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Tartalmi kivonat

A dolgozatban nemlinearis késleltetett argumentumu skalaris differencidlegyenletek
illetve differencidlegyenlet-rendszerek egy széles osztalyat vizsgaljuk. Az ilyen egyen-
letek gyakran megjelennek természettudomanyi, kozgazdasagtani, mérnoki, popula-
cibdinamikai, epidemioldgiai alkalmazésokban. Mivel az altalunk tekintett model-
leket populacidodinamikai alkalmazasok motivaltak, pozitiv megoldasokra fokusza-
lunk, és a modellek pozitiv megoldédsai perzisztenciajat és egyenletes permanencidjat
vizsgaljuk. A {6 eredményeink alkalmazasaként explicit becsléseket fogalmazunk
meg a megoldasok limesz inferiorjara és limesz szuperiorjara. Egyszerti skalaris mo-
dellek esetén visszakapjuk az irodalombdl ismert becsléseket, de gyengébb feltételek
mellett. A bizonyitdsaink 6sszehasonlité tételeken és a monoton iteraciés technikén
alapulnak. Rendszerek esetében a becsléseinkhez meg kell oldani egy kapcsolo-
dé nemlinearis algebrai egyenletrendszert. Elegend6 feltételeket adunk meg ilyen
egyenletrendszer megolddsai 1étezésére és egyértelmiiségére. Az eredményeink is-
mert eredményeket terjesztenek ki lényegesen altalanosabb egyenletosztalyokra, és
a hasznalt feltételeink gyengébbek az irodalomban eddig vizsgalt esetekhez képest.
Elegendo feltételeket adunk meg bizonyos egyenletek esetében a megoldésok aszimp-
totikus ekvivalencidjara. Az 1j eredményeket szamos példa és numerikus szimuldcié

illusztralja.
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Abstract

In this work, we study a large family of scalar differential equations and systems of
differential equations with delays. Such equations appear frequently as mathemat-
ical models in natural sciences, economics and engineering, population dynamics,
mathematical epidemiology and other engineering applications. Since our model
equations are motivated by applications in population dynamics, we focus only on
positive solutions, and we investigate persistence and permanence of the positive
solutions of our model equations. As an application of the main results, we obtain
explicit estimates for the limit inferior and limit superior of the solutions. For some
simple scalar population models, our method recovers known estimates of the lit-
erature, but under weaker conditions. Our method uses comparison technique and
iterative methods of differential equations. For the system case, our results requires
the solutions of an associated system of nonlinear algebraic equations. We establish
sufficient conditions implying the existence and uniqueness of solutions of such sys-
tem of algebraic equations. These results generalize known methods for much larger
classes of equations, and our conditions are weaker for the previously studied cases
too. For a special class of differential equations, we give sufficient conditions for the
asymptotic equivalence of the positive solutions. All the new results are illustrated

by several special examples and numerical experiments too.
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Chapter 1

Introduction

In modelling in the biological, physical and social sciences, it is sometimes necessary
to take account of time delays inherent in the phenomena. In all these fields scientists
need their models to behave more like the real process. Many processes include
aftereffect phenomena in their inner dynamics. In these cases, it may be necessary

to choose between a model with discrete delays or a model with distributed delay.

1.1 Background and motivation

Time delays of one type or another have been incorporated into biological models to
represent resource regeneration times, maturation periods, feeding times, reaction
times, etc. by many researchers. We refer to the monographs of ([26], [27], [35], [57],
[60]) for discussions of general delayed biological systems. In general, delay differen-
tial equations exhibit much more complicated dynamics than ordinary differential
equations since a time delay could cause a stable equilibrium to become unstable
and cause the populations to fluctuate. In this section, we shall review various delay
differential equations models arising from studying single species dynamics. Let x(t)

denote the population size at time t; let b and d denote the birth rate and death
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rate, respectively, on the time interval [¢,t 4+ At], where At > 0. Then
z(t + At) — x(t) = bx(t) At — dx(t) At.

Dividing by At and letting At approach zero, we obtain
dx
dt

where r = b — d is the intrinsic growth rate of the population. The solution of

=bxr —dx =rz, (1.1.1)

equation (1.1.1) with an initial population z(0) = zg is given by
x(t) = zoe”. (1.1.2)
The function (1.1.2) represents the traditional exponential growth if r > 0 or
decay if r < 0 of a population. Such a population growth, due to Malthus (1798),
may be valid for a short period, but it cannot go on forever. Verhulst (1836) proposed

the logistic equation
d
- (1—1), (1.1.3)

where r > 0 is the intrinsic growth rate and K > 0 is the carrying capacity of
the population. In model (1.1.3), when x is small the population grows as in the
Malthusian model (1.1.1); when x is large the members of the species compete with
each other for the limited resources. Solving (1.1.3) by separating the variables, we
obtain (z(0) = zy),

oK

x(t) = T (m0— Ky (1.1.4)

If 0 < 29 < K, the population grows, approaching K asymptotically as t — oo. If
xo > K, the population decreases, again approaching K asymptotically as t — oc.
If xg = K, the population remains in time at * = K. In fact, x = K is called
the equilibrium of equation (1.1.3). Thus, the positive equilibrium x = K of the
logistic equation (1.1.3) attracts all the positive solutions; that is, tli}]élo z(t) = K, for

solution z(t) of (1.1.3) with any positive initial value x(0) = z.
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In the above logistic model it is assumed that the growth rate of a population at
any time ¢t depends on the relative number of individuals at that time. In practice,
the process of reproduction is not instantaneous. For example, in a Daphnia a
large clutch presumably is determined not by the concentration of unconsumed food
available when the eggs hatch, but by the amount of food available when the eggs
were forming, some time before they pass into the broad pouch. Between this time of
determination and the time of hatching many newly hatched animals may have been
liberated from the brood pouches of other Daphnia in the culture, so increasing the
population. Hutchinson [52] assumed egg formation to occur 7 units of time before

hatching and proposed the following more realistic logistic equation

df;it) = ra(t) (1 - x(tT_T)) , (1.1.5)

where r and K have the same meaning as in the logistic equation (1.1.3), 7 > 0

is a constant. Equation (1.1.5) is often referred to as the Hutchinson’s equation or
delayed logistic equation and was introduced with the initial condition

z(t) = p(t), —7 <t <0, (1.1.6)
where, ¢ is continuous on [—7,0].

In this Thesis we focus on the study of boundedness of the positive solutions
of differential equations with time delays, that appear frequently as mathematical
models in natural sciences, economics and engineering, population dynamics, math-
ematical epidemiology, economics and large classes of engineering applications and
many others. Since our model equations are motivated by applications in population
dynamics, we focus only on positive solutions, and we investigate persistence and

permanence of the positive solutions.
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1.2 The structure and content of the Thesis

The structure of the Thesis is the following. In Chapter 1 we give a list of notations
we use in the rest of the Thesis.

In Chapter 2 we give some basic background, known results and notions on the
topics we will use in later chapters in our investigation.

In Chapter 3 we study the persistence and the uniform permanence of the positive
solutions of the general nonlinear scalar delay differential equation

i(t) =r(t)(g(t,w) = hl@®)), >0,

and present sufficient conditions which guarantee the boundedness of the solution
(see Theorem 3.2.4 ). This general form of the equation may include a single or
multiple constant or time-dependent point delay functions as well as distributed
delays in the positive terms. Corollary 3.3.1 immediately implies the estimates
obtained in [4], but under weaker conditions. Our method is based on the well-
known comparison theorem for differential equations. We give also, in Section 3.3,
several particular cases and explicit estimations for the upper and lower limit of the
solutions. We investigated in some special cases conditions, which imply that all
solutions have the same asymptotic behavior, i.e., the difference of any two positive
solutions tends to zero.

In Chapter 4 we give sufficient conditions which imply the existence and unique-
ness of the positive solutions of the general nonlinear system of algebraic equations

n
ilz) =Y gii()), 1<i<n

Our main result, Theorem 4.2.1JT)1610W, uses a monotone iterative method to prove
existence of a positive solution, and an the extension of the method used in [21] to
prove uniqueness under a weaker condition than that assumed in [21]. We introduce

many applications and special cases of our main results and in some cases we give
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necessary conditions for the existence and uniqueness of the positive solutions. Also
we give a counterexample which shows the importance of our conditions.

In Chapter 5 we consider the system of nonlinear delay differential equations
n ng

i(t) =D > el hi(x;(t = 7ie(t))) — rit) filwa() + pi(t), £ 20, 1<i<m,
and give ]s:ulfﬁegilent conditions for the uniform permanence of the positive solutions
of the system. Also in several particular cases, explicit estimates are given for the
upper and lower limit of the solutions.

In Chapter 6 we summarize the new results. Also the list of publications and
conference lectures of Nahed A. Mohamady related to the topic of this Thesis is

given.

In Appendix A we present some technical or long proofs.

1.3 Notations

The most important notations used throughout in this Thesis are listed below in
this section.

Mathematical notations

R the set of real numbers

R, :=[0,00) the set of non-negative real numbers

C(X,Y) the set of continuous functions mapping from X to Y

C the set of continuous functions mapping from [—7,0] to R

C, the set of continuous functions mapping ¢ from [—7,0] to R, with ¢(0) > 0

Co the set of continuous functions mapping ¢ from [—7, 0] to R, with ¢ (¢) > 0,

—7<t<0

Il - the maximum norm of a continuous function z : [—7,0] — R™ defined by

2]l == max [[z()]

—7<t<0
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x4(0)  the segment function defined by x:(0) := z(t + 0), 6 € [—7,0], where x is

a function defined from [—7,00) to R , and t € R

T = fl—f time derivative of x
z(o00) = ligglf x(t)

T(c0) = lirtri)ilp x(t)

T it" element of a vector x
T transpose of a vector x.

Next we list the acronyms we use in the Thesis.

Acronyms

IVP initial value problem
ODEs ordinary differential equations
DDEs delay differential equations

Eq equation.



Chapter 2

Theoretical Background

In this chapter we review some concepts and known results which are used or referred

to later in the Thesis.

2.1 Scalar delay differential equations

In this section we investigate a scalar delay differential equation which will be useful
in the rest of the Thesis.
Consider the scalar nonlinear differential equation with general delays
(t) = f(t,xy), t > to, (2.1.1)
and the initial condition
z(t) = @(t — to), to — 7 <t <ty, (2.1.2)
where 7 > 0,y > 0, p € C := C([-1,0],R), f: [ty,0) x C'— R is continuous and

i (0) == x(t+6), 6 € [—1,0].

Definition 2.1.1. A function x is called a solution of Eq. (2.1.1) on [ty — T,00)
if v € C([to — 7,00),R), (2.1.2) holds and z satisfies Eq. (2.1.1) fort € [to, 5) for

some 3 >ty or fort € [ty, 00).
Definition 2.1.2. A function f : [ty,00) x C — R is called locally Lipschitz in its

7
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second variable, if for any t € [ty,00) and ¢ € C, there exist 1 > 0,9 > 0 and
L > 0 constants such that

1 (s, 91) = f(s,92)[] < L[ty — ol
fors € 1=y, t4+0,] and 1,0 € C satisfying [vr—gll, <0 and [[Ya—pll < 6,
where |||, == max_[l¢(s)].

—7<5<0
We recall, from [30], the following theorem of the existence and uniqueness of

solution of the IVP (2.1.1) and (2.1.2).

Theorem 2.1.1. [30] Let f : Ry x C' — R be continuous and locally Lipschitz
continuous in its second variable. Then, for every ty > 0 and ¢ € C, there exists

B > to such that the IVP (2.1.1) and (2.1.2) has a unique solution on [ty — T, 3).

We note that this result can be naturally extended to systems of delay differential
equations too.
The following comparison theorem of differential equations will be essential in

our proofs later.

Theorem 2.1.2. Let f : R, xC = R and g : Ry x R — R be continuous, ¢ € C,
and tg > 0 be fixed. Let x be a solution of the IVP
i(t) = f(t,x), t > to, (2.1.3)
z(t) =@t —t), t € [to— 7,10, (2.1.4)

and let y be a unique solution of the IVP

yt) = g(t,y(t), t > to, (2.1.5)
y(to) = ¢(0). (2.1.6)
Then if f(t,v) > g(t,(0)), for all (t,¢) € Ry x C, there follows x(t) > y(t) for

Yy
t > tg. Also, if f(t,v) < g(t,1(0)), for all (t,v) € Ry x C, there follows x(t) < y(t)

fort > ty.
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Proof. The proof is given in [15] for the case when (2.1.3) is an ODE, but it

can be easily extended to this case too. O
The notions of persistence and permanence are frequently studied in mathemat-
ical biology (see e.g. [57, 60]). Following [3, 4, 31] and [33] we define the next two
notions. Let us, first, define the class C := {¢p € C([—7,0],Ry) : ¥(0) > 0}, where

7> 0.

Definition 2.1.3. Fq. (2.1.1) is said to be persistent in Cy if any positive solution

x(t) is bounded away from zero, i.e., lign inf z(t) > 0.
—00

Definition 2.1.4. Eq. (2.1.1) is called uniformly permanent if there exist two pos-
itive numbers m and M with m < M such that, all positive solutions x(t) of
Eq. (2.1.1) satisfy

m < liminf z(¢) < limsup z(t) < M.

t—o0 t—00

2.2 Mathematical and biological models

In this section, we look at some ways mathematics is used to model dynamic pro-
cesses in biology. Interactions between the mathematical and biological sciences have
been appearing rapidly in recent years. Both traditional topics, such as population
and disease modeling, and new ones, have made biomathematics an exciting field.
Simple formulas relate, for instance, the population of a species in a certain year
to that of the following year. We consider the biological models as nonlinear delay
differential equations. Although many of the models we examine may at first seem
to be gross simplifications, their very simplicity is a strength. Simple models show
clearly the implications of our most basic assumptions. We begin by considering the
scalar nonautonomous differential equation

N(t) = a(t)N(t) — r(t)N3(t), t>0 (2.2.1)
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which is known as the logistic equation in mathematical ecology. Eq. (2.2.1) is a pro-
totype in modeling the dynamics of single species population systems whose biomass
or density is denoted by a function N of the time variable. The functions a(t) and
r(t) are time dependent net birth and self-inhibition rate functions, respectively.
The carrying capacity of the habitat is the time dependent function
K(t) = alt) t>0. (2.2.2)

By using this notation, Eq. (2.2.1) can be written as

N(t) = r(t) (K(t)N(t) - NQ(t)), t>0, (2.2.3)
or

N(t) = r(t) (KON(t) - N2(t)>, t>0 (2.2.4)

whenever the carrying capacity is constant, i.e., K(t) = Ky, t > 0 with a Ky > 0.
It follows by elementary techniques that the above equations with the initial
condition

N(0) = Ny >0 (2.2.5)

has a unique solution N (Ny)(t) of the initial value problem (IVP) (2.2.4) and (2.2.5)

given by the explicit formula
NOK()@KO fot r(s)ds

N N t) = t )
( 0)( ) KO+NO(€K0fOr(s)d8_1)
From the above formula, we get that either

/Ooo r(s)ds = oo (2.2.7)

t>0. (2.2.6)

and

N(Np)(00) := lim N(t) = Ky for any Ny > 0,

t—00

or

/OO r(s)ds < oo (2.2.8)
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and

Ny K0 5 7(e)
Ko+ Ny(eKoJo r()ds _ 1)
Thus K is a global attractor of (2.2.4) with respect to the positive solutions if and

N(No)(o0)

#+ Ky for any Ny # K.

only (2.2.7) holds.
It follows by some elementary technique that for any Ny > 0 the solution

N(Np)(t) of the IVP (2.2.3) and (2.2.5) obeys

K(o0) < li{n inf N(No)(t) < limsup N(No)(t) < K(o0) (2.2.9)
—0 t—00
for any Ny > 0, if
0 < K(o0) := litmian(t) < limsup K (t) =: K(o0) < o0 (2.2.10)
—00

t—o00

and (2.2.7) holds.
In (1948) Hutchinson [52] considered the delayed logistic equation

N(t) =rN(t) (1 — N(tT;T)> : (2.2.11)
where r = b — d is the intrinsic growth rate of the population and Ky > 0 has the
same meaning as in the logistic equation (2.2.4), 7 > 0 is a constant. Equation
(2.2.11) was introduced with the initial condition

N(t) = (t), -7 <t <0, (2.2.12)
where, ¢ is continuous on [—7,0]. It is interesting to note that Equation (2.2.11)
can be observed in some Daphnia populations. We refer the reader to ([25, 35, 47,

48, 57, 64, 65, 66, 72]) who have argued that the delay should enter in the birth

term rather than in death term.

2.3 Numerical approximation of delay equations

In this section, we investigate numerical approximation of differential equations
using the class of delay differential equations with piecewise constant arguments.

Equations with piecewise constant arguments were introduced by Wiener [68] and
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Cooke and Wiener [22, 23]. For surveys of theory and applications of such equations
we refer to [1, 24, 69]. We present a numerical approximation method which was
introduced first for linear delay equations in [40], and later it was extended for
various classes of differential equations (see [43]).
We introduce the method for nonlinear delay equations of the form
(t) = f(t,z(t),z(t — 7)), t>0, (2.3.1)
with initial condition

z(t) = @(t), —17<t<0. (2.3.2)

Let h > 0 be a discretization parameter. We associate the following equation

with piecewise constant arguments to the IVP (2.3.1)-(2.3.2)

gn(t) = f ([t/hlh, yn([t/R]R), yn([t/h]h = [T/h]h)),  £=0 (2.3.3)

and

yn(t) = @(t), —1 <t <0, (2.3.4)

where [-] denotes the greatest integer part function.
Following [40] we have the following definition for the solution of the IVP (2.3.3)-
(2.3.4):

Definition 2.3.1. By a solution of the IVP (2.5.3)-(2.5.4), we mean a function yy,
defined on {—kh : k € N,—7 < —kh < 0} by (2.5.4), which satisfies the following

properties on R, :
(i) the function yy, is continuous on R,

(ii) the derivative Yy, exists for each t € R with the possible exception of the points

kh(k =0,1,2,...) where finite one-sided derivative ezist, and

(i11) the function yy, satisfies (2.3.3) on each interval [kh, (k-+1)h) fork =0,1,2,....
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The right-hand-side of (2.3.3) is constant on the intervals [kh, (k 4+ 1)h), so the
solution of (2.3.3)-(2.3.4) is a continuous function which is linear in between the
mesh points {kh : k € N}. Define ¢ := [7/h].

We integrate both sides of (2.3.3) from kh to t,

[ inGoyis = [ Gopmin,nisfin). on(is i — e s,

h kh
where kh <t < (k+1)h. Using that the integrand on the right-hand-side is constant,
we get

yn(t) = yn(kh) = f(kh, yn(kh), yn(kh — Ch))(t — kh).

Now taking the limit ¢ — (k + 1)h from the left-hand, we have
yn((k+ 1)h) — yn(kh) = hf(kh, yn(kh), yn(kh — Ch)).
Since y; is linear between the mesh points, the values a(k) = y,(kh) uniquely
determine the solution. The sequence a(k) satisfies the difference equation
a(k+1) =a(k)+ f(kh,a(k),a(k —£)) - h, k=0,1,2,...,
a(—k) = o(—kh), k=0,1,2,..., —17<kh<O0.

It was shown in [40, 43] that
lim |z(t) — yn(t)] =0, for all fixed ¢ > 0.
h—0
In all the numerical examples of this Thesis we will use the above numerical ap-

proximation method. For other numerical methods to approximate delay equations

we refer to [5].



Chapter 3

On a nonlinear scalar delay

population model

In this chapter we consider a nonlinear scalar delay differential equation and establish
sufficient conditions for the uniform permanence of the positive solutions of the
equation.

This chapter is organized as follows: Section 3.1 introduces a description of our
nonlinear delay differential equation and some basic definitions and preliminaries.
Section 3.2 presents the main results of this chapter for the uniform permanence
of the positive solutions of the equation. In Section 3.3, several particular cases
are introduced and explicit formulas are given for the upper and lower limit of the
solutions. Also, in some special cases, sufficient conditions, which imply that the
difference of any two positive solutions tends to zero, are given. In Section 3.4,

several examples with numerical simulations are given to illustrate the main results.

14
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3.1 Introduction and preliminaries

In this chapter, we investigate lower and upper estimates for the positive solutions

of the nonlinear scalar delay differential equation
() = r(t) (g(t, ) — h(:c(t))), t>0, (3.1.1)
where 7 > 0 is fixed, x4(0) = z(t +0), —7 < 0 <0, r,h € C(R,Ry), g €
C(Ry x C,Ry). Eq. (3.1.1) can be considered as a population model equation
with delay in the birth term r(t)g(¢,z;), and no delay in the self-inhibition term
r(t)h(x(t)). The form of the delay model is based on the works of the authors
[12, 25, 35, 47, 48, 57, 64, 65, 66, 72]. Eq. (3.1.1) includes, e.g., the next equations
x(t) = z”: ar()x(t — () — B(1)22(1), t>0, (3.1.2)

k=1

() =) a2t —m(t) = B(1)2(t),  t20, 0<p<gq g=1 (3.13)

i(t) = a(Of(x(t - 7)) - BDg(z(t), >0, (3.1.4)

and
_ a(t)x(t — 1)
L+~(t)x(t — 1)

i (t) — B(H)z*(t), t>0 (3.1.5)

with discrete delays, or
z(t) = a(t) /0 f(s,z(t+s))ds — B(t)h(x()), t>0 (3.1.6)
with distributed delay. -

Recently, lower and upper estimations of the positive solutions of Eq. (3.1.2)
were proved in [4] and [31] under the assumptions that the coefficients a4 and g
satisfy

ap < ag(t) < Ao, Bo < B(t) < By, t>0, k=1,...,n (3.1.7)

with some positive constants «q, Ao, By and By. The following theorem, which is a
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consequence of our main results, illustrate that the above boundedness conditions
can be released. In this statement we investigate the qualitative behavior of the
solution of Eq. (3.1.2) under the initial condition

x(t) = (1), -7 <t <0, (3.1.8)
where ¢ € C. The unique solution of Eq. (3.1.2) and (3.1.8) is denoted by x(¢)(t).

We will assume

ag, 7 € C(Ry,Ry), (E=1,...,n), T := max sup 7x(t) < oo, (3.1.9)
1<k<n >0
feC®000), [ A=, (3.1.10)
0

and
0< lim inf — Xn: (t) d  m=li ! > ag(t) <
m = 11minr —— (6% an m = 1msup ——~ « .
oo Bt) &= oo B(t) &

n

(3.1.11)
We note that Eq. (3.1.2) has no constant positive steady-state if the function

n
—= Y ay(t) is not constant.

1
A

Our proof is based on using some relevant well-known theorem for differential
inequalities of ordinary differential equations, moreover we can apply our method

for differential equations with distributed delay, e.g., of the form (3.1.6), where

techniques of [4] and [31] do not work.

3.2 Main results of Chapter 3

Throughout this chapter we use the following notations.

z(00) = ligcigfx(t) and  T(o0) := lirtri)sup x(t).
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We consider the scalar nonlinear delay equation
#(t) = (1) (g(t,xt) - h(m(t))), t>0, (3.2.1)
with the initial condition

x(t) = (1), —7<t<0. (3.2.2)

Next we list the following conditions, which will be used only whenever this is

explicitly indicated:

(Hy) 7 € C(Ry,Ry) with r(t) > 0 for ¢ > 0 and [[”r(s)ds = 00, g € C(R; x C,R)

with g(¢,v) > 0 for t > 0 and ¢(s) > 0, —7 < s < 0.

(Hz) h € C(R4,R,) satisfies 0 = h(0) < h(z1) < h(xg) for 0 < 1 < x4, and for any

nonnegative constants v and L satisfying L # v the condition |, z Wsh(s) =

~+00 holds.
H3) There exists ¢; € C(R%,R,) such that for any 7> 0, u > 0 we have
+7 5+
g(t, ) > q(T,u), if t>Tand ¢ € C with ¢(s) >u, —7 <5 <0,
and there exist constants 7} > 7 and u; > 0 such that

@ (Ty,u) > h(u), u € (0,uy].

(H4) There exists g2 € C(R%,R) such that for any 7' > 0, u > 0 we have
9t ) < qo(T,u), if t>T and ¢ € C with ¢(s) <u, -7 < s <0,
and there exist constants T, > 7 and ue > 0 such that

@(Ty,u) < h(u), U > Us.

(Hs) There exists ¢ € C(R;,R;) such that for any v € C(R;,R;) satisfying

lim v(T") = w we have
T—o0

lim inf (T, v(T)) > g} (w).
T—oo
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(Hg) There exists ¢ € C(R;,R;) such that for any v € C(R;,R,) satisfying
lim v(7T") = w we have
T—o0
limsup ¢x(T', v(T)) < g5(w).
T—o0
We note that the integral condition of (¢) in (Hj) is natural according to Section
2.2. In the proofs of our results, a comparison theorem will be used, hence we will
use conditions (Hz) and (Hy) to estimate the birth rate function g from above and
from below.
We remark that from the assumed continuity of the functions r, g, h and ¢, the
IVP (3.2.1) and (3.2.2) has a solution, but it is not necessary unique. Any fixed
solution of (3.2.1) corresponding to the initial function ¢ will be denoted by z(¢)(t),

and we assume that this solution exists on [0, 00). We also note that if & is locally

Lipschitz continuous, then the integral condition in (Hz) holds.

Before we formulate our main results, we have to mention that in the proof of our
main result, we compare the solutions of equation (3.2.1) with that of the associated

ordinary differential equation

gty =r(c=h(y(e)),  t=T>0 (3.2.3)

y(T) =y, (3.2.4)

where ¢ > 0, and r and h satisfy (Hy) and (Hz). We will show in Lemma 3.2.1
below that for all (T,y*,¢) € (Ry x (0,00) x Ry) the IVP (3.2.3) and (3.2.4) has a

unique solution which is denoted by y(t) = y(T, y*, ¢)(t).

First, we prove some basic properties of the solutions of the IVP (3.2.3) and
(3.2.4).

Lemma 3.2.1. Let (H;) and (Hyg) be satisfied. Then for any T > 0, y* > 0 and
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¢ > 0 the corresponding solution y(T,y*,c)(t) of the IVP (3.2.3) and (3.2.4) is

uniquely defined on [T, 00), moreover we have

(i) ¢ >0 and 0 < y* < h™'(c) yield that
0 < y(T,y*,c)(t) < h™'(c), y(T,y*,c)(t) >0, t>T
and

lim y(T'y", c)(t) = b~ (c);
t—o0
(i1) y* = h=Y(c) yields that y(T,y*,c)(t) = h~'(c), t>T;

(iii) ¢ >0 and y* > h™*(c) yield that
y(Ty' o)) >h'(e),  §(Ty o) <0, t>T
and

lim y(T,y*, c)(t) = h~'(c).

t—00

Proof. See Appendix A. O
The next lemma shows that all solutions of (3.2.1) corresponding to the initial

condition ¢ € C are positive on [0, 00).

Lemma 3.2.2. Assume that conditions (H;) and (Hy) are satisfied. Then, for any

p € Cy, we have that x(p)(t) > 0 fort € [0, 00).

Proof. Let z(t) = z(¢)(t) be any solution of the IVP (3.2.1) and (3.2.2). Since
x(0) = ¢(0) > 0, there exists a 6 > 0 such that z(t) > 0 for 0 <t < 4. If § = oo,
then the proof is completed. Otherwise, there exists a t; € (0, 00) such that z(¢) > 0
for 0 <t < t; and x(t;) = 0. Since by (Hy) g(t,v) > 0 for any (¢,v) € [0,00) x C,
from (3.2.1) we have that

#(t) > —r(Oh(x(t), 0<t<t. (3.2.5)
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But from Theorem 2.1.2, we have
x(t) > y(t), 0<t<t,
where y(t) = y(0, ©(0),0)(t) is the positive solution of (3.2.3), with ¢ = 0 and with

the initial condition

Then at t = t; we get x(t1) > y(t1) > 0, which is a contradiction with our assumption

that x(¢;) = 0. Hence z(t) > 0 for ¢ € [0, c0). O

The next result implies that, under our conditions, Eq. (3.2.1) is persistent.

Lemma 3.2.3. Let conditions (H;) and (Hp) be satisfied. Then, for any ¢ € C,

we have

(i) if (Hg) is satisfied, then any solution x(p)(t) of the IVP (3.2.1) and (5.2.2)
satisfies

inf z(p)(t) > 0; (3.2.6)

>0

(i1) if (H}) is satisfied, then any solution x(p)(t) of the IVP (3.2.1) and (3.2.2)
satisfies

sup z(p)(t) < oo. (3.2.7)

t>0

Proof. First, we prove part (i). Let ¢ € C, be an arbitrary fixed initial
function and z(t) = x(¢)(t) be any solution of the IVP (3.2.1) and (3.2.2). Then,
by Lemma 3.2.2, we have x(t) > 0 for ¢ > 0. Let 7} > 7 and u; > 0 be defined by
(Hs). In virtue of condition (Hz), there exists a positive constant ¢ such that

—1 < . —1 '
0<h(c)<wy and i z(t) > h™(c) >0

We show that z(t) > h™'(c) for all ¢ > 0. Suppose there exists ¢ > T; such that

z(t) > h™'(c) for t € [0,t) and z(t) = h™'(c). Then, using (Hz) with u = h™'(c),
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we have

g(t,x) > (T, h7(e) > ¢,

therefore

#() = (D) (9(7.22) — h(x(D))) > (D) (e~ h(h (@) = 0.
This is a contradiction, since z(#) < 0. Hence x(t) > h~'(c) holds for all ¢ > 0, so
part (i) is proved.

The proof of part (ii) is similar. O

Now we state our main result, which can be used to estimate li{n inf z(t) and
—00

limsup z(¢). In the next section we will show that in many particular situations
t—00

these estimations imply that Eq. (3.2.1) is uniformly permanent.

Theorem 3.2.4. Assume (H;) and (Hs) are satisfied. Then for any ¢ € Cy, we

have

(i) if (Hs) and (Hj) are satisfied, then any solution x(t) = x(yp)(t) of the IVP
(3.2.1) and (3.2.2) is bounded from below on [0,00), and
h™H (g1 (z(00))) < z(00); (3.2.8)

(i1) if (H;) and (Hg) are satisfied, then any solution x(t) = x(¢)(t) of the IVP
(3.2.1) and (3.2.2) is bounded from above on [0,00) and
7(00) < h™H(g5(T(0))). (3.2.9)

Proof. First, we prove part (i). Let z(t) be any solution of the IVP (3.2.1) and
(3.2.2), and let T' > 7. By virtue of (3.2.6) we have for any 7" > 7
0<a, = tzl',rrlgrx(t)' (3.2.10)

Thus, from (3.2.10) and (Hjs), we get

g(t7 xt) 2 QI(T7 aT77)7 t Z T.
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Hence, from (3.2.1), it follows
z(t) > r(t) (T, a,__) — h(z(t))], t>T. (3.2.11)
From (3.2.11) and Theorem 2.1.2 we see that
z(t) > y(t) fort > T,
where y(t) = y(T,2(T),q1(T,a,__))(t) is the solution of Eq. (3.2.3) with ¢ =

¢1(T, a,__) and with the initial condition

From Lemma 3.2.1, we see that

y(00) := lim y(t) = b~ (q (T’ a,_,)).

t—o00

Thus

hHqu(T, a,_,)) = y(oo0) < z(o0),

and from the last inequality, we have

liminf b~ (g (T, a,_)) < z(c0).

T—o0 P
But since
£(00) = Jinn e
then
lim a, = z(c0). (3.2.12)
T—o0

Using (Hs), (3.2.12) and the strict monotonicity of ™!, we obtain

liminf A~ (q1(T,a,_)) = b *(liminf ¢; (T, a,._)) > h (g (z(c0))) > 0,
T—o0 T—o00

and hence

h™H (g1 (z(00))) < z(00).

Therefore, the proof of (i) is completed.

The proof of part (ii) is similar to the proof of part (i), so it is omitted. O

Our main theorem implies the following corollary, which formulates sufficient
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conditions for that all positive solutions converge to a constant limit.

Corollary 3.2.5. Assume all conditions (H;) — (Hg) hold, moreover ¢*(w) :=
¢;(w) = ¢5(w) forw € Ry, and there exists u* > 0 such that

¢ (u) > h(u) forue (0,u") and  q*(u) < h(u) foru>u*.  (3.2.13)
Then, for any ¢ € C,, any solution x(t) = z(p)(t) of the IVP (3.2.1) and (3.2.2)
satisfies

tlg?o x(t) = u". (3.2.14)
Proof. Theorem 3.2.4 yields
hH(q"(z(00))) < z(00) <T(00) < h™H(q" (T(00))),
or equivalently,
¢ (2(00)) < h(z(o0)) < M(T(00)) < ¢"(T(0)).

Then condition (3.2.13) implies

which gives (3.2.14). O]

3.3 Applications of the main results

In this section, we provide several corollaries to our main results. First, we consider

the equation
B(t) = ax(t)a?(t — ox(t)) — B(t)2"(t), t>0, (3.3.1)
k=1
with
x(t) = p(t), -7 <t<0. (3.3.2)
A special case (p = 1 and g = 2) of this equation, a population model with quadratic

nonlinearity was studied in [4, 31, 35]. The next result gives explicit estimates for the
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limit inferior and limit superior of the positive solutions of (3.3.1), which generalize

the results of [4, 31].

Corollary 3.3.1. Consider the IVP (3.3.1) and (3.3.2), where 0 <p < q, ¢ > 1,
0 <o(t) <, t>0 and k=1,...,n (3.3.3)

with some positive constant T, and oy, f € C(Ry,Ry) with

0 t
B(t) >0 fort >0, / B(t)dt = oo, hn@r Ogc(()) < oo ezists fork=1,...,n,
0
(3.3.4)
and . .
> u(t) > au(t)
m = liminf =L >0 and m = limsup =L ——— < 0. (3.3.5)

t—o0 ﬁ(t) t—o0 t)
Then, for any initial function ¢ € C., any solution x(t) = x(p)(t) of the IVP

(3.3.1) and (3.3.2) satisfies
m7s < (o) < F(oo) < M. (3.3.6)

Proof. The proof is obtained directly from Theorem 3.2.4, where we can rewrite

(3.3.1) as follows

i(t) = B(t) Z Og((? 2P (t — o(t)) — 29(t) | t>0. (3.3.7)

Note that (3.3.4) yields that if 5(0) = 0, then the functions aﬁ’“(g) can be extended
ok (t)

continuously to t = 0. For simplicity, this extended function is denoted by = B

well. We can see from (3.3.7) that Eq (3.3.1) can be written in the form (3.2.1)
with r(t) := 5(t), g(t, ) := Z ﬁ(t (—ok(t)) and h(x) := 9. Since ¢ > 1, h(x)

as

is locally Lipschitz contlnuous, and so conditions (Hy) and (Hz) are satisfied. Now
we check that conditions (Hsz)—(Hs) are satisfied. Suppose that ¢ (s) > u > 0 for

—7 < s <0, then g(t,v) > ¢:(T,u) for t > T > 0, where

3 ax(t)

G (T, u) == mpu®, my = inf =1

T B(t)

Therefore (Hg) is satisfied if mpu? > u? or equivalently my, > w9™P for some
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T} > 7 and small positive u. Since (3.3.5) yields m = hTHi}oI.}f mr > 0, there exist
T, > 0 and u; > 0 such that
my, > ul P >uP for u € (0,uq],
and hence (Hj) is satisfied. In a similar way we can show that (Cs) is satisfied.
To check (Hs), suppose v(T) — w as T — oo. Then
Jim qu(TL0(T)) = Jim mypo?(T) = mu?’
so (Hs) is satisfied with ¢} (w) := mwP. In a similar way we can check (Hg). Thus
Theorem 3.2.4 is applicable, so we see that
h(gi (2(00)) < 2(00) < F(00) < AN (g5(T(00)).

Hence

(ma”(00))"? < z(00) < T(00) < (Ma"(00))",
therefore we get (3.3.6). O

The next result gives sufficient conditions which yield that all positive solutions
are asymptotically equivalent. This result is novel, which is interesting on its own
right. One reason for this is that most of the attractivity results in the literature
focus on the case when the investigated equation has a saturated equilibrium. See,
e.g., [57] Section 4.8 for related results. Corollary 3.3.1 may initiate further research

in more general equations without constant steady state solutions.

Corollary 3.3.2. Consider the IVP (3.3.1) and (3.3.2), where oy satisfy (3.3.3),

and ay and 3 satisfy (3.3.4) and (3.3.5), and suppose 1 < p < q are integers, and

q

0<" < (73)”, (3.3.8)

m q
where m andm are defined in (3.3.5). Then, for any initial functions @, € Cy, any

corresponding solutions x(¢)(t) and x(1)(t) of the IVP (3.3.1) and (3.3.2) satisfy
lim (x(go)(t) . x(¢)(t)> ~0. (3.3.9)

t—o00

Proof. Introduce the short notations x(t) := z(p)(t) and z5(t) := x(¥)(¢t). It
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follows from Corollary 3.3.1 that
mar < liminf ,(t) < limsupa,;(t) < mos,  i=1,2. (3.3.10)

t—o0 t—o0

Eq. (3.3.1) yields for t > 0 that
(1) = dalt Zak ) (4t = (1)) = 2Bt = ox(1))) = B (21(t) — 24(0)).

Therefore the functlon w(t) = x1(t) — xo(t) satisfies

Zak ar(w(t — op(t)) — BE)b(Hw(t),  t>0, (3.3.11)
where »
ap(t) =Y 2t(t— o) Tt —op(t), k=1,....n
=0
and »
b(t) ==Y wi(t)zd ()
=0

The definitions of ag(t), b(t), relation (3.3.10) and assumption (3.3.8) imply

n

Z k(t)ar(t) _p=1 > ax(t) el
k=1 p-ma k=1 . p-maep
BT s R = U T R =

mea-

Then a simple generalization of Theorem 3.1 of [38] yields that the trivial solution

of Eq. (3.3.11) is globally asymptotically stable, so tlim w(t) = 0, which completes
—00

the proof of the statement. O

Remark 3.3.1. It is interesting to note that if the conditions of Corollary 3.3.2 hold
and the IVP (3.3.1) and (3.3.2) has a positive periodic solution, then it is unique

and it attracts all positive solutions.

Next, we consider the special case of (3.3.1), which is identical to Eq. (3.1.2)
Zak w(t — o)) — B(1)22 (), t>0, (3.3.12)
with

z(t) = p(t), —7 <t <0. (3.3.13)
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Corollary 3.3.1 immediately implies the estimate obtained in [4], but under
weaker conditions, since the boundedness conditions (3.1.7) of the coefficients are

not required.

Corollary 3.3.3. Consider the IVP (3.3.12) and (3.5.13), where o, satisfy (3.3.3),
and oy, and (B satisfy (3.3.4) and (3.53.5). Then,

(i) for any initial function ¢ € C, the unique solution x(t) = x(p)(t) of the IVP
(3.8.12) and (3.3.13) satisfies
m < z(o0) < T(o0) <, (3.3.14)

where m and ™ are defined in (3.3.5).

(ii) Moreover, if in addition

m < 2m, (3.3.15)

then any positive solutions of Eq. (3.3.12) are asymptotically equivalent, i.e.,
(3.3.9) holds.

Next we consider a scalar delay differential equation with more general nonlin-
earity

#(t) = a(t) f(z(t — o(t))) — B)R(z (L)), t>0, (3.3.16)

with

x(t) = (1), —7 <t <0. (3.3.17)

Corollary 3.3.4. Consider the IVP (3.3.16) and (3.3.17), where the delay function

o satisfies 0 < o(t) < 7 fort > 0 with some positive constants 7, and a,f €
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C(R+, R+) with

B(t) >0 fort>0, /0 B(t)dt = oo, 0< tllr& % < oo exists, (3.3.18)
and
ot S a(t)
m = liminf —= >0 and m = limsup —= < 00, 3.3.19
=l 2P B (3:3:49)

f,h € C(Ry,Ry) are increasing functions with h(0) = 0, h is locally Lipschitz

continuous, and
h(u)
f(u)

G(u) ==

is monotone increasing, }Llir(l) G(u) =0 and uh_{glo G(u) = 0.

(3.3.20)
Then, for any initial function ¢ € C., any solution x(t) = x(p)(t) of the IVP
(3.8.16) and (3.3.17) satisfies

G~ Hm) < z2(00) < Z(00) < G~ Hm). (3.3.21)

Proof. We rewrite (3.3.16) as

x(t) = B(t) %f{x(t —o(t)) — h(z(t))], t>0. (3.3.22)
We can see from (3.3.22) that r(t) := B(t) and g(t,¢) = %f(w(—a(t))). It is

clear that conditions (H;y) and (Hz) hold. We check that conditions (Hg)—(Hsg) are
satisfied. Suppose that (s) > u > 0 for —7 < s < 0, then g(t,2) > ¢1(T,u) for
t > T, where

a(t)

@ (T, u) = mqpf(u), mp = tgqu"_

(t)
Hence (Hg) is satisfied if mq, f(u) > h(u), or equivalently
my, > G(u) (3.3.23)
for some T} > 7 and for small enough positive u. It follows from (3.3.19) that there
exists 77 > 0 such that mp, > 0. Using 11}35 G(u) = 0, there exists u; > 0 such that
0 < G(u1) < mp,. Thus we have that (3.3.23) holds for u € (0,u,], and hence (Hj)

is satisfied. Similarly, we can check (Hy).
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im v(7T) = w, and consider
— 00

Tim qy(T,o(T)) = lim e f(u(T)) = mf(w),

so (Hj) is satisfied with ¢f(w) := mf(w). In a similar way we can check (Hg). Thus

To show (Hj), suppose that Tl

Theorem 3.2.4 is applicable, so we see that
h™H(gi (z(00))) < z(00) < T(00) < h™(g5(T(00))).

Hence

mf(z(o0)) < h(z(o0)) < h(T(o0)) < mf(T(00)),

and therefore, using (3.3.20), we get (3.3.21). O

Corollary 3.3.5. Suppose all conditions of Corollary 3.3.4 hold, moreover

a(t)

0<m:= tlgono 30 < 00 (3.3.24)
exists, and there exists u* > 0 such that
mf(u) > h(u) foru e (0,u") and mf(u) < h(u) foru>u*. (3.3.25)
Then, for any initial function ¢ € C.y, any solution x(t) = x(p)(t) of the IVP
(3.3.16) and (3.3.17) satisfies

lim x(t) = u*. (3.3.26)

t—00
Proof. It follows from the proof of Corollary 3.3.4 that ¢} (w) = ¢5(w) = mf(w),

w € Ry, so Corollary 3.2.5 yields (3.3.26). g

Now we consider the IVP

0
z(t) = a(t)/ f(s,z(t+s))ds — B(t)h(x(t)), t>0 (3.3.27)
with the initial condition

x(t) = (1), -7 <t<0. (3.3.28)

Corollary 3.3.6. Consider the IVP (3.3.27) and (3.5.28), where a, f € C(R,R,)
obey (3.3.18) and (3.3.19), f € C(|—7,0] x R,R) is increasing in its second vari-
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able, h € C(Ry,Ry) is an increasing function with h(0) = 0, h is locally Lipschitz
continuous, and

h(u
Gu) == —5———— (w)
Jo f(s,u)ds
Then, for any initial function ¢ € C.y, any solution x(t) = x(p)(t) of the IVP

is monotone increasing, lim G(u) =0, lim G(u) = .
u—0 U—00

(3.3.27) and (3.3.28) satisfies
G Hm) < z(00) < Z(00) < G~ Hm). (3.3.29)

Proof. The proof is similar to that of Corollary 3.3.4, so it is omitted. U

Next we consider the IVP

H1) = - j(i)(f)i(:%)) _ B2, t>0, (3.3.30)
with the initial condition
x(t) = (1), -7 <t<0. (3.3.31)

This is a special case of the alternative delayed logistic population model introduced
in [2] (see also [4, 31]).
We show that, under weak conditions on the coefficients, Theorem 3.2.4 is ap-

plicable to estimate z(o0) and T(00).

Corollary 3.3.7. Suppose 0 < o(t) < 7 with some T > 0, the coefficients o, 3, €
O(R+, R+) with

o t
B(t) >0, t >0, /0 B(t)dt = oo, tl—igir % < oo emists, 0< ligglfy(t),
(3.3.32)
and for some € > 0
-1 + 1 + 4&(?7(15)
m, := liminf S lcOR (3.3.33)
t—vo0 29(t)
and
—14+,/1+ 40&(?7('5)
e := lim sup ()50 (3.3.34)

t—o0 27(t)
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Furthermore, suppose there exist functions ¢i and g5 so that if Tlim v(T) = w, then
—00

T .
llTrrLloréf g%w > g1 (w) (3.3.35)
and
So(T)

lim sup sup < g5 (w). (3.3.36)

Tooo t>7 1+ 7()v(T)
Then, for any initial function ¢ € Cy, the solution x(t) = x(¢)(t) of the IVP

(3.3.30) and (3.3.31) satisfies
qi(2(00)) < z(00) < T(00) < V/g5(T(00)). (3.3.37)

Proof. We can rewrite (3.3.30) as follows
Sha(t—o(t)

. B(t) 2
z(t) = B(t —x°(t) ]|, t >0,
where % denotes the continuous extension of the function to ¢t = 0 if 5(0) = 0.
B p(—alt
EIO)

Let us define r(t) := B(t), g(t,¢) = )t))) and h(x) := x2. Tt is clear that

I+ (8)p(—o(
conditions (H;) and (Hz) are satisfied. We check that conditions (Hg)—(Hy) are

satisfied. Suppose that (s) > u > 0 for —7 < s < 0, then g(t,2) > ¢1(T,u) for

t > T, where
a(t)

— B
QI<T7 U) T tlgjf“ 1 —|—7(t)u

Thus (Hj) is satisfied if for some 7} > 7, ¢ > 0 and small enough u > 0
a(t)

L)u>(1+5)u2’ t>T,
1+~y(t)u — -
or equivalently
t
(1+e)y®)u? + (1 +¢e)u— % <0, t>1. (3.3.38)

Relation (3.3.32) implies there exists 77 > 7 and € > 0 such that y(¢) > 0 for t > T}

and

IOR0
—1+/1+ Gasm

> 0. (3.3.39)

L= T
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So for t > T}
(1+ (00 + 1+ )y = F7 =0

is a quadratic equation, and (3.3.33) yields that it has a negative solution and a
positive solution
1a(t)y(t)
—1+ 1+ Gas
2v(t) ‘

Therefore (3.3.39) yields (3.3.38), and hence ¢; (T3, u) > u? holds for 0 < u < u;. In

a similar way we can show that (Hy) is satisfied.
Assumption (Hjs) follows from (3.3.35), since
a(t) (T)

- R By Y
Bt (o) = i e T BTy

Assumption (Hg) can be shown similarly. Then Theorem 3.2.4 yields (3.3.37). O

The next two corollaries illustrate two cases when relations (3.3.35) and (3.3.36)

can be checked easily. First consider the case when 7(t) — oo as t — 0.

Corollary 3.3.8. Suppose 0 < o(t) < 7 with some T > 0, the coefficients «, 3,y €
C(Ry,Ry) satisfy (3.3.32), (3.3.33) and (3.3.34). Furthermore, suppose
lim v(t) = oo. (3.3.40)
t—o00
Then, for any initial function ¢ € C,, the solution x(t) = x(¢)(t) of the IVP
(8.3.30) and (3.3.31) satisfies
m < z(o0) < ZT(o0) <, (3.3.41)

where m = my, and m =g are defined in (3.3.33) and (3.3.34) with € = 0.
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Proof. Assumption (3.3.40) yields

POR0)
1+ 1+ T80

m, = liminf
t—o0 29(t)

= liminf( — ! ! olt)
= limint( m)*\/ w0 TR0

= liminf o(t)
oo\ (14 ¢€)B(t)v(1)

1
T Virel
and similarly,
—14 /1 + At
m. = lim sup Urope) _ lim sup\/ a(t) = ! m
e = S 2(t) oo\ (1H+2)B(t)()  VI+e

To check (3.3.35), suppose lim v(T) = w, and let € > 0 be fixed. Then, for large

enough ¢, we have 5 )(i)( 5 > m?. Then we have

ol (T) alt) ()
lim inf inf L — liminfinf B(t)“f(t)
T—oo t>T 14 (t)v(T) T—oo t>T ) v(T)
m?
T
> liminf — u(T)
= fizr@ T v(T)

e

Since € > 0 was arbitrary, it follows

o) (T
lim inf inf L()
T—oo t>T 1+ ~(t)v(T)

i.e., ¢f(w) = m? can be selected in (Dy). Similar calculation shows that

m?,

v

lim sup su %U(T) < m*

1 —_—

re ot 1+ A(00(T)

Then Theorem 3.2.4 yields (3.3.41). O

In the case when v(t) and 5.3 are bounded, we can give an explicit estimates in

B(t)
(3.3.35) and (3.3.36), so we obtain explicit estimates of z(co) and Z(c0).

Corollary 3.3.9. Suppose 0 < o(t) < 7 with some 7 > 0, and the coefficients

a, 3,7 € C([0,00),Ry) satisfy (3.5.32). Moreover, suppose
o) 0l

0 <m :=liminf —= msup ——= =: m < 00,

t=oo [3(t) t—oo (1)
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and

0<!l:= litminfy(t) <limsupy(t) =: 1 < 0.
—00

t—o00

Then the solutions of the IVP (3.3.30) and (3.53.31) with ¢ € C satisfy

—1++/1+4mi —1+ T+ 4ml
TS < (o) £ 3(00) £ D (3.3.42)
Proof. To check (3.3.35) we consider
a(t) : a(t)
lim inf L(T) > lim nfizr WU(T) = mv_(T)
P B T @(T) =~ 10 T suprar 1OW(T) 1+ T0(T)
so (3.3.35) holds with
. mw
w) = —.
q; (w) 1+ lw
Similarly, the function
. _mw
satisfies (3.3.36). Then (3.3.37) implies (3.3.42). O

Finally we consider

#(t) = ; 1 i’“v(?(f;; (;‘_”“(fz)&)) CaBB)a(t) — B)2R(H),  t>0,  (3.3.43)

where a > 0, and we associate the initial condition

2(t) = o), —T<t<O. (3.3.44)
Note that a slightly more general version of Eq (3.3.43) was studied in [31] where

af(t) was replaced by a function p(t).

Corollary 3.3.10. Suppose a > 0, 0 < ox(t) < 7 with some 7 > 0, and the
coefficients ay, B,y € C([0,00),Ry) (k = 1,...,n) satisfy (3.3.32). Moreover,

Suppose

Ozk(t)

t
0 < my := liminf (?) < limsup —— =: my, < 00,

tooo B(t) T isee B(2)

0<l:= min liminfy(f) < max limsupy(t) = I < o0

k=1,....n t—o00 k=1,..m {500
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and
S >
k=1
Then the solutions of the IVP (3.8.43) and (3.3.44) with ¢ € C satisfy
my,)

—(1+al) + \/(1 +al)? — 4l(a —

5 < z(00) (3.3.45)

n

and

—(14al) + \/(1 +al)? — 4l(a — i )
f(oo) < k=

- 2l

(3.3.46)

Proof. The proof is similar to that of Corollary 3.3.9 using the function h(u) =

au + u?, so it is omitted here. O

3.4 Examples

In this section, we provide several examples to our main results.

Example 3.4.1. Consider the differential equation

@(t) = t(2 + cost)x(t — 2.5) — tz*(t), t>0. (3.4.1)
It is clear that (3.4.1) is a special case of (3.3.12) with n = 1, ay(t) = t(2 + cost),
B(t) = t, and relations (3.3.4) and (3.3.5) hold. We get

ar(t) .. B
= liminf 505 _hgégf@—i—cost)_l,

= lim sup(2 + cost) = 3.
t—o0 ﬁ( ) t%oop( )

Hence Corollary 3.3.3 yields that all solutions of (3.4.1) corresponding to an initial
function ¢ € C satisfy

1 < z(p)(00) < T(p)(00) < 3.
We note that the results of [4] and [31] cannot be applied for (3.4.1), since the

coefficients do not satisfy (3.1.7).
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In Figure 3.4.1 we plotted the solutions of Eq. 3.4.1 starting from the constant
initial functions p(t) = 0.2, p(t) = 1 and ¢(t) = 2. We can see from the figure
(and from other numerical runnings) that the above estimates hold, moreover, all
solutions seem to be asymptotically equivalent, despite of that condition (3.3.15)

does not hold in this example. O

25

Solution  x(t)
=
(%))

[

0.51

10 20 30 40 50
Time t

Figure 3.4.1: Solutions of Eq. (3.4.1) corresponding to the initial functions (t) =
0.2, o(t) =1 and p(t) =2

The next example shows that estimate (3.3.14) is sharp in some cases.

Example 3.4.2. For 7 > 7 consider the differential equation

4: 1 _: s
() = (f Sin ——¢ 4 ¢35 2?t>w(t — ) —22(h), t>0. (3.4.2)
T T

An application of Corollary 3.3.3 gives that the solutions of (3.4.2) corresponding

to an initial function ¢ € C', satisfy

m, < z(c0) < T(o0) < My,

T

where

B 1in2 21
m, = liminf | —sin —¢ 4 e2*™ +*
t—00 T T
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and
— . ™ . 47 142 27w
m, = limsup [ —sin —¢ + e25 7| .
t—o0 T T

Simple calculation shows that the function

x(t) = ez s t>0

)

is a positive solution of Eq. (3.4.2), and z(oc0) = 1, T(c0) = /e. Therefore for 7 > 7

m._ <1< +e<m,.

It is easy to see that m_ — 1 and m, — /e as 7 — 00, so our estimations are

getting sharper and sharper as 7 — 00, see Figure 3.4.2.

18

1.7y

N 1 |

Solution  x(t)
-
~

L
w

I
[N}

[
N

W

0 2000 4000 6000 8000 10000
Time t

i

Figure 3.4.2: Solution of Eq. (3.4.2) corresponding to the initial function ¢(t) = 1

and 7 = 1000

We note that condition (3.3.15) holds for large enough 7, so then Remark 3.3.1

yields immediately that for such 7 the function e2 5 g the only positive periodic

solution of (3.4.2), and it attracts all positive solutions.

Example 3.4.3. Consider

@(t) = t((z + H%)x(t — 3 —sint) — x2(t)>, t>0.

O

(3.4.3)

All conditions of Corollary 3.3.5 hold with m = 2 and u* = 2, so the solutions

of (3.4.3), as shown in Figure 3.4.3, corresponding to an initial function ¢ € Cy
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satisfies
lim z(t) = 2.
t—o0
O
3
2.5&
Al
4
S15
5
[=}
(]
1
0.5
o ‘ ‘ ‘ ‘
20 40 60 80 100

Time t

Figure 3.4.3: Solution of Eq. (3.4.3) corresponding to the initial functions ¢(t) =
0.5,¢(t) = 1.1 and ¢(t) = 2.8

Example 3.4.4. Consider the equation
1 2t)x(t —3 1
i(t) = ( —i—cos. Zx( ) .
1+t(6+sin“t)z(t—3) t+1
where § > 0 with the initial condition (3.3.31), i.e., let a(t) = 1+ cos?t, B(t) =

2(t), t >0, (3.4.4)
1
1
and y(t) = t(§+sint) in (3.3.30). Clearly, relation (3.3.32) holds. To check (3.3.33)

with € = 0, we have

da(t)y(t)
I RV Sy 0 . 1 1 ot)
lim inf = liminf (— + + )

= liminf

oo\ B(E)y(t)
L (14 cos?t)(t+1)
= limin f\/ t(6 + sin®t)

1

J+1

A%
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Similarly, (3.3.34) holds since

da(t)y(t)
. —LH 1+ S (1+cos2t)(t+1) _ [2
lim sup = lim sup 5 </-=.

t—o00 27(t) t—o0 t(6 + sin“t) J

Then Corollary 3.3.8 yields the solutions corresponding to initial function ¢ € C'

satisfy

For § = 0.8 the above estimates give 0.7454 < z(o0) < T(oco) < 1.5811. In
Figure 3.4.4 we display numerically generated solutions using the initial functions
o(t) = 0.2, o(t) = 0.5 and ¢(t) = 2. These runnings indicate that the solutions are

asymptotically equivalent.

18

Solution  x(t)
o o I I [
(=2 o} = N » D

o
IS

o
)

o

10 20 30 40 50
Time t

Figure 3.4.4: Solutions of Eq. (3.4.4) corresponding to § = 0.8 and the initial func-
tions p(t) = 0.1, p(t) = 0.5 and ¢(t) = 1.5.

O
Example 3.4.5. Consider the differential equation
t(3 + cost + A )w(t — 2
i(t) = ( 771)( )—mﬂw, t>0 (3.4.5)

14 (2 +sint)z(t —2)
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with the initial condition (3.3.31). Then we see that

4
= liminfa—) = lim inf [3 + cost + —} =2,

_ . a(t) . { 4 }
m = limsup——= =limsup |3+ cost + —— | =4,
e BI) e 2+ 1

o~

liminf y(¢) = liminf(2 +sint) =1
t—o00 t—o0

and

[ :=limsupy(¢) = limsup(2 + sint) = 3.
t—o0 t—r00
Substituting in (3.3.42) we find that
—1++v25 -1+ V17
L S g < -tV
6 - - 2
As it is shown in Figure 3.4.5. U

0.66666 . .. = (00) < T(0) = 1.56155. . ..

Solution x(t)
Ll
= I\J 00

i el
N ® ©

20 40 60 80 100
Time t

o

Figure 3.4.5: Solution of Eq. (3.4.5) corresponding to the initial functions ¢(t) =1

Example 3.4.6. Consider the differential equation
, (2+sint)x(t — 1) 5
t) = - t) — t t>0 3.4.6
) = ST ) =), 0 (3.46)

with the initial condition (3.3.44). Here n = 1, a1 = 2 +sint, 11(t) = 1, 5(t) = 1,

andso[zizl,mlzlandmlz?).

Consider first the case when a = 0.1. Then (3.3.45) and (3.3.46) yield the
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estimates

0.5 < z(c0) < F(o0) < 1.2114.

Note that Theorem 3.2 of [31] yields the estimates

> inf ay(t) — asup 5(t)
=11t >0

sup 5(t) + Y inf ag(t) sup (1)
k=1120 t>0

t>0

0.45 =

< z(00)

and
n

T(00) < lirtriigp % ;ak(t) —a=209,

so for this example our result gives better estimates.

Next consider the case when a = 0.2. Then our estimates (3.3.45) and (3.3.46)

give

0.3798 < z(00) < T(o0) < 1.1204.

If we apply Theorem 3.2 of [31] then we get the estimates

0.4 < z(o0) < T(00) < 2.8,

where the lower estimate is better than ours, but the upper estimate is worse.



Chapter 4

Existence and uniqueness of
positive solutions of a system of

nonlinear algebraic equations

In this chapter we consider the nonlinear system ~;(z;) = Zn: gij(z;), 1 <i<n.
We give sufficient conditions which imply the existence andj :ulniqueness of positive
solutions of the system. Our theorem extends earlier results known in the literature.
Also, we give several examples to illustrate the main result of this chapter. This
existence and uniqueness condition will be essential in the proof of our results in

Chapter 5.

4.1 Introduction

Nonlinear or linear algebraic systems appear as steady-state equations in continuous
and discrete dynamical models (e.g., reaction-diffusion equations [51, 58|, neural
networks [17, 18, 53, 67] compartmental systems [11, 15, 39, 41, 54, 55|, population

models [49, 63]). Next we mention some typical models.

42
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Compartmental systems are used to model many processes in pharmacokinetics,
metabolism, epidemiology and ecology. We refer to [54, 55] as surveys of basic theory
and applications of linear and nonlinear compartmental system without and with

delays. A standard form of a linear compartmental system with delays is

4i(t) = —kiqi(t +kaqj —7ij) + 1, i=1,...,n. (4.1.1)

J#l
Here ¢;(t) is the mass of the ¢th compartment at time ¢, k;; > 0 represent the

transfer or rate coefficients, I; > 0 is the inflow to the ith compartment. A possible
generalization of (4.1.1) used in several applications is a compartmental system,
where it is assumed that the intercompartmental flows are functions of the state
of the donor compartments only in the form k;; f;(g;) with some positive nonlinear
function f;. So we get the nonlinear donor-controlled compartmental system (see,
e.g., [11, 14))

Gi(t) = —kii f:(qi(t) +kaf]qj —m )+ L, i=1,...,n (4.1.2)

J#l
Next we consider an ecological system of n species which are living in a symbiotic

relationship with the other species (see [34]):

=1
Here k;; > 0 represents the measurejzlf the mortality due to intraspecific competition,
the terms b; > 0 represents the per capita growth due to external (inexhaustible)
sources of energy, and the coefficients k;; (j # 4) are nonnegative due to the sym-
biosis.
Cellular neural networks were introduced by Chua and Yang [19] in 1988, and
since then they have been applied in many scientific and engineering applications.
Here we consider the Hopﬁeld neural network studied in [17]

Ciit; = Z’ng] (u;) +I,, i=1,...,n, (4.1.4)

where C; > 0, R; > 0 and I are Capamty, resistance, bias, respectively, T;; is the
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interconnection weight, and g; is a strictly monotone increasing nonlinear function
with ¢;(0) = 0.
Finally, we recall the delayed Cohen—Grossberg neural network model from [53]
i(t) = —di(z:(1)) (Ci(ﬂfi(t)) = aiifilwi(t) = Y bif(w(t — m5(1))) + Jz’)
- - (4.1.5)
fori=1,...,n.
A nonzero equilibrium of both (4.1.1) and (4.1.3) satisfies a linear system of the

form

Ax = b, (4.1.6)

where A € R™*" has elements
kiia j = i?
and b > 0, i.e., all coordinates of b are nonnegative. It is known (see, e.g., [10])

CLij =

that if A is a nonsingular M-matrix and b > 0, i.e, all coordinates of b are positive,
then the System (4.1.6) has a positive solution x > 0. The existence of positive
solutions of various classes of linear systems have been studied in [34, 56, 62].

The existence and uniqueness of positive solutions of the nonlinear algebraic

system

Au = Ag(u) (4.1.7)

have been investigated in [13, 70, 71, 73, 74, 75], where A € R u = (uy,...,u,)’ €
R, A >0 and f(u) = (fi(u1),- .., fu(u,))?. It was demonstrated in [74] that posi-
tive solutions of such systems appear in several problems including finding positive
solutions of a finite difference approximation of second-order differential equations
with periodic boundary conditions, periodic solutions of fourth-order difference equa-

tions, second-order lattice dynamic systems, discrete neural networks.
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If A is invertible, we can rewrite (4.1.7) as u = AA~!g(u). Then, assuming g is
also invertible, using fi(u) = g; ' (u), and introducing the new variables x; = g;(u;),
we get a nonlinear system of the form

fiz) =) ez, 1<i<n (4.1.8)

In many applications (see [76]) Wézilave that A~! is a positive matrix, i.e., all its

coefficients are positive, hence we assume ¢;; > 0 for all ¢, 5 = 1,...,n. The existence

and uniqueness of the positive solutions of the System (4.1.8) was investigated in

[19, 76] for the special case f;(u) = u?, and in [20] for the case when all the functions
fi are equal to a given function f.

Recently, in [21] the existence and uniqueness of positive solutions of the non-

linear system

filzi) = Zcij%’ + pi, I<i<n (4.1.9)
j=1

was investigated using Brouwer’s fixed point theorem under the conditions ¢;; > 0
forallé,5 =1,...,n and p; > 0.

The goal of this chapter is to study the existence and uniqueness of the positive
solutions of the general nonlinear system

n
vilw) = gi(z;), 1<i<n (4.1.10)

Note that the System (4.1.10) incitzlclles the steady-state equations of a nonzero equi-
librium of the dynamical systems (4.1.2), (4.1.4) and (4.1.5), respectively. Our main
result, Theorem 4.2.1 below, uses a monotone iterative method to prove existence of
a positive solution, and an extension of the method used in [21] to prove uniqueness
under a weaker condition than that assumed in [21].

The structure of this chapter is the following. In Section 4.2 we formulate our
main results. Theorem 4.2.1 below gives sufficient conditions to imply the exis-

tence and uniqueness of the positive solutions of the System (4.1.10). In Section 4.3
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we show several examples including the Equations (4.1.6) and (4.1.9), where Theo-

rem 4.2.1 is applicable.

4.2 Main results of Chapter 4

Consider the nonlinear system
j=1
where v, € C(Ry,R), g;j € C(R,R;), 1 < 4,5 <nand Ry := [0,00). By a

positive solution of the System (4.2.1) we mean a column vector x := (21, ..., 7,)7

which satisfies (4.2.1), and z; > 0, ...,x, > 0.
We use the monotone iteration method in the proof of our main result, so we

need the monotonicity of the functions +;, g;; and the ratio ;’f((z)) which appear in
ij

the conditions of the next main theorem.

Next we formulate the main result of this chapter.

Theorem 4.2.1. Let v, : Ry — R and g;; : Ry — Ry, 1 <14,5 <n be continuous

functions such that for each 1 < i <mn,

(A) there exists a uf > 0 satisfying
<0, if  0<wu<uf,

Yi(u) & =0, if u=u (4.2.2)

> 0, if  u > ul

and y; is strictly increasing on [u}, 00).

(B) gij, 1<i,j<n isincreasing on Ry, and there exists a u;* > uf such that

Zgij(u) < 7i(u), u > urt, 1<i<n. (4.2.3)
j=1

Then the System (4.2.1) has a positive solution.

Moreover, assume that
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(C) for each 1 <1i,j <mn, either g;j(u) >0 for u>0 or g;(u)=0 for u>0,

i.e., gij is either positive or constant 0 for u > 0;

(D) for each 1 < i,j < n, ;JJ—((Z)) is monotone increasing on (uj, o), assuming

gij(u) > 0 for u > 0, and there exist i,j such that g;j(u) > 0 for u > 0 and

;7_((1;)) is strictly monotone increasing on (u}, o).
i

Then the System (4.2.1) has a unique positive solution.

Proof. Let B; := lim 7;(u), i = 1,...,n. Then either B; is positive finite or

U— 00

it is co. Note that assumption (4.2.3) yields that i gij(u) < B; for v > 0 and
i =1,...,n. Assumption (A) implies that, for eaciq:i =1,...,n, - restricted to
[uf,00) has an inverse, i.e., there exists a continuous strictly increasing function
h; : [0, B;) — [uf, o00) satisfying

vi(hi(w)) =u, u €0, B;), hi(vi(w)) =u, w>wu; and h;(0) =u;. (4.2.4)
Now we have from (4.2.1) and the definition of h; that (4.2.1) has a positive solution

(21,...,2,)T if and only if

j=1
Fix any v > 0 and u > 0 such that
w < min u; < max u; < 7U.
1<i<n 1<i<n

Then (4.2.3) and (4.2.4) yield

u<h <Zn: gij(ﬁ)> < h; (i gij(ﬂ)> < u, I1<i<n. (4.2.5)

Now, for each ¢ = 1, ..., n, we construct a sequence (xio), s xgk), ...) by the definition

:EEO) —u and I§k+1) — b, <Z gij@;k))) : k>0, (4.2.6)

J=1

and we prove that the sequence (a:(o) ...,azgk), ...) is convergent. For this aim, we

T

©  ®

i g eeey : g oo

prove that the sequence (x ) is monotone increasing and bounded from
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above. First we show, for each fixed i = 1, ..., n, that

xEkH) > a:l(k), for all £ > 0. (4.2.7)
We use the mathematical induction. At k = () we have, by (4.2.5) and (4.2.6),
Next, we assume that for 'S_olme k>1

2P > pF (4.2.8)

Then, by (4.2.6) and (4.2.8) and the monotonicity of g;; and h;, we have

0 (St 2 (S ) =t
j=1 J=1

Hence the sequence (xgo), ey xgk), ...) is monotone increasing.
Now to prove that the sequence (SCE-O), ...,:cgk), ...) is bounded from above for all
1 <17 < n, we show that
M <@ forall k>0, 1<i<n. (4.2.9)

Again we use the mathematical induction. So, for a fixed ¢ = 1,...,n, at k = 0 we

have by (4.2.5) and (4.2.6) that

V= p, (Z gij(xﬁ-o))> = hy (Z gz‘j(ﬂ)) <h; <Z gij@)) <.

Next, we assume for some k£ > 0 that
+M <. (4.2.10)

Then, by (4.2.5) and (4.2.10) and the monotonicity of g;; and h;, we have

Y (ZQU §k ) < h (Z%(@) <u

0 L®

and hence the sequence (z;,...,z; ’,...) is bounded from above for all 1 <7 < n.

Now since the sequence is monotone increasing and bounded from above, then it

converges to a finite limit, i.e., there exist positive constants x; such that

lim xgk) = x;, 1<i<n.

k—o0
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On the other hand,

i = lim 7 = Jim A, (; gg(é’”)) = h; (; 9@'(%‘)) : 1<i<n,
and hence (4.2.1) has a positive solution.

Now, we show the uniqueness of the solution of the System (4.2.1). Suppose that
(u1, ..., upn) and (vy, ..., v,) are two positive solutions of the System (4.2.1). Then for
each 1 < < n, we have

Yi(ui) = Zgij(uj)v and Yi(vi) = Zgij(vj)' (4.2.11)
Since - -

() = gii(u;) >0, and  yi(v) =Y gij(vy) >0,
j=1 j=1

it follows from (A) that u; > u} and v; > uf for i =1,...,n. Let H = {(i,j) : 1 <

i,j <n,gij(u) >0 for uw> 0}. If the set H is empty, then (4.2.11) reduces to
~i(u;) =0, and vi(v;) =0,

and hence (A) implies that u; = uf = v; for i = 1,...,n, and so the uniqueness

is proved. Therefore, for the rest of the proof, we assume that H # (). Define

(I,s), (k,r) € H such that

gis(us) _ 9ij(wy) _ Ger(ur) .
915 (vs) = i (v5) = Gir(Vr)” (i,5) € H. (4.2.12)

We consider two cases:

(i) Suppose first that

gls(us) _ gkr(ur)
gls(vs) Gkr (UT) '

Then (4.2.12) yields that there exists a A > 0 such that g;;(u;) = Ag;(v;) for
(i,j) € H. But then g;j(u;) = Ag;;(v;) for all 1 < 4,5 < n. Therefore, from

(4.2.11), we have

n

Yilui) = Mi(vi) = Y lgig(u) = Agig ()] =0, 1<i<n.

j=1
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It follows that
7 (uy)
73(v5)

which implies that

=)\ 1<j<n, and A= Jult), (i,j) € H,

() _ () (i.j) e H

9ij(ug)  gi5(v))
By our assumption, there exists (7,7) € H such that the function ;—’] is strictly
monotone increasing. For such 7 and 7, we have that u; = v; and thus A = 1. Hence
vi(u;) = vi(vs), 1 <i <n, which implies u; = v;, 1 < i < n. Therefore the solution
of the System (4.2.1) is unique.

(i) Suppose now that
gus (us) < Guer (ur)

gis(vs)  Grr(vr) (42.13)
Note that (4.2.12) yields
9ij (1) g1s(vs) — gij (V) gis(us) >0, 1 <45 <n, (4.2.14)
and
9i5 (V) g (Ur) = Gij(wg) grr(v,) >0, 1<i,5 <. (4.2.15)

With i = s, (4.2.11) implies
Vo) =Y gy(uy),  and  ya(v) = gei(vy),
j=1 i=1

hence

n

Vs (1) grs(Vs) — 75 (vs) gis(us) = Z[gsj(uj)gls<US) — 9s5(v;) g5 (us)]-

j=1
Using (4.2.14) and that g;s(us) > 0, gis(vs) > 0, we get
0 S ’ys(us)gls(vs) - ’ys(vs)gls(us) = gls(us)gls(vs) (

Vs ()
gls(u)

Vs (us) _ 75(“8))
gls(“s) gls(vs> ‘

Since is monotone increasing, it follows ugs > v,. Similarly, with i = r, (4.2.11)
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implies
Vo () G (02) = Y (V) Gir () =3 [0 (1) Gir (0) = G (05) g ()],
=1
Using (4.2.15) and that gx-(u,) > 0, ggr(v,.) > 0, we get

e(ur) — (or) )
Gkr (ur) Gkr ('Ur) '

—;:((“u)) is monotone increasing, we get u, < v,. The monotonicity of the

functions ¢;; implies that g;s(us) > gis(vs) and gg(u,) < ggr(v,), and therefore

0 Z Vr(ur)gkr(vr) - Vr(vr)gk:r(ur) = gkr(ur)gkr(vr) (

Since

Gis(Vs) Grer (Ur) — s (us)grr(v) < 0, which contradicts with (4.2.13). Hence the Sys-

tem (4.2.1) has a unique solution, and the proof is completed. O

4.3 Applications

In this section we investigate special cases of the general System (4.2.1). We show
several examples which demonstrate that Theorem 4.2.1 generalizes known existence

and uniqueness results of the literature.

4.3.1 Nonlinear systems

Next we consider the nonlinear system
n

a;x) = Zcijxf“ + i, 1<i<n. (4.3.1)
If we set §;; = 1 for all 4, 7, thgllthe corresponding Equation (4.3.1) will be a special
case of (4.1.8) with f;(u) = a;u®. For this case it was shown in [21] that if a; > 0,
a; >1,p >0, 8; =1and ¢; > 0 for 1 <i,j <n, then (4.3.1) has a unique
positive solution. Now in the next result we show the existence and uniqueness of
the solution of (4.3.1) under weaker assumption even in the above special case, since
c;j is allowed to be 0, and we suppose that one of the parameters ¢;; or p; is positive

foralli=1,...,n.
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Corollary 4.3.1. Assume that a; >0, p; > 0 and ¢;; > 0 for each 1 < 1,5 <n are
such that c; + p; > 0 for 1 <i < n. Then the System (4.3.1) has a unique positive

solution assuming that o; > B;; > 0 for all 1 <i,5 < n.

Proof. Equation (4.3.1) can be written in the form (4.2.1) with ;(u) := a;u® —
ciuPi — p;; gij(u) == c;jufii for each 1 < i # j < n and g;(u) = 0. Now, we check
that conditions (A) and (B) of Theorem 4.2.1 are satisfied. For condition (A), we

have v;(u) =0, 1 <14 <mn, if and only if

»
ubBii’

It is clear that the left hand side of (4.3.2) is an increasing function and the right

a;u® i) = ¢ 4 1<i<n. (4.3.2)
hand side of (4.3.2) is a decreasing function if and only if o > B; > 0 for all
1 <7 < n. So it is easy to see, using the assumed conditions, that their graphs
intersect in a unique point u; > 0, therefore there exists a u; > 0 which satisfies
(4.2.2). Note that

Yi(u) = azau' Y — ¢ Bu®iD = uF Y (a4 — ¢ 8;) > 0,

if

a1
u > U = (6”5”> e >0, 1< <n.
a;0y
Since v;(u;) < 0, we have uf > w;, and therefore 7;(u) is strictly increasing on
[uf, 00) and condition (A) is satisfied. To check condition (B), we see that g;;(u) :=
ciju’i, 1 <i+#j<n,and g;(u) =0 are increasing on R, and (4.2.3) is satisfied
if and only if

/P u® — eoBi . - (Bij—ai) o Pi
Z ciju’ < au Ciill i & E CijU <ai— o
]:1 ]:1
J#i
therefore (4.2.3) is satisfied with a large enough w;*. Therefore (4.3.1) has a positive

solution.
Now, we check conditions (C) and (D) of Theorem 4.2.1. Since ¢;; > 0 for each

1 <4,5 < n, then condition (C) holds. If ¢;; = 0 for all 1 <4, j < n, then (D) is
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satisfied. Assuming that ¢;; > 0 for some 1 <4, j < n, then

(W) _ au® —cgut —p; apu TR ey gy P

) ) ) ) )

(4.3.3)

If Bj; < fij, then each term in (4.3.3) is strictly monotone increasing on (0, c0), and

hence so is ;?1((7;)). If 5;; > fBij, then it follows from (4.3.3) that
ij
7i(u) _ ulr o) ei=Bi) _ oy P
.. - . ((IJU CJJ) B!
9ij(u) Cij Cigwv
which is also strictly monotone increasing on (0, 00), so condition (D) is satisfied.

Hence, by Theorem 4.2.1, the System (4.3.1) has a unique positive solution, and

the proof is completed. O

Now we consider the system
n

j=1
which was studied in [21]. It was assumed in [21] that the function % is strictly

increasing for all e =1,...,n, ¢;; >0forall 1 <4,57 <mn, and foreveryt =1,...,n
and s; = ¢;1 + - -+ + ¢, there exists ¢; > 0 such that # = s;. Then the System
(4.3.4) has a unique positive solution. Our main result of Theorem 4.2.1 gives back
this results under a weaker assumption that c;; can take the values 0, and only either

¢;; or p; is assumed to be positive for all : = 1,..., n.

Corollary 4.3.2. Assume that, for each i = 1,...,n, f; : Ry — R, is continuous,

such that # 18 strictly increasing, and

7 < OO? Zf pl > 07 i n
lim+ fiw) and  lim fiw) > Z Cij,
Ut =0, if pi=0, A

1=1,...,n.
=1

Furthermore, assume that p; > 0 and c;; > 0 for each 1 < 4,5 < n are such that

ci + pi >0 for 1 <i <n. Then the System (4.3.4) has a unique positive solution.

Proof. We can rewrite (4.3.4) in the form (4.2.1) with ;(u) := fi(u) — c;;u — p;
and g;;(u) = c;u for each 1 < i # j < n and g;(u) = 0. Now, we check that

conditions (A) and (B) of Theorem 4.2.1 are satisfied. For condition (A), we have
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with u > 0 that ~;(uf) =0, if

fi(uy) _ b T 1<i<n. (4.3.5)

* *
Uu; Uu;

It is clear that the left hand side of (4.3.5) is an increasing function and the right
hand side of (4.3.5) is a decreasing function, so the assumed conditions yield that
their graphs intersect in a unique point u; > 0, therefore there exists a uf > 0
satisfying (4.2.2). We have that
i) = u | 2

u
is strictly increasing on (0,00), and hence condition (A) is satisfied. To check

_Cii:| — Diy ].SZSTL,

condition (B), we see that g;;(u) := ¢ju, 1 < i # j < n, and g;;(u) = 0 are

increasing on R, , and (4.2.3) is satisfied if and only if

ZCiju < fl(u) — Cil — P & Zcij < fz(u) _ &7
Jj=1 =

u u
i
therefore (4.2.3) is satisfied when u is large enough. Hence condition (B) holds.

Therefore (4.3.4) has a positive solution.

For the proof of the uniqueness of the positive solution of the System (4.3.4), we
check conditions (C) and (D) of Theorem 4.2.1. Since ¢;; > 0 for each 1 <, j < n,
condition (C) is satisfied. Assuming that ¢;; > 0 for some 1 <, 5 < n, we get

iw) _ fiw) —gu—p  fi(w) e by

gw(u) CZ‘j’LL cz-ju cij ciju

is strictly increasing on (0, c0) and so condition (D) is satisfied. Hence the System

(4.3.4) has a unique positive solution. O

Now, we consider a more general system of nonlinear algebraic equations
j=1
The System (4.3.6) includes the steady-state equations of the donor-controlled com-

partmental system (4.1.2) and the Cohen—Grossberg neural network model (4.1.5).

Corollary 4.3.3. Assume that ¢;; > 0, for each 1 <i,j <n, 7, : (0,00) = (0, 00)

and o; : (0,00) — (0,00) are continuous and strictly increasing fori =1,...,n, such



Chapter 4. Existence and uniqueness of solutions of algebraic systems 55

that
(A™) the function v;, i =1,...,n, satisfies condition (A) of Theorem 4.2.1;

(B*) the functions v; and 0j, 1 < i,j < n satisfy Y c;jo;(u) < vi(u) for large
=1

enough u.

Then the System (4.3.6) has a positive solution.

Furthermore, assume that Zzgzg is continuous and strictly increasing on (0, 00),

for all 1 <i <mn. Then the System (4.3.6) has a unique positive solution.

Proof. Equation (4.3.6) can be written in the form (4.2.1) with g;;(u) = ¢;;0;(u)
for each 1 < 4,7 < n. Assumptions (A*) and (B*) show that conditions (A) and
(B) of Theorem 4.2.1 are satisfied. Therefore (4.3.6) has a positive solution.

Now, we show that the positive solution the System (4.3.6) is unique. Since
¢;j > 0 for each 1 < 4,j < n, then we see that g;;(u) = ¢;;o;(u) > 0 for u > 0 if
¢i; > 0 and g;j(u) = 0 for uw > 0 if ¢;; = 0, and hence condition (C) of Theorem
4.2.1 is satisfied. Assuming that ¢;; > 0 for some 1 <7,j <n, then

vi(w) () 1 y(u)

gii(u) — cijoj(u)  cijoy(u)
is strictly increasing on (0, 00), and so condition (D) of Theorem 4.2.1 holds. Hence

the System (4.3.4) has a unique positive solution and the proof is completed. O

4.3.2 Two dimensional systems

We consider the System (4.2.1) in the special case when n = 2:

)
U1(z1) = gui(z1) + g12(2),
(

(4.3.7)
Va(22) = ga1(21) + ga2(22).
Introducing v;(u) = ¥;(u) — gii(u), i = 1,2, we get the equivalent system
Y1(21) = gi2(22), (4.3.8)

Ya(z2) = ga1(21).
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The following result shows that in this two dimensional case we can reduce the
study of existence and uniqueness of solutions of the System (4.3.8) to that of a

scalar equation.
Corollary 4.3.4. Assume that, for each 1 <i,j <2, v;, g;; € C(R4,Ry), such that
(By) the functions v, and e satisfy condition (A) of Theorem 4.2.1;
(Bs) the functions gi1o and ge1 satisfy condition (B) of Theorem 4.2.1.
Then
(i) the System (4.3.8) has a positive solution;

(ii) the positive vector (uy,us) is a solution of (4.3.8) if and only if u; and ug are
the solutions of the scalar equations
u = h1(g12(ha(g21(u)))) (4.3.9)

and

u = ha(g21(h1(g12(u)))) (4.3.10)
respectively, where hy and hy are defined by (4.2.4);

(iii) the positive solution of System (4.3.8) is unique if at least one of the Equations
(4.8.9) or (4.3.10) (or equivalently both of them) has only a unique positive

solution.

Proof. The proof of (i) is the consequence of Theorem 4.2.1. For the proof of
(ii), we see that the Equations (4.3.9) and (4.3.10) follow from System (4.3.8) using
the inverse of the functions ;, ¢ = 1,2. For the proof of (iii) we consider the case
when, e.g., x; is a unique solution of (4.3.9), then clearly (x1, ha(g21(h1(g12(21)))))

is the unique solution of the System (4.3.8). O]
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Example 4.3.1. As an example on the two dimensional case, we consider the system

2(131 -1 = 9,
(4.3.11)
Ty — 0.5 = 921(.1’1),
where
0.5, it welo1],
gn(u) =19 2u—15 if well,2],
2.5, if  we (2 00).

Define v (u) = 2u — 1, 72(u) = u — 0.5, gi12(u) = u. Then, clearly, we can see that
condition (A) of Theorem 4.2.1 is satisfied with uj = 0.5 and u} = 0.5. Also,
condition (B) of Theorem 4.2.1 holds for the System (4.3.11), and so the System
(4.3.11) has a positive solution. Condition (C) of Theorem 4.2.1 holds too. We

have, from the definition of 7, and s, that

1
hy(u) = u—;— , uweR,, and  hy(u)=u+0.5, uweR,.
Then Equation (4.3.10) reduces to
h(0.5), it welo,1],
u+1
u = ha(g21(h1(g12(u)))) = ha | g1 5 =9 ho(u—0.5), if well,3]
ha(2.5), if  we(3,00),
or equivalently,
1, if welo,1],
u=49q u, if well,d],

3, if we[3,00).

This shows that (4.3.10) has infinitely many solutions, say, us = t, t € [1,3], then
(L), t € [1,3] is a solution of the System (4.3.11). On the other hand, we have

2
2u—1 .
71(U): u 14 0.5 7
gor(u) 2u—1.5 2u—1.5

u € [1,2],
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which is decreasing on [1,2]. Also, we have

[
Y2(w) :u—0.5: _E7 well 2,
12(U

)
which is increasing on [1, 2]

Q

So condition (D) of Theorem 4.2.1 is not satisfied in
this case. This shows that if condition (D) of Theorem 4.2.1 does not hold, we may

loose the uniqueness.



Chapter 5

Boundedness of positive solutions
of a system of nonlinear delay

differential equations

In this chapter, we present sufficient conditions for the uniform permanence of the

positive solutions of the system of nonlinear delay differential equations

n ng

i(t) = j;;aiﬂ(t)hij(%(t = 7ije(t))) — ri(@) fi(zi(t)) + pi(t), t 20, 1 <@ < n.
The structure of this chapter is the following: Section 5.1 introduces a description
of our system of nonlinear delay differential equations and some basic preliminaries.
In Section 5.2 we formulate our main results Theorem 5.2.4 below gives estimates
for the limit inferior and limit superior of the positive solutions of System (5.2.1).
In Section 5.3 we show several corollaries, where Theorem 5.2.4 works in a good
way. In Section 5.4 we introduce some applications of our main result to some

population models. In Section 5.5 we give some examples with numerical simulations

to illustrate our main results of this chapter.

29
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5.1 Introduction

Nonlinear differential equations with delays frequently appear as model equations
in physics, engineering, economics and biology. As we mentioned in Chapter 4
for some typical applications like compartmental systems and neural networks (see
[39, 41, 50, 55]).

In [16] the existence, uniqueness and global stability of asymptotically periodic

solutions of the bidirectional associative memory (BAM) network

ii(t) = ﬂmwmw+§)mwg@u—@m+gw,i:L”wm (5.1.1)
yi(t) = —bj(t)yj(t)+Zqz'j(t)fi($j(t—0ij))+Ji(f)a j=1...,k (512

was examined.

In [28] the delay model

R(t) = [f(T(t—73))—dR() (5.1.3)
L(t) = mR(t—m7)—dyL(2t) (5.1.4)
T(t) = roL(t—73) — dsT(2) (5.1.5)

was considered for the control of the secretion of the hormone testosterone. Here
R(t), L(t) and T(t) are the concentrations of the gonadotropinreleasing hormone,
luteinizing hormone and testosterone, respectively, r1, 19, dy, ds, d3 are positive con-
stants. Global stability of a positive equilibrium and oscillations of the solutions
were investigated depending on the values of a parameter in the formula of the
positive nonlinear function f.

In [8] the two-dimensional system
i(t) = n@[AGl-n0) -], =0 (5.1.6)

y(t) = w@ﬁﬁ@u—@@»—y@} £>0 (5.1.7)

was considered as a special case of a more general two-dimensional system of nonlin-



Chapter 5. Boundedness of positive solutions of a system of DDEs 61

ear delay equations with distributed delays. Sufficient conditions were given imply-
ing that the solutions of the System (5.1.6)-(5.1.7) are permanent, i.e., there exist
positive constants a, A, b and B such that a < z(t) < A and b < y(t) < B hold for
t>0.

Populations are frequently modelled in heterogenous environments due to, e.g.,
different food-rich patches, different stages of a species according to age or size.
In such models time delays appear naturally due to the time needed for species to
disperse from one patch to another. We recall here the n-dimensional Nicholson’s
blowflies systems with patch structure

Z@m — Ty)e”Tit7Tie) +Z%x] dizi(t), 1<i<n, (51.8)
where d; > O ,Bie > 0,a;5 > 0,75 >0 for i,j=1,....,n, £ =1,...,n9. Asymptotic
behavior, permanence of the solutions was investigated, e.g., in, [6, 7, 33, 59]. For
the scalar case, this model reduces to the famous Nicholson’s blowflies equation
introduced in [37] to model the Australian sheep-blowfly population.

The n-dimensional population model With patch structure

@(t) = Z Al O)zilt ~ Tult +Zaw zj(t — 04(t))
J#%

—1 1 + /Yzf( )Iz t— TM

—pi (O (t) — ks (O)22(t), t>0, 1<i<n (5.1.9)
was introduced in [32], and the permanence of the positive solutions was investigated.
Here all functions are nonnegative. It is a generalization of a scalar modified logistic
equation with several delays introduced in [4].

Motivated by the above models, in this chapter we consider a system of nonlinear

delay differential equations of the form

ZZO‘W i (it = 7i5e(t))) — ra(t) fi(wa(t)) + pi(t), t2>0, 1<i<n

=1 /=1

(5.1.10)



Chapter 5. Boundedness of positive solutions of a system of DDEs 62

with the initial condition
zi(t) = pi(t), —7<t<0, 1<i<n (5.1.11)
where, 7 > 0, is a positive constant, ¢; € Cy, hyj, fi, 74, cije, pi € C(Ry,Ry) and
Tije € C(Ry,Ry) with 0 < 750(t) < 7fort > 0,1 <i,j <nand 1</ <ng Our
main Theorem 5.2.4 below shows that, under certain conditions, the solutions of the
initial value problem (IVP) (5.1.10) and (5.1.11) is uniformly permanent, i.e., there
exist positive constants kq,...,k,, Ki,...,K,, such that for any initial functions
p; € Cy,i=1,... n the corresponding solution satisfies
0<k < litrgglfxi(t) < h?iigp zi(t) < K, 1<i<n. (5.1.12)
Moreover, the constants ky,...,k, and Ky,..., K, are given explicitly, as unique
positive solutions of associated nonlinear algebraic systems. As a consequence of
the main result, we formulate conditions which imply that all the positive solutions

converge to a constant limit (see Corollary 5.3.1 below). In Theorem 5.3.3, for

nonlinear systems of the form
n no

Bi(t) =3 ) ae(t)a(t — 7o) — (Dl () + pi(t),  t>0, 1<i<n,

o (5.1.13)

we give sufficient conditions which imply that the positive solutions are asymptot-

ically equivalent, i.e., the difference of any two positive solutions tends to 0 as the
time goes to oo.

This chapter extends the method introduced for the scalar case in Chapter 3 to

the nonlinear delay system (5.1.10). A key element of the proof of our Theorem 5.2.4

is a result proved in Chapter 4, where sufficient conditions are formulated implying

that a certain nonlinear algebraic system associated to (5.1.10) has a unique positive

solution (see Lemma 5.2.3 below).
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5.2 Main Results of Chapter 5

In this section, we give estimates for the limit inferior and limit superior of all

positive solutions of the IVP

n o mno
Bi(t) =) auje(t)hij(a(t — 7i5e(1) = i) filwi(t) + pi(t), >0, 1<i<n
e (5.2.1)

with the initial condition
zi(t) = pi(t), —7<t<0, 1<i<n (5.2.2)

where, 7> 0, is a positive constant and ¢, € Cy, 1 <1 < n.

Now, we list our conditions

(Ag) Tije € C(R4,Ry) are such that 0 < 7(t) < 7fort > 0,1 < 4,5 <n and

1 <4 < ng;

(A1) m € C(Ry,R,) are such that r;(t) > 0 for t >0, 1 <i <mn, and

/ ri(s) ds = oo, 1<i<n; (5.2.3)
0

(Az) ajje € C(Ry,Ry), foralll <i,j <mand1l</¢<ngare such that

no
> ije(t)
/=1
sup

< 00, 1<1,5 <n; 5.2.4
>0 Ti(t) J ( )

(As) fi € C(RL,Ry), 1 <i < n, are strictly increasing with f;(0) = 0 and f; are

locally Lipschitz continuous;

(A4) hij € C(R4,Ry) are increasing, locally Lipschitz continuous, and h;;(u) > 0

foru>0and 1<1i,j<n;
(As) pi € C(Ry,R,) and for each i =1,... n,
)
> iie(t)

cither  Timinf %9 >0 or  timsup Y <lmint S (525)
t—oo 74(t) w0+ ig(u) tmeom(t)
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sup pilt) < 00, lim f;(u) = oo, (5.2.6)
>0 Ti(t) u—00
and no
g o 20
lim sup ————— ) lim sup < 1; 5.2.7

(Ag) (1) Jm(( )) is increasing and “(( j is decreasing on (0,00), for each 1 < i,j < n;

(i) for each 1 <7 < n, either h (“u)) is strictly increasing on the interval (0, 00)
(hm inf p'(t) > 0 and h;;(u) is strictly increasing on (0, oo));

o Beud)
(iii) either htrgglf 0

= 0foralli,j € {1,...,n} satisfying i # j; or there

ng
> aije(t)
exist 4,5 € {1,...,n}, i # j such that litminf% > 0 and [either
—00 Ti
5% el w

Ll i¢ strictly increasing on (0,00) or <lim inf = o >0 and (U) is
J hij

hij(w)

strictly decreasing on (0, oo)) <hm inf 22 3( > 0 and h;j(u) is strictly

increasing on (0, oo))];

(iv) for each 1 < i < n, either ,{?‘((”u)) is strictly increasing on the interval (0, 00)
pi(t)

(hm sup 2 0 > 0 and h;;(u) is strictly increasing on (0, oo));

t—o00
’VLO
. ‘ > aije(t) .
(v) either hin sup kln_(t) =0 for all 4,5 € {1,...,n} satisfying i # j; or
- poputy
Q50
there exist 7,7 € {1,...,n}, ¢ # j such that limsup = (Z) > 0 and
t—o00
: fiw) : : : : ZO e (?)
[elther h?j (18 strictly increasing on (0, 00) or (hm sup e‘er > 0 and
R t—o00

hjj;(w)
hij(u)

is strictly decreasing on (0, oo)> or (hm sup % > 0 and h;;(u) is

t—o0

strictly increasing on (0, oo))]

The boundedness of the delay functions is assumed throughout the chapter.

Assumption relation (5.2.4) in (Az) is natural in view of Section 2.2. In the proof
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we will factor out r; from the right hand side of (5.2.1), so the boundedness and
ZO aije(t) )

positivity of the fractions ZZITT and ’;?—(t) in (Az) and (As) will be a natural

condition later. The proof uses a monotone iteration technique, so the monotonicity

of f; and h;; in (As) and (A4) will be essential. We will use Theorem 4.2.1, so the

hjj

and -~ in (Ag) is needed later, as well as the

Ji
i hyij

monotonicity of the fractions ;-
ij

strict monotonicity any of the functions listed in (Ag).

Clearly, under conditions (A1)-(As), the IVP (5.2.1) and (5.2.2) has a unique
solution corresponding to any ¢ = (¢1,...,¢,) € C%. This solution is denoted by
() = (1(¢), ...,zn(v)). Note that in Chapter 3 a scalar version of (5.2.1) was
studied where, instead of the local Lipschitz-continuity, it was assumed that f; is

such that for any nonnegative constants ¢ and L satisfying L # p, one has

¢ ds
/L AOESAE) = 4-00. (5.2.8)
Hence the solution studied in Chapter 3 was not necessary unique. It is easy to see
that the locally Lipschitz-continuity of f; implies condition (5.2.8). We assume the
locally Lipschitz-continuity of f; and h;; to simplify the presentation, but it can be
omitted as in Chapter 3.

We note that assumption (As) is weaker than that used in the [4, 31], where,
investigating permanence of a scalar population model, it was assumed that the
coefficient function g; is bounded below and above by positive constants.

The monotonicity assumptions of (Ag) for the ratios }f ij(&)) and ijéjg are crutial

for using Lemma 5.2.3 below. This assumption allows us to include examples when

some ratios are constants, and only some of these functions are strictly monotone.

This week form of the condition will be important when we apply our main results

to the population models (5.1.8) and (5.1.9) (see Corollary 5.4.1 and 5.4.2 below).
First, we present the next Lemma which shows that all solutions of the System

5.2.1) corresponding to any initial function ¢ = (@1, pa, ..., p,) € C7 are positive
( P = (P1,02, T
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on R,.

Lemma 5.2.1. Assume that 7,50 satisfies condition (Ag), r; satisfies condition (Ay),
fi satisfies condition (Ag) and «j, hij,p; € C(RL,Ry), 1<ij<nandl <(<
ng. Then for any ¢ = (¢1,92,....,n) € C%, the solution x(t) = z(p)(t) =
(x1(©)(t), ..., () (t)) of the IVP (5.2.1) and (5.2.2) obeys z;(t) > 0 fort >

0, 1 <7< n.

Proof. Since z;(0) = ¢;(0) >0, 1 <i <mn, thenif x;(t) >0 for t >0, 1<
i < n then we are done. Otherwise at least one of x(¢),...,z,(t) is equal to zero
for some positive t. Since the functions (%), ..., z,(t) are continuous, then in the
last case there exists a t; € (0,00) such that z;(t) >0 for 0<t<t;, 1<i<n
and min{z;(t1),...,z,(t1)} = 0. Since yje(t) > 0,750(t) > 0 pi(t) > 0, ¢t > 0,
1<i,j<n,1<{l<ng and hjju) >0, u>0, 1<ij<n,then from (5.2.1)
we have

i (t) = —ri(t) fi(zi(1)), 1<i<n, 0<t<t.

But from Theorem 2.1.2 we have
zi(t) > yi(t), 1<i<n, 0<t<t,

where y;(t) = y(0,¢;(0),0,7;, fi)(t), 1 <i < n is the unique positive solution of
the differential equation

i) =) (c— fiw®)), =0, (5.29)
with ¢ =0 and with the initial condition

yi(0) = 2:(0) = ¢:(0) >0,  1<i<n.
Lemma 3.2.1 yields y;(t) > 0, for all ¢ > 0. Then at t = t; we get z;(t1) >
yi(t1) > 0, 1 < i < n, which is a contradiction with our assumption that

min{xz(t1),...,2n(t1)} = 0. Hence z;(t) >0, 1 <i<n forte[0,00). O
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Lemma 5.2.2. Assume that conditions (Ag)— (As) are satisfied. Then for any
p € O}, the solution x(t) = x(p)(t) = (x1()(t), ..., zn(p)(t)) of the IVP (5.2.1)
and (5.2.2) satisfies

0 <infx;()(t) < supz;(p)(t) < oo, 1<i<n. (5.2.10)
20 >0

Proof. First we show that
infa,(t) >0, 1<i<n. (5.2.11)
>0
Let ¢ = (¢1,92,...,¢n) € C} be an arbitrary fixed initial function. Then, by
Lemma 5.2.1, the solution z(t) = x(¢)(t) = (x1(©)(t), ..., z,()(t)) obeys x;(t) > 0,

1 <i<n,t>0. We claim that there exist 7' > 0 and ¢ > 0 such that the following

inequalities are satisfied, for every 1 = 1,...,n,
n no
Zuzl aije(t)hij(c) oul®)
. j=1/¢= i
. : >T.
orgntlgnTxZ(t) > ¢ and @) + (@) > file), t>T

(5.2.12)
From (5.2.5), we have two cases:

(i) if ¢ is such that li{n inf m_gﬂ > 0, then fix a & > 0 such that
—00

ri(t)
liminfpi—(t) > & > 0.

Thus there exists T; > 0 such that
pi(t)
ri(t)

Lemma 5.2.1 and (Ajs) imply that there exists a ¢; > 0 such that

> & >0, for t>1T;.

— . . o <o
o%lgnTxl<t)>cl and  fi(u) <§& for 0<u<g

Therefore (5.2.12) is satisfied for such i.

ng
> age(t)
< li{n inf ker’ then let K; > 0 be such that
— 00

no
(677 t
) !
lim sup < K; <liminf ————.
w0t hii(u) t—00 7 (t)

fi(u)

(ii) if ¢ is such that limsup ;- )

u—0t
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Thus there exists T; > 0 such that

10

i (t)
K, < = s
ri(t)
Also, there exists ¢; > 0 such that

t>1T;.

filu) < K;, for 0<u<g¢ and min x;(t) > ¢.
h“(u) 0<t<T
Then we have
n no no
> > cije(t)hij(c) > @iie(?)
j=1i=1 1

) > Kfz(u)gzer > fiu), t>T;, 0<u<q,
and hence (5.2.12) holds for such i. Therefore (5.2.12) is satisfied, for alli = 1,... n,
with T' = max{T\,...,T,} and ¢ = min{cy, ..., ¢, }.

Now, in virtue of (5.2.12), either z;(t) > c for all t > 0, 1 < i < n, or there
exists ty € (T, 00) such that min{x;(t3),...,x,(t2)} = ¢ and x;(t) > ¢ for t € [0,15),
1 <4 < n. In this case at least one of the values of z(t3),...,z,(t2) is equal to c.

Assume, e.g., that z1(t2) = ¢, then &1 (t2) < 0. On the other hand, the monotonicity
of hy; and (5.2.12) yield that

_égaljg(tg)hlj(l‘j(tQ - leﬁ(t2))) p1(t2)
11(te) = 711(t2) () — fi(zi(t2)) + @
i 3 aje(t2)haj(c)
j=1¢=1 pi(t2)
> (k) o o~ h

> 0,
which is a contradiction, since @(t2) < 0. Hence z1(t) > ¢ for all ¢ > 0. Similarly,
we can show that z;(t) > ¢, for all t > 0, 2 < i < n, and therefore (5.2.11) holds.
Now we show that
sup z;(t) < oo, 1<i<n. (5.2.13)

>0
We claim that there exist 7" > 0 and M > 0 such that the following inequalities are
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satisfied, for every i =1,...,n,

n. nog

> Sowtn0n

‘ j=lt=1 ¢ . >
Dax, x;i(t) < M and —ry + ey < fi(M), t>T.
(5.2.14)
The second relation of (5.2.14) holds if
DD PPIHLL
el L L a® sy (5.2.15)
ri(t) Ji(M) ri(t) ’ -

Using (5.2.7), there exists a p; > 0 such that

no

n Z aije(t) h (u>
Z(limsup H—) lim sup < p; < 1,
o oo Ti(t) U—00 fz( )
then there exists an ¢ > 0 such that
ng
n > aije(t)
. = : hij(u)
limsup =4 ——— + §) (limsup —2-2 + §) < i

j=1
Thus there exist T; > 0 and Vh > 0 such that
n Z 0%} f( )
(o ) g < vz
fi(u)

t>T; z

Moreover, there ex1sts aVy >0 such that

1 (t
Supp()

filw) i1, i(t)
and so there exists a large M > 0 such that (5.2.15) holds and nax. zi(t) < M,

<1 = u>Vsy,

with T = max{T},...,T,}, for all 1 = 1,... n. Hence inequality (5.2.14) is satisfied
for each i = 1,...,n. Now, in virtue of (5.2.14), either z;(t) < M for all t > 0,
1 <i <, or there exists t5 € (T, 00) such that max{z(t3),...,z,(t3)} = M, and
xi(t) < M for t € [0,t3) and ¢ = 1,...,n. In this case at least one of the values of

x1(t3), ..., x,(t3) is equal to M. Assume, e.g., that xy(t3) = M, then 2(t3) > 0.
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On the other hand, using (5.2.14) and the monotonicity of hy;, we have

_i;:l aljg(tg)hlj(l‘j(tg - leZ(tS))) p1(t3)
i1ts) = ri(ts) —en — fi(z1(ts)) + (i)
3, 00 plts)
< rnits) 1 (ts) - AM)+ r1(ts)
<0,

which is a contradiction, since #;(t3) > 0. Hence z;(t) < M, for all ¢ > 0. Similarly,
we can show that x;(t) < M, for all t > 0, 2 < i < n, and therefore we can see that

(5.2.13) holds. 0

The next Lemma displays many properties of the positive solutions of the alge-

braic system

j=1
We say that z = (1, ..., x,) is a positive solution of (5.2.16) if z; > 0 for i =1, ..., n.
Lemma 5.2.3. Assume that m;; > 0, [; > 0 for 1 <1i,j <n, f; satisfies condition

(As) and h;; satisfies condition (Ay). Suppose that

(Cy) JZ((UU)) is increasing and Z“—((uu)) is decreasing on (0,00), for each 1 <1i,5 <mn;
1] ]

(Cy) for each 1 < i< n, either % is strictly increasing on (0, 00) or <li >0 and

hi;i(w) is strictly increasing on (0, OO));

(Cs) either m;; = 0 for all i,5 € {1,...,n} satisfying i # j; or there exist i,j €

}@((1;)) is strictly increasing on

{1,...,n}, i # j such that m;; > 0 and [ez’ther

Z“EZ; is strictly decreasing on (0, oo)) or (lj >0 and
ij

(0,00) or (mjj >0 and

hij(u) is strictly increasing on (0, OO))} ;
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(Cy) the functions f; and hy; satisfy
Ji(u)

either [; >0, or S )

and

me hm (w) <1, and lim f;(u) =00 1<i<n. (5.2.18)

U— 00 fZ ) U—00

Then

(i) the System (5.2.16) has a unique positive solution x* = (xF,...,x%).

n

(ii) For any x = (xq,...,2,) satisfymg
x; >0, fi(x;) me ii(25) 1<i<n, (5.2.19)
one has

1<i<n. (5.2.20)

(iii) For any x = (z1,...,x,) satisfying

j=1
one has
x; < xf, 1<i<n. (5.2.22)
Proof. See Appendix A. O

We use the following notations in our main theorem:

5% asjelt) z aige(t)

e e t=1 _ L.
my; = hggf T T h]iriigp Ti(t> : 1<4,7<n, (5223)
i( . i(L .

L; := liminf pil ), l; := limsup pil ), 1<i<n. (5.2.24)
t=oo 7y(t) oo Ti(t)

We note that (Az), (As) and Lemma 5.2.2 yield 0 < m;

< 00, Oémij<00,
0§£i<oo,0§Z¢<oofor1§i,j§n,and

0<11m1nf:1:l( ) < limsup z;(t) < oo, 1<i<n.

t—ro0 t—o0
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Now, we are ready to formulate the main result of this chapter.
Theorem 5.2.4. Assume that conditions (Ag)—(As) are satisfied.

(i) 1If, in addition, (Ag) (i), (ii) and (iii) hold, then for any initial function ¢ =
(01,5 9n) € CF, the solution x(p)(t) = (x1(p)(L), ..., z.(p)(t)) of the IVP
(5.2.1) and (5.2.2) obeys

z; < litm inf z;(p) (), 1<i<n,
—00
where (z7,...,x") is the unique positive solution of the algebraic system
fiw) =Y myhi(z;) +1L,  1<i<n. (5.2.25)
j=1

(i) If, in addition, (Ag) (i), (iv) and (v) hold, then for any initial function ¢ =
(01,5 9n) € CF, the solution x(p)(t) = (x1(p)(t), ..., z.(@)(t)) of the IVP
(5.2.1) and (5.2.2) obeys

lim sup x; () (t) < 7}, 1<i<mn,
t—o0
where (T3, ..., T;) is the unique positive solution of the algebraic system
j=1
Proof. See Appendix A. O

5.3 Corollaries

In this section, we introduce some corollaries which confirm the applicability of our

main results.

Corollary 5.3.1. Assume that conditions (Ag)—(Ag) are satisfied, moreover, the

finite limits

ng
Qg t
m;; = lim gzzl—]” and l; := lim pi(t) 1<, <
i = pe , <i,j <n, (5.3.1)
t—o0 Ti( ) t—o00 Tl(t)
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exist. Then, for any initial function ¢ = (¢1,92,....,¢n) € C} , the solutions

z(t) = (@) (t) = (x1(©)(t), ..., xn(@)(t)) of the IVP (5.2.1) and (5.2.2) satisfy

t1i>rcr>10 zi(p)(t) = a7, 1<i<mn, (5.3.2)

where (x3,...,x%) is the unique positive solution of the system
filx;) = imijhij(xj) + 1, 1<i<n. (5.3.3)

j=1
Now, we study a special form of (5.2.1), consider the IVP
() = Zn: i aije(t) ] (t — Tij0(t)) — r(t)a (t) + pi(t), t>0, 1<i<n,
e (5.3.4)
with the initial condition

xi(t) = @4(t), —7 <t <0, 1 <i<n, (5.3.5)

where 7 >0, ¢ = (¢1,92, ..., ) € CT and ayjo, 73, 7350 € C(Ry, Ry, pij, ¢ € Ry
for 1<7,7<nand 1</ <ny.
We remark that (As), (A4), (As) and (Ag) hold if

¢ >pi; > 1, and  p; > pjj, 1<4,5<n (5.3.6)

and

no
pi(t) i
cither liminf 22 >0 or liminff=—— >0, i=1,...,n (53.7)

are satisfied. Therefore Theorem 5.2.4 has the following consequence.

Corollary 5.3.2. Assume that that 7, satisfies (Ay), r; and o;; satisfy (A;) and

(Az), ¢ € N, p; € C(R,R,) satisfies sup fg; <oo, 1<i<mn, (536)and
t>0 *

(5.3.7) hold. Then, for any initial function ¢ = (1,92, ...,¢n) € C} , the so-
lutions  x(t) = z(p)(t) = (x1()(t), ..., zn(@)(t)) of the IVP (5.8.4) and (5.3.5)

satisfy

! <liminf z;(¢) < limsup z;(¢) < T}, 1<i<n, (5.3.8)

t—o0 t—00



Chapter 5. Boundedness of positive solutions of a system of DDEs 74

* *

where (x5, ...,x%) is the um’que positive solution of the system

Zm”xf” + 1, 1<i<n, (5.3.9)
and (T%,...,T}) is the umque posztwe solution of the system
= myah + 1, 1<i<n, (5.3.10)

respectively, where my;, My, l; and I; are defined in (5.2.23) and (5.2.24) for

1<i,j<n.

We remark that the condition (5.3.6) in Corollary 5.3.2 can be weakened.

Next we study the asymptotic equivalence of positive solutions for a special form of

the System (5.3.4). We consider the IVP

n

=> iam(t)xj(t — 7)) — (D)@t + pi(t), >0, 1<i<mn,

j=1 ¢=1

with the initial condition

zi(t) = @i(t), -7 <1t <0, 1<i<n, (5.3.12)
where 7 > 07 Y = (@179027' o 730n) € Cﬁa Oéijb’rijf;ri € C(R+7R+)7 1 S 7’7.7 S n,
1</<npand g; €N, ¢; >1,1<7<n.
Remark. Equation (5.3.9) corresponding to (5.3.11) has the form

:Zmz‘jm]’ + 1, 1< <n.

Therefore
zi(z%7 — my) mexj + 1, 1<i<n.
3752
1
So its positive solution (7, ..., z}) satisfies zf > m/ ", hence Corollary 5.3.2 yields

that for every ¢ € C7 the solution w;(¢)(t) of (5.3.11)-(5.3.12) satisfies

1
liminf x;(¢)(t) > zf > mj ", 1<i<n. (5.3.13)

t—00 -
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Theorem 5.3.3. Suppose that 7,0, r; and oy satisfy (Ag), (A;) and (Ag), pi €

C(R,,R,) satisfies sup i’gg <oo,1<i<n, and
t>0 °

> my <qmg,  g>1, 1<i<n (5.3.14)
Then, for any initial functions ¢, € C%, the corresponding solutions x(p)(t) and
x(Y)(t) of the IVP (5.3.11) and (5.3.12) satisfy

lim (2:(p)(1) = m(¥)(1)) =0,  1<i<n, (5.3.15)

i.e., any positive solutions of Eq. (5.3.11) are asymptotically equivalent.

Proof. See Appendix A. O

5.4 Applications to some population models

In this section, we give some applications to some population models which illustrate
the applicability of our main results.

Next, we consider again the population model (5 1.9):

i) = Y —dOnll Tl o+ Dbt = oy(0)

= 1+ %g(t)x@ Zf — T@
J#
— i ()ws(t) — Kki(t)23 (1), t>0, 1<i<n, (5.4.1)

with the initial condition
zi(t) = @i(t), —7 <1t <0, 1<i<n. (5.4.2)
We assume that ¢ = (¢1,92,...,¢n) € Cf, where Cy := {¢p € C([-7,0,R;) :
¥(t) >0, —7 <t <0}. We note that Cy C .
The permanence of positive solutions of (5.4.1) was investigated in [32] for the
case when the delays in the model can be unbounded. Next, we show that, for the
bounded delay case, our Theorem 5.2.4 gives permanence of the positive solutions

for this model under weak conditions. We note that we do not need the boundedness
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of the functions Ay, a;;, p; and x; which was assumed in [32].

Corollary 5.4.1. Assume that Nig, Yie, @ij, i, ki € C(Ry,Ry), and 1y, 045 € C(Ry,Ry)
with 0 < 7(t) <7 and 0 < o0y;(t) <7 fort >0, 1<i#j<nandl=1,...,n.
Moreover, we assume that there exist positive constants Y Vi T and T; such that,

foralll1 <i#j<nandl </l <ny,

0 <7, <) <7, 0<1igzz(t)_ﬁ,t>0 and /Ooo,ui(t)dt:oo,
(5.4.3)
and .
5 Al s VO
St%) Mz—(t) < 00, Stlig () < oo, j#£i, and hggf Hz—(t) > 1. (5.4.4)

Then, for any initial function ¢ = (@1, p2,...,pn) € CF, the solution z(p)(t) =
(x1(©)(t), ..., za(p)(t)) of the IVP (5.4.1) and (5.4.2) satisfies

z; < liminfa;()(f) < limsupzi(p)(t) <7,  1<i<n, (5.4.5)
00 t—o0
where (z73,...,x") is the unique positive solution of the algebraic system
; = _—u , 1<i<n, 5.4.6
T; + w2 1—1—%33Z+Z::_”$] <i<n ( )
J#Z
and (T3,...,T%) is the unique positive solutz’on of the algebraic system
mllxl .
i = i s 1 <i<n, 5.4.7
Jj—{_ﬂzxz 1+7$Z+Z_:m]$] St=n ( )
J#Z
Z Aie(t) Z Aie(t)
respectively, where m,; = liminf =—— (t) , My = limsup =———, 1 < i < n, and
t—o0 t—00 wi(t)
m;; = lim inf ‘LJ 0 Mij = hm sup for 1<i#j<n.

Proof. All conditions of Lemma 5.2.1 hold for the System (5.4.1), therefore it
implies that x;(t) = z;(¢)(t) > 0 for t > 0 and ¢ = 1,...,n. Since we assumed that
pi € Cy foralli =1,...,n, it follows z;(t — 7;(t)) >0 fort >0andi=1,...,n

From (5.4.3), we have 7;,(t) <7, and “Z() ;, for t > 0. Thus, we get from (5.4.1)
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fort>0andi=1,.. nthat

LOEDY Melt)olt — T +Zaw Yyt — o (t)) — pi(®)[at) + (1)),

1+%a7, t—Tg

J#z
By Theorem 2.1.2; we have z;(t) > y;(t) for t > 0 and i = 1,...,n, where y;(t) is

the positive solution of the differential equation

yi(t) = Z daelO)pslt - Tult +Zaw y;(t —0i;(t))
J#z

14+ 7,y:(t — Tt
—w(Oy() + TP (M),  1<i<n, (5.4.8)
with the initial condition
yi(t) = @i(t), —7<t<0, 1<i<n. (5.4.9)
Next, we check that conditions (Ag)—(Ag) of Theorem 5.2.4 are satisfied for the

System (5.4.8). First note that we can rewrite (5.4.8) in the form (5.2.1) with

(
/\ig(t)7 ]:Z, £:17...,n07
Qije(t) = ai;;(t), j#i, =1,
0, J#Fi, (#1
\
= J=
hz](u) = e
u, J# 1
;
Tié(t)a ]:Z> = y e ey 100,
T'UK(t) = < Uzg(t)7 .] # 7:7 (= 17
0, j#FL LFL

\
and 7;(t) = p(t), filu) := v+ Tw? and pi(t) = 0, 1 < 4,5 < n. We have

filw) _ (utTu?) (1475,u) _ ij(u) _ -
ull>ré1+ hasty — LI ” =1 and 1}1_>nolo f:( y = 0foralll<i,j<n.

Therefore, by our assumptions (5.4.3) and (5.4.4), we can see that conditions
(Ag)—(As) hold. To check condition (Ag), we observe that
filu) (I +mu)(L+7u),  j=4i,
g () 1+ 7, i,
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is strictly increasing and
h'jj (U) u 1
(

hij(u) - u(l+7u) - L +7u
is strictly decreasing on (0,00), for each 1 < i # j < n. We see that m,, =

54 ()
liminf &
t—o0 15 (8)

> 1 by (5.4.4), and Z’jgz) is strictly decreasing on (0,00), for all

~

j # i. Hence conditions (Ag) (i), (ii) and (iii) are satisfied, and we can apply

Theorem 5.2.4 (i) to the System (5.4.8). Therefore we get the lower estimates

li%n inf z;(p)(t) > litm infy;(¢)(t) > zf, 1 < i < n, where (z7,...,z") is the unique
—00 —00

positive solution of the algebraic system (5.4.6). Similarly, we can get the upper

estimates limsup x;(¢)(t) < ZF, 1 < i < n, where (Z7,...,T") is the unique positive
t—00
solution of the algebraic system (5.4.7). O

Now, we consider a time-dependent version of the n-dimensional Nicholson’s
blowflies system (5.1.8) for t > 0:
no n
Ei(t) = > bio(t)ai(t — aig(t)e D) 1N " ay(t)a;(t) — di(t)ai(t), 1<i<n
=1 =1

']. .
J#i

with the initial condition

zi(t) = pi(t), —7 <t <0, 1 <i<n, (5.4.11)
where 7 > 0, ¢ = (p1,02,--.,9¢n) € CL, big,a,5,d; € C(Ry,Ry), and oy €
CR,Ry) with 0 < oy(t) < 7fort >0,1<i#j5<n, ¢=1,...,n9. The
persistence and permanence of the autonomous system (5.1.8) was investigated in
[33]. Unfortunately, our method does not work for this population model, since
the function ue™ is not monotone increasing, and so condition (A4) of our main
Theorem 5.2.4 is not satisfied for (5.4.10). But we can apply our method to get an
upper bound of the limit superior of the solutions of (5.4.10). We formulate this

result next.

Corollary 5.4.2. Assume by, a;j,d; € C(Ry,Ry), and 0y € C(Ry,R;) with 0 <
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ou(t) <71 fort>0,1<i#j<nandl=1,...,n9g. Moreover, we assume that,

foralll <i,j <n,

di(t)>0, t>0  and / di(t) dt = oo, (5.4.12)
0

1o

> bi(t) )
sup =2 < 00 and sup a”—(t) < oo, j#i, (5.4.13)
>0 di(t) >0 di(t)

and o
Pt " e ()
.. — . ij
h{gg}lf ) > 1 and jzlhrtriiljp 00 <1 (5.4.14)
i

Then, for any initial function ¢ = (@1,¥2,...,¢n) € CT, the solution x(p)(t) =
(x1(©)(t), ..., z0(0)(t)) of the IVP (5.4.10) and (5.4.11) satisfies

zi(p)(t) >0, t>0, and limsupxz;(p)(t) <7}, 1<i<mn, (5.4.15)

t—»00
where (T3, ...,T5) is the unique positive solution of the algebraic system
=1
=
nq
> bue(t) )
where My; == llﬂilp:éT, 1 <i<mn, and my;; == hmsup dj for1 <i+#j<n,
and
ue ", u <1,
H(u) = (5.4.17)

Proof. All conditions of Lemma 5.2.1 hold for the System (5.4.10), therefore
it implies that x;(¢)(¢t) > 0 for t > 0 and ¢ = 1,...,n. We have ue ™ < H(u) for
u > 0, therefore (5.4.10) yields

0
£) < bt H (it — 0u(t))) + Zaw )i (t) — di(t)a;(t),  1<i<n.
(=1

J#l
By Theorem 2.1.2, we have z;(t) < y;(t) for t > 0, ¢ = 1,...,n, where y;(t) is the
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positive solution of the differential equation

9i(t) = Y bue()H(ys(t — 0u(1)) + Y ai()y; (1) — di(t)ys(t),  1<i<n,
(=1 j=

7j=1
J#i

with the initial condition
yi(t) = wi(t), —7<t<0, 1<i<n. (5.4.19)
Next, we check that (Ag)—(Ag) of Theorem 5.2.4 are satisfied for the System (5.4.18).

First note that we can rewrite (5.4.18) in the form (5.2.1) with

(

big(t), ]:Z, 621,...,710,

aget) = q ay(t), j#i, (=1,
0, j#Fi, LF#1,
H(u), j=1,
hw(u) =
u, J# 1,
Uif(t)v ]:Za gzla"'an(h
Tije(t) =
0, otherwise,
and 7;(t) := d;(t), fi(u) == w and p;(t) :=0, 1 <i,j <n. We have
] i7 07 ) = i?
lim filu) = lim v 1 and lim h”—(u> = J

for 1 <i4,5 < mn. Thus, by our assumptions (5.4.12), (5.4.13) and (5.4.14), we can

see that conditions (Ag)—(As) hold. To check condition (Ag), we observe that

€u7 u S 17 .] = iu
fi(u)Z eu u>1,7=1
hw(u> ) ) ]
L u>1, j#4,
is increasing and
hjj(u) . H(U) . €7u7 Uu S 17 j 7é iv
hij(u) — hij(u) 1

ew’ u > 17 j 7& ia
is strictly decreasing on (0, 00), for each 1 < i, 7 < n. Moreover, for each 1 < i < n,
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/')AO
> bje(t)

filw) - . . . . Y -

ety 18 strictly increasing on (0, 00). Foreach j =1,...,n, m;; > hgg} : ;j(t) > 1

by (5.4.14), and Z‘f? ((Z)) is strictly decreasing on (0, c0), for all j # i. Hence conditions
ij

(Ag) (i), (iv) and (v) are satisfied, and we can apply Theorem 5.2.4 (ii) to the

System (5.4.18). Therefore we can obtain the upper estimates lim sup z;(¢)(t) <

t—00
limsupy;(p)(t) < zf, 1 <i < n, where (T3,...,Z}) is the unique positive solution
t—00
of the algebraic system (5.4.16). O

5.5 Examples

In this section, we give some examples with numerical simulations to illustrate our

main results.

Example 5.5.1. Consider the following system of nonlinear differential equations

in the three dimensions, for ¢t > 0,

i1(t) = "Y1+ cost)zy(t — 2) + t% z (¢ — 1.5) + 123 (¢t — 0.05)
+t0 22 (t — 3) + 91 (2 + 2sint)z3(t — 0.5)
+t0 123 (t — 2.4) + %123 (t — 2.5) — 2t%1 2 (1)
+0.2t%1(1.2 + sin t),

io(t) = x1(t —1.5) +2z1(t — 0.5) + z1(t — 0.4) (5.5.1
+6(10 + cost)zo(t — 0.05) + (3 + 3cost)z3(t — 0.09)
+22%(t — 1.3) — a3(t) + 4.5 + cost,

i3(t) = bri(t —1.9) 4+ 223(t — 0.2) + 23(t — 0.3) + 10xo(t — 1.2)
+(2 4 5sint)zo(t —5) + 623(t — 0.01) + 423 (t — 1)

—23(t) + 4.5 + 2 cost.
Note that the conditions of Corollary 5.3.2 are satisfied for (5.5.1). So, we see

from Corollary 5.3.2 that

liminfz(¢) > 27, lminfay(t) > 25 and liminfx,(t) > 23,
t—00 t—o0 t—o0
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where (x7, 23, 23) is the unique positive solution of the algebraic system
i = 0.5z + a3 + 23 + 0.02,
3 = 4z + bdwy + 222 + 3.5, (5.5.2)

3 = 4%+ 3.5x9 + 53 + 1.25.
We solve the System (5.5.2) numerlcally by the fixed point iteration

2 = 052 + @) + (@) + 0,02
2D = \/4& N 54x(k) +22®)2 4 3.5, (5.5.3)
2 = \3/4@5 )2 + 3528 + 5(z{)2 + 1.25.

We compute the sequence defined by the iteration (5.5.3) starting from the initial

value (mgo),xgo), zy ) (0,0,0). The first ten terms of this sequence are displayed

in Table 5.5.1. We can observe that the sequence is convergent, and its limit is
(a3, x5, 2%) = (4.5960 . ..,8.3147...,7.2095. . .).
Similarly, we can see that
limsupz(t) <7, limsupay(t) <75 and limsupz(t) <73,

t—o00 t—o00 t—o00

where (Z7, 75, 75) is the unique positive solution of the algebraic system
vl = 1.5z + x5+ 323 +0.22,
x3 = 4x; + 662y + 822+ 5.5, (5.5.4)

3 = 4?4 8519 + b2 + 3.25.
We solve the System (5.5.4) numerically by a fixed point iteration defined similarly

o (5.5.3) from the starting value (0, 0,0). The numerical results can be seen in Table
5.5.2. We conclude that (77,75, 75) = (6.7840...,11.1161...,8.7126...). Therefore

Corollary 5.3.2 yields
4.5960... < li{n inf zq(t) < limsupz(t) <6.7840. ..,
—00

t—ro0
8.3147... < li{n inf 25(t) < limsupzy(t) < 11.1161.. ., (5.5.5)
0 t—00

7.2095. .. < liminf z3(f) < limsupzs(t) < 8.7126....

t—o0 t—00

We plotted the numerical solution of the System (5.5.1) in Figure 5.5.1 corre-

sponding to the constant initial functions (¢1(t), wa(t), p3(t)) = (2.5,6,2.5) and
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(p1(t), va(t), p3(t)) = (3.5,8,4). The horizontal lines in Figure 5.5.1 correspond to
the upper and lower bounds listed in (5.5.5), respectively. We also observe that
the difference of the components of the two solutions converges to zero, i.e., the

two solutions are asymptotically equivalent. The numerical results demonstrate the

theoretical bounds (5.5.5). O

6.5
1 8
6|
7]
55| 10
= 9 = <
2 9 <7

0 5 10 15 20 25 30 35 40 0 5 10 15 _20 25 30 35 40 0 5 10 15 20 25 30 35 40
Tme t  Tmet Time t

Figure 5.5.1: Numerical solution of the System (5.5.1).

Lk e | o | o | ESEE RN
0 0 0 0 0 0 0 0
1 10.3761 | 1.7105 | 1.9834 1 10.6849 | 2.0198 | 2.8145
2 | 1.8185 | 4.8060 | 3.7077 2 | 29151 | 5.9799 | 5.0354
3 | 3.6353 | 7.5553 | 5.9214 3 | 5.5288 | 9.7858 | 7.5194
4 | 4.0406 | 7.9252 | 6.4602 4 | 6.4086 | 10.7362 | 8.3557
5 | 4.4130 | 8.1962 | 6.9628 5 | 6.6740 | 11.0053 | 8.6081
6 | 4.5364 | 8.2765 | 7.1294 6 | 6.7520 | 11.0838 | 8.6822
7 | 4.5767 | 8.3023 | 7.1836 7 | 6.7747 | 11.1067 | 8.7038
8 | 4.5958 | 8.3146 | 7.2092 8 | 6.7839 | 11.1159 | 8.7125
9 | 4.5960 | 8.3147 | 7.2095 9 | 6.7840 | 11.1161 | 8.7126
10 | 4.5960 | 8.3147 | 7.2095 10 | 6.7840 | 11.1161 | 8.7126
Table 5.5.1: Numerical solution of Table 5.5.2: Numerical solution of
the System (5.5.2) the System (5.5.4)

Example 5.5.2. Consider the following system of nonlinear differential equations
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in the two dimensions, for ¢t > 0,

1(t) = (L.7402cost)xy(t —2)+ (0.25 4 0.1sint)xq(t — 1.5)
—0.523(t) + 8 + 2 cost,
(5.5.6)
To(t) = (0.024 0.01sint)zy(t —0.3) + (1.2 4+ 0.2 cost)za(t — 10)

—0.223(t) + 2.2 4 2sin .
Note that the conditions of Theorem 5.3.3 are satisfied for (5.5.6), where m,; =

3, M1 = 3.8, Mz = 0.7, myy, = 5, Moy = 0.15 and Mgy = 7 satisfy (5.3.14) for
1,7 = 1,2. Also, using Corollary 5.3.2, we see that
liminf z1(t) > 27, and liminfzy(t) > 3,

t—o0 t—o00

where (z7, z3) is the unique positive solution of the system

2?2 = 3w+ 0.379 + 12,

(5.5.7)
3 = 0.05x; + 529 + 1.
We solve the System (5.5.7) numerically by a fixed point iteration
HY = \/3g§’“) +0.325 + 12,
(5.5.8)

2D = \/ 0.052" + 523 + 1.
We compute the sequence defined by the iteration (5.5.8) starting from the initial

value (0,0). The first ten terms of this sequence are displayed in Table 5.5.3. We can
observe that the sequence is convergent and its limit is (z7, z3) = (5.4778...,5.2430...).
Similarly, we can see that

limsupz(t) <7, and limsupay(t) <75,
t—o0 t—o0

where (T}, Z3) is the unique positive solution of the system

2?2 = 3.87; + 0.729 + 20,
(5.5.9)

We solve the System (5.5.9) numerically by a fixed point iteration defined similarly

to (5.5.8) from the starting value (0,0). The numerical results can be seen in Table

5.5.4. We conclude that (z7,75) = (7.3921...,9.3616...). Therefore Corollary 5.3.2
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yields
54778 ... < liminf z¢(t) < limsupz(¢) < 7.3921. ..,
e t=00 (5.5.10)
5.2430... < litminf zo(t) < limsup zy(t) < 9.3616. ...
—00

t—o00

We plotted the numerical solution of the System (5.5.6) in Figure 5.5.2 corre-
sponding to the initial functions (1(t), p2(t)) = (3,2), (@1(t),¢2(t)) = (7,7) and
(p1(t), v2(t)) = (9,10). The horizontal lines in Figure 5.5.2 correspond to the upper
and lower bounds listed in (5.5.10), respectively. We also observe that the difference

of the components of every two solutions converges to zero, i.e., the two solutions

are asymptotically equivalent which coincide (5.3.15) in Theorem 5.3.3. !

10;
0 N
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7W/\/W
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N . N

5|

4
3

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Time t Time t

Figure 5.5.2: Numerical solution of the System (5.5.6).

Example 5.5.3. Consider the 2-dimensional population model:

. o (14-0.8 cos t)x1 (t—2.05) 2(140.5 cos t)z1 (t—1.5)
1 (t) 1+(2+sin(0.1t))1:v1(t—2.05) + 1+(2+sin(0.1t));1(t—1.5) + 4w, (t - 1-8)

—3x1(t) — (4 +sint)a?(t);

. 2x2(t—0.3 4xo(t—1 in
ba(l) = T + ey + (L e (t — 2.5)

—2xo(t) — 225 g2(1).
Using Corollary 5.4.1, we see that

(5.5.11)

liminf 2 (¢) > 2], and liminfay(t) > 23,
t—o00 t—00
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B SEN ke | e
0 0 0 0 0 0
1 | 3.4641 | 1.0831 1 | 4.4721 | 4.6552
2 | 4.7663 | 2.5795 2 | 6.3445 | 7.3850
3 | 5.2031 | 3.7627 3 | 7.0199 | 8.5877
4 | 5.4246 | 4.8659 4 | 7.2586 | 9.0666
5 | 5.4659 | 5.1549 5 | 7.3436 | 9.2503
6 | 5.4721 | 5.2008 6 | 7.3744 | 9.3198
7 | 5.4751 | 5.2419 7 | 7.3918 | 9.3608
8 | 5.4777 | 5.2429 8 | 7.3920 | 9.3615
9 | 54778 | 5.2430 9 | 7.3921 | 9.3616
10 | 5.4778 | 5.2430 10 | 7.3921 | 9.3616
Table 5.5.3: Numerical solution Table 5.5.4: Numerical solution
of the System (5.5.7) of the System (5.5.9)

where (z7, z3) is the unique positive solution of the system

r1 +1.6666722 = 2221 4+ 1.333331,,

i (5.5.12)
Ty + 7389125 = s + 0.683952).
We solve the System (5.5.12) numerically by a fixed point iteration
k+1 0.4z k k
n = \/m[m +1.333331;" — o),
(k+1) G ) _ ®) o513

We compute the sequence defined by the iteration (5.5.13) starting from the ini-
tial value (0,0.1). The first ten terms of this sequence are displayed in Table
5.5.5. We can observe that the sequence is convergent and its limit is (z7,z3) =
(0.2493...,0.2219...).
Similarly, we can see that
limsupz(t) <7, and limsupzy(t) <75,

t—o0 t—o0

where (T}, 735) is the unique positive solution of the system

T + 22 = P2 4 1.333331,, (5.5.14)
wy + 0135315 = i + 1.859152).

We solve the System (5.5.14) numerically by a fixed point iteration defined similarly
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to (5.5.13) from the starting value (0,0.1). The numerical results can be seen in Table
5.5.6. We conclude that (z7,75) = (2.5077...,5.7392...). Therefore Corollary 5.4.1

yields

0.2493 ... < liminf z1(¢) < limsup z;(t) < 2.5077...,

e t=o0 (5.5.15)
0.2219... < li{n inf zo(t) < limsup () < 5.7392. ...

— 00 t—00

*)
We plotted the numerical solution of the System (5.5.11) in Figure 5.5.3 correspond-
ing to the initial functions (p1(t), p2(t)) = (0.1,0.02) and (p1(t), p2(t)) = (3,6). O

*,(0
b
x0)
P

10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
Time t Time t

Figure 5.5.3: Numerical solution of the System (5.5.11).

kY | g SN
0 0 0.1 0 0 0.1

1 10.2828 | 0.2111 1 1 0.3651 | 2.5332
2 10.2864 | 0.2287 2 | 2.6771 | 5.8300
3 10.2699 | 0.2258 3 | 2.4960 | 5.7462
4 10.2605 | 0.2241 4 | 2.5073 | 5.7382
5 10.2554 | 0.2231 5 | 2.5074 | 5.7388
6 | 0.2469 | 0.2214 6 | 2.5075 | 5.7389
7 | 0.2491 | 0.2218 7 | 2.5076 | 5.7390
8 | 0.2493 | 0.2219 8 | 2.5077 | 5.7391
9 |0.2493 | 0.2219 9 | 2.5077 | 5.7392
10 | 0.2493 | 0.2219 10 | 2.5077 | 5.7392
Table 5.5.5: Numerical solution Table 5.5.6: Numerical solution

of the System (5.5.12) of the System (5.5.14)
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Example 5.5.4. Consider the 2-dimensional Nicholson’s population model:

#1(t) = (1+0.8cost)ry(t — 2.05)e 1 (t=20)

(4 + cost)zy (t — 1.5)e ™1 =15 £ 0.3y (t) — 321 (2);

(5.5.16)

Bo(t) = 2mo(t —0.3)e 2703 4 4oy (t — 1)ew2(t=1)

+(1 4 0.2sint)xy (t) — 2z2(1).
Using Corollary 5.4.2, we can see that
limsupz(t) <7, and limsupuzy(t) <75,
t—o00 t—00
where (T}, 73) is the unique positive solution of the system
vy = 2.2667H(x;) + 0.1zs,

(5.5.17)

Ty = 3H(372) -+ 0.61‘1,
where H(u) is defined by (5.4.17). We solve the System (5.5.17) numerically by a

fixed point iteration

Y = 22667H @) + 0.17,
(5.5.18)
¢ = 3HEM) + 0.6z,

We compute the sequence defined by the iteration (5.5.18) starting from the initial
value (0,0.1). The numerical results can be seen in Table 5.5.7. We conclude that

(Z7,75) = (1.0045...,1.7063 . ..). Therefore Corollary 5.4.2 yields

liminf z(¢) < limsupz;(t) < 1.0045...,
e 100 (5.5.19)
liminf x4 (t) < limsupay(t) < 1.7063. ...

t—o00

t—r00
We plotted the numerical solution of the System (5.5.16) in Figure 5.5.4 correspond-

ing to the initial functions (¢1(t), v2(t)) = (0.1,0.8) and (¢1(t), p=2(t)) = (1.5,2). O
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Figure 5.5.4: Numerical solution of the System (5.5.16).

]

]

0

0.1

0.0100

0.2775

0.1743

1.1283

0.4447

1.3704

0.7832

1.5735

0.9685

1.6848

1.0019

1.7048

1.0044

1.7062

1.0045

1.7063

OO0 | OO =W N~ O &

1.0045

1.7063

—_
@)

1.0045

1.7063

Table 5.5.7: Numerical solution of the System (5.5.17)



Chapter 6

Conclusion

In this chapter we summarize the new results of the Thesis. Also we give the list of

our publications and conference lectures related to this work.

6.1 New scientific results

Publications and conference abstracts are listed below. Some parts of this Thesis

are published in (P1), (P2) and (P3).

Thesis 1: Sufficient conditions are given to guarantee the persistence and the uni-
form permanence of the positive solutions of nonlinear delay differential equa-

tions (related publication: (P1) and (P3)):

1.1: We establish sufficient conditions for the persistence of the positive solu-

tions of the nonlinear scalar delay differential equation

#(t) = (1) (g(t,xt) - h(x(t))), t>0. (6.1.1)
(Lemma 3.2.3)

1.2: We establish sufficient conditions to guarantee the uniform permanence

of the positive solutions of the scalar Equation (6.1.1). (Theorem 3.2.4)

90
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1.3:

1.4:

1.5:

1.6:

1.7:

In several special cases of the scalar Equation (6.1.1) explicit upper and
lower estimates of the limit super and limit inferior of the solutions are

obtained. (Corollaries 3.3.1, 3.3.3, 3.3.4, 3.3.6, 3.3.7, 3.3.8, 3.3.9, 3.3.10)

Sufficient conditions are formulated for that all positive solutions of the
scalar Equation (6.1.1) converge to a constant limit. (Corollary 3.2.5 and

Corollary 3.3.5 for a special case)

We establish sufficient conditions to the uniform permanence of the pos-

itive solutions of a system of first order nonlinear delay differential equa-

tions
;(t) = Z Z ije(t)hij (2 (t—=Tij0(t)))—ri(t) fi(zi(t))+pi(t), 1 <i<n.

(6.1.2)

(Theorem 5.2.4)

In several special cases of the System (6.1.2) (including n-dimensional
population models with patch structure) upper and lower estimates of
the limit super and limit inferior of the components of the solutions are
obtained using the unique positive solutions of an associated system of

nonlinear algebraic equations. (Corollaries 5.3.2, 5.4.1, 5.4.2)

Sufficient conditions are formulated for that all positive solutions of the

System (6.1.2) converge to a constant limit. (Corollary 5.3.1)

Thesis 2: Sufficient conditions are given for the asymptotic equivalence of positive

solutions of nonlinear delay differential equations (related publications (P1)

and (P3)):

2.1:

We establish sufficient conditions implying that for all 0 < p < ¢, ¢ > 1
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2.2:

all positive solutions of the equation
B(t) = ag(t)z?(t — 7,(t) — B(t)2"(t)
k=1

are asymptotically equivalent. (Corollary 3.3.2)

We establish sufficient conditions to guarantee that all positive solutions

of the system

n ng
Bi(t) = DY we(t)a; (t=mie(t) —ri () (t)+pi(t), @ >1, 1<i<n
j=1 =1
are asymptotically equivalent. (Theorem 5.3.3)

Thesis 3: Sufficient conditions are given implying the existence and uniqueness of

positive solutions of a system of nonlinear algebraic equations.(related publi-

cation: (P2)):

3.1:

We establish sufficient conditions for the existence and uniqueness of the

positive solutions of the nonlinear system of algebraic equations:
j=1

(Theorem 4.2.1)

3.2: In several special cases of the System (6.1.3) we establish sufficient con-

ditions for the unique positive solutions. (Corollaries 4.3.1, 4.3.2, 4.3.3,

4.3.4)

6.2 Publications and conference lectures

Publication and conference lectures of Nahed A. Mohamady are listed below. Some

parts of this Thesis are published in (P1), (P2) and (P3).



93

Chapter 6. Conclusion

6.2.1 Publications in refereed SCI journal (related to this

Thesis)
(P1) Istvan Gyoéri, Ferenc Hartung, Nahed A. Mohamady, On a Nonlinear Delay
Population Model, Applied Mathematics and Computation 270(2015)909-925.

(IF: 1.345)
(P2) Istvan Gyori, Ferenc Hartung, Nahed A. Mohamady, Ezistence and Unique-
ness of Positive Solutions of a System of Nonlinear Algebraic Equations, Pe-

riod. Math. Hung., DOI 10.1007/s10998-016-0179-3, 2016. (IF: 0.286)

(P3) Istvan Gyori, Ferenc Hartung, Nahed A. Mohamady, Boundedness of Positive

Solutions of a System of Nonlinear Delay Differential Fquations, to appear in

Discrete and Continuous Dynamical Systems- Series B. (IF: 1.227)

6.2.2 Publication in refereed journal (not related to this

Thesis)
(P4) M. M. A. El-Sheikh, R. Sallam, N. Mohamady, Oscillation Criteria for Second

Order Nonlinear Neutral Differential Equations, Electronic Journal of Differ-

ential Equations an Control Processes, ISSN 1817-2172, No. 3 (2011) 1-17.

(P5) M. M. A. EL-Sheikh, R. Sallam, N. Mohamady, New Oscillation Criteria for

General Neutral Delay Third Order Differential Equations, International Jour-

nal of Mathematics and Computer Applications Research (IJMCAR) ISSN
2249-6955 Vol. 3, Issue 2, (Jun 2013) 183-190.

(P6) M. M. A. El-Sheikh, R. Sallam, N. Mohamady, On the Oscillation of Third

Order Neutral Delay Differential Equations, Appl. Math. Inf. Sci. Lett. 1,

No. 3,(2013)77-80.
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(P7) M. M. A. EL-Sheikh, R. Sallam, Nahed A. Mohamady, New Criteria for Os-
cillation of Second Order Nonlinear Dynamic Equations with Damping Time
Scales, International Journal of Research in Applied, Natural and Social Sci-
ences (IJRANSS) ISSN(E): 2321-8851; ISSN(P): 2347-4580 Vol. 3, Issue 3
(Mar 2015) 79-86.

6.2.3 International conference presentations related to the

Thesis

(C1) Istvan Gyéri, Ferenc Hartung, Nahed A. Mohamady, Boundedness of so-
lutions of nonlinear delay differential equations, 10th Colloquium on the Qual-
itative Theory of Differential Equations 2015, Bolyai Institute, University of

Szeged, Hungary, July 1-4, 2015.

(C2) Istvan Gyéri, Ferenc Hartung, Nahed A. Mohamady, Persistence and Per-
manence of Nonlinear Delay Population Models, The Second International

Conference on New Horizons in Basic and Applied Science, Hurghada , Egypt,
August 1-6, 2015.

(C3) Istvan Gyoéri, Ferenc Hartung, Nahed A. Mohamady, Boundedness of
positive solutions of a system of nonlinear delay differential equations, O.D.
EQUATIONS BRNO 2016, Faculty of Science, Masaryk University, Brno,
Czech Republic, June 6 - 8, 2016.
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Appendix A

In this Appendix, we give some proofs of some of our results.

A.1 Proofs of some results in Chapter 3

Proof of Lemma 3.2.1. It is clear from condition (Hy) that the IVP (3.2.3) and
(3.2.4) has at least one solution for all (T,y*,¢) € (Ry x (0,00) x Ry). Any of
the corresponding solution y(t) = y(T,y*, ¢)(t) is considered. First we show that if
¢ >0 and y* # h™'(c), then y(t) # h~'(c) for all t > T. Suppose that there exists
a t; > T such that y(t;) = h™'(c). Thus, by separating variables in (3.2.3) and
integrating from T to t;, we get

Y
/T c—h<y<t>)‘“‘/T (£)d.

Introducing the new variable u = y(t) and using (Hz) with v = h~!(c) we get
hil(c) 1 t1
e /y ¢ — h(u) Y /T r(t)dt,
which contradicts the continuity of r. Thus y(t) # h™'(c) for t > T. Note that for

¢ =0 and y* > 0, the above result yields that y(t) > 0 for all t > T

Now let us prove part (i). Since 0 < y(T)) < h™!(c), then either 0 < y(t) < h™(c)
for any ¢t > T and we are done, or there exists a t, > T such that 0 < y(t) < h=*(c)
for 0 < t < ty and either y(t3) = 0 or y(t2) = h™'(c). But this later case is not

possible, since y(t) # h='(c) for all t > T If y(t5) = 0, then one can easily see that
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y(t2) < 0. On the other hand, we get by (H;), (Hz) and from (3.2.3) that
y(t2) = r(t2)[c — h(y(t2))] = r(t2)[c — h(0)] = cr(t2) > 0,

which is a contradiction. Hence 0 < y(t) < h™'(c) for any ¢t > T, and therefore
y(t) > 0. Since y(t) is bounded, the solution y(t) exists for all t > T', and since it is
monotone increasing, y(t) has a finite limit at oo, and

N := lim y(t) < h *(c).

t—00

We show that N = h™!(c). Otherwise N < h™!(c), in this case since y(t) > 0, by

integrating (3.2.3) from T to ¢ we get
¢

y(t) = y(T) +/ r(s)lc = h(y(s))lds = y(T) +/ r(s)le — h(N)]ds,

T T
and as t — oo we have by (Hj) that

o0

N >y(T)+ [c — h(N)] / r(s)ds = oc.
This contradicts with the boundedness of y(t) ,Tand hence
N = h"Y(e).

Now we prove part (ii). If y(T) = h™'(c), then it is clear that y(t) = h™(c) is an
equilibrium solution of (3.2.3) and (3.2.4), and it is easy to argue that y(t) = h=*(c)
is the unique solution in this case.

The proof of part (iii) is similar to the proof of part (i), so it is omitted here.

Finally, we show the uniqueness of the solution. Let "> 0, y* > 0 and ¢ > 0 be
fixed. Suppose both y; and ys satisfy the corresponding IVP (3.2.3) with (3.2.4). It
follows from properties (i)—(iii) that both solutions exist on [T, 00), and y;(t) > 0
and yy(t) > 0 for all ¢ > T. Suppose there exist t, > T such that y;(t2) > ya2(t2)
(the opposite case can be treated similarly). Then there exists t; € [T, 1) such that
y1(t1) = y2(t1) and yy(t) > yo(t) for t € (t1,t2). Define z(t) := y1(t) — y2(t). Then z
is continuously differentiable, z(t1) =0, z(t) > 0 for t € (t1,t3). On the other hand,

Eq. (3.2.3) and the strict monotonicity of A imply

2(t) = a(t) = 5u(t) = r(0) (h(ua(0)) = h(a (1)) <0, t€ (t1,1),



Appendix A 105

which is a contradiction. This yields that y;(t) = y2(t) must hold for ¢ > T. d

A.2 Proofs of some results in Chapter 5

Proof of Lemma 5.2.3. The proof of part (i) is obtained directly from Theo-
rem 4.2.1, where we can rewrite (5.2.16) in the form (4.2.1) with v;(u) := fi(u) —
miihii(w) —1; and g;;(uw) == my;hi;(u) for each 1 <@ # j < nand g;(u) = 0. Now, to
prove the existence of a positive solution for System (5.2.16), we check that condi-
tions (A) and (B) of Theorem 4.2.1 are satisfied. For condition (A), we have that
vi(u) = 0 if and only if

fi(u) Li

= Iy < <n. 2.
ORI + my;, 1<i<n (A.2.1)

The left hand side of (A.2.1) is increasing and the right hand side of (A.2.1) is

decreasing, moreover, either the left hand side or the right hand side is a strictly

monotone function. Therefore, condition (A) of Theorem 4.2.1 holds, if we show

fz(u) . l;

I 1 G 1<i<n, A22
and
lim 2 S b . 1<i<n (A.2.3)

U—00 h“(u) U—00 h”(u)
If I; > 0 and h;;(0) = 0, then (A.2.2) follows, since the left hand side of (A.2.2) is

always finite, since }ff,((uu)) is monotone increasing. If [; > 0 and h;(0) > 0, then the

right hand side of (A.2.2) is finite and positive, but lim 2% = 0 using (As). If

u—0t hii(u)

l; = 0, then assumption (5.2.17) yields (A.2.2). Relation (A.2.3) follows immediately

from (5.2.18). Hence condition (A) is satisfied.
To check condition (B), we see that g;;(u) := m;jh;;(u), 1 < i # j < n, and
gii(u) = 0 are increasing on R, and relation (4.2.3) is equivalent to

7j=1
J#i
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which is satisfied if and only if

2" R <

Therefore, using (5.2.18), (4.2.3) is satisfied when u is large enough and hence con-

dition (B) is satisfied. Therefore (5.2.16) has a positive solution. For the proof of
the uniqueness of the positive solution of the System (5.2.16), we check that con-
ditions (C) and (D) of Theorem 4.2.1 are satisfied. Since m;; > 0 and h;;(u) > 0
for u > 0, for each 1 < i,5 < n, then condition (C) is satisfied. To check condition

(D), suppose m;; > 0. Then the function

i) fi(w) —myhi(u) — 1
gij(u) mzhij(u)
fi(u) My hyj(u) _ L

maghij(w) — mighi(u) - mighi; ()
is monotone increasing on (0,00), by (A4) and (Cy). By assumption (Cg), there ex-

ists ¢ # j such that X o ( ) is strictly monotone increasing on (0, 00), and so condition
(D) is satisfied. Hence the System (5.2.16) has a unique positive solution.
Now we prove (ii). From (5.2.19) we have
it <z”: mijhii(z;) + li) , 1<i<n. (A.2.4)
Assumption (Aj) and (5.2.17]):31/ield that there exists a small u* such that
0<u* <uay, 1<qi<n. (A.2.5)

and

1< myhule)
A

j=1
or equivalently,
Now we construct a sequence (z EO),. . Ek), ...) such that
29 = v and 2FY = (me y k’)+l> k>0, 1<i<n,
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and we prove that the sequence (xgo), e xl@, ...) converges. For this, we prove that
the sequence (z 50), s :cgk), ...) is monotone increasing and bounded from above. First
we show

xﬁkﬂ) > xgk), for all k>0, 1<i<n. (A.2.8)

For this aim, we use the mathematical induction, so at k = 0 we have, by (A.2.6)

and (A.2.7),

4<§:mM%@$h+é):ﬁ4<§:mMWWﬂ+h>zu*:@% 1<i<n.
=1 j=1

Next, we assume, for some k£ > 0, that
2P > 1 <i<n, (A.2.9)

Then, by (A.2.7) and (A.2.9),

- (Z iy () ”") e (Z mighis (2 ) ”Z‘) —a, 1<i<n

j=1
(x 1(0)’ s q:gk), ...) is monotone increasing for all k>0, 1<i<

Hence the sequence

n. Now to prove that the sequence (z E ) xl(k), ...) is bounded from above for all
k>0, 1<i<n,weshow that
xEkH) <z, for all k>0, 1<i<n. (A.2.10)

Again we use the mathematical induction, so at k = 0 we have, by (A.2.4), (A.2.5)

and (A.2.7),

W = g me ’ +z>

< fi E:mM%@ﬂ+h>
j=1
< 1<i<n.

Next, we assume, for some k > 0, that

2P <z 1<i<n (A.2.11)
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Then, by (A.2.4), (A.2.7) and (A.2.11

),
25D = <me y k +l>

< f Zmijhij(xj)+li>
1

<

we have

1<i<n,

Ty,
and hence the sequence (x Z(O), e xgk), ...) is bounded from above for all k>0, 1<
1 < n. Now since the sequence is monotone increasing and bounded from above,

then it converges and has a finite limit, i.e.,

: (k) _  *
Jim ol = .

1 <4 <n,

*

and clearly, z* = (z7,...,2%) is the unique positive solution of (5.2.16). On the

’rn
other hand, we know that
e <z, k>0, 1<i<n,

which implies

)

and hence the proof of (ii) is completed.

The proof of part (iii) is similar to that of part (ii), so it is omitted here. O

Proof of Theorem 5.2.4. In the proof we will use the notations

zf(00) := hgl_l)iglf zi(p)(t) and ZTf(oco) := limsup z;(p)(1).

2
t—o0

By conditions (5.2.4), (5.2.5), (5.2.7) and relation (5.2.10), we have for any 7" > 7

that
no
2 ie(?) Z aije(t)
<my(T) := inf = < Bl M(T 1<i,5<nm;
0 < my(T) := Inf E TR vy i(T) < oo, 1<i,j<n;
(A.2.12)
t t
0 <(T) :=inf pill) < sup pill) =: L;i(T) < o0, 1 <i<mn (A.2.13)
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and

0<z,(T) := iITlf z;(t) < sup z;(t) =: 7;(T) < o0, 1<i<n. (A214)

Thus from (A.2.1_23, (A.2.13), EZAT;M) in (5.2.1) we get
w3 i)
ai(t) = ri(t) Z ZZITT%(%(T)) + 1(T) — fi(wi(t))
> aije(t)

> ry(t) Zgg Hri 0 hij(z;(T)) + L(T) — fi(wi(1))

> n(0) | S mo Dol (T) +10) ~ e[, 12T, 1<i<n,
or equivalently o

i(t) = ri(t) [Ci(T) — filwi(t))], t=>T, 1<i<n, (A.2.15)

where Ci(T') = an: mij(T)hij(z;(T)) + L;(T). From (A.2.15) and the comparison
theorem of differ;r:léial inequalities we get
x;i(t) > vi(t), t>T, 1<i<n,

where y;(t) = y(T, p:;(T), Ci(T),ri, f;)(t), 1 < i < n are the solutions of the differ-
ential equations

i) =n(t) (e = L), t=T=0, (A.2.16)
with ¢ = C;(T") and with the initial condition

u(T) = 2:(T), 1<i<n. (A.2.17)
So, from Lemma 3.2.1, we see that
lim yi(t) = £ (C(T)),  1<i<n.

Thus, for any T > T,

zf(00) := liminf x;(¢)(t) > tlggloyl(t) = f7H(Cy(T)), 1<i<n.

i
t—o00
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But
A fH(C(T)) = Jim 5 (2 mii(T)hij(z;(T)) + li(T>>
= fi <Z A g (T)hig(2;(T)) + lim li(T)>
fzil <i nghlj(gf(oo)) + lz) ) I<i<n
Therefore =

zf(c0) > fi (En:mijhm(zf(oo)) +Li> ,  1<i<n,
or equivalently
fi(zf(00)) = imijhij(gf(oo)) +1, 1<i<n.
Since all the conditions oij:;mma 5.2.3 are satisfied with m;; = m;; and [; = [,

it can be applied, and we obtain

xf (00) > i, 1<i<n,
where z* = (z7,...,2}) is the unique positive solution of the System (5.2.25). In a
similar way we can get

z{(00) < 7T, 1<i<n,
where % = (77, ..., T}, is the unique positive solution of the System (5.2.26). Hence
the proof is completed. O

Proof of Theorem 5.3.3. Let ¢, € C be fixed and define v;(t) := x;(p)(t)
and w;(t) := z;(¢)(t). Then

n 7o
i) =) > age(t)vs(t — mie(t)) — ri()E (t) + pilt), >0, 1<i<n,
j=1 ¢=1
and
n no

Gi(t) =Y ) aige(t)w;(t = Tige(t)) — i)l (8) + pilt), t>0, 1<i<n.

j=1 ¢=1
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Now, introduce z;(t) := v;(t) — w;(t), then

n no
=D i) z(t—Tige(t) —ri(O)z(t) Y v (i), t>0,1<i<n,
j=1 ¢=1 r=0
or equivalently

n  ng
G(t) = —ai(t)zi(t) + Y ) age(t)z(t — mge(t), >0, 1<i<n, (A218)
j=1 (=1
gi—1
where a;(t) := r;(t) Y v/ (t)w " (t). We can consider (A.2.18) as the perturbation

r=0 !
of the scalar ordinary differential equation
Thus, for any 7" > 0 and 1 < i < n, the solution of (A.2.18) satisfies

t n  ng
2i(t) = z(T)e Jratwde / e MN TN qi(5)zi(s — Tige(t)) ds, ¢ > T.
T

j=1 =1
(A.2.19)
The definition of a;(t), (5.3.13) and assumption (5.3.14) yield, for each i = 1,...,n,
n  no n. ng
> 20 je(t) > 2 vje(t)
) j=1i=1 ) 1 ) j=1i=1
lim sup T < limsup po| lim sup 0
S a; 0o R 1y 00 T
- T X e
r=0

n %D: ije(t)

1 : =1
< lim su
Togimy, jz:; taoop i (t)
dom
< =
o gimy;
< 1.

Thus, there exist 0 < n < 1 and 7T} > 0 such that

Zn: iof ije(t)

j=1¢=1

a;(t)

<n <1, t>1T,
or equivalently

Zaw ) <nai(t), t>Ty, 1<i<n. (A.2.20)

We introduce Ej(oo) = limsup z;(¢), 1 < j < n. For every £ > 0, there exists a
t—00
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T > T; such that

|2;(s—Ti50(t))] < Zj(00)+e < max Zi(00) +¢, s>T, 1<i,7<n,1</{<ny.

(A.2.21)
Using (A.2.19), (A.2.20) and (A.2.21), we get

n

t 0
2i(t)] < |Z¢(T)|6_fT“i(")d”+/ e et N TN age(s)|zi(s — mge(t)| ds
T

j=1 ¢=1

t
< |Zi(T)’e*f;a¢(u)du+ (max Ej(oo) +8)77/ e*f:ai(u)duai@) ds
T

1<j<n
= |z(T)|e” Jrai(u)du <1I£13<X Z;(00) + 5)77(1 — e Jra du)
<j<n

for t > T and 1 < ¢ < n. Taking the limit supermum for both sides as t — oo, and

using (A1) and Lemma 5.2.2, and that

/TOO ai(ujdu = /Too Ti<u)§vf (w7 (u)du

r=0
qi—1 0o
> | ; T ()T 4
> (tlg ZO VI (t)w! (t)) /T ri(u)du
= OO’
we obtain
Zi(00) < n(lngllaézl(oo) +¢), 1<i<n.
Thus
Z. < >,
max Z(00) < 7 max zi(co) + 7,
which implies
— ne
, <
lrglag);zl(oo) S
Since € > 0 can be arbitrary small, we get max Zi(00) = 0 and consequently

tlim zi(t) =0, 1 <4 <n. Hence the proof is completed. O
—00
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