorus concentration in the effluent

after the return to the normal state of plant.
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Figure 6.3: Changes in the P removal efficiency

After the promising simulation results, it had to examined whether the

reduced settler capacity was sufficient. According to the Hungarian law on

wastewater treatment the minimum settler capacity can be computed by the

following formula. The parameters of the settler are determined using the

average flow rate per hour according to the Hungarian standard. Therefore,

the hydraulic load is computed using the following formula:

V =
Qday/24

F
(6.1)

while the hydraulic residence time:

tt =
V

Qday/24
(6.2)

The minimal hydraulic residence time is determined in Table 6.3.
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Table 6.3: Highest permitted hydraulic load and lowest permitted residence
time of a secondary settler in activated sludge systems

Parameter Vertical flow Dorr-type Dortmund-type
secondary settler secondary settler secondary settler

VF [m/h] 1,2 0,8 1,2
tt [h] 2,0 2,7 3,0

Dorr type secondary settlers are used in the examined wastewater treat-

ment plant with the surface of 710m2. Leaving out one of the settlers, the

Hungarian regulations (1462,5m3) are still amply satisfied even considering

the highest daily load in the influent (13000m3).

For the sake of comparison, the methodology described in the US10 States

Standard [85] was used to compute the load of the settler. The peak surface

load is recommended to be between 24–32 [m3/m2*d]. According to the

measurements, the highest load of the settler is 900m3/h, so the surface load

VF =
Qtop × 24

FV

=
900m3/h× 24

710m2
= 30.42 (6.3)

also satisfies the standard.

Due to financial reasons, the reconstruction of the plant was not consid-

ered as a possible solution. The simulation was repeated with a modified

plant and the original inflow stream. As Figure 4 shows the phosphorus

concentration of the effluent of the new system was better than that of the

original set up.

The new system scheme was tested in a hypothetical crucial event. As

Figure 6.4 shows the results substantiate our hypothesis. It is noticeable,

the effect cannot be completely eliminated, but the maximum of phosphorus

concentration of the system effluent decreased to the official limit. (Table

6.1, Figure 6.4)
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Figure 6.4: concentration change in the modified plant during a critical pe-
riod
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6.5 Conclusions

The phenomenon of drastic phosphorus concentration increase in the effluent

is examined in this study. Long retention time is the reason of the problem

outlined in this paper, namely – under special conditions – the long retention

of phosphorus in the sludge of the settling tank. The problem was caused by

phosphorus dissolution from the sludge of the settling tank into the effluent

during the undesirably long retention time. Under certain circumstances it

could reach up to 60–80% of the phosphorus contained in the sludge of the

settling tank. This scope shows a possible problem of oversized wastewa-

ter treatment plants. This problem appeared as a random and short time

phosphorus-removal efficiency decrease. With classical methods (monitor-

ing, laboratory experiments, etc.), it might be rather difficult to identify the

real cause of the anomalous operation. The real source of the problem was

determined rapidly at a minimum cost using computer aided modelling.
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Chapter 7

Summary

The biological behaviour of biotechnological processes occurring in bioreactor

has a complexity unparalleled in the chemical industry. As consequence, to

predict its behaviour from information about the environmental conditions

is extremely difficult. The number of reactions and species that are involved

in the system may be very large. An accurate description of such complex

systems can therefore result in very involved models, which may not be useful

from a control engineering viewpoint.

Modern control systems rely heavily on adequate process models. Design

of advanced controllers is based on a mathematical description of the process.

Since the involved biological processes are highly non-linear, time varying

and subject to significant disturbances, the models require adjustment on-

line, based on available data from various sensors. Partly due to the lack of

available sensors and the complexity of the processes, a compromise must be

made between the complexity and the accuracy of the used models.

Taking into consideration the aforementioned aspects, control and opti-

mization problems of the wastewater treatment were investigated. Specially,

control and optimization of the dissolved oxygen concentration in activated

sludge processes were examined and novel methods have been suggested: a

stochastic optimization algorithm using genetic algorithms have been devel-
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oped for better aeration of alternating activated sludge processes and model

predictive control has been applied for dissolved oxygen level control using

computer simulation approach.

However, promising results have been achieved using mathematical mod-

elling, in order to validate the results further investigations should be carried

out both for pilot-scale and full-scale treatment plants. These should in-

clude application of the proposed method together with the stoichiometric

and kinetic parameter estimation from experimental data, even though, the

results may still fail to give the expected results under large flow rate and

load variations.
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Chapter 8

Appendix

Table 8.1: Components in the ASM1 model
Component Name Unit
SI inert soluble organic matter M(COD)L−3

SS readily biodegradable substrate M(COD)L−3

XI particulate inert organic matter M(COD)L−3

XS slowly biodegradable substrate M(COD)L−3

XB,H active heterotrophic biomass M(COD)L−3

XB,A active autotrophic biomass M(COD)L−3

XP particulate products arising from biomass decay M(COD)L−3

SO oxygen M(-COD)L−3

SNO nitrate and nitrite nitrogen M(N)L−3

SNH ammonia and ammonium nitrogen M(N)L−3

SND soluble biodegradable organic nitrogen M(N)L−3

XND particulate biodegradable organic nitrogen M(N)L−3

SALK alkalinity Molar unit
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Table 8.2: Stoichiometric and kinetic parameters of the activated sludge
model

parameter unit value

YA g cell COD formed (g N oxidized)−1 0.24
YH g cell COD formed (g COD oxidized)−1 0.67
fp dimensionless 0.08
iXB g N (g COD)−1 in biomass 0.08
iXP g N (g COD)−1 in endogenous mass 0.06
µH day−1 4
KS g COD m−3 10.0
KO,H g O2 m−3 0.2
KNO g NO3-N m−3 0.5
bH day−1 0.3
ηg dimensionless 0.8
ηh dimensionless 0.8
KX (g cell COD)−1 0.1
µA day−1 0.5
KNH g NH3-N m−3 1.0
bA g day−1 0.05
KO,A g O2 m−3 0.4
ka m3 COD(g·day)−1 0.05

Table 8.3: Double-exponential settling velocity parameters
parameter unit value

v′0 md−1 250
v0 md−1 474
rh m3(g SS)−1 5.76·10−4

rp m3(g SS)−1 2.86·10−3

fns – 2.28·10−3
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Table 8.4: Weighting factors for the different types of pollution
factor value
BSS 2
BCOD 1
BNKj

20
BNO 20
BBOD5 2
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Figure 8.1: Controlled variable vs manipulated variable (solid line ∆t =
2.5 · 10−4 d; dashed line ∆t = 10−3 d)
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Figure 8.2: SS concentration (mg/l) during dry and wet weather simulations
as a function of time (0–7 days) and depth (layer 0–10)
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1. Holenda B, Domokos E, Rédey Á and Fazakas J (2007) Dissolved oxy-

gen control of the activated sludge wastewater treatment process using

model predictive control. Accepted for publication in Computers and

Chemical Engingeering
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