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Tartalmi kivonat

A dolgozatban nemlineáris késleltetett argumentumú skaláris differenciálegyenletek

illetve differenciálegyenlet-rendszerek egy széles osztályát vizsgáljuk. Az ilyen egyen-

letek gyakran megjelennek természettudományi, közgazdaságtani, mérnöki, populá-

ciódinamikai, epidemiológiai alkalmazásokban. Mivel az általunk tekintett model-

leket populációdinamikai alkalmazások motiválták, pozit́ıv megoldásokra fókuszá-

lunk, és a modellek pozit́ıv megoldásai perzisztenciáját és egyenletes permanenciáját

vizsgáljuk. A fő eredményeink alkalmazásaként explicit becsléseket fogalmazunk

meg a megoldások limesz inferiorjára és limesz szuperiorjára. Egyszerű skaláris mo-

dellek esetén visszakapjuk az irodalomból ismert becsléseket, de gyengébb feltételek

mellett. A bizonýıtásaink összehasonĺıtó tételeken és a monoton iterációs technikán

alapulnak. Rendszerek esetében a becsléseinkhez meg kell oldani egy kapcsoló-

dó nemlineáris algebrai egyenletrendszert. Elegendő feltételeket adunk meg ilyen

egyenletrendszer megoldásai létezésére és egyértelműségére. Az eredményeink is-

mert eredményeket terjesztenek ki lényegesen általánosabb egyenletosztályokra, és

a használt feltételeink gyengébbek az irodalomban eddig vizsgált esetekhez képest.

Elegendő feltételeket adunk meg bizonyos egyenletek esetében a megoldások aszimp-

totikus ekvivalenciájára. Az új eredményeket számos példa és numerikus szimuláció

illusztrálja.
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Abstract

In this work, we study a large family of scalar differential equations and systems of

differential equations with delays. Such equations appear frequently as mathemat-

ical models in natural sciences, economics and engineering, population dynamics,

mathematical epidemiology and other engineering applications. Since our model

equations are motivated by applications in population dynamics, we focus only on

positive solutions, and we investigate persistence and permanence of the positive

solutions of our model equations. As an application of the main results, we obtain

explicit estimates for the limit inferior and limit superior of the solutions. For some

simple scalar population models, our method recovers known estimates of the lit-

erature, but under weaker conditions. Our method uses comparison technique and

iterative methods of differential equations. For the system case, our results requires

the solutions of an associated system of nonlinear algebraic equations. We establish

sufficient conditions implying the existence and uniqueness of solutions of such sys-

tem of algebraic equations. These results generalize known methods for much larger

classes of equations, and our conditions are weaker for the previously studied cases

too. For a special class of differential equations, we give sufficient conditions for the

asymptotic equivalence of the positive solutions. All the new results are illustrated

by several special examples and numerical experiments too.
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Chapter 1

Introduction

In modelling in the biological, physical and social sciences, it is sometimes necessary

to take account of time delays inherent in the phenomena. In all these fields scientists

need their models to behave more like the real process. Many processes include

aftereffect phenomena in their inner dynamics. In these cases, it may be necessary

to choose between a model with discrete delays or a model with distributed delay.

1.1 Background and motivation

Time delays of one type or another have been incorporated into biological models to

represent resource regeneration times, maturation periods, feeding times, reaction

times, etc. by many researchers. We refer to the monographs of ([26], [27], [35], [57],

[60]) for discussions of general delayed biological systems. In general, delay differen-

tial equations exhibit much more complicated dynamics than ordinary differential

equations since a time delay could cause a stable equilibrium to become unstable

and cause the populations to fluctuate. In this section, we shall review various delay

differential equations models arising from studying single species dynamics. Let x(t)

denote the population size at time t; let b and d denote the birth rate and death

1



Chapter 1. Introduction 2

rate, respectively, on the time interval [t, t+ ∆t], where ∆t > 0. Then

x(t+ ∆t)− x(t) = bx(t)∆t− dx(t)∆t.

Dividing by ∆t and letting ∆t approach zero, we obtain

dx

dt
= bx− dx = rx, (1.1.1)

where r = b − d is the intrinsic growth rate of the population. The solution of

equation (1.1.1) with an initial population x(0) = x0 is given by

x(t) = x0e
rt. (1.1.2)

The function (1.1.2) represents the traditional exponential growth if r > 0 or

decay if r < 0 of a population. Such a population growth, due to Malthus (1798),

may be valid for a short period, but it cannot go on forever. Verhulst (1836) proposed

the logistic equation

dx

dt
= rx

(
1− x

K

)
, (1.1.3)

where r > 0 is the intrinsic growth rate and K > 0 is the carrying capacity of

the population. In model (1.1.3), when x is small the population grows as in the

Malthusian model (1.1.1); when x is large the members of the species compete with

each other for the limited resources. Solving (1.1.3) by separating the variables, we

obtain (x(0) = x0),

x(t) =
x0K

x0 − (x0 −K)e−rt
. (1.1.4)

If 0 < x0 < K, the population grows, approaching K asymptotically as t → ∞. If

x0 > K, the population decreases, again approaching K asymptotically as t → ∞.

If x0 = K, the population remains in time at x = K. In fact, x = K is called

the equilibrium of equation (1.1.3). Thus, the positive equilibrium x = K of the

logistic equation (1.1.3) attracts all the positive solutions; that is, lim
t→∞

x(t) = K, for

solution x(t) of (1.1.3) with any positive initial value x(0) = x0.
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In the above logistic model it is assumed that the growth rate of a population at

any time t depends on the relative number of individuals at that time. In practice,

the process of reproduction is not instantaneous. For example, in a Daphnia a

large clutch presumably is determined not by the concentration of unconsumed food

available when the eggs hatch, but by the amount of food available when the eggs

were forming, some time before they pass into the broad pouch. Between this time of

determination and the time of hatching many newly hatched animals may have been

liberated from the brood pouches of other Daphnia in the culture, so increasing the

population. Hutchinson [52] assumed egg formation to occur τ units of time before

hatching and proposed the following more realistic logistic equation

dx(t)

dt
= rx(t)

(
1− x(t− τ)

K

)
, (1.1.5)

where r and K have the same meaning as in the logistic equation (1.1.3), τ > 0

is a constant. Equation (1.1.5) is often referred to as the Hutchinson’s equation or

delayed logistic equation and was introduced with the initial condition

x(t) = ϕ(t), −τ ≤ t ≤ 0, (1.1.6)

where, ϕ is continuous on [−τ, 0].

In this Thesis we focus on the study of boundedness of the positive solutions

of differential equations with time delays, that appear frequently as mathematical

models in natural sciences, economics and engineering, population dynamics, math-

ematical epidemiology, economics and large classes of engineering applications and

many others. Since our model equations are motivated by applications in population

dynamics, we focus only on positive solutions, and we investigate persistence and

permanence of the positive solutions.
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1.2 The structure and content of the Thesis

The structure of the Thesis is the following. In Chapter 1 we give a list of notations

we use in the rest of the Thesis.

In Chapter 2 we give some basic background, known results and notions on the

topics we will use in later chapters in our investigation.

In Chapter 3 we study the persistence and the uniform permanence of the positive

solutions of the general nonlinear scalar delay differential equation

ẋ(t) = r(t)
(
g(t, xt)− h(x(t))

)
, t ≥ 0,

and present sufficient conditions which guarantee the boundedness of the solution

(see Theorem 3.2.4 ). This general form of the equation may include a single or

multiple constant or time-dependent point delay functions as well as distributed

delays in the positive terms. Corollary 3.3.1 immediately implies the estimates

obtained in [4], but under weaker conditions. Our method is based on the well-

known comparison theorem for differential equations. We give also, in Section 3.3,

several particular cases and explicit estimations for the upper and lower limit of the

solutions. We investigated in some special cases conditions, which imply that all

solutions have the same asymptotic behavior, i.e., the difference of any two positive

solutions tends to zero.

In Chapter 4 we give sufficient conditions which imply the existence and unique-

ness of the positive solutions of the general nonlinear system of algebraic equations

γi(xi) =
n∑
j=1

gij(xj), 1 ≤ i ≤ n.

Our main result, Theorem 4.2.1 below, uses a monotone iterative method to prove

existence of a positive solution, and an the extension of the method used in [21] to

prove uniqueness under a weaker condition than that assumed in [21]. We introduce

many applications and special cases of our main results and in some cases we give
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necessary conditions for the existence and uniqueness of the positive solutions. Also

we give a counterexample which shows the importance of our conditions.

In Chapter 5 we consider the system of nonlinear delay differential equations

ẋi(t) =
n∑
j=1

n0∑
`=1

αij`(t)hij(xj(t− τij`(t)))− ri(t)fi(xi(t)) + ρi(t), t ≥ 0, 1 ≤ i ≤ n,

and give sufficient conditions for the uniform permanence of the positive solutions

of the system. Also in several particular cases, explicit estimates are given for the

upper and lower limit of the solutions.

In Chapter 6 we summarize the new results. Also the list of publications and

conference lectures of Nahed A. Mohamady related to the topic of this Thesis is

given.

In Appendix A we present some technical or long proofs.

1.3 Notations

The most important notations used throughout in this Thesis are listed below in

this section.

Mathematical notations

R the set of real numbers

R+ := [0,∞) the set of non-negative real numbers

C(X, Y ) the set of continuous functions mapping from X to Y

C the set of continuous functions mapping from [−τ, 0] to R

C+ the set of continuous functions mapping ψ from [−τ, 0] to R+ with ψ(0) > 0

C0 the set of continuous functions mapping ψ from [−τ, 0] to R+ with ψ(t) > 0,

−τ ≤ t ≤ 0

‖ · ‖τ the maximum norm of a continuous function x : [−τ, 0]→ Rn defined by

‖x‖τ := max
−τ≤t≤0

‖x(t)‖
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xt(θ) the segment function defined by xt(θ) := x(t+ θ), θ ∈ [−τ, 0], where x is

a function defined from [−τ,∞) to R , and t ∈ R+

ẋ = dx
dt

time derivative of x

x(∞) := lim inf
t→∞

x(t)

x(∞) := lim sup
t→∞

x(t)

xi ith element of a vector x

xT transpose of a vector x.

Next we list the acronyms we use in the Thesis.

Acronyms

IVP initial value problem

ODEs ordinary differential equations

DDEs delay differential equations

Eq equation.



Chapter 2

Theoretical Background

In this chapter we review some concepts and known results which are used or referred

to later in the Thesis.

2.1 Scalar delay differential equations

In this section we investigate a scalar delay differential equation which will be useful

in the rest of the Thesis.

Consider the scalar nonlinear differential equation with general delays

ẋ(t) = f(t, xt), t ≥ t0, (2.1.1)

and the initial condition

x(t) = ϕ(t− t0), t0 − τ ≤ t ≤ t0, (2.1.2)

where τ > 0, t0 ≥ 0, ϕ ∈ C := C([−τ, 0],R), f : [t0,∞)× C → R is continuous and

xt(θ) := x(t+ θ), θ ∈ [−τ, 0].

Definition 2.1.1. A function x is called a solution of Eq. (2.1.1) on [t0 − τ,∞)

if x ∈ C([t0 − τ,∞),R), (2.1.2) holds and x satisfies Eq. (2.1.1) for t ∈ [t0, β) for

some β > t0 or for t ∈ [t0,∞).

Definition 2.1.2. A function f : [t0,∞) × C → R is called locally Lipschitz in its

7
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second variable, if for any t ∈ [t0,∞) and ϕ ∈ C, there exist δ1 > 0, δ2 > 0 and

L > 0 constants such that

‖f(s, ψ1)− f(s, ψ2)‖ ≤ L‖ψ1 − ψ2‖τ ,

for s ∈ [t−δ1, t+δ1] and ψ1, ψ2 ∈ C satisfying ‖ψ1−ϕ‖τ ≤ δ2 and ‖ψ2−ϕ‖τ ≤ δ2,

where ‖ψ‖τ := max
−τ≤s≤0

‖ψ(s)‖.

We recall, from [30], the following theorem of the existence and uniqueness of

solution of the IVP (2.1.1) and (2.1.2).

Theorem 2.1.1. [30] Let f : R+ × C → R be continuous and locally Lipschitz

continuous in its second variable. Then, for every t0 ≥ 0 and ϕ ∈ C, there exists

β > t0 such that the IVP (2.1.1) and (2.1.2) has a unique solution on [t0 − τ, β).

We note that this result can be naturally extended to systems of delay differential

equations too.

The following comparison theorem of differential equations will be essential in

our proofs later.

Theorem 2.1.2. Let f : R+ × C → R and g : R+ × R→ R be continuous, φ ∈ C,

and t0 ≥ 0 be fixed. Let x be a solution of the IVP

ẋ(t) = f(t, xt), t ≥ t0, (2.1.3)

x(t) = ϕ(t− t0), t ∈ [t0 − τ, t0], (2.1.4)

and let y be a unique solution of the IVP

ẏ(t) = g(t, y(t)), t ≥ t0, (2.1.5)

y(t0) = ϕ(0). (2.1.6)

Then if f(t, ψ) ≥ g(t, ψ(0)), for all (t, ψ) ∈ R+ × C, there follows x(t) ≥ y(t) for

t ≥ t0. Also, if f(t, ψ) ≤ g(t, ψ(0)), for all (t, ψ) ∈ R+×C, there follows x(t) ≤ y(t)

for t ≥ t0.
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Proof. The proof is given in [15] for the case when (2.1.3) is an ODE, but it

can be easily extended to this case too. �

The notions of persistence and permanence are frequently studied in mathemat-

ical biology (see e.g. [57, 60]). Following [3, 4, 31] and [33] we define the next two

notions. Let us, first, define the class C+ := {ψ ∈ C([−τ, 0],R+) : ψ(0) > 0}, where

τ > 0.

Definition 2.1.3. Eq. (2.1.1) is said to be persistent in C+ if any positive solution

x(t) is bounded away from zero, i.e., lim inf
t→∞

x(t) > 0.

Definition 2.1.4. Eq. (2.1.1) is called uniformly permanent if there exist two pos-

itive numbers m and M with m < M such that, all positive solutions x(t) of

Eq. (2.1.1) satisfy

m ≤ lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) ≤M.

2.2 Mathematical and biological models

In this section, we look at some ways mathematics is used to model dynamic pro-

cesses in biology. Interactions between the mathematical and biological sciences have

been appearing rapidly in recent years. Both traditional topics, such as population

and disease modeling, and new ones, have made biomathematics an exciting field.

Simple formulas relate, for instance, the population of a species in a certain year

to that of the following year. We consider the biological models as nonlinear delay

differential equations. Although many of the models we examine may at first seem

to be gross simplifications, their very simplicity is a strength. Simple models show

clearly the implications of our most basic assumptions. We begin by considering the

scalar nonautonomous differential equation

Ṅ(t) = a(t)N(t)− r(t)N2(t), t ≥ 0 (2.2.1)
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which is known as the logistic equation in mathematical ecology. Eq. (2.2.1) is a pro-

totype in modeling the dynamics of single species population systems whose biomass

or density is denoted by a function N of the time variable. The functions a(t) and

r(t) are time dependent net birth and self-inhibition rate functions, respectively.

The carrying capacity of the habitat is the time dependent function

K(t) =
a(t)

r(t)
, t ≥ 0. (2.2.2)

By using this notation, Eq. (2.2.1) can be written as

Ṅ(t) = r(t)
(
K(t)N(t)−N2(t)

)
, t ≥ 0, (2.2.3)

or

Ṅ(t) = r(t)
(
K0N(t)−N2(t)

)
, t ≥ 0 (2.2.4)

whenever the carrying capacity is constant, i.e., K(t) = K0, t ≥ 0 with a K0 > 0.

It follows by elementary techniques that the above equations with the initial

condition

N(0) = N0 > 0 (2.2.5)

has a unique solution N(N0)(t) of the initial value problem (IVP) (2.2.4) and (2.2.5)

given by the explicit formula

N(N0)(t) =
N0K0e

K0

∫ t
0 r(s) ds

K0 +N0(eK0

∫ t
0 r(s) ds − 1)

, t ≥ 0. (2.2.6)

From the above formula, we get that either∫ ∞
0

r(s) ds =∞ (2.2.7)

and

N(N0)(∞) := lim
t→∞

N(t) = K0 for any N0 > 0,

or ∫ ∞
0

r(s) ds <∞ (2.2.8)
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and

N(N0)(∞) =
N0K0e

K0

∫∞
0 r(s) ds

K0 +N0(eK0

∫∞
0 r(s) ds − 1)

6= K0 for any N0 6= K0.

Thus K0 is a global attractor of (2.2.4) with respect to the positive solutions if and

only (2.2.7) holds.

It follows by some elementary technique that for any N0 > 0 the solution

N(N0)(t) of the IVP (2.2.3) and (2.2.5) obeys

K(∞) ≤ lim inf
t→∞

N(N0)(t) ≤ lim sup
t→∞

N(N0)(t) ≤ K(∞) (2.2.9)

for any N0 > 0, if

0 < K(∞) := lim inf
t→∞

K(t) ≤ lim sup
t→∞

K(t) =: K(∞) <∞ (2.2.10)

and (2.2.7) holds.

In (1948) Hutchinson [52] considered the delayed logistic equation

Ṅ(t) = rN(t)

(
1− N(t− τ)

K0

)
, (2.2.11)

where r = b − d is the intrinsic growth rate of the population and K0 > 0 has the

same meaning as in the logistic equation (2.2.4), τ > 0 is a constant. Equation

(2.2.11) was introduced with the initial condition

N(t) = ϕ(t), −τ ≤ t ≤ 0, (2.2.12)

where, ϕ is continuous on [−τ, 0]. It is interesting to note that Equation (2.2.11)

can be observed in some Daphnia populations. We refer the reader to ([25, 35, 47,

48, 57, 64, 65, 66, 72]) who have argued that the delay should enter in the birth

term rather than in death term.

2.3 Numerical approximation of delay equations

In this section, we investigate numerical approximation of differential equations

using the class of delay differential equations with piecewise constant arguments.

Equations with piecewise constant arguments were introduced by Wiener [68] and
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Cooke and Wiener [22, 23]. For surveys of theory and applications of such equations

we refer to [1, 24, 69]. We present a numerical approximation method which was

introduced first for linear delay equations in [40], and later it was extended for

various classes of differential equations (see [43]).

We introduce the method for nonlinear delay equations of the form

ẋ(t) = f(t, x(t), x(t− τ)), t ≥ 0, (2.3.1)

with initial condition

x(t) = ϕ(t), −τ ≤ t ≤ 0. (2.3.2)

Let h > 0 be a discretization parameter. We associate the following equation

with piecewise constant arguments to the IVP (2.3.1)-(2.3.2)

ẏh(t) = f ([t/h]h, yh([t/h]h), yh([t/h]h− [τ/h]h)) , t ≥ 0 (2.3.3)

and

yh(t) = ϕ(t), −τ ≤ t ≤ 0, (2.3.4)

where [·] denotes the greatest integer part function.

Following [40] we have the following definition for the solution of the IVP (2.3.3)-

(2.3.4):

Definition 2.3.1. By a solution of the IVP (2.3.3)-(2.3.4), we mean a function yh

defined on {−kh : k ∈ N,−τ ≤ −kh ≤ 0} by (2.3.4), which satisfies the following

properties on R+:

(i) the function yh is continuous on R+,

(ii) the derivative ẏh exists for each t ∈ R+ with the possible exception of the points

kh(k = 0, 1, 2, ...) where finite one-sided derivative exist, and

(iii) the function yh satisfies (2.3.3) on each interval [kh, (k+1)h) for k = 0, 1, 2, ....
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The right-hand-side of (2.3.3) is constant on the intervals [kh, (k + 1)h), so the

solution of (2.3.3)-(2.3.4) is a continuous function which is linear in between the

mesh points {kh : k ∈ N}. Define ` := [τ/h].

We integrate both sides of (2.3.3) from kh to t,∫ t

kh

ẏh(s)ds =

∫ t

kh

f ([s/h]h, yh([s/h]h), yh([s/h]h− `h)) ds,

where kh ≤ t < (k+1)h. Using that the integrand on the right-hand-side is constant,

we get

yh(t)− yh(kh) = f(kh, yh(kh), yh(kh− `h))(t− kh).

Now taking the limit t→ (k + 1)h from the left-hand, we have

yh((k + 1)h)− yh(kh) = hf(kh, yh(kh), yh(kh− `h)).

Since yh is linear between the mesh points, the values a(k) = yh(kh) uniquely

determine the solution. The sequence a(k) satisfies the difference equation

a(k + 1) = a(k) + f(kh, a(k), a(k − `)) · h, k = 0, 1, 2, . . . ,

a(−k) = ϕ(−kh), k = 0, 1, 2, . . . , −τ ≤ kh ≤ 0.

It was shown in [40, 43] that

lim
h→0
|x(t)− yh(t)| = 0, for all fixed t ≥ 0.

In all the numerical examples of this Thesis we will use the above numerical ap-

proximation method. For other numerical methods to approximate delay equations

we refer to [5].



Chapter 3

On a nonlinear scalar delay

population model

In this chapter we consider a nonlinear scalar delay differential equation and establish

sufficient conditions for the uniform permanence of the positive solutions of the

equation.

This chapter is organized as follows: Section 3.1 introduces a description of our

nonlinear delay differential equation and some basic definitions and preliminaries.

Section 3.2 presents the main results of this chapter for the uniform permanence

of the positive solutions of the equation. In Section 3.3, several particular cases

are introduced and explicit formulas are given for the upper and lower limit of the

solutions. Also, in some special cases, sufficient conditions, which imply that the

difference of any two positive solutions tends to zero, are given. In Section 3.4,

several examples with numerical simulations are given to illustrate the main results.

14
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3.1 Introduction and preliminaries

In this chapter, we investigate lower and upper estimates for the positive solutions

of the nonlinear scalar delay differential equation

ẋ(t) = r(t)
(
g(t, xt)− h(x(t))

)
, t ≥ 0, (3.1.1)

where τ > 0 is fixed, xt(θ) = x(t + θ), −τ ≤ θ ≤ 0, r, h ∈ C(R+,R+), g ∈

C(R+ × C,R+). Eq. (3.1.1) can be considered as a population model equation

with delay in the birth term r(t)g(t, xt), and no delay in the self-inhibition term

r(t)h(x(t)). The form of the delay model is based on the works of the authors

[12, 25, 35, 47, 48, 57, 64, 65, 66, 72]. Eq. (3.1.1) includes, e.g., the next equations

ẋ(t) =
n∑
k=1

αk(t)x(t− τk(t))− β(t)x2(t), t ≥ 0, (3.1.2)

ẋ(t) =
n∑
k=1

αk(t)x
p(t− τk(t))− β(t)xq(t), t ≥ 0, 0 < p < q, q ≥ 1, (3.1.3)

ẋ(t) = α(t)f(x(t− τ))− β(t)g(x(t)), t ≥ 0, (3.1.4)

and

ẋ(t) =
α(t)x(t− τ)

1 + γ(t)x(t− τ)
− β(t)x2(t), t ≥ 0 (3.1.5)

with discrete delays, or

ẋ(t) = α(t)

∫ 0

−τ
f(s, x(t+ s)) ds− β(t)h(x(t)), t ≥ 0 (3.1.6)

with distributed delay.

Recently, lower and upper estimations of the positive solutions of Eq. (3.1.2)

were proved in [4] and [31] under the assumptions that the coefficients αk and β

satisfy

α0 ≤ αk(t) ≤ A0, β0 ≤ β(t) ≤ B0, t ≥ 0, k = 1, . . . , n (3.1.7)

with some positive constants α0, A0, β0 and B0. The following theorem, which is a
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consequence of our main results, illustrate that the above boundedness conditions

can be released. In this statement we investigate the qualitative behavior of the

solution of Eq. (3.1.2) under the initial condition

x(t) = ϕ(t), −τ ≤ t ≤ 0, (3.1.8)

where ϕ ∈ C+. The unique solution of Eq. (3.1.2) and (3.1.8) is denoted by x(ϕ)(t).

We will assume

αk, τk ∈ C(R+,R+), (k = 1, . . . , n), τ := max
1≤k≤n

sup
t≥0

τk(t) <∞, (3.1.9)

β ∈ C(R+, (0,∞)),

∫ ∞
0

β(t) dt =∞, (3.1.10)

and

0 < m := lim inf
t→∞

1

β(t)

n∑
k=1

αk(t) and m := lim sup
t→∞

1

β(t)

n∑
k=1

αk(t) <∞.

(3.1.11)

We note that Eq. (3.1.2) has no constant positive steady-state if the function

1
β(t)

n∑
k=1

αk(t) is not constant.

Our proof is based on using some relevant well-known theorem for differential

inequalities of ordinary differential equations, moreover we can apply our method

for differential equations with distributed delay, e.g., of the form (3.1.6), where

techniques of [4] and [31] do not work.

3.2 Main results of Chapter 3

Throughout this chapter we use the following notations.

x(∞) := lim inf
t→∞

x(t) and x(∞) := lim sup
t→∞

x(t).
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We consider the scalar nonlinear delay equation

ẋ(t) = r(t)
(
g(t, xt)− h(x(t))

)
, t ≥ 0, (3.2.1)

with the initial condition

x(t) = ϕ(t), −τ ≤ t ≤ 0. (3.2.2)

Next we list the following conditions, which will be used only whenever this is

explicitly indicated:

(H1) r ∈ C(R+,R+) with r(t) > 0 for t > 0 and
∫∞

0
r(s)ds =∞, g ∈ C(R+×C,R)

with g(t, ψ) ≥ 0 for t ≥ 0 and ψ(s) ≥ 0, −τ ≤ s ≤ 0.

(H2) h ∈ C(R+,R+) satisfies 0 = h(0) < h(x1) < h(x2) for 0 < x1 < x2, and for any

nonnegative constants v and L satisfying L 6= v the condition
∫ v
L

ds
h(v)−h(s)

=

+∞ holds.

(H3) There exists q1 ∈ C(R2
+,R+) such that for any T ≥ 0, u > 0 we have

g(t, ψ) ≥ q1(T, u), if t ≥ T and ψ ∈ C with ψ(s) ≥ u, −τ ≤ s ≤ 0,

and there exist constants T1 ≥ τ and u1 > 0 such that

q1(T1, u) > h(u), u ∈ (0, u1].

(H4) There exists q2 ∈ C(R2
+,R+) such that for any T ≥ 0, u > 0 we have

g(t, ψ) ≤ q2(T, u), if t ≥ T and ψ ∈ C with ψ(s) ≤ u, −τ ≤ s ≤ 0,

and there exist constants T2 ≥ τ and u2 > 0 such that

q2(T2, u) < h(u), u ≥ u2.

(H5) There exists q∗1 ∈ C(R+,R+) such that for any v ∈ C(R+,R+) satisfying

lim
T→∞

v(T ) = w we have

lim inf
T→∞

q1(T, v(T )) ≥ q∗1(w).
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(H6) There exists q∗2 ∈ C(R+,R+) such that for any v ∈ C(R+,R+) satisfying

lim
T→∞

v(T ) = w we have

lim sup
T→∞

q2(T, v(T )) ≤ q∗2(w).

We note that the integral condition of r(t) in (H1) is natural according to Section

2.2. In the proofs of our results, a comparison theorem will be used, hence we will

use conditions (H3) and (H4) to estimate the birth rate function g from above and

from below.

We remark that from the assumed continuity of the functions r, g, h and ϕ, the

IVP (3.2.1) and (3.2.2) has a solution, but it is not necessary unique. Any fixed

solution of (3.2.1) corresponding to the initial function ϕ will be denoted by x(ϕ)(t),

and we assume that this solution exists on [0,∞). We also note that if h is locally

Lipschitz continuous, then the integral condition in (H2) holds.

Before we formulate our main results, we have to mention that in the proof of our

main result, we compare the solutions of equation (3.2.1) with that of the associated

ordinary differential equation

ẏ(t) = r(t)
(
c− h(y(t))

)
, t ≥ T ≥ 0 (3.2.3)

with the initial condition

y(T ) = y∗, (3.2.4)

where c ≥ 0, and r and h satisfy (H1) and (H2). We will show in Lemma 3.2.1

below that for all (T, y∗, c) ∈ (R+ × (0,∞)× R+) the IVP (3.2.3) and (3.2.4) has a

unique solution which is denoted by y(t) = y(T, y∗, c)(t).

First, we prove some basic properties of the solutions of the IVP (3.2.3) and

(3.2.4).

Lemma 3.2.1. Let (H1) and (H2) be satisfied. Then for any T ≥ 0, y∗ > 0 and



Chapter 3. On a nonlinear scalar delay population model 19

c ≥ 0 the corresponding solution y(T, y∗, c)(t) of the IVP (3.2.3) and (3.2.4) is

uniquely defined on [T,∞), moreover we have

(i) c > 0 and 0 < y∗ < h−1(c) yield that

0 < y(T, y∗, c)(t) < h−1(c), ẏ(T, y∗, c)(t) > 0, t ≥ T

and

lim
t→∞

y(T, y∗, c)(t) = h−1(c);

(ii) y∗ = h−1(c) yields that y(T, y∗, c)(t) = h−1(c), t ≥ T ;

(iii) c ≥ 0 and y∗ > h−1(c) yield that

y(T, y∗, c)(t) > h−1(c), ẏ(T, y∗, c)(t) < 0, t ≥ T

and

lim
t→∞

y(T, y∗, c)(t) = h−1(c).

Proof. See Appendix A. �

The next lemma shows that all solutions of (3.2.1) corresponding to the initial

condition ϕ ∈ C+ are positive on [0,∞).

Lemma 3.2.2. Assume that conditions (H1) and (H2) are satisfied. Then, for any

ϕ ∈ C+, we have that x(ϕ)(t) > 0 for t ∈ [0,∞).

Proof. Let x(t) = x(ϕ)(t) be any solution of the IVP (3.2.1) and (3.2.2). Since

x(0) = ϕ(0) > 0, there exists a δ > 0 such that x(t) > 0 for 0 ≤ t < δ. If δ = ∞,

then the proof is completed. Otherwise, there exists a t1 ∈ (0,∞) such that x(t) > 0

for 0 ≤ t < t1 and x(t1) = 0. Since by (H1) g(t, ψ) ≥ 0 for any (t, ψ) ∈ [0,∞)× C,

from (3.2.1) we have that

ẋ(t) ≥ −r(t)h(x(t)), 0 ≤ t ≤ t1. (3.2.5)
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But from Theorem 2.1.2, we have

x(t) ≥ y(t), 0 ≤ t ≤ t1,

where y(t) = y(0, ϕ(0), 0)(t) is the positive solution of (3.2.3), with c = 0 and with

the initial condition

y(0) = x(0) = ϕ(0) > 0.

Then at t = t1 we get x(t1) ≥ y(t1) > 0, which is a contradiction with our assumption

that x(t1) = 0. Hence x(t) > 0 for t ∈ [0,∞). �

The next result implies that, under our conditions, Eq. (3.2.1) is persistent.

Lemma 3.2.3. Let conditions (H1) and (H2) be satisfied. Then, for any ϕ ∈ C+,

we have

(i) if (H3) is satisfied, then any solution x(ϕ)(t) of the IVP (3.2.1) and (3.2.2)

satisfies

inf
t≥0

x(ϕ)(t) > 0; (3.2.6)

(ii) if (H4) is satisfied, then any solution x(ϕ)(t) of the IVP (3.2.1) and (3.2.2)

satisfies

sup
t≥0

x(ϕ)(t) <∞. (3.2.7)

Proof. First, we prove part (i). Let ϕ ∈ C+ be an arbitrary fixed initial

function and x(t) = x(ϕ)(t) be any solution of the IVP (3.2.1) and (3.2.2). Then,

by Lemma 3.2.2, we have x(t) > 0 for t ≥ 0. Let T1 ≥ τ and u1 > 0 be defined by

(H3). In virtue of condition (H2), there exists a positive constant c such that

0 < h−1(c) ≤ u1 and min
0≤t≤T1

x(t) > h−1(c) > 0.

We show that x(t) > h−1(c) for all t ≥ 0. Suppose there exists t̄ > T1 such that

x(t) > h−1(c) for t ∈ [0, t̄) and x(t̄) = h−1(c). Then, using (H3) with u = h−1(c),
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we have

g(t̄, xt̄) ≥ q1(T1, h
−1(c)) > c,

therefore

ẋ(t̄) = r(t̄)
(
g(t̄, xt̄)− h(x(t̄))

)
> r(t̄)

(
c− h(h−1(c))

)
= 0.

This is a contradiction, since ẋ(t̄) ≤ 0. Hence x(t) > h−1(c) holds for all t ≥ 0, so

part (i) is proved.

The proof of part (ii) is similar. �

Now we state our main result, which can be used to estimate lim inf
t→∞

x(t) and

lim sup
t→∞

x(t). In the next section we will show that in many particular situations

these estimations imply that Eq. (3.2.1) is uniformly permanent.

Theorem 3.2.4. Assume (H1) and (H2) are satisfied. Then for any ϕ ∈ C+, we

have

(i) if (H3) and (H5) are satisfied, then any solution x(t) = x(ϕ)(t) of the IVP

(3.2.1) and (3.2.2) is bounded from below on [0,∞), and

h−1(q∗1(x(∞))) ≤ x(∞); (3.2.8)

(ii) if (H4) and (H6) are satisfied, then any solution x(t) = x(ϕ)(t) of the IVP

(3.2.1) and (3.2.2) is bounded from above on [0,∞) and

x(∞) ≤ h−1(q∗2(x(∞))). (3.2.9)

Proof. First, we prove part (i). Let x(t) be any solution of the IVP (3.2.1) and

(3.2.2), and let T ≥ τ . By virtue of (3.2.6) we have for any T ≥ τ

0 < a
T−τ := inf

t≥T−τ
x(t). (3.2.10)

Thus, from (3.2.10) and (H5), we get

g(t, xt) ≥ q1(T, a
T−τ ), t ≥ T.



Chapter 3. On a nonlinear scalar delay population model 22

Hence, from (3.2.1), it follows

ẋ(t) ≥ r(t)[q1(T, a
T−τ )− h(x(t))], t ≥ T. (3.2.11)

From (3.2.11) and Theorem 2.1.2 we see that

x(t) ≥ y(t) for t ≥ T,

where y(t) = y(T, x(T ), q1(T, a
T−τ ))(t) is the solution of Eq. (3.2.3) with c =

q1(T, a
T−τ ) and with the initial condition

y(T ) = x(T ).

From Lemma 3.2.1, we see that

y(∞) := lim
t→∞

y(t) = h−1(q1(T, a
T−τ )).

Thus

h−1(q1(T, a
T−τ )) = y(∞) ≤ x(∞),

and from the last inequality, we have

lim inf
T→∞

h−1(q1(T, a
T−τ )) ≤ x(∞).

But since

x(∞) = lim
T→∞

a
T
,

then

lim
T→∞

a
T−τ = x(∞). (3.2.12)

Using (H5), (3.2.12) and the strict monotonicity of h−1, we obtain

lim inf
T→∞

h−1(q1(T, a
T−τ )) = h−1(lim inf

T→∞
q1(T, a

T−τ )) ≥ h−1(q∗1(x(∞))) ≥ 0,

and hence

h−1(q∗1(x(∞))) ≤ x(∞).

Therefore, the proof of (i) is completed.

The proof of part (ii) is similar to the proof of part (i), so it is omitted. �

Our main theorem implies the following corollary, which formulates sufficient
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conditions for that all positive solutions converge to a constant limit.

Corollary 3.2.5. Assume all conditions (H1) – (H6) hold, moreover q∗(w) :=

q∗1(w) = q∗2(w) for w ∈ R+, and there exists u∗ > 0 such that

q∗(u) > h(u) for u ∈ (0, u∗) and q∗(u) < h(u) for u > u∗. (3.2.13)

Then, for any ϕ ∈ C+, any solution x(t) = x(ϕ)(t) of the IVP (3.2.1) and (3.2.2)

satisfies

lim
t→∞

x(t) = u∗. (3.2.14)

Proof. Theorem 3.2.4 yields

h−1(q∗(x(∞))) ≤ x(∞) ≤ x(∞) ≤ h−1(q∗(x(∞))),

or equivalently,

q∗(x(∞)) ≤ h(x(∞)) ≤ h(x(∞)) ≤ q∗(x(∞)).

Then condition (3.2.13) implies

x(∞) ≤ u∗ ≤ x(∞),

which gives (3.2.14). �

3.3 Applications of the main results

In this section, we provide several corollaries to our main results. First, we consider

the equation

ẋ(t) =
n∑
k=1

αk(t)x
p(t− σk(t))− β(t)xq(t), t ≥ 0, (3.3.1)

with

x(t) = ϕ(t), −τ ≤ t ≤ 0. (3.3.2)

A special case (p = 1 and q = 2) of this equation, a population model with quadratic

nonlinearity was studied in [4, 31, 35]. The next result gives explicit estimates for the
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limit inferior and limit superior of the positive solutions of (3.3.1), which generalize

the results of [4, 31].

Corollary 3.3.1. Consider the IVP (3.3.1) and (3.3.2), where 0 < p < q, q ≥ 1,

0 ≤ σk(t) ≤ τ, t ≥ 0 and k = 1, . . . , n (3.3.3)

with some positive constant τ , and αk, β ∈ C(R+,R+) with

β(t) > 0 for t > 0,

∫ ∞
0

β(t)dt =∞, lim
t→0+

αk(t)

β(t)
<∞ exists for k = 1, . . . , n,

(3.3.4)

and

m := lim inf
t→∞

n∑
k=1

αk(t)

β(t)
> 0 and m := lim sup

t→∞

n∑
k=1

αk(t)

β(t)
<∞. (3.3.5)

Then, for any initial function ϕ ∈ C+, any solution x(t) = x(ϕ)(t) of the IVP

(3.3.1) and (3.3.2) satisfies

m
1
q−p ≤ x(∞) ≤ x(∞) ≤ m

1
q−p . (3.3.6)

Proof. The proof is obtained directly from Theorem 3.2.4, where we can rewrite

(3.3.1) as follows

ẋ(t) = β(t)

[
n∑
k=1

αk(t)

β(t)
xp(t− σk(t))− xq(t)

]
, t > 0. (3.3.7)

Note that (3.3.4) yields that if β(0) = 0, then the functions αk(t)
β(t)

can be extended

continuously to t = 0. For simplicity, this extended function is denoted by αk(t)
β(t)

, as

well. We can see from (3.3.7) that Eq. (3.3.1) can be written in the form (3.2.1)

with r(t) := β(t), g(t, ψ) :=
n∑
k=1

αk(t)
β(t)

ψp(−σk(t)) and h(x) := xq. Since q ≥ 1, h(x)

is locally Lipschitz continuous, and so conditions (H1) and (H2) are satisfied. Now

we check that conditions (H3)–(H5) are satisfied. Suppose that ψ(s) ≥ u > 0 for

−τ ≤ s ≤ 0, then g(t, ψ) ≥ q1(T, u) for t ≥ T ≥ 0, where

q1(T, u) := mTu
p, mT := inf

t≥T

n∑
k=1

αk(t)

β(t)
.

Therefore (H3) is satisfied if mT1u
p > uq, or equivalently mT1 > uq−p for some
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T1 ≥ τ and small positive u. Since (3.3.5) yields m = lim inf
T→∞

mT > 0, there exist

T1 > 0 and u1 > 0 such that

mT1 > uq−p1 ≥ uq−p for u ∈ (0, u1],

and hence (H3) is satisfied. In a similar way we can show that (C2) is satisfied.

To check (H5), suppose v(T )→ w as T →∞. Then

lim
T→∞

q1(T, v(T )) = lim
T→∞

mTv
p(T ) = mwp,

so (H5) is satisfied with q∗1(w) := mwp. In a similar way we can check (H6). Thus

Theorem 3.2.4 is applicable, so we see that

h−1(q∗1(x(∞))) ≤ x(∞) ≤ x(∞) ≤ h−1(q∗2(x(∞))).

Hence

(mxp(∞))1/q ≤ x(∞) ≤ x(∞) ≤ (mxp(∞))1/q,

therefore we get (3.3.6). �

The next result gives sufficient conditions which yield that all positive solutions

are asymptotically equivalent. This result is novel, which is interesting on its own

right. One reason for this is that most of the attractivity results in the literature

focus on the case when the investigated equation has a saturated equilibrium. See,

e.g., [57] Section 4.8 for related results. Corollary 3.3.1 may initiate further research

in more general equations without constant steady state solutions.

Corollary 3.3.2. Consider the IVP (3.3.1) and (3.3.2), where σk satisfy (3.3.3),

and αk and β satisfy (3.3.4) and (3.3.5), and suppose 1 ≤ p < q are integers, and

0 <
m

m
<

(
p

q

) q−1
q−p

, (3.3.8)

where m and m are defined in (3.3.5). Then, for any initial functions ϕ, ψ ∈ C+, any

corresponding solutions x(ϕ)(t) and x(ψ)(t) of the IVP (3.3.1) and (3.3.2) satisfy

lim
t→∞

(
x(ϕ)(t)− x(ψ)(t)

)
= 0. (3.3.9)

Proof. Introduce the short notations x1(t) := x(ϕ)(t) and x2(t) := x(ψ)(t). It
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follows from Corollary 3.3.1 that

m
1
q−p ≤ lim inf

t→∞
xi(t) ≤ lim sup

t→∞
xi(t) ≤ m

1
q−p , i = 1, 2. (3.3.10)

Eq. (3.3.1) yields for t ≥ 0 that

ẋ1(t)− ẋ2(t) =
n∑
k=1

αk(t)
(
xp1(t− σk(t))− xp2(t− σk(t))

)
− β(t)

(
xq1(t)− xq2(t)

)
.

Therefore the function w(t) := x1(t)− x2(t) satisfies

ẇ(t) =
n∑
k=1

αk(t)ak(t)w(t− σk(t))− β(t)b(t)w(t), t ≥ 0, (3.3.11)

where

ak(t) :=

p−1∑
`=0

x`1(t− σk(t))xp−1−`
2 (t− σk(t)), k = 1, . . . , n

and

b(t) :=

q−1∑
`=0

x`1(t)xq−1−`
2 (t).

The definitions of ak(t), b(t), relation (3.3.10) and assumption (3.3.8) imply

lim sup
t→∞

n∑
k=1

αk(t)ak(t)

β(t)b(t)
≤ p ·m

p−1
q−p

q ·m
q−1
q−p

lim sup
t→∞

n∑
k=1

αk(t)

β(t)
=
p ·m

p−1
q−p+1

q ·m
q−1
q−p

< 1.

Then a simple generalization of Theorem 3.1 of [38] yields that the trivial solution

of Eq. (3.3.11) is globally asymptotically stable, so lim
t→∞

w(t) = 0, which completes

the proof of the statement. �

Remark 3.3.1. It is interesting to note that if the conditions of Corollary 3.3.2 hold

and the IVP (3.3.1) and (3.3.2) has a positive periodic solution, then it is unique

and it attracts all positive solutions.

Next, we consider the special case of (3.3.1), which is identical to Eq. (3.1.2)

ẋ(t) =
n∑
k=1

αk(t)x(t− σk(t))− β(t)x2(t), t ≥ 0, (3.3.12)

with

x(t) = ϕ(t), −τ ≤ t ≤ 0. (3.3.13)
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Corollary 3.3.1 immediately implies the estimate obtained in [4], but under

weaker conditions, since the boundedness conditions (3.1.7) of the coefficients are

not required.

Corollary 3.3.3. Consider the IVP (3.3.12) and (3.3.13), where σk satisfy (3.3.3),

and αk and β satisfy (3.3.4) and (3.3.5). Then,

(i) for any initial function ϕ ∈ C+, the unique solution x(t) = x(ϕ)(t) of the IVP

(3.3.12) and (3.3.13) satisfies

m ≤ x(∞) ≤ x(∞) ≤ m, (3.3.14)

where m and m are defined in (3.3.5).

(ii) Moreover, if in addition

m < 2m, (3.3.15)

then any positive solutions of Eq. (3.3.12) are asymptotically equivalent, i.e.,

(3.3.9) holds.

Next we consider a scalar delay differential equation with more general nonlin-

earity

ẋ(t) = α(t)f(x(t− σ(t)))− β(t)h(x(t)), t ≥ 0, (3.3.16)

with

x(t) = ϕ(t), −τ ≤ t ≤ 0. (3.3.17)

Corollary 3.3.4. Consider the IVP (3.3.16) and (3.3.17), where the delay function

σ satisfies 0 ≤ σ(t) ≤ τ for t ≥ 0 with some positive constants τ , and α, β ∈
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C(R+,R+) with

β(t) > 0 for t > 0,

∫ ∞
0

β(t)dt =∞, 0 ≤ lim
t→0+

α(t)

β(t)
<∞ exists, (3.3.18)

and

m := lim inf
t→∞

α(t)

β(t)
> 0 and m := lim sup

t→∞

α(t)

β(t)
<∞, (3.3.19)

f, h ∈ C(R+,R+) are increasing functions with h(0) = 0, h is locally Lipschitz

continuous, and

G(u) :=
h(u)

f(u)
is monotone increasing, lim

u→0
G(u) = 0 and lim

u→∞
G(u) =∞.

(3.3.20)

Then, for any initial function ϕ ∈ C+, any solution x(t) = x(ϕ)(t) of the IVP

(3.3.16) and (3.3.17) satisfies

G−1(m) ≤ x(∞) ≤ x(∞) ≤ G−1(m). (3.3.21)

Proof. We rewrite (3.3.16) as

ẋ(t) = β(t)

[
α(t)

β(t)
f(x(t− σ(t)))− h(x(t))

]
, t ≥ 0. (3.3.22)

We can see from (3.3.22) that r(t) := β(t) and g(t, ψ) := α(t)
β(t)

f(ψ(−σ(t))). It is

clear that conditions (H1) and (H2) hold. We check that conditions (H3)–(H6) are

satisfied. Suppose that ψ(s) ≥ u > 0 for −τ ≤ s ≤ 0, then g(t, xt) ≥ q1(T, u) for

t ≥ T , where

q1(T, u) := mTf(u), mT := inf
t≥T

α(t)

β(t)
.

Hence (H3) is satisfied if mT1f(u) > h(u), or equivalently

mT1 > G(u) (3.3.23)

for some T1 ≥ τ and for small enough positive u. It follows from (3.3.19) that there

exists T1 > 0 such that mT1 > 0. Using lim
u→0

G(u) = 0, there exists u1 > 0 such that

0 < G(u1) < mT1 . Thus we have that (3.3.23) holds for u ∈ (0, u1], and hence (H3)

is satisfied. Similarly, we can check (H4).
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To show (H5), suppose that lim
T→∞

v(T ) = w, and consider

lim
T→∞

q1(T, v(T )) = lim
T→∞

mTf(v(T )) = mf(w),

so (H5) is satisfied with q∗1(w) := mf(w). In a similar way we can check (H6). Thus

Theorem 3.2.4 is applicable, so we see that

h−1(q∗1(x(∞))) ≤ x(∞) ≤ x(∞) ≤ h−1(q∗2(x(∞))).

Hence

mf(x(∞)) ≤ h(x(∞)) ≤ h(x(∞)) ≤ mf(x(∞)),

and therefore, using (3.3.20), we get (3.3.21). �

Corollary 3.3.5. Suppose all conditions of Corollary 3.3.4 hold, moreover

0 < m := lim
t→∞

α(t)

β(t)
<∞ (3.3.24)

exists, and there exists u∗ > 0 such that

mf(u) > h(u) for u ∈ (0, u∗) and mf(u) < h(u) for u > u∗. (3.3.25)

Then, for any initial function ϕ ∈ C+, any solution x(t) = x(ϕ)(t) of the IVP

(3.3.16) and (3.3.17) satisfies

lim
t→∞

x(t) = u∗. (3.3.26)

Proof. It follows from the proof of Corollary 3.3.4 that q∗1(w) = q∗2(w) = mf(w),

w ∈ R+, so Corollary 3.2.5 yields (3.3.26). �

Now we consider the IVP

ẋ(t) = α(t)

∫ 0

−τ
f(s, x(t+ s)) ds− β(t)h(x(t)), t ≥ 0 (3.3.27)

with the initial condition

x(t) = ϕ(t), −τ ≤ t ≤ 0. (3.3.28)

Corollary 3.3.6. Consider the IVP (3.3.27) and (3.3.28), where α, β ∈ C(R+,R+)

obey (3.3.18) and (3.3.19), f ∈ C([−τ, 0]× R,R+) is increasing in its second vari-
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able, h ∈ C(R+,R+) is an increasing function with h(0) = 0, h is locally Lipschitz

continuous, and

G(u) :=
h(u)∫ 0

−τf(s, u) ds
is monotone increasing, lim

u→0
G(u) = 0, lim

u→∞
G(u) =∞.

Then, for any initial function ϕ ∈ C+, any solution x(t) = x(ϕ)(t) of the IVP

(3.3.27) and (3.3.28) satisfies

G−1(m) ≤ x(∞) ≤ x(∞) ≤ G−1(m). (3.3.29)

Proof. The proof is similar to that of Corollary 3.3.4, so it is omitted. �

Next we consider the IVP

ẋ(t) =
α(t)x(t− σ(t))

1 + γ(t)x(t− σ(t))
− β(t)x2(t), t ≥ 0, (3.3.30)

with the initial condition

x(t) = ϕ(t), −τ ≤ t ≤ 0. (3.3.31)

This is a special case of the alternative delayed logistic population model introduced

in [2] (see also [4, 31]).

We show that, under weak conditions on the coefficients, Theorem 3.2.4 is ap-

plicable to estimate x(∞) and x(∞).

Corollary 3.3.7. Suppose 0 ≤ σ(t) ≤ τ with some τ > 0, the coefficients α, β, γ ∈

C(R+,R+) with

β(t) > 0, t > 0,

∫ ∞
0

β(t)dt =∞, lim
t→0+

α(t)

β(t)
<∞ exists, 0 < lim inf

t→∞
γ(t),

(3.3.32)

and for some ε > 0

mε := lim inf
t→∞

−1 +
√

1 + 4α(t)γ(t)
(1+ε)β(t)

2γ(t)
> 0 (3.3.33)

and

mε := lim sup
t→∞

−1 +
√

1 + 4α(t)γ(t)
(1+ε)β(t)

2γ(t)
<∞. (3.3.34)
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Furthermore, suppose there exist functions q∗1 and q∗2 so that if lim
T→∞

v(T ) = w, then

lim inf
T→∞

inf
t≥T

α(t)
β(t)

v(T )

1 + γ(t)v(T )
≥ q∗1(w) (3.3.35)

and

lim sup
T→∞

sup
t≥T

α(t)
β(t)

v(T )

1 + γ(t)v(T )
≤ q∗2(w). (3.3.36)

Then, for any initial function ϕ ∈ C+, the solution x(t) = x(ϕ)(t) of the IVP

(3.3.30) and (3.3.31) satisfies√
q∗1(x(∞)) ≤ x(∞) ≤ x(∞) ≤

√
q∗2(x(∞)). (3.3.37)

Proof. We can rewrite (3.3.30) as follows

ẋ(t) = β(t)

[ α(t)
β(t)

x(t− σ(t))

1 + γ(t)x(t− σ(t))
− x2(t)

]
, t ≥ 0,

where α(t)
β(t)

denotes the continuous extension of the function to t = 0 if β(0) = 0.

Let us define r(t) := β(t), g(t, ψ) :=
α(t)
β(t)

ψ(−σ(t))

1+γ(t)ψ(−σ(t))
and h(x) := x2. It is clear that

conditions (H1) and (H2) are satisfied. We check that conditions (H3)–(H4) are

satisfied. Suppose that ψ(s) ≥ u > 0 for −τ ≤ s ≤ 0, then g(t, xt) ≥ q1(T, u) for

t ≥ T , where

q1(T, u) := inf
t≥T

α(t)
β(t)

u

1 + γ(t)u
.

Thus (H3) is satisfied if for some T1 ≥ τ , ε > 0 and small enough u > 0
α(t)
β(t)

u

1 + γ(t)u
≥ (1 + ε)u2, t ≥ T1,

or equivalently

(1 + ε)γ(t)u2 + (1 + ε)u− α(t)

β(t)
≤ 0, t ≥ T1. (3.3.38)

Relation (3.3.32) implies there exists T1 ≥ τ and ε > 0 such that γ(t) > 0 for t ≥ T1

and

u1 := inf
t≥T1

−1 +
√

1 + 4α(t)γ(t)
(1+ε)β(t)

2γ(t)
> 0. (3.3.39)
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So for t ≥ T1

(1 + ε)γ(t)y2 + (1 + ε)y − α(t)

β(t)
= 0

is a quadratic equation, and (3.3.33) yields that it has a negative solution and a

positive solution

−1 +
√

1 + 4α(t)γ(t)
(1+ε)β(t)

2γ(t)
.

Therefore (3.3.39) yields (3.3.38), and hence q1(T1, u) > u2 holds for 0 < u ≤ u1. In

a similar way we can show that (H4) is satisfied.

Assumption (H5) follows from (3.3.35), since

lim inf
T→∞

q1(T, v(T )) = lim inf
T→∞

inf
t≥T

α(t)
β(t)

v(T )

1 + γ(t)v(T )
.

Assumption (H6) can be shown similarly. Then Theorem 3.2.4 yields (3.3.37). �

The next two corollaries illustrate two cases when relations (3.3.35) and (3.3.36)

can be checked easily. First consider the case when γ(t)→∞ as t→∞.

Corollary 3.3.8. Suppose 0 ≤ σ(t) ≤ τ with some τ > 0, the coefficients α, β, γ ∈

C(R+,R+) satisfy (3.3.32), (3.3.33) and (3.3.34). Furthermore, suppose

lim
t→∞

γ(t) =∞. (3.3.40)

Then, for any initial function ϕ ∈ C+, the solution x(t) = x(ϕ)(t) of the IVP

(3.3.30) and (3.3.31) satisfies

m ≤ x(∞) ≤ x(∞) ≤ m, (3.3.41)

where m := m0 and m := m0 are defined in (3.3.33) and (3.3.34) with ε = 0.
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Proof. Assumption (3.3.40) yields

mε = lim inf
t→∞

−1 +
√

1 + 4α(t)γ(t)
(1+ε)β(t)

2γ(t)

= lim inf
t→∞

(
− 1

2γ(t)
+

√
1

4γ2(t)
+

α(t)

(1 + ε)β(t)γ(t)

)
= lim inf

t→∞

√
α(t)

(1 + ε)β(t)γ(t)

=
1√

1 + ε
m,

and similarly,

mε = lim sup
t→∞

−1 +
√

1 + 4α(t)γ(t)
(1+ε)β(t)

2γ(t)
= lim sup

t→∞

√
α(t)

(1 + ε)β(t)γ(t)
=

1√
1 + ε

m.

To check (3.3.35), suppose lim
T→∞

v(T ) = w, and let ε > 0 be fixed. Then, for large

enough t, we have α(t)
β(t)γ(t)

≥ m2
ε. Then we have

lim inf
T→∞

inf
t≥T

α(t)
β(t)

v(T )

1 + γ(t)v(T )
= lim inf

T→∞
inf
t≥T

α(t)
β(t)γ(t)

v(T )
1
γ(t)

+ v(T )

≥ lim inf
T→∞

m2
εv(T )

1
inft≥T γ(t)

+ v(T )

= m2
ε.

Since ε > 0 was arbitrary, it follows

lim inf
T→∞

inf
t≥T

α(t)
β(t)

v(T )

1 + γ(t)v(T )
≥ m2,

i.e., q∗1(w) = m2 can be selected in (D1). Similar calculation shows that

lim sup
T→∞

sup
t≥T

α(t)
β(t)

v(T )

1 + γ(t)v(T )
≤ m2.

Then Theorem 3.2.4 yields (3.3.41). �

In the case when γ(t) and α(t)
β(t)

are bounded, we can give an explicit estimates in

(3.3.35) and (3.3.36), so we obtain explicit estimates of x(∞) and x(∞).

Corollary 3.3.9. Suppose 0 ≤ σ(t) ≤ τ with some τ > 0, and the coefficients

α, β, γ ∈ C([0,∞),R+) satisfy (3.3.32). Moreover, suppose

0 < m := lim inf
t→∞

α(t)

β(t)
≤ lim sup

t→∞

α(t)

β(t)
=: m <∞,
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and

0 < l := lim inf
t→∞

γ(t) ≤ lim sup
t→∞

γ(t) =: l <∞.

Then the solutions of the IVP (3.3.30) and (3.3.31) with ϕ ∈ C+ satisfy

−1 +
√

1 + 4ml

2l
≤ x(∞) ≤ x(∞) ≤ −1 +

√
1 + 4ml

2l
. (3.3.42)

Proof. To check (3.3.35) we consider

lim
T→∞

inf
t≥T

α(t)
β(t)

v(T )

1 + γ(t)v(T )
≥ lim

T→∞

inft≥T
α(t)
β(t)

v(T )

1 + supt≥T γ(t)v(T )
=

mv(T )

1 + lv(T )
,

so (3.3.35) holds with

q∗1(w) =
mw

1 + lw
.

Similarly, the function

q∗2(w) =
mw

1 + lw

satisfies (3.3.36). Then (3.3.37) implies (3.3.42). �

Finally we consider

ẋ(t) =
n∑
k=1

αk(t)x(t− σk(t))
1 + γk(t)x(t− σk(t))

− aβ(t)x(t)− β(t)x2(t), t ≥ 0, (3.3.43)

where a > 0, and we associate the initial condition

x(t) = ϕ(t), −τ ≤ t ≤ 0. (3.3.44)

Note that a slightly more general version of Eq (3.3.43) was studied in [31] where

aβ(t) was replaced by a function µ(t).

Corollary 3.3.10. Suppose a > 0, 0 ≤ σk(t) ≤ τ with some τ > 0, and the

coefficients αk, β, γk ∈ C([0,∞),R+) (k = 1, . . . , n) satisfy (3.3.32). Moreover,

suppose

0 < mk := lim inf
t→∞

αk(t)

β(t)
≤ lim sup

t→∞

αk(t)

β(t)
=: mk <∞,

0 < l := min
k=1,...,n

lim inf
t→∞

γk(t) ≤ max
k=1,...,n

lim sup
t→∞

γk(t) =: l <∞
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and
n∑
k=1

mk > a.

Then the solutions of the IVP (3.3.43) and (3.3.44) with ϕ ∈ C+ satisfy

−(1 + al) +

√
(1 + al)2 − 4l(a−

n∑
k=1

mk)

2l
≤ x(∞) (3.3.45)

and

x(∞) ≤
−(1 + al) +

√
(1 + al)2 − 4l(a−

n∑
k=1

mk)

2l
. (3.3.46)

Proof. The proof is similar to that of Corollary 3.3.9 using the function h(u) =

au+ u2, so it is omitted here. �

3.4 Examples

In this section, we provide several examples to our main results.

Example 3.4.1. Consider the differential equation

ẋ(t) = t(2 + cos t)x(t− 2.5)− tx2(t), t ≥ 0. (3.4.1)

It is clear that (3.4.1) is a special case of (3.3.12) with n = 1, α1(t) = t(2 + cos t),

β(t) = t, and relations (3.3.4) and (3.3.5) hold. We get

m = lim inf
t→∞

α1(t)

β(t)
= lim inf

t→∞
(2 + cos t) = 1,

m = lim sup
t→∞

α1(t)

β(t)
= lim sup

t→∞
(2 + cos t) = 3.

Hence Corollary 3.3.3 yields that all solutions of (3.4.1) corresponding to an initial

function ϕ ∈ C+ satisfy

1 ≤ x(ϕ)(∞) ≤ x(ϕ)(∞) ≤ 3.

We note that the results of [4] and [31] cannot be applied for (3.4.1), since the

coefficients do not satisfy (3.1.7).



Chapter 3. On a nonlinear scalar delay population model 36

In Figure 3.4.1 we plotted the solutions of Eq. 3.4.1 starting from the constant

initial functions ϕ(t) = 0.2, ϕ(t) = 1 and ϕ(t) = 2. We can see from the figure

(and from other numerical runnings) that the above estimates hold, moreover, all

solutions seem to be asymptotically equivalent, despite of that condition (3.3.15)

does not hold in this example. �
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Figure 3.4.1: Solutions of Eq. (3.4.1) corresponding to the initial functions ϕ(t) =
0.2, ϕ(t) = 1 and ϕ(t) = 2

The next example shows that estimate (3.3.14) is sharp in some cases.

Example 3.4.2. For τ > π consider the differential equation

ẋ(t) =
(π
τ

sin
4π

τ
t+ e

1
2

sin2 2π
τ
t
)
x(t− τ)− x2(t), t ≥ 0. (3.4.2)

An application of Corollary 3.3.3 gives that the solutions of (3.4.2) corresponding

to an initial function ϕ ∈ C+ satisfy

mτ ≤ x(∞) ≤ x(∞) ≤ mτ ,

where

mτ := lim inf
t→∞

(
π

τ
sin

4π

τ
t+ e

1
2

sin2 2π
τ
t

)
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and

mτ := lim sup
t→∞

(
π

τ
sin

4π

τ
t+ e

1
2

sin2 2π
τ
t

)
.

Simple calculation shows that the function

x(t) = e
1
2

sin2 2π
τ
t, t ≥ 0

is a positive solution of Eq. (3.4.2), and x(∞) = 1, x(∞) =
√
e. Therefore for τ > π

mτ ≤ 1 <
√
e ≤ mτ .

It is easy to see that mτ → 1 and mτ →
√
e as τ → ∞, so our estimations are

getting sharper and sharper as τ →∞, see Figure 3.4.2.
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Figure 3.4.2: Solution of Eq. (3.4.2) corresponding to the initial function ϕ(t) = 1
and τ = 1000

We note that condition (3.3.15) holds for large enough τ , so then Remark 3.3.1

yields immediately that for such τ the function e
1
2

sin2 2π
τ
t is the only positive periodic

solution of (3.4.2), and it attracts all positive solutions. �

Example 3.4.3. Consider

ẋ(t) = t
(

(2 +
1

t+ 1
)x(t− 3− sin t)− x2(t)

)
, t ≥ 0. (3.4.3)

All conditions of Corollary 3.3.5 hold with m = 2 and u∗ = 2, so the solutions

of (3.4.3), as shown in Figure 3.4.3, corresponding to an initial function ϕ ∈ C+
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satisfies

lim
t→∞

x(t) = 2.

�
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Figure 3.4.3: Solution of Eq. (3.4.3) corresponding to the initial functions ϕ(t) =
0.5, ϕ(t) = 1.1 and ϕ(t) = 2.8

Example 3.4.4. Consider the equation

ẋ(t) =
(1 + cos2 t)x(t− 3)

1 + t(δ + sin2 t)x(t− 3)
− 1

t+ 1
x2(t), t ≥ 0, (3.4.4)

where δ > 0 with the initial condition (3.3.31), i.e., let α(t) = 1 + cos2 t, β(t) = 1
t+1

and γ(t) = t(δ+sin2 t) in (3.3.30). Clearly, relation (3.3.32) holds. To check (3.3.33)

with ε = 0, we have

lim inf
t→∞

−1 +
√

1 + 4α(t)γ(t)
β(t)

2γ(t)
= lim inf

t→∞

(
− 1

2γ(t)
+

√
1

4γ2(t)
+

α(t)

β(t)γ(t)

)
= lim inf

t→∞

√
α(t)

β(t)γ(t)

= lim inf
t→∞

√
(1 + cos2 t)(t+ 1)

t(δ + sin2 t)

≥
√

1

δ + 1
.
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Similarly, (3.3.34) holds since

lim sup
t→∞

−1 +
√

1 + 4α(t)γ(t)
β(t)

2γ(t)
= lim sup

t→∞

√
(1 + cos2 t)(t+ 1)

t(δ + sin2 t)
≤
√

2

δ
.

Then Corollary 3.3.8 yields the solutions corresponding to initial function ϕ ∈ C+

satisfy √
1

δ + 1
≤ x(∞) ≤ x(∞) ≤

√
2

δ
.

For δ = 0.8 the above estimates give 0.7454 ≤ x(∞) ≤ x(∞) ≤ 1.5811. In

Figure 3.4.4 we display numerically generated solutions using the initial functions

ϕ(t) = 0.2, ϕ(t) = 0.5 and ϕ(t) = 2. These runnings indicate that the solutions are

asymptotically equivalent.
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Figure 3.4.4: Solutions of Eq. (3.4.4) corresponding to δ = 0.8 and the initial func-
tions ϕ(t) = 0.1, ϕ(t) = 0.5 and ϕ(t) = 1.5.

�

Example 3.4.5. Consider the differential equation

ẋ(t) =
t(3 + cos t+ 4

2t+1
)x(t− 2)

1 + (2 + sin t)x(t− 2)
− tx2(t), t ≥ 0 (3.4.5)
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with the initial condition (3.3.31). Then we see that

m := lim inf
t→∞

α(t)

β(t)
= lim inf

t→∞

[
3 + cos t+

4

2t+ 1

]
= 2,

m := lim sup
t→∞

α(t)

β(t)
= lim sup

t→∞

[
3 + cos t+

4

2t+ 1

]
= 4,

l := lim inf
t→∞

γ(t) = lim inf
t→∞

(2 + sin t) = 1

and

l := lim sup
t→∞

γ(t) = lim sup
t→∞

(2 + sin t) = 3.

Substituting in (3.3.42) we find that

0.66666 . . . =
−1 +

√
25

6
≤ x(∞) ≤ x(∞) ≤ −1 +

√
17

2
= 1.56155 . . . .

As it is shown in Figure 3.4.5. �
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Figure 3.4.5: Solution of Eq. (3.4.5) corresponding to the initial functions ϕ(t) = 1

Example 3.4.6. Consider the differential equation

ẋ(t) =
(2 + sin t)x(t− τ)

1 + x(t− τ)
− ax(t)− x2(t), t ≥ 0 (3.4.6)

with the initial condition (3.3.44). Here n = 1, α1 = 2 + sin t, γ1(t) = 1, β(t) = 1,

and so l = l = 1, m1 = 1 and m1 = 3.

Consider first the case when a = 0.1. Then (3.3.45) and (3.3.46) yield the
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estimates

0.5 ≤ x(∞) ≤ x(∞) ≤ 1.2114.

Note that Theorem 3.2 of [31] yields the estimates

0.45 =

n∑
k=1

inf
t≥0

αk(t)− a sup
t≥0

β(t)

sup
t≥0

β(t) +
n∑
k=1

inf
t≥0

αk(t) sup
t≥0

γk(t)
≤ x(∞)

and

x(∞) ≤ lim sup
t→∞

1

β(t)

n∑
k=1

αk(t)− a = 2.9,

so for this example our result gives better estimates.

Next consider the case when a = 0.2. Then our estimates (3.3.45) and (3.3.46)

give

0.3798 ≤ x(∞) ≤ x(∞) ≤ 1.1204.

If we apply Theorem 3.2 of [31] then we get the estimates

0.4 ≤ x(∞) ≤ x(∞) ≤ 2.8,

where the lower estimate is better than ours, but the upper estimate is worse. �



Chapter 4

Existence and uniqueness of

positive solutions of a system of

nonlinear algebraic equations

In this chapter we consider the nonlinear system γi(xi) =
n∑
j=1

gij(xj), 1 ≤ i ≤ n.

We give sufficient conditions which imply the existence and uniqueness of positive

solutions of the system. Our theorem extends earlier results known in the literature.

Also, we give several examples to illustrate the main result of this chapter. This

existence and uniqueness condition will be essential in the proof of our results in

Chapter 5.

4.1 Introduction

Nonlinear or linear algebraic systems appear as steady-state equations in continuous

and discrete dynamical models (e.g., reaction-diffusion equations [51, 58], neural

networks [17, 18, 53, 67] compartmental systems [11, 15, 39, 41, 54, 55], population

models [49, 63]). Next we mention some typical models.

42
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Compartmental systems are used to model many processes in pharmacokinetics,

metabolism, epidemiology and ecology. We refer to [54, 55] as surveys of basic theory

and applications of linear and nonlinear compartmental system without and with

delays. A standard form of a linear compartmental system with delays is

q̇i(t) = −kiiqi(t) +
n∑
j=1
j 6=i

kijqj(t− τij) + Ii, i = 1, . . . , n. (4.1.1)

Here qi(t) is the mass of the ith compartment at time t, kij > 0 represent the

transfer or rate coefficients, Ii ≥ 0 is the inflow to the ith compartment. A possible

generalization of (4.1.1) used in several applications is a compartmental system,

where it is assumed that the intercompartmental flows are functions of the state

of the donor compartments only in the form kijfj(qj) with some positive nonlinear

function fj. So we get the nonlinear donor-controlled compartmental system (see,

e.g., [11, 14])

q̇i(t) = −kiifi(qi(t)) +
n∑
j=1
j 6=i

kijfj(qj(t− τij)) + Ii, i = 1, . . . , n. (4.1.2)

Next we consider an ecological system of n species which are living in a symbiotic

relationship with the other species (see [34]):

ẋi = xi

−kiixi +
n∑
j=1
j 6=i

kijxj + bi

 , i = 1, . . . , n. (4.1.3)

Here kii > 0 represents the measure of the mortality due to intraspecific competition,

the terms bi ≥ 0 represents the per capita growth due to external (inexhaustible)

sources of energy, and the coefficients kij (j 6= i) are nonnegative due to the sym-

biosis.

Cellular neural networks were introduced by Chua and Yang [19] in 1988, and

since then they have been applied in many scientific and engineering applications.

Here we consider the Hopfield neural network studied in [17]

Ciu̇i =
n∑
j=1

Tijgj(uj)−
ui
Ri

+ Ii, i = 1, . . . , n, (4.1.4)

where Ci > 0, Ri > 0 and Ii are capacity, resistance, bias, respectively, Tij is the
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interconnection weight, and gi is a strictly monotone increasing nonlinear function

with gi(0) = 0.

Finally, we recall the delayed Cohen–Grossberg neural network model from [53]

ẋi(t) = −di(xi(t))

(
ci(xi(t))−

n∑
j=1

aijfj(xj(t))−
n∑
j=1

bijfj(xj(t− τij(t))) + Ji

)
(4.1.5)

for i = 1, . . . , n.

A nonzero equilibrium of both (4.1.1) and (4.1.3) satisfies a linear system of the

form

Ax = b, (4.1.6)

where A ∈ Rn×n has elements

aij =

 kii, j = i,

−kij, j 6= i,

and b ≥ 0, i.e., all coordinates of b are nonnegative. It is known (see, e.g., [10])

that if A is a nonsingular M-matrix and b� 0, i.e, all coordinates of b are positive,

then the System (4.1.6) has a positive solution x � 0. The existence of positive

solutions of various classes of linear systems have been studied in [34, 56, 62].

The existence and uniqueness of positive solutions of the nonlinear algebraic

system

Au = λg(u) (4.1.7)

have been investigated in [13, 70, 71, 73, 74, 75], whereA ∈ Rn×n, u = (u1, . . . , un)T ∈

Rn, λ > 0 and f(u) = (f1(u1), . . . , fn(un))T . It was demonstrated in [74] that posi-

tive solutions of such systems appear in several problems including finding positive

solutions of a finite difference approximation of second-order differential equations

with periodic boundary conditions, periodic solutions of fourth-order difference equa-

tions, second-order lattice dynamic systems, discrete neural networks.
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If A is invertible, we can rewrite (4.1.7) as u = λA−1g(u). Then, assuming g is

also invertible, using fi(u) = g−1
i (u), and introducing the new variables xi = gi(ui),

we get a nonlinear system of the form

fi(xi) =
n∑
j=1

cijxj, 1 ≤ i ≤ n. (4.1.8)

In many applications (see [76]) we have that A−1 is a positive matrix, i.e., all its

coefficients are positive, hence we assume cij > 0 for all i, j = 1, . . . , n. The existence

and uniqueness of the positive solutions of the System (4.1.8) was investigated in

[19, 76] for the special case fi(u) = uγ, and in [20] for the case when all the functions

fi are equal to a given function f .

Recently, in [21] the existence and uniqueness of positive solutions of the non-

linear system

fi(xi) =
n∑
j=1

cijxj + pi, 1 ≤ i ≤ n (4.1.9)

was investigated using Brouwer’s fixed point theorem under the conditions cij > 0

for all i, j = 1, . . . , n and pi ≥ 0.

The goal of this chapter is to study the existence and uniqueness of the positive

solutions of the general nonlinear system

γi(xi) =
n∑
j=1

gij(xj), 1 ≤ i ≤ n. (4.1.10)

Note that the System (4.1.10) includes the steady-state equations of a nonzero equi-

librium of the dynamical systems (4.1.2), (4.1.4) and (4.1.5), respectively. Our main

result, Theorem 4.2.1 below, uses a monotone iterative method to prove existence of

a positive solution, and an extension of the method used in [21] to prove uniqueness

under a weaker condition than that assumed in [21].

The structure of this chapter is the following. In Section 4.2 we formulate our

main results. Theorem 4.2.1 below gives sufficient conditions to imply the exis-

tence and uniqueness of the positive solutions of the System (4.1.10). In Section 4.3
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we show several examples including the Equations (4.1.6) and (4.1.9), where Theo-

rem 4.2.1 is applicable.

4.2 Main results of Chapter 4

Consider the nonlinear system

γi(xi) =
n∑
j=1

gij(xj), 1 ≤ i ≤ n, (4.2.1)

where γi ∈ C(R+,R), gij ∈ C(R+,R+), 1 ≤ i, j ≤ n and R+ := [0,∞). By a

positive solution of the System (4.2.1) we mean a column vector x := (x1, ..., xn)T

which satisfies (4.2.1), and x1 > 0, ..., xn > 0.

We use the monotone iteration method in the proof of our main result, so we

need the monotonicity of the functions γi, gij and the ratio
γj(u)

gij(u)
which appear in

the conditions of the next main theorem.

Next we formulate the main result of this chapter.

Theorem 4.2.1. Let γi : R+ → R and gij : R+ → R+, 1 ≤ i, j ≤ n be continuous

functions such that for each 1 ≤ i ≤ n,

(A) there exists a u∗i > 0 satisfying

γi(u)


< 0, if 0 < u < u∗i ,

= 0, if u = u∗i ,

> 0, if u > u∗i ,

(4.2.2)

and γi is strictly increasing on [u∗i ,∞).

(B) gij, 1 ≤ i, j ≤ n is increasing on R+, and there exists a u∗∗i ≥ u∗i such that
n∑
j=1

gij(u) < γi(u), u > u∗∗i , 1 ≤ i ≤ n. (4.2.3)

Then the System (4.2.1) has a positive solution.

Moreover, assume that
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(C) for each 1 ≤ i, j ≤ n, either gij(u) > 0 for u > 0 or gij(u) = 0 for u > 0,

i.e., gij is either positive or constant 0 for u > 0;

(D) for each 1 ≤ i, j ≤ n,
γj(u)

gij(u)
is monotone increasing on (u∗j ,∞), assuming

gij(u) > 0 for u > 0, and there exist i, j such that gij(u) > 0 for u > 0 and

γj(u)

gij(u)
is strictly monotone increasing on (u∗j ,∞).

Then the System (4.2.1) has a unique positive solution.

Proof. Let Bi := lim
u→∞

γi(u), i = 1, . . . , n. Then either Bi is positive finite or

it is ∞. Note that assumption (4.2.3) yields that
n∑
j=1

gij(u) ≤ Bi for u ≥ 0 and

i = 1, . . . , n. Assumption (A) implies that, for each i = 1, ..., n, γi restricted to

[u∗i ,∞) has an inverse, i.e., there exists a continuous strictly increasing function

hi : [0, Bi)→ [u∗i ,∞) satisfying

γi(hi(u)) = u, u ∈ [0, Bi), hi(γi(u)) = u, u ≥ u∗i and hi(0) = u∗i . (4.2.4)

Now we have from (4.2.1) and the definition of hi that (4.2.1) has a positive solution

(x1, ..., xn)T if and only if

xi = hi

(
n∑
j=1

gij(xj)

)
, 1 ≤ i ≤ n.

Fix any u > 0 and u > 0 such that

u < min
1≤i≤n

u∗i ≤ max
1≤i≤n

u∗∗i < u.

Then (4.2.3) and (4.2.4) yield

u ≤ hi

(
n∑
j=1

gij(u)

)
≤ hi

(
n∑
j=1

gij(u)

)
≤ u, 1 ≤ i ≤ n. (4.2.5)

Now, for each i = 1, ..., n, we construct a sequence (x
(0)
i , ..., x

(k)
i , ...) by the definition

x
(0)
i = u and x

(k+1)
i = hi

(
n∑
j=1

gij(x
(k)
j )

)
, k ≥ 0, (4.2.6)

and we prove that the sequence (x
(0)
i , ..., x

(k)
i , ...) is convergent. For this aim, we

prove that the sequence (x
(0)
i , ..., x

(k)
i , ...) is monotone increasing and bounded from
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above. First we show, for each fixed i = 1, ..., n, that

x
(k+1)
i ≥ x

(k)
i , for all k ≥ 0. (4.2.7)

We use the mathematical induction. At k = 0 we have, by (4.2.5) and (4.2.6),

x
(1)
i = hi

(
n∑
j=1

gij(x
(0)
j )

)
= hi

(
n∑
j=1

gij(u)

)
≥ u = x

(0)
i .

Next, we assume that for some k ≥ 1

x
(k)
i ≥ x

(k−1)
i . (4.2.8)

Then, by (4.2.6) and (4.2.8) and the monotonicity of gij and hi, we have

x
(k+1)
i = hi

(
n∑
j=1

gij(x
(k)
j )

)
≥ hi

(
n∑
j=1

gij(x
(k−1)
j )

)
= x

(k)
i .

Hence the sequence (x
(0)
i , ..., x

(k)
i , ...) is monotone increasing.

Now to prove that the sequence (x
(0)
i , ..., x

(k)
i , ...) is bounded from above for all

1 ≤ i ≤ n, we show that

x
(k+1)
i ≤ u, for all k ≥ 0, 1 ≤ i ≤ n. (4.2.9)

Again we use the mathematical induction. So, for a fixed i = 1, ..., n, at k = 0 we

have by (4.2.5) and (4.2.6) that

x
(1)
i = hi

(
n∑
j=1

gij(x
(0)
j )

)
= hi

(
n∑
j=1

gij(u)

)
≤ hi

(
n∑
j=1

gij(u)

)
≤ u.

Next, we assume for some k ≥ 0 that

x
(k)
i ≤ u. (4.2.10)

Then, by (4.2.5) and (4.2.10) and the monotonicity of gij and hi, we have

x
(k+1)
i = hi

(
n∑
j=1

gij(x
(k)
j )

)
≤ hi

(
n∑
j=1

gij(u)

)
≤ u,

and hence the sequence (x
(0)
i , ..., x

(k)
i , ...) is bounded from above for all 1 ≤ i ≤ n.

Now since the sequence is monotone increasing and bounded from above, then it

converges to a finite limit, i.e., there exist positive constants xi such that

lim
k→∞

x
(k)
i = xi, 1 ≤ i ≤ n.
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On the other hand,

xi = lim
k→∞

x
(k+1)
i = lim

k→∞
hi

(
n∑
j=1

gij(x
(k)
j )

)
= hi

(
n∑
j=1

gij(xj)

)
, 1 ≤ i ≤ n,

and hence (4.2.1) has a positive solution.

Now, we show the uniqueness of the solution of the System (4.2.1). Suppose that

(u1, ..., un) and (v1, ..., vn) are two positive solutions of the System (4.2.1). Then for

each 1 ≤ i ≤ n, we have

γi(ui) =
n∑
j=1

gij(uj), and γi(vi) =
n∑
j=1

gij(vj). (4.2.11)

Since

γi(ui) =
n∑
j=1

gij(uj) ≥ 0, and γi(vi) =
n∑
j=1

gij(vj) ≥ 0,

it follows from (A) that ui ≥ u∗i and vi ≥ u∗i for i = 1, ..., n. Let H = {(i, j) : 1 ≤

i, j ≤ n, gij(u) > 0 for u > 0}. If the set H is empty, then (4.2.11) reduces to

γi(ui) = 0, and γi(vi) = 0,

and hence (A) implies that ui = u∗i = vi for i = 1, ..., n, and so the uniqueness

is proved. Therefore, for the rest of the proof, we assume that H 6= ∅. Define

(l, s), (k, r) ∈ H such that

gls(us)

gls(vs)
≤ gij(uj)

gij(vj)
≤ gkr(ur)

gkr(vr)
, (i, j) ∈ H. (4.2.12)

We consider two cases:

(i) Suppose first that

gls(us)

gls(vs)
=
gkr(ur)

gkr(vr)
.

Then (4.2.12) yields that there exists a λ > 0 such that gij(uj) = λgij(vj) for

(i, j) ∈ H. But then gij(uj) = λgij(vj) for all 1 ≤ i, j ≤ n. Therefore, from

(4.2.11), we have

γi(ui)− λγi(vi) =
n∑
j=1

[gij(uj)− λgij(vj)] = 0, 1 ≤ i ≤ n.
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It follows that

γj(uj)

γj(vj)
= λ, 1 ≤ j ≤ n, and λ =

gij(uj)

gij(vj)
, (i, j) ∈ H,

which implies that

γj(uj)

gij(uj)
=
γj(vj)

gij(vj)
, (i, j) ∈ H.

By our assumption, there exists (̄i, j̄) ∈ H such that the function
γj̄
gīj̄

is strictly

monotone increasing. For such ī and j̄, we have that uj̄ = vj̄ and thus λ = 1. Hence

γi(ui) = γi(vi), 1 ≤ i ≤ n, which implies ui = vi, 1 ≤ i ≤ n. Therefore the solution

of the System (4.2.1) is unique.

(ii) Suppose now that

gls(us)

gls(vs)
<
gkr(ur)

gkr(vr)
. (4.2.13)

Note that (4.2.12) yields

gij(uj)gls(vs)− gij(vj)gls(us) ≥ 0, 1 ≤ i, j ≤ n, (4.2.14)

and

gij(vj)gkr(ur)− gij(uj)gkr(vr) ≥ 0, 1 ≤ i, j ≤ n. (4.2.15)

With i = s, (4.2.11) implies

γs(us) =
n∑
j=1

gsj(uj), and γs(vs) =
n∑
j=1

gsj(vj),

hence

γs(us)gls(vs)− γs(vs)gls(us) =
n∑
j=1

[gsj(uj)gls(vs)− gsj(vj)gls(us)].

Using (4.2.14) and that gls(us) > 0, gls(vs) > 0, we get

0 ≤ γs(us)gls(vs)− γs(vs)gls(us) = gls(us)gls(vs)

(
γs(us)

gls(us)
− γs(vs)

gls(vs)

)
.

Since γs(u)
gls(u)

is monotone increasing, it follows us ≥ vs. Similarly, with i = r, (4.2.11)
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implies

γr(ur)gkr(vr)− γr(vr)gkr(ur) =
n∑
j=1

[grj(uj)gkr(vr)− grj(vj)gkr(ur)].

Using (4.2.15) and that gkr(ur) > 0, gkr(vr) > 0, we get

0 ≥ γr(ur)gkr(vr)− γr(vr)gkr(ur) = gkr(ur)gkr(vr)

(
γr(ur)

gkr(ur)
− γr(vr)

gkr(vr)

)
.

Since γr(u)
gkr(u)

is monotone increasing, we get ur ≤ vr. The monotonicity of the

functions gij implies that gls(us) ≥ gls(vs) and gkr(ur) ≤ gkr(vr), and therefore

gls(vs)gkr(ur) − gls(us)gkr(vr) ≤ 0, which contradicts with (4.2.13). Hence the Sys-

tem (4.2.1) has a unique solution, and the proof is completed. �

4.3 Applications

In this section we investigate special cases of the general System (4.2.1). We show

several examples which demonstrate that Theorem 4.2.1 generalizes known existence

and uniqueness results of the literature.

4.3.1 Nonlinear systems

Next we consider the nonlinear system

aix
αi
i =

n∑
j=1

cijx
βij
j + pi, 1 ≤ i ≤ n. (4.3.1)

If we set βij = 1 for all i, j, then the corresponding Equation (4.3.1) will be a special

case of (4.1.8) with fi(u) = aiu
αi . For this case it was shown in [21] that if ai > 0,

αi > 1, pi ≥ 0, βij = 1 and cij > 0 for 1 ≤ i, j ≤ n, then (4.3.1) has a unique

positive solution. Now in the next result we show the existence and uniqueness of

the solution of (4.3.1) under weaker assumption even in the above special case, since

cij is allowed to be 0, and we suppose that one of the parameters cii or pi is positive

for all i = 1, . . . , n.
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Corollary 4.3.1. Assume that ai > 0, pi ≥ 0 and cij ≥ 0 for each 1 ≤ i, j ≤ n are

such that cii + pi > 0 for 1 ≤ i ≤ n. Then the System (4.3.1) has a unique positive

solution assuming that αi > βij ≥ 0 for all 1 ≤ i, j ≤ n.

Proof. Equation (4.3.1) can be written in the form (4.2.1) with γi(u) := aiu
αi−

ciiu
βii − pi, gij(u) := ciju

βij for each 1 ≤ i 6= j ≤ n and gii(u) = 0. Now, we check

that conditions (A) and (B) of Theorem 4.2.1 are satisfied. For condition (A), we

have γi(u) = 0, 1 ≤ i ≤ n, if and only if

aiu
(αi−βii) = cii +

pi
uβii

, 1 ≤ i ≤ n. (4.3.2)

It is clear that the left hand side of (4.3.2) is an increasing function and the right

hand side of (4.3.2) is a decreasing function if and only if αi > βii ≥ 0 for all

1 ≤ i ≤ n. So it is easy to see, using the assumed conditions, that their graphs

intersect in a unique point u∗i > 0, therefore there exists a u∗i > 0 which satisfies

(4.2.2). Note that

γ′i(u) = αiaiu
(αi−1) − ciiβiiu(βii−1) = u(βii−1)

(
αiaiu

(αi−βii) − ciiβii
)
> 0,

if

u > ūi :=

(
ciiβii
aiαi

) 1
αi−βii

≥ 0, 1 ≤ i ≤ n.

Since γi(ūi) < 0, we have u∗i > ūi, and therefore γi(u) is strictly increasing on

[u∗i ,∞) and condition (A) is satisfied. To check condition (B), we see that gij(u) :=

ciju
βij , 1 ≤ i 6= j ≤ n, and gii(u) = 0 are increasing on R+, and (4.2.3) is satisfied

if and only if
n∑
j=1
j 6=i

ciju
βij < aiu

αi − ciiuβii − pi ⇔
n∑
j=1

ciju
(βij−αi) < ai −

pi
uαi

,

therefore (4.2.3) is satisfied with a large enough u∗∗i . Therefore (4.3.1) has a positive

solution.

Now, we check conditions (C) and (D) of Theorem 4.2.1. Since cij ≥ 0 for each

1 ≤ i, j ≤ n, then condition (C) holds. If cij = 0 for all 1 ≤ i, j ≤ n, then (D) is
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satisfied. Assuming that cij > 0 for some 1 ≤ i, j ≤ n, then

γj(u)

gij(u)
=
aju

αj − cjjuβjj − pj
cijuβij

=
aju

(αj−βij)

cij
− cjj
cij
u(βjj−βij) − pj

cijuβij
. (4.3.3)

If βjj < βij, then each term in (4.3.3) is strictly monotone increasing on (0,∞), and

hence so is
γj(u)

gij(u)
. If βjj ≥ βij, then it follows from (4.3.3) that

γj(u)

gij(u)
=
u(βjj−βij)

cij

(
aju

(αj−βjj) − cjj
)
− pj
cijuβij

,

which is also strictly monotone increasing on (0,∞), so condition (D) is satisfied.

Hence, by Theorem 4.2.1, the System (4.3.1) has a unique positive solution, and

the proof is completed. �

Now we consider the system

fi(xi) =
n∑
j=1

cijxj + pi, 1 ≤ i ≤ n (4.3.4)

which was studied in [21]. It was assumed in [21] that the function fi(u)
u

is strictly

increasing for all i = 1, . . . , n, cij > 0 for all 1 ≤ i, j ≤ n, and for every i = 1, . . . , n

and si = ci1 + · · · + cin there exists ti > 0 such that fi(ti)
ti

= si. Then the System

(4.3.4) has a unique positive solution. Our main result of Theorem 4.2.1 gives back

this results under a weaker assumption that cij can take the values 0, and only either

cii or pi is assumed to be positive for all i = 1, . . . , n.

Corollary 4.3.2. Assume that, for each i = 1, ..., n, fi : R+ → R+ is continuous,

such that fi(u)
u

is strictly increasing, and

lim
u→0+

fi(u)

u

 <∞, if pi > 0,

= 0, if pi = 0,
and lim

u→∞

fi(u)

u
>

n∑
j=1

cij, i = 1, ..., n.

Furthermore, assume that pi ≥ 0 and cij ≥ 0 for each 1 ≤ i, j ≤ n are such that

cii + pi > 0 for 1 ≤ i ≤ n. Then the System (4.3.4) has a unique positive solution.

Proof. We can rewrite (4.3.4) in the form (4.2.1) with γi(u) := fi(u)− ciiu− pi

and gij(u) := ciju for each 1 ≤ i 6= j ≤ n and gii(u) = 0. Now, we check that

conditions (A) and (B) of Theorem 4.2.1 are satisfied. For condition (A), we have
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with u∗i > 0 that γi(u
∗
i ) = 0, if

fi(u
∗
i )

u∗i
=
pi
u∗i

+ cii, 1 ≤ i ≤ n. (4.3.5)

It is clear that the left hand side of (4.3.5) is an increasing function and the right

hand side of (4.3.5) is a decreasing function, so the assumed conditions yield that

their graphs intersect in a unique point u∗i > 0, therefore there exists a u∗i > 0

satisfying (4.2.2). We have that

γi(u) = u

[
fi(u)

u
− cii

]
− pi, 1 ≤ i ≤ n,

is strictly increasing on (0,∞), and hence condition (A) is satisfied. To check

condition (B), we see that gij(u) := ciju, 1 ≤ i 6= j ≤ n, and gii(u) = 0 are

increasing on R+, and (4.2.3) is satisfied if and only if
n∑
j=1
j 6=i

ciju < fi(u)− ciiu− pi ⇔
n∑
j=1

cij <
fi(u)

u
− pi
u
,

therefore (4.2.3) is satisfied when u is large enough. Hence condition (B) holds.

Therefore (4.3.4) has a positive solution.

For the proof of the uniqueness of the positive solution of the System (4.3.4), we

check conditions (C) and (D) of Theorem 4.2.1. Since cij ≥ 0 for each 1 ≤ i, j ≤ n,

condition (C) is satisfied. Assuming that cij > 0 for some 1 ≤ i, j ≤ n, we get

γj(u)

gij(u)
=
fj(u)− cjju− pj

ciju
=
fj(u)

ciju
− cjj
cij
− pj
ciju

is strictly increasing on (0,∞) and so condition (D) is satisfied. Hence the System

(4.3.4) has a unique positive solution. �

Now, we consider a more general system of nonlinear algebraic equations

γi(xi) =
n∑
j=1

cijσj(xj), 1 ≤ i ≤ n. (4.3.6)

The System (4.3.6) includes the steady-state equations of the donor-controlled com-

partmental system (4.1.2) and the Cohen–Grossberg neural network model (4.1.5).

Corollary 4.3.3. Assume that cij ≥ 0, for each 1 ≤ i, j ≤ n, γi : (0,∞) → (0,∞)

and σi : (0,∞)→ (0,∞) are continuous and strictly increasing for i = 1, ..., n, such
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that

(A∗) the function γi, i = 1, ..., n, satisfies condition (A) of Theorem 4.2.1;

(B∗) the functions γi and σj, 1 ≤ i, j ≤ n satisfy
n∑
j=1

cijσj(u) < γi(u) for large

enough u.

Then the System (4.3.6) has a positive solution.

Furthermore, assume that γi(u)
σi(u)

is continuous and strictly increasing on (0,∞),

for all 1 ≤ i ≤ n. Then the System (4.3.6) has a unique positive solution.

Proof. Equation (4.3.6) can be written in the form (4.2.1) with gij(u) := cijσj(u)

for each 1 ≤ i, j ≤ n. Assumptions (A∗) and (B∗) show that conditions (A) and

(B) of Theorem 4.2.1 are satisfied. Therefore (4.3.6) has a positive solution.

Now, we show that the positive solution the System (4.3.6) is unique. Since

cij ≥ 0 for each 1 ≤ i, j ≤ n, then we see that gij(u) = cijσj(u) > 0 for u > 0 if

cij > 0 and gij(u) = 0 for u > 0 if cij = 0, and hence condition (C) of Theorem

4.2.1 is satisfied. Assuming that cij > 0 for some 1 ≤ i, j ≤ n, then

γj(u)

gij(u)
=

γj(u)

cijσj(u)
=

1

cij

γj(u)

σj(u)

is strictly increasing on (0,∞), and so condition (D) of Theorem 4.2.1 holds. Hence

the System (4.3.4) has a unique positive solution and the proof is completed. �

4.3.2 Two dimensional systems

We consider the System (4.2.1) in the special case when n = 2:

ψ1(x1) = g11(x1) + g12(x2),

ψ2(x2) = g21(x1) + g22(x2).
(4.3.7)

Introducing γi(u) = ψi(u)− gii(u), i = 1, 2, we get the equivalent system

γ1(x1) = g12(x2),

γ2(x2) = g21(x1).
(4.3.8)
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The following result shows that in this two dimensional case we can reduce the

study of existence and uniqueness of solutions of the System (4.3.8) to that of a

scalar equation.

Corollary 4.3.4. Assume that, for each 1 ≤ i, j ≤ 2, γi, gij ∈ C(R+,R+), such that

(B1) the functions γ1 and γ2 satisfy condition (A) of Theorem 4.2.1;

(B2) the functions g12 and g21 satisfy condition (B) of Theorem 4.2.1.

Then

(i) the System (4.3.8) has a positive solution;

(ii) the positive vector (u1, u2) is a solution of (4.3.8) if and only if u1 and u2 are

the solutions of the scalar equations

u = h1(g12(h2(g21(u)))) (4.3.9)

and

u = h2(g21(h1(g12(u)))) (4.3.10)

respectively, where h1 and h2 are defined by (4.2.4);

(iii) the positive solution of System (4.3.8) is unique if at least one of the Equations

(4.3.9) or (4.3.10) (or equivalently both of them) has only a unique positive

solution.

Proof. The proof of (i) is the consequence of Theorem 4.2.1. For the proof of

(ii), we see that the Equations (4.3.9) and (4.3.10) follow from System (4.3.8) using

the inverse of the functions γi, i = 1, 2. For the proof of (iii) we consider the case

when, e.g., x1 is a unique solution of (4.3.9), then clearly (x1, h2(g21(h1(g12(x1)))))

is the unique solution of the System (4.3.8). �
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Example 4.3.1. As an example on the two dimensional case, we consider the system

2x1 − 1 = x2,

x2 − 0.5 = g21(x1),
(4.3.11)

where

g21(u) =


0.5, if u ∈ [0, 1],

2u− 1.5, if u ∈ [1, 2],

2.5, if u ∈ [2,∞).

Define γ1(u) = 2u− 1, γ2(u) = u− 0.5, g12(u) = u. Then, clearly, we can see that

condition (A) of Theorem 4.2.1 is satisfied with u∗1 = 0.5 and u∗2 = 0.5. Also,

condition (B) of Theorem 4.2.1 holds for the System (4.3.11), and so the System

(4.3.11) has a positive solution. Condition (C) of Theorem 4.2.1 holds too. We

have, from the definition of γ1 and γ2, that

h1(u) =
u+ 1

2
, u ∈ R+, and h2(u) = u+ 0.5, u ∈ R+.

Then Equation (4.3.10) reduces to

u = h2(g21(h1(g12(u)))) = h2

(
g21

(
u+ 1

2

))
=


h2(0.5), if u ∈ [0, 1],

h2(u− 0.5), if u ∈ [1, 3],

h2(2.5), if u ∈ [3,∞),

or equivalently,

u =


1, if u ∈ [0, 1],

u, if u ∈ [1, 3],

3, if u ∈ [3,∞).

This shows that (4.3.10) has infinitely many solutions, say, u2 = t, t ∈ [1, 3], then

( t+1
2
, t), t ∈ [1, 3] is a solution of the System (4.3.11). On the other hand, we have

γ1(u)

g21(u)
=

2u− 1

2u− 1.5
= 1 +

0.5

2u− 1.5
, u ∈ [1, 2],
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which is decreasing on [1, 2]. Also, we have

γ2(u)

g12(u)
=
u− 0.5

u
= 1− 0.5

u
, u ∈ [1, 2],

which is increasing on [1, 2]. So condition (D) of Theorem 4.2.1 is not satisfied in

this case. This shows that if condition (D) of Theorem 4.2.1 does not hold, we may

loose the uniqueness.



Chapter 5

Boundedness of positive solutions

of a system of nonlinear delay

differential equations

In this chapter, we present sufficient conditions for the uniform permanence of the

positive solutions of the system of nonlinear delay differential equations

ẋi(t) =
n∑
j=1

n0∑̀
=1

αij`(t)hij(xj(t − τij`(t))) − ri(t)fi(xi(t)) + ρi(t), t ≥ 0, 1 ≤ i ≤ n.

The structure of this chapter is the following: Section 5.1 introduces a description

of our system of nonlinear delay differential equations and some basic preliminaries.

In Section 5.2 we formulate our main results Theorem 5.2.4 below gives estimates

for the limit inferior and limit superior of the positive solutions of System (5.2.1).

In Section 5.3 we show several corollaries, where Theorem 5.2.4 works in a good

way. In Section 5.4 we introduce some applications of our main result to some

population models. In Section 5.5 we give some examples with numerical simulations

to illustrate our main results of this chapter.

59
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5.1 Introduction

Nonlinear differential equations with delays frequently appear as model equations

in physics, engineering, economics and biology. As we mentioned in Chapter 4

for some typical applications like compartmental systems and neural networks (see

[39, 41, 50, 55]).

In [16] the existence, uniqueness and global stability of asymptotically periodic

solutions of the bidirectional associative memory (BAM) network

ẋi(t) = −ai(t)xi(t) +
k∑
j=1

pji(t)fj(yj(t− τji)) + Ii(t), i = 1, . . . , n, (5.1.1)

ẏj(t) = −bj(t)yj(t) +
n∑
i=1

qij(t)fi(xj(t− σij)) + Ji(t), j = 1, . . . , k (5.1.2)

was examined.

In [28] the delay model

Ṙ(t) = f(T (t− τ3))− d1R(t) (5.1.3)

L̇(t) = r1R(t− τ1)− d2L(t) (5.1.4)

Ṫ (t) = r2L(t− τ3)− d3T (t) (5.1.5)

was considered for the control of the secretion of the hormone testosterone. Here

R(t), L(t) and T (t) are the concentrations of the gonadotropinreleasing hormone,

luteinizing hormone and testosterone, respectively, r1, r2, d1, d2, d3 are positive con-

stants. Global stability of a positive equilibrium and oscillations of the solutions

were investigated depending on the values of a parameter in the formula of the

positive nonlinear function f .

In [8] the two-dimensional system

ẋ(t) = r1(t)
[
f1(y(t− τ1(t))− x(t)

]
, t ≥ 0 (5.1.6)

ẏ(t) = r2(t)
[
f2(x(t− τ2(t))− y(t)

]
, t ≥ 0 (5.1.7)

was considered as a special case of a more general two-dimensional system of nonlin-
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ear delay equations with distributed delays. Sufficient conditions were given imply-

ing that the solutions of the System (5.1.6)-(5.1.7) are permanent, i.e., there exist

positive constants a, A, b and B such that a ≤ x(t) ≤ A and b ≤ y(t) ≤ B hold for

t ≥ 0.

Populations are frequently modelled in heterogenous environments due to, e.g.,

different food-rich patches, different stages of a species according to age or size.

In such models time delays appear naturally due to the time needed for species to

disperse from one patch to another. We recall here the n-dimensional Nicholson’s

blowflies systems with patch structure

ẋi(t) =

n0∑
`=1

βi`xi(t− τi`)e−xi(t−τi`) +
n∑
j=1

aijxj(t)− dixi(t), 1 ≤ i ≤ n, (5.1.8)

where di > 0, βi` ≥ 0, aij ≥ 0, τi` ≥ 0 for i, j = 1, . . . , n, ` = 1, . . . , n0. Asymptotic

behavior, permanence of the solutions was investigated, e.g., in, [6, 7, 33, 59]. For

the scalar case, this model reduces to the famous Nicholson’s blowflies equation

introduced in [37] to model the Australian sheep-blowfly population.

The n-dimensional population model with patch structure

ẋi(t) =

n0∑
`=1

λi`(t)xi(t− τi`(t))
1 + γi`(t)xi(t− τi`(t))

+
n∑
j=1
j 6=i

aij(t)xj(t− σij(t))

−µi(t)xi(t)− κi(t)x2
i (t), t ≥ 0, 1 ≤ i ≤ n (5.1.9)

was introduced in [32], and the permanence of the positive solutions was investigated.

Here all functions are nonnegative. It is a generalization of a scalar modified logistic

equation with several delays introduced in [4].

Motivated by the above models, in this chapter we consider a system of nonlinear

delay differential equations of the form

ẋi(t) =
n∑
j=1

n0∑
`=1

αij`(t)hij(xj(t− τij`(t)))− ri(t)fi(xi(t)) + ρi(t), t ≥ 0, 1 ≤ i ≤ n

(5.1.10)
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with the initial condition

xi(t) = ϕi(t), −τ ≤ t ≤ 0, 1 ≤ i ≤ n (5.1.11)

where, τ > 0, is a positive constant, ϕi ∈ C+, hij, fi, ri, αij`, ρi ∈ C(R+,R+) and

τij` ∈ C(R+,R+) with 0 ≤ τij`(t) ≤ τ for t ≥ 0, 1 ≤ i, j ≤ n and 1 ≤ ` ≤ n0. Our

main Theorem 5.2.4 below shows that, under certain conditions, the solutions of the

initial value problem (IVP) (5.1.10) and (5.1.11) is uniformly permanent, i.e., there

exist positive constants k1, . . . , kn, K1, . . . , Kn, such that for any initial functions

ϕi ∈ C+, i = 1, . . . , n the corresponding solution satisfies

0 < ki ≤ lim inf
t→∞

xi(t) ≤ lim sup
t→∞

xi(t) ≤ Ki, 1 ≤ i ≤ n. (5.1.12)

Moreover, the constants k1, . . . , kn and K1, . . . , Kn are given explicitly, as unique

positive solutions of associated nonlinear algebraic systems. As a consequence of

the main result, we formulate conditions which imply that all the positive solutions

converge to a constant limit (see Corollary 5.3.1 below). In Theorem 5.3.3, for

nonlinear systems of the form

ẋi(t) =
n∑
j=1

n0∑
`=1

αij`(t)xj(t− τij`(t))− ri(t)xqii (t) + ρi(t), t ≥ 0, 1 ≤ i ≤ n,

(5.1.13)

we give sufficient conditions which imply that the positive solutions are asymptot-

ically equivalent, i.e., the difference of any two positive solutions tends to 0 as the

time goes to ∞.

This chapter extends the method introduced for the scalar case in Chapter 3 to

the nonlinear delay system (5.1.10). A key element of the proof of our Theorem 5.2.4

is a result proved in Chapter 4, where sufficient conditions are formulated implying

that a certain nonlinear algebraic system associated to (5.1.10) has a unique positive

solution (see Lemma 5.2.3 below).
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5.2 Main Results of Chapter 5

In this section, we give estimates for the limit inferior and limit superior of all

positive solutions of the IVP

ẋi(t) =
n∑
j=1

n0∑
`=1

αij`(t)hij(xj(t− τij`(t)))− ri(t)fi(xi(t)) + ρi(t), t ≥ 0, 1 ≤ i ≤ n

(5.2.1)

with the initial condition

xi(t) = ϕi(t), −τ ≤ t ≤ 0, 1 ≤ i ≤ n (5.2.2)

where, τ > 0, is a positive constant and ϕi ∈ C+, 1 ≤ i ≤ n.

Now, we list our conditions

(A0) τij` ∈ C(R+,R+) are such that 0 ≤ τij`(t) ≤ τ for t ≥ 0, 1 ≤ i, j ≤ n and

1 ≤ ` ≤ n0;

(A1) ri ∈ C(R+,R+) are such that ri(t) > 0 for t > 0, 1 ≤ i ≤ n, and∫ ∞
0

ri(s) ds =∞, 1 ≤ i ≤ n; (5.2.3)

(A2) αij` ∈ C(R+,R+), for all 1 ≤ i, j ≤ n and 1 ≤ ` ≤ n0 are such that

sup
t>0

n0∑̀
=1

αij`(t)

ri(t)
<∞, 1 ≤ i, j ≤ n; (5.2.4)

(A3) fi ∈ C(R+,R+), 1 ≤ i ≤ n, are strictly increasing with fi(0) = 0 and fi are

locally Lipschitz continuous;

(A4) hij ∈ C(R+,R+) are increasing, locally Lipschitz continuous, and hij(u) > 0

for u > 0 and 1 ≤ i, j ≤ n;

(A5) ρi ∈ C(R+,R+) and for each i = 1, . . . , n,

either lim inf
t→∞

ρi(t)

ri(t)
> 0 or lim sup

u→0+

fi(u)

hii(u)
< lim inf

t→∞

n0∑̀
=1

αii`(t)

ri(t)
, (5.2.5)
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sup
t>0

ρi(t)

ri(t)
<∞, lim

u→∞
fi(u) =∞, (5.2.6)

and

n∑
j=1

(
lim sup
t→∞

n0∑̀
=1

αij`(t)

ri(t)

)
lim sup
u→∞

hij(u)

fi(u)
< 1; (5.2.7)

(A6) (i) fi(u)
hij(u)

is increasing and
hjj(u)

hij(u)
is decreasing on (0,∞), for each 1 ≤ i, j ≤ n;

(ii) for each 1 ≤ i ≤ n, either fi(u)
hii(u)

is strictly increasing on the interval (0,∞)

or
(

lim inf
t→∞

ρi(t)
ri(t)

> 0 and hii(u) is strictly increasing on (0,∞)
)

;

(iii) either lim inf
t→∞

n0∑̀
=1

αij`(t)

ri(t)
= 0 for all i, j ∈ {1, . . . , n} satisfying i 6= j; or there

exist i, j ∈ {1, . . . , n}, i 6= j such that lim inf
t→∞

n0∑̀
=1
αij`(t)

ri(t)
> 0 and

[
either

fj(u)

hij(u)
is strictly increasing on (0,∞) or

(
lim inf
t→∞

n0∑̀
=1
αjj`(t)

rj(t)
> 0 and

hjj(u)

hij(u)
is

strictly decreasing on (0,∞)
)

or
(

lim inf
t→∞

ρj(t)

rj(t)
> 0 and hij(u) is strictly

increasing on (0,∞)
)]

;

(iv) for each 1 ≤ i ≤ n, either fi(u)
hii(u)

is strictly increasing on the interval (0,∞)

or
(

lim sup
t→∞

ρi(t)
ri(t)

> 0 and hii(u) is strictly increasing on (0,∞)
)

;

(v) either lim sup
t→∞

n0∑̀
=1
αij`(t)

ri(t)
= 0 for all i, j ∈ {1, . . . , n} satisfying i 6= j; or

there exist i, j ∈ {1, . . . , n}, i 6= j such that lim sup
t→∞

n0∑̀
=1

αij`(t)

ri(t)
> 0 and

[
either

fj(u)

hij(u)
is strictly increasing on (0,∞) or

(
lim sup
t→∞

n0∑̀
=1

αjj`(t)

rj(t)
> 0 and

hjj(u)

hij(u)
is strictly decreasing on (0,∞)

)
or
(

lim sup
t→∞

ρj(t)

rj(t)
> 0 and hij(u) is

strictly increasing on (0,∞)
)]

.

The boundedness of the delay functions is assumed throughout the chapter.

Assumption relation (5.2.4) in (A2) is natural in view of Section 2.2. In the proof
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we will factor out ri from the right hand side of (5.2.1), so the boundedness and

positivity of the fractions

n0∑̀
=1
αij`(t)

ri(t)
and ρi(t)

ri(t)
in (A2) and (A5) will be a natural

condition later. The proof uses a monotone iteration technique, so the monotonicity

of fi and hij in (A3) and (A4) will be essential. We will use Theorem 4.2.1, so the

monotonicity of the fractions fi
hij

and
hjj
hf ij

in (A6) is needed later, as well as the

strict monotonicity any of the functions listed in (A6).

Clearly, under conditions (A1)-(A5), the IVP (5.2.1) and (5.2.2) has a unique

solution corresponding to any ϕ = (ϕ1, ..., ϕn) ∈ Cn
+. This solution is denoted by

x(ϕ) = (x1(ϕ), ..., xn(ϕ)). Note that in Chapter 3 a scalar version of (5.2.1) was

studied where, instead of the local Lipschitz-continuity, it was assumed that fi is

such that for any nonnegative constants % and L satisfying L 6= %, one has∫ %

L

ds

fi(%)− fi(s)
= +∞. (5.2.8)

Hence the solution studied in Chapter 3 was not necessary unique. It is easy to see

that the locally Lipschitz-continuity of fi implies condition (5.2.8). We assume the

locally Lipschitz-continuity of fi and hij to simplify the presentation, but it can be

omitted as in Chapter 3.

We note that assumption (A3) is weaker than that used in the [4, 31], where,

investigating permanence of a scalar population model, it was assumed that the

coefficient function βi is bounded below and above by positive constants.

The monotonicity assumptions of (A6) for the ratios fi(u)
hij(u)

and
hjj(u)

hij(u)
are crutial

for using Lemma 5.2.3 below. This assumption allows us to include examples when

some ratios are constants, and only some of these functions are strictly monotone.

This week form of the condition will be important when we apply our main results

to the population models (5.1.8) and (5.1.9) (see Corollary 5.4.1 and 5.4.2 below).

First, we present the next Lemma which shows that all solutions of the System

(5.2.1) corresponding to any initial function ϕ = (ϕ1, ϕ2, ..., ϕn) ∈ Cn
+ are positive
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on R+.

Lemma 5.2.1. Assume that τij` satisfies condition (A0), ri satisfies condition (A1),

fi satisfies condition (A3) and αij, hij, ρi ∈ C(R+,R+), 1 ≤ i, j ≤ n and 1 ≤ ` ≤

n0. Then for any ϕ = (ϕ1, ϕ2, ..., ϕn) ∈ Cn
+, the solution x(t) = x(ϕ)(t) =

(x1(ϕ)(t), ..., xn(ϕ)(t)) of the IVP (5.2.1) and (5.2.2) obeys xi(t) > 0 for t ≥

0, 1 ≤ i ≤ n.

Proof. Since xi(0) = ϕi(0) > 0, 1 ≤ i ≤ n, then if xi(t) > 0 for t ≥ 0, 1 ≤

i ≤ n then we are done. Otherwise at least one of x1(t), ..., xn(t) is equal to zero

for some positive t. Since the functions x1(t), ..., xn(t) are continuous, then in the

last case there exists a t1 ∈ (0,∞) such that xi(t) > 0 for 0 ≤ t < t1, 1 ≤ i ≤ n

and min{x1(t1), ..., xn(t1)} = 0. Since αij`(t) ≥ 0, τij`(t) ≥ 0 ρi(t) ≥ 0, t ≥ 0,

1 ≤ i, j ≤ n, 1 ≤ ` ≤ n0, and hij(u) ≥ 0, u ≥ 0, 1 ≤ i, j ≤ n, then from (5.2.1)

we have

ẋi(t) ≥ −ri(t)fi(xi(t)), 1 ≤ i ≤ n, 0 ≤ t ≤ t1.

But from Theorem 2.1.2 we have

xi(t) ≥ yi(t), 1 ≤ i ≤ n, 0 ≤ t ≤ t1,

where yi(t) = y(0, ϕi(0), 0, ri, fi)(t), 1 ≤ i ≤ n is the unique positive solution of

the differential equation

ẏ(t) = ri(t)
(
c− fi(y(t))

)
, t ≥ 0, (5.2.9)

with c = 0 and with the initial condition

yi(0) = xi(0) = ϕi(0) > 0, 1 ≤ i ≤ n.

Lemma 3.2.1 yields yi(t) > 0, for all t ≥ 0. Then at t = t1 we get xi(t1) ≥

yi(t1) > 0, 1 ≤ i ≤ n, which is a contradiction with our assumption that

min{x1(t1), ..., xn(t1)} = 0. Hence xi(t) > 0, 1 ≤ i ≤ n for t ∈ [0,∞). �
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Lemma 5.2.2. Assume that conditions (A0)– (A5) are satisfied. Then for any

ϕ ∈ Cn
+, the solution x(t) = x(ϕ)(t) = (x1(ϕ)(t), ..., xn(ϕ)(t)) of the IVP (5.2.1)

and (5.2.2) satisfies

0 < inf
t≥0

xi(ϕ)(t) ≤ sup
t≥0

xi(ϕ)(t) <∞, 1 ≤ i ≤ n. (5.2.10)

Proof. First we show that

inf
t≥0

xi(t) > 0, 1 ≤ i ≤ n. (5.2.11)

Let ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ Cn
+ be an arbitrary fixed initial function. Then, by

Lemma 5.2.1, the solution x(t) = x(ϕ)(t) = (x1(ϕ)(t), . . . , xn(ϕ)(t)) obeys xi(t) > 0,

1 ≤ i ≤ n, t ≥ 0. We claim that there exist T > 0 and c > 0 such that the following

inequalities are satisfied, for every i = 1, . . . , n,

min
0≤t≤T

xi(t) > c and


n∑
j=1

n0∑̀
=1

αij`(t)hij(c)

ri(t)
+
ρi(t)

ri(t)

 > fi(c), t ≥ T.

(5.2.12)

From (5.2.5), we have two cases:

(i) if i is such that lim inf
t→∞

ρi(t)
ri(t)

> 0, then fix a ξi > 0 such that

lim inf
t→∞

ρi(t)

ri(t)
> ξi > 0.

Thus there exists Ti > 0 such that

ρi(t)

ri(t)
> ξi > 0, for t ≥ Ti.

Lemma 5.2.1 and (A3) imply that there exists a ci > 0 such that

min
0≤t≤T

xi(t) > ci and fi(u) < ξi for 0 < u ≤ ci.

Therefore (5.2.12) is satisfied for such i.

(ii) if i is such that lim sup
u→0+

fi(u)
hii(u)

< lim inf
t→∞

n0∑̀
=1
αii`(t)

ri(t)
, then let Ki > 0 be such that

lim sup
u→0+

fi(u)

hii(u)
< Ki < lim inf

t→∞

n0∑̀
=1

αii`(t)

ri(t)
.
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Thus there exists Ti > 0 such that

Ki <

n0∑̀
=1

αii`(t)

ri(t)
, t ≥ Ti.

Also, there exists ci > 0 such that

fi(u)

hii(u)
< Ki, for 0 < u ≤ ci and min

0≤t≤T
xi(t) > ci.

Then we have
n∑
j=1

n0∑̀
=1

αij`(t)hij(c)

ri(t)
≥ 1

Ki

fi(u)

n0∑̀
=1

αii`(t)

ri(t)
> fi(u), t ≥ Ti, 0 < u ≤ ci,

and hence (5.2.12) holds for such i. Therefore (5.2.12) is satisfied, for all i = 1, . . . , n,

with T = max{T1, . . . , Tn} and c = min{c1, . . . , cn}.

Now, in virtue of (5.2.12), either xi(t) > c for all t ≥ 0, 1 ≤ i ≤ n, or there

exists t2 ∈ (T,∞) such that min{x1(t2), . . . , xn(t2)} = c and xi(t) > c for t ∈ [0, t2),

1 ≤ i ≤ n. In this case at least one of the values of x1(t2), . . . , xn(t2) is equal to c.

Assume, e.g., that x1(t2) = c, then ẋ1(t2) ≤ 0. On the other hand, the monotonicity

of h1j and (5.2.12) yield that

ẋ1(t2) = r1(t2)


n∑
j=1

n0∑̀
=1

α1j`(t2)h1j(xj(t2 − τ1j`(t2)))

r1(t2)
− f1(x1(t2)) +

ρ1(t2)

r1(t2)



≥ r1(t2)


n∑
j=1

n0∑̀
=1

α1j`(t2)h1j(c)

r1(t2)
+
ρ1(t2)

r1(t2)
− f1(c)


> 0,

which is a contradiction, since ẋ1(t2) ≤ 0. Hence x1(t) > c for all t ≥ 0. Similarly,

we can show that xi(t) > c, for all t ≥ 0, 2 ≤ i ≤ n, and therefore (5.2.11) holds.

Now we show that

sup
t≥0

xi(t) <∞, 1 ≤ i ≤ n. (5.2.13)

We claim that there exist T > 0 and M > 0 such that the following inequalities are
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satisfied, for every i = 1, . . . , n,

max
0≤t≤T

xi(t) < M and


n∑
j=1

n0∑̀
=1

αij`(t)hij(M)

ri(t)
+
ρi(t)

ri(t)

 < fi(M), t ≥ T.

(5.2.14)

The second relation of (5.2.14) holds if
n∑
j=1

n0∑̀
=1

αij`(t)
hij(M)

fi(M)

ri(t)
+

1

fi(M)

ρi(t)

ri(t)

 < 1, t ≥ T. (5.2.15)

Using (5.2.7), there exists a µi > 0 such that

n∑
j=1

(
lim sup
t→∞

n0∑̀
=1

αij`(t)

ri(t)

)
lim sup
u→∞

hij(u)

fi(u)
< µi < 1,

then there exists an δ > 0 such that

n∑
j=1

(
lim sup
t→∞

n0∑̀
=1

αij`(t)

ri(t)
+ δ
)(

lim sup
u→∞

hij(u)

fi(u)
+ δ
)
< µi.

Thus there exist Ti > 0 and V1i > 0 such that

n∑
j=1

(
sup
t≥Ti

n0∑̀
=1

αij`(t)

ri(t)

)hij(u)

fi(u)
< µi, u ≥ V1i.

Moreover, there exists a V2i > 0 such that

1

fi(u)
sup
t≥Ti

ρi(t)

ri(t)
< 1− µi, u ≥ V2i,

and so there exists a large M > 0 such that (5.2.15) holds and max
0≤t≤T

xi(t) < M ,

with T = max{T1, . . . , Tn}, for all 1 = 1, . . . , n. Hence inequality (5.2.14) is satisfied

for each i = 1, . . . , n. Now, in virtue of (5.2.14), either xi(t) < M for all t ≥ 0,

1 ≤ i ≤ n, or there exists t3 ∈ (T,∞) such that max{x1(t3), . . . , xn(t3)} = M , and

xi(t) < M for t ∈ [0, t3) and i = 1, . . . , n. In this case at least one of the values of

x1(t3), . . . , xn(t3) is equal to M . Assume, e.g., that x1(t3) = M , then ẋ1(t3) ≥ 0.
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On the other hand, using (5.2.14) and the monotonicity of h1j, we have

ẋ1(t3) = r1(t3)


n∑
j=1

n0∑̀
=1

α1j`(t3)h1j(xj(t3 − τ1j`(t3)))

r1(t3)
− f1(x1(t3)) +

ρ1(t3)

r1(t3)



≤ r1(t3)


n∑
j=1

n0∑̀
=1

α1j`(t3)h1j(M)

r1(t3)
− f1(M) +

ρ1(t3)

r1(t3)


< 0,

which is a contradiction, since ẋ1(t3) ≥ 0. Hence x1(t) < M, for all t ≥ 0. Similarly,

we can show that xi(t) < M, for all t ≥ 0, 2 ≤ i ≤ n, and therefore we can see that

(5.2.13) holds. �

The next Lemma displays many properties of the positive solutions of the alge-

braic system

fi(xi) =
n∑
j=1

mijhij(xj) + li, 1 ≤ i ≤ n. (5.2.16)

We say that x = (x1, ..., xn) is a positive solution of (5.2.16) if xi > 0 for i = 1, ..., n.

Lemma 5.2.3. Assume that mij ≥ 0, li ≥ 0 for 1 ≤ i, j ≤ n, fi satisfies condition

(A3) and hij satisfies condition (A4). Suppose that

(C1) fi(u)
hij(u)

is increasing and
hjj(u)

hij(u)
is decreasing on (0,∞), for each 1 ≤ i, j ≤ n;

(C2) for each 1 ≤ i ≤ n, either fi(u)
hii(u)

is strictly increasing on (0,∞) or
(
li > 0 and

hii(u) is strictly increasing on (0,∞)
)

;

(C3) either mij = 0 for all i, j ∈ {1, . . . , n} satisfying i 6= j; or there exist i, j ∈

{1, . . . , n}, i 6= j such that mij > 0 and
[
either

fj(u)

hij(u)
is strictly increasing on

(0,∞) or
(
mjj > 0 and

hjj(u)

hij(u)
is strictly decreasing on (0,∞)

)
or
(
lj > 0 and

hij(u) is strictly increasing on (0,∞)
)]

;
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(C4) the functions fi and hii satisfy

either li > 0, or lim
u→0+

fi(u)

hii(u)
< mii, 1 ≤ i ≤ n, (5.2.17)

and
n∑
j=1

mij lim
u→∞

hij(u)

fi(u)
< 1, and lim

u→∞
fi(u) =∞ 1 ≤ i ≤ n. (5.2.18)

Then

(i) the System (5.2.16) has a unique positive solution x∗ = (x∗1, ..., x
∗
n).

(ii) For any x = (x1, ..., xn) satisfying

xi > 0, fi(xi) ≥
n∑
j=1

mijhij(xj) + li, 1 ≤ i ≤ n, (5.2.19)

one has

xi ≥ x∗i , 1 ≤ i ≤ n. (5.2.20)

(iii) For any x = (x1, ..., xn) satisfying

xi > 0, fi(xi) ≤
n∑
j=1

mijhij(xj) + li, 1 ≤ i ≤ n, (5.2.21)

one has

xi ≤ x∗i , 1 ≤ i ≤ n. (5.2.22)

Proof. See Appendix A. �

We use the following notations in our main theorem:

mij := lim inf
t→∞

n0∑̀
=1

αij`(t)

ri(t)
, mij := lim sup

t→∞

n0∑̀
=1

αij`(t)

ri(t)
, 1 ≤ i, j ≤ n, (5.2.23)

li := lim inf
t→∞

ρi(t)

ri(t)
, li := lim sup

t→∞

ρi(t)

ri(t)
, 1 ≤ i ≤ n. (5.2.24)

We note that (A2), (A5) and Lemma 5.2.2 yield 0 ≤ mij < ∞, 0 ≤ mij < ∞,

0 ≤ li <∞, 0 ≤ li <∞ for 1 ≤ i, j ≤ n, and

0 < lim inf
t→∞

xi(t) ≤ lim sup
t→∞

xi(t) <∞, 1 ≤ i ≤ n.
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Now, we are ready to formulate the main result of this chapter.

Theorem 5.2.4. Assume that conditions (A0)–(A5) are satisfied.

(i) If, in addition, (A6) (i), (ii) and (iii) hold, then for any initial function ϕ =

(ϕ1, . . . , ϕn) ∈ Cn
+, the solution x(ϕ)(t) = (x1(ϕ)(t), . . . , xn(ϕ)(t)) of the IVP

(5.2.1) and (5.2.2) obeys

x∗i ≤ lim inf
t→∞

xi(ϕ)(t), 1 ≤ i ≤ n,

where (x∗1, . . . , x
∗
n) is the unique positive solution of the algebraic system

fi(xi) =
n∑
j=1

mijhij(xj) + li, 1 ≤ i ≤ n. (5.2.25)

(ii) If, in addition, (A6) (i), (iv) and (v) hold, then for any initial function ϕ =

(ϕ1, . . . , ϕn) ∈ Cn
+, the solution x(ϕ)(t) = (x1(ϕ)(t), . . . , xn(ϕ)(t)) of the IVP

(5.2.1) and (5.2.2) obeys

lim sup
t→∞

xi(ϕ)(t) ≤ x∗i , 1 ≤ i ≤ n,

where (x∗1, . . . , x
∗
n) is the unique positive solution of the algebraic system

fi(xi) =
n∑
j=1

mijhij(xj) + li, 1 ≤ i ≤ n. (5.2.26)

Proof. See Appendix A. �

5.3 Corollaries

In this section, we introduce some corollaries which confirm the applicability of our

main results.

Corollary 5.3.1. Assume that conditions (A0)–(A6) are satisfied, moreover, the

finite limits

mij := lim
t→∞

n0∑̀
=1

αij`(t)

ri(t)
and li := lim

t→∞

ρi(t)

ri(t)
, 1 ≤ i, j ≤ n, (5.3.1)
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exist. Then, for any initial function ϕ = (ϕ1, ϕ2, ..., ϕn) ∈ Cn
+ , the solutions

x(t) = x(ϕ)(t) = (x1(ϕ)(t), ..., xn(ϕ)(t)) of the IVP (5.2.1) and (5.2.2) satisfy

lim
t→∞

xi(ϕ)(t) = x∗i , 1 ≤ i ≤ n, (5.3.2)

where (x∗1, . . . , x
∗
n) is the unique positive solution of the system

fi(xi) =
n∑
j=1

mijhij(xj) + li, 1 ≤ i ≤ n. (5.3.3)

Now, we study a special form of (5.2.1), consider the IVP

ẋi(t) =
n∑
j=1

n0∑
`=1

αij`(t)x
pij
j (t− τij`(t))− ri(t)xqii (t) + ρi(t), t ≥ 0, 1 ≤ i ≤ n,

(5.3.4)

with the initial condition

xi(t) = ϕi(t), −τ ≤ t ≤ 0, 1 ≤ i ≤ n, (5.3.5)

where τ > 0, ϕ = (ϕ1, ϕ2, ..., ϕn) ∈ Cn
+ and αij`, ri, τij` ∈ C(R+,R+), pij, qi ∈ R+

for 1 ≤ i, j ≤ n and 1 ≤ ` ≤ n0.

We remark that (A3), (A4), (A5) and (A6) hold if

qi > pij ≥ 1, and pij ≥ pjj, 1 ≤ i, j ≤ n (5.3.6)

and

either lim inf
t→∞

ρi(t)

ri(t)
> 0 or lim inf

t→∞

n0∑̀
=1

αii`(t)

ri(t)
> 0, i = 1, . . . , n (5.3.7)

are satisfied. Therefore Theorem 5.2.4 has the following consequence.

Corollary 5.3.2. Assume that that τij` satisfies (A0), ri and αij satisfy (A1) and

(A2), qi ∈ N, ρi ∈ C(R+,R+) satisfies sup
t>0

ρi(t)
ri(t)

< ∞, 1 ≤ i ≤ n, (5.3.6) and

(5.3.7) hold. Then, for any initial function ϕ = (ϕ1, ϕ2, ..., ϕn) ∈ Cn
+ , the so-

lutions x(t) = x(ϕ)(t) = (x1(ϕ)(t), ..., xn(ϕ)(t)) of the IVP (5.3.4) and (5.3.5)

satisfy

x∗i ≤ lim inf
t→∞

xi(φ) ≤ lim sup
t→∞

xi(φ) ≤ x∗i , 1 ≤ i ≤ n, (5.3.8)
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where (x∗1, ..., x
∗
n) is the unique positive solution of the system

xqii =
n∑
j=1

mijx
pij
j + li, 1 ≤ i ≤ n, (5.3.9)

and (x∗1, ..., x
∗
n) is the unique positive solution of the system

xqii =
n∑
j=1

mijx
pij
j + li, 1 ≤ i ≤ n, (5.3.10)

respectively, where mij, mij, li and li are defined in (5.2.23) and (5.2.24) for

1 ≤ i, j ≤ n.

We remark that the condition (5.3.6) in Corollary 5.3.2 can be weakened.

Next we study the asymptotic equivalence of positive solutions for a special form of

the System (5.3.4). We consider the IVP

ẋi(t) =
n∑
j=1

n0∑
`=1

αij`(t)xj(t− τij`(t))− ri(t)xqii (t) + ρi(t), t ≥ 0, 1 ≤ i ≤ n,

(5.3.11)

with the initial condition

xi(t) = ϕi(t), −τ ≤ t ≤ 0, 1 ≤ i ≤ n, (5.3.12)

where τ > 0, ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ Cn
+, αij`, τij`, ri ∈ C(R+,R+), 1 ≤ i, j ≤ n,

1 ≤ ` ≤ n0 and qi ∈ N, qi > 1, 1 ≤ i ≤ n.

Remark. Equation (5.3.9) corresponding to (5.3.11) has the form

xqii =
n∑
j=1

mijxj + li, 1 ≤ i ≤ n.

Therefore

xi(x
qi−1
i −mii) =

n∑
j=1
j 6=i

mijxj + li, 1 ≤ i ≤ n.

So its positive solution (x∗1, . . . , x
∗
n) satisfies x∗i ≥ m

1
qi−1

ii , hence Corollary 5.3.2 yields

that for every ϕ ∈ Cn
+ the solution xi(ϕ)(t) of (5.3.11)-(5.3.12) satisfies

lim inf
t→∞

xi(ϕ)(t) ≥ x∗i ≥ m
1

qi−1

ii , 1 ≤ i ≤ n. (5.3.13)
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Theorem 5.3.3. Suppose that τij`, ri and αij` satisfy (A0), (A1) and (A2), ρi ∈

C(R+,R+) satisfies sup
t>0

ρi(t)
ri(t)

<∞, 1 ≤ i ≤ n, and

n∑
j=1

mij < qimii, qi > 1, 1 ≤ i ≤ n. (5.3.14)

Then, for any initial functions ϕ, ψ ∈ Cn
+, the corresponding solutions x(ϕ)(t) and

x(ψ)(t) of the IVP (5.3.11) and (5.3.12) satisfy

lim
t→∞

(
xi(ϕ)(t)− xi(ψ)(t)

)
= 0, 1 ≤ i ≤ n, (5.3.15)

i.e., any positive solutions of Eq. (5.3.11) are asymptotically equivalent.

Proof. See Appendix A. �

5.4 Applications to some population models

In this section, we give some applications to some population models which illustrate

the applicability of our main results.

Next, we consider again the population model (5.1.9):

ẋi(t) =

n0∑
`=1

λi`(t)xi(t− τi`(t))
1 + γi`(t)xi(t− τi`(t))

+
n∑
j=1
j 6=i

aij(t)xj(t− σij(t))

−µi(t)xi(t)− κi(t)x2
i (t), t ≥ 0, 1 ≤ i ≤ n, (5.4.1)

with the initial condition

xi(t) = ϕi(t), −τ ≤ t ≤ 0, 1 ≤ i ≤ n. (5.4.2)

We assume that ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ Cn
0 , where C0 := {ψ ∈ C([−τ, 0],R+) :

ψ(t) > 0, −τ ≤ t ≤ 0}. We note that C0 ⊂ C+.

The permanence of positive solutions of (5.4.1) was investigated in [32] for the

case when the delays in the model can be unbounded. Next, we show that, for the

bounded delay case, our Theorem 5.2.4 gives permanence of the positive solutions

for this model under weak conditions. We note that we do not need the boundedness
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of the functions λi`, aij, µi and κi which was assumed in [32].

Corollary 5.4.1. Assume that λi`, γi`, aij, µi, κi ∈ C(R+,R+), and τi`, σij ∈ C(R+,R+)

with 0 ≤ τi`(t) ≤ τ and 0 ≤ σij(t) ≤ τ for t ≥ 0, 1 ≤ i 6= j ≤ n and ` = 1, . . . , n0.

Moreover, we assume that there exist positive constants γ
i
, γi, πi and πi such that,

for all 1 ≤ i 6= j ≤ n and 1 ≤ ` ≤ n0,

0 < γ
i
≤ γi`(t) ≤ γi, 0 < πi ≤

κi(t)

µi(t)
≤ πi, t > 0 and

∫ ∞
0

µi(t) dt =∞,

(5.4.3)

and

sup
t>0

n0∑̀
=1

λi`(t)

µi(t)
<∞, sup

t>0

aij(t)

µi(t)
<∞, j 6= i, and lim inf

t→∞

n0∑̀
=1

λi`(t)

µi(t)
> 1. (5.4.4)

Then, for any initial function ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ Cn
0 , the solution x(ϕ)(t) =

(x1(ϕ)(t), . . . , xn(ϕ)(t)) of the IVP (5.4.1) and (5.4.2) satisfies

x∗i ≤ lim inf
t→∞

xi(ϕ)(t) ≤ lim sup
t→∞

xi(ϕ)(t) ≤ x∗i , 1 ≤ i ≤ n, (5.4.5)

where (x∗1, . . . , x
∗
n) is the unique positive solution of the algebraic system

xi + πix
2
i =

miixi
1 + γixi

+
n∑
j=1
j 6=i

mijxj, 1 ≤ i ≤ n, (5.4.6)

and (x∗1, . . . , x
∗
n) is the unique positive solution of the algebraic system

xi + πix
2
i =

miixi
1 + γ

i
xi

+
n∑
j=1
j 6=i

mijxj, 1 ≤ i ≤ n, (5.4.7)

respectively, where mii := lim inf
t→∞

n0∑̀
=1
λi`(t)

µi(t)
, mii := lim sup

t→∞

n0∑̀
=1
λi`(t)

µi(t)
, 1 ≤ i ≤ n, and

mij := lim inf
t→∞

aij(t)

µi(t)
, mij := lim sup

t→∞

aij(t)

µi(t)
for 1 ≤ i 6= j ≤ n.

Proof. All conditions of Lemma 5.2.1 hold for the System (5.4.1), therefore it

implies that xi(t) = xi(ϕ)(t) > 0 for t ≥ 0 and i = 1, . . . , n. Since we assumed that

ϕi ∈ C0 for all i = 1, . . . , n, it follows xi(t − τi`(t)) > 0 for t ≥ 0 and i = 1, . . . , n.

From (5.4.3), we have γi`(t) ≤ γi and κi(t)
µi(t)
≤ πi, for t > 0. Thus, we get from (5.4.1)
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for t ≥ 0 and i = 1, . . . , n that

ẋi(t) ≥
n0∑
`=1

λi`(t)xi(t− τi`(t))
1 + γixi(t− τi`(t))

+
n∑
j=1
j 6=i

aij(t)xj(t− σij(t))− µi(t)[xi(t) + πix
2
i (t)].

By Theorem 2.1.2, we have xi(t) ≥ yi(t) for t ≥ 0 and i = 1, . . . , n, where yi(t) is

the positive solution of the differential equation

ẏi(t) =

n0∑
`=1

λi`(t)yi(t− τi`(t))
1 + γiyi(t− τi`(t))

+
n∑
j=1
j 6=i

aij(t)yj(t− σij(t))

−µi(t)[yi(t) + πiy
2
i (t)], 1 ≤ i ≤ n, (5.4.8)

with the initial condition

yi(t) = ϕi(t), −τ ≤ t ≤ 0, 1 ≤ i ≤ n. (5.4.9)

Next, we check that conditions (A0)–(A6) of Theorem 5.2.4 are satisfied for the

System (5.4.8). First note that we can rewrite (5.4.8) in the form (5.2.1) with

αij`(t) :=


λi`(t), j = i, ` = 1, . . . , n0,

aij(t), j 6= i, ` = 1,

0, j 6= i, ` 6= 1,

hij(u) :=


u

1+γiu
, j = i,

u, j 6= i,

τij`(t) :=


τi`(t), j = i, ` = 1, . . . , n0,

σij(t), j 6= i, ` = 1,

0, j 6= i, ` 6= 1,

and ri(t) := µi(t), fi(u) := u + πiu
2 and ρi(t) := 0, 1 ≤ i, j ≤ n. We have

lim
u→0+

fi(u)
hii(u)

= lim
u→0+

(u+πiu
2)(1+γiu)
u

= 1 and lim
u→∞

hij(u)

fi(u)
= 0 for all 1 ≤ i, j ≤ n.

Therefore, by our assumptions (5.4.3) and (5.4.4), we can see that conditions

(A0)–(A5) hold. To check condition (A6), we observe that

fi(u)

hij(u)
=

 (1 + πiu)(1 + γiu), j = i,

1 + πiu, j 6= i,
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is strictly increasing and

hjj(u)

hij(u)
=

u

u(1 + γiu)
=

1

1 + γiu

is strictly decreasing on (0,∞), for each 1 ≤ i 6= j ≤ n. We see that mjj =

lim inf
t→∞

n0∑̀
=1
λj`(t)

µj(t)
> 1 by (5.4.4), and

hjj(u)

hij(u)
is strictly decreasing on (0,∞), for all

j 6= i. Hence conditions (A6) (i), (ii) and (iii) are satisfied, and we can apply

Theorem 5.2.4 (i) to the System (5.4.8). Therefore we get the lower estimates

lim inf
t→∞

xi(ϕ)(t) ≥ lim inf
t→∞

yi(ϕ)(t) ≥ x∗i , 1 ≤ i ≤ n, where (x∗1, . . . , x
∗
n) is the unique

positive solution of the algebraic system (5.4.6). Similarly, we can get the upper

estimates lim sup
t→∞

xi(ϕ)(t) ≤ x∗i , 1 ≤ i ≤ n, where (x∗1, . . . , x
∗
n) is the unique positive

solution of the algebraic system (5.4.7). �

Now, we consider a time-dependent version of the n-dimensional Nicholson’s

blowflies system (5.1.8) for t ≥ 0:

ẋi(t) =

n0∑
`=1

bi`(t)xi(t− σi`(t))e−xi(t−σi`(t)) +
n∑
j=1
j 6=i

aij(t)xj(t)− di(t)xi(t), 1 ≤ i ≤ n

(5.4.10)

with the initial condition

xi(t) = ϕi(t), −τ ≤ t ≤ 0, 1 ≤ i ≤ n, (5.4.11)

where τ > 0, ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ Cn
+, bi`, aij, di ∈ C(R+,R+), and σi` ∈

C(R+,R+) with 0 ≤ σi`(t) ≤ τ for t ≥ 0, 1 ≤ i 6= j ≤ n, ` = 1, . . . , n0. The

persistence and permanence of the autonomous system (5.1.8) was investigated in

[33]. Unfortunately, our method does not work for this population model, since

the function ue−u is not monotone increasing, and so condition (A4) of our main

Theorem 5.2.4 is not satisfied for (5.4.10). But we can apply our method to get an

upper bound of the limit superior of the solutions of (5.4.10). We formulate this

result next.

Corollary 5.4.2. Assume bi`, aij, di ∈ C(R+,R+), and σi` ∈ C(R+,R+) with 0 ≤
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σi`(t) ≤ τ for t ≥ 0, 1 ≤ i 6= j ≤ n and ` = 1, . . . , n0. Moreover, we assume that,

for all 1 ≤ i, j ≤ n,

di(t) > 0, t > 0 and

∫ ∞
0

di(t) dt =∞, (5.4.12)

sup
t>0

n0∑̀
=1

bi`(t)

di(t)
<∞ and sup

t>0

aij(t)

di(t)
<∞, j 6= i, (5.4.13)

and

lim inf
t→∞

n0∑̀
=1

bi`(t)

di(t)
> 1 and

n∑
j=1
j 6=i

lim sup
t→∞

aij(t)

di(t)
< 1. (5.4.14)

Then, for any initial function ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ Cn
+, the solution x(ϕ)(t) =

(x1(ϕ)(t), . . . , xn(ϕ)(t)) of the IVP (5.4.10) and (5.4.11) satisfies

xi(ϕ)(t) > 0, t ≥ 0, and lim sup
t→∞

xi(ϕ)(t) ≤ x∗i , 1 ≤ i ≤ n, (5.4.15)

where (x∗1, . . . , x
∗
n) is the unique positive solution of the algebraic system

xi = miiH(xi) +
n∑
j=1
j 6=i

mijxj, 1 ≤ i ≤ n, (5.4.16)

where mii := lim sup
t→∞

n0∑̀
=1

bi`(t)

di(t)
, 1 ≤ i ≤ n, and mij := lim sup

t→∞

aij(t)

di(t)
for 1 ≤ i 6= j ≤ n,

and

H(u) :=

 ue−u, u ≤ 1,

1
e
, u > 1.

(5.4.17)

Proof. All conditions of Lemma 5.2.1 hold for the System (5.4.10), therefore

it implies that xi(ϕ)(t) > 0 for t ≥ 0 and i = 1, . . . , n. We have ue−u ≤ H(u) for

u ≥ 0, therefore (5.4.10) yields

ẋi(t) ≤
n0∑
`=1

bi`(t)H(xi(t− σi`(t))) +
n∑
j=1
j 6=i

aij(t)xj(t)− di(t)xi(t), 1 ≤ i ≤ n.

By Theorem 2.1.2, we have xi(t) ≤ yi(t) for t ≥ 0, i = 1, . . . , n, where yi(t) is the
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positive solution of the differential equation

ẏi(t) =

n0∑
`=1

bi`(t)H(yi(t− σi`(t))) +
n∑
j=1
j 6=i

aij(t)yj(t)− di(t)yi(t), 1 ≤ i ≤ n,

(5.4.18)

with the initial condition

yi(t) = ϕi(t), −τ ≤ t ≤ 0, 1 ≤ i ≤ n. (5.4.19)

Next, we check that (A0)–(A6) of Theorem 5.2.4 are satisfied for the System (5.4.18).

First note that we can rewrite (5.4.18) in the form (5.2.1) with

αij`(t) :=


bi`(t), j = i, ` = 1, . . . , n0,

aij(t), j 6= i, ` = 1,

0, j 6= i, ` 6= 1,

hij(u) :=

 H(u), j = i,

u, j 6= i,

τij`(t) :=

 σi`(t), j = i, ` = 1, . . . , n0,

0, otherwise,

and ri(t) := di(t), fi(u) := u and ρi(t) := 0, 1 ≤ i, j ≤ n. We have

lim
u→0+

fi(u)

hii(u)
= lim

u→0+

u

H(u)
= 1 and lim

u→∞

hij(u)

fi(u)
=

 0, j = i,

1, j 6= i

for 1 ≤ i, j ≤ n. Thus, by our assumptions (5.4.12), (5.4.13) and (5.4.14), we can

see that conditions (A0)–(A5) hold. To check condition (A6), we observe that

fi(u)

hij(u)
=


eu, u ≤ 1, j = i,

eu, u > 1, j = i,

1, u > 1, j 6= i,

is increasing and

hjj(u)

hij(u)
=

H(u)

hij(u)
=

 e−u, u ≤ 1, j 6= i,

1
eu
, u > 1, j 6= i,

is strictly decreasing on (0,∞), for each 1 ≤ i, j ≤ n. Moreover, for each 1 ≤ i ≤ n,
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fi(u)
hii(u)

is strictly increasing on (0,∞). For each j = 1, . . . , n, mjj ≥ lim inf
t→∞

n0∑̀
=1
bj`(t)

dj(t)
> 1

by (5.4.14), and
hjj(u)

hij(u)
is strictly decreasing on (0,∞), for all j 6= i. Hence conditions

(A6) (i), (iv) and (v) are satisfied, and we can apply Theorem 5.2.4 (ii) to the

System (5.4.18). Therefore we can obtain the upper estimates lim sup
t→∞

xi(ϕ)(t) ≤

lim sup
t→∞

yi(ϕ)(t) ≤ x∗i , 1 ≤ i ≤ n, where (x∗1, . . . , x
∗
n) is the unique positive solution

of the algebraic system (5.4.16). �

5.5 Examples

In this section, we give some examples with numerical simulations to illustrate our

main results.

Example 5.5.1. Consider the following system of nonlinear differential equations

in the three dimensions, for t ≥ 0,

ẋ1(t) = t0.1(1 + cos t)x1(t− 2) + t0.1x1(t− 1.5) + t0.1x2
2(t− 0.05)

+t0.1x2
2(t− 3) + t0.1(2 + 2 sin t)x3

3(t− 0.5)

+t0.1x3
3(t− 2.4) + t0.1x3

3(t− 2.5)− 2t0.1x4
1(t)

+0.2t0.1(1.2 + sin t),

ẋ2(t) = x1(t− 1.5) + 2x1(t− 0.5) + x1(t− 0.4)

+6(10 + cos t)x2(t− 0.05) + (3 + 3 cos t)x2
3(t− 0.09)

+2x2
3(t− 1.3)− x3

2(t) + 4.5 + cos t,

ẋ3(t) = 5x2
1(t− 1.9) + 2x3

1(t− 0.2) + x3
1(t− 0.3) + 10x2(t− 1.2)

+(2 + 5 sin t)x2(t− 5) + 6x2
3(t− 0.01) + 4x2

3(t− 1)

−2x3
3(t) + 4.5 + 2 cos t.

(5.5.1)

Note that the conditions of Corollary 5.3.2 are satisfied for (5.5.1). So, we see

from Corollary 5.3.2 that

lim inf
t→∞

x1(t) ≥ x∗1, lim inf
t→∞

x2(t) ≥ x∗2 and lim inf
t→∞

x1(t) ≥ x∗3,
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where (x∗1, x
∗
2, x
∗
3) is the unique positive solution of the algebraic system

x4
1 = 0.5x1 + x2

2 + x3
3 + 0.02,

x3
2 = 4x1 + 54x2 + 2x2

3 + 3.5,

x3
3 = 4x2

1 + 3.5x2 + 5x2
3 + 1.25.

(5.5.2)

We solve the System (5.5.2) numerically by the fixed point iteration

x
(k+1)
1 =

4

√
0.5x

(k)
1 + (x

(k)
2 )2 + (x

(k)
3 )3 + 0.02,

x
(k+1)
2 =

3

√
4x

(k)
1 + 54x

(k)
2 + 2(x

(k)
3 )2 + 3.5,

x
(k+1)
3 =

3

√
4(x

(k)
1 )2 + 3.5x

(k)
2 + 5(x

(k)
3 )2 + 1.25.

(5.5.3)

We compute the sequence defined by the iteration (5.5.3) starting from the initial

value (x
(0)
1 , x

(0)
2 , x

(0)
3 ) = (0, 0, 0). The first ten terms of this sequence are displayed

in Table 5.5.1. We can observe that the sequence is convergent, and its limit is

(x∗1, x
∗
2, x
∗
3) = (4.5960 . . . , 8.3147 . . . , 7.2095 . . .).

Similarly, we can see that

lim sup
t→∞

x1(t) ≤ x∗1, lim sup
t→∞

x2(t) ≤ x∗2 and lim sup
t→∞

x1(t) ≤ x∗3,

where (x∗1, x
∗
2, x
∗
3) is the unique positive solution of the algebraic system

x4
1 = 1.5x1 + x2

2 + 3x3
3 + 0.22,

x3
2 = 4x1 + 66x2 + 8x2

3 + 5.5,

x3
3 = 4x2

1 + 8.5x2 + 5x2
3 + 3.25.

(5.5.4)

We solve the System (5.5.4) numerically by a fixed point iteration defined similarly

to (5.5.3) from the starting value (0, 0, 0). The numerical results can be seen in Table

5.5.2. We conclude that (x∗1, x
∗
2, x
∗
3) = (6.7840 . . . , 11.1161 . . . , 8.7126 . . .). Therefore

Corollary 5.3.2 yields

4.5960 . . . ≤ lim inf
t→∞

x1(t) ≤ lim sup
t→∞

x1(t) ≤ 6.7840 . . . ,

8.3147 . . . ≤ lim inf
t→∞

x2(t) ≤ lim sup
t→∞

x2(t) ≤ 11.1161 . . . ,

7.2095 . . . ≤ lim inf
t→∞

x3(t) ≤ lim sup
t→∞

x3(t) ≤ 8.7126 . . . .

(5.5.5)

We plotted the numerical solution of the System (5.5.1) in Figure 5.5.1 corre-

sponding to the constant initial functions (ϕ1(t), ϕ2(t), ϕ3(t)) = (2.5, 6, 2.5) and
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(ϕ1(t), ϕ2(t), ϕ3(t)) = (3.5, 8, 4). The horizontal lines in Figure 5.5.1 correspond to

the upper and lower bounds listed in (5.5.5), respectively. We also observe that

the difference of the components of the two solutions converges to zero, i.e., the

two solutions are asymptotically equivalent. The numerical results demonstrate the

theoretical bounds (5.5.5). �
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Figure 5.5.1: Numerical solution of the System (5.5.1).

k x
(k)
1 x

(k)
2 x

(k)
3

0 0 0 0
1 0.3761 1.7105 1.9834
2 1.8185 4.8060 3.7077
3 3.6353 7.5553 5.9214
4 4.0406 7.9252 6.4602
5 4.4130 8.1962 6.9628
6 4.5364 8.2765 7.1294
7 4.5767 8.3023 7.1836
8 4.5958 8.3146 7.2092
9 4.5960 8.3147 7.2095
10 4.5960 8.3147 7.2095

Table 5.5.1: Numerical solution of
the System (5.5.2)

k x
(k)
1 x

(k)
2 x

(k)
3

0 0 0 0
1 0.6849 2.0198 2.8145
2 2.9151 5.9799 5.0354
3 5.5288 9.7858 7.5194
4 6.4086 10.7362 8.3557
5 6.6740 11.0053 8.6081
6 6.7520 11.0838 8.6822
7 6.7747 11.1067 8.7038
8 6.7839 11.1159 8.7125
9 6.7840 11.1161 8.7126
10 6.7840 11.1161 8.7126

Table 5.5.2: Numerical solution of
the System (5.5.4)

Example 5.5.2. Consider the following system of nonlinear differential equations
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in the two dimensions, for t ≥ 0,

ẋ1(t) = (1.7 + 0.2 cos t)x1(t− 2) + (0.25 + 0.1 sin t)x2(t− 1.5)

−0.5x2
1(t) + 8 + 2 cos t,

ẋ2(t) = (0.02 + 0.01 sin t)x1(t− 0.3) + (1.2 + 0.2 cos t)x2(t− 10)

−0.2x2
2(t) + 2.2 + 2 sin t.

(5.5.6)

Note that the conditions of Theorem 5.3.3 are satisfied for (5.5.6), where m11 =

3, m11 = 3.8, m12 = 0.7, m22 = 5, m21 = 0.15 and m22 = 7 satisfy (5.3.14) for

i, j = 1, 2. Also, using Corollary 5.3.2, we see that

lim inf
t→∞

x1(t) ≥ x∗1, and lim inf
t→∞

x2(t) ≥ x∗2,

where (x∗1, x
∗
2) is the unique positive solution of the system

x2
1 = 3x1 + 0.3x2 + 12,

x2
2 = 0.05x1 + 5x2 + 1.

(5.5.7)

We solve the System (5.5.7) numerically by a fixed point iteration

x
(k+1)
1 =

√
3x

(k)
1 + 0.3x

(k)
2 + 12,

x
(k+1)
2 =

√
0.05x

(k)
1 + 5x

(k)
2 + 1.

(5.5.8)

We compute the sequence defined by the iteration (5.5.8) starting from the initial

value (0, 0). The first ten terms of this sequence are displayed in Table 5.5.3. We can

observe that the sequence is convergent and its limit is (x∗1, x
∗
2) = (5.4778 . . . , 5.2430 . . .).

Similarly, we can see that

lim sup
t→∞

x1(t) ≤ x∗1, and lim sup
t→∞

x2(t) ≤ x∗2,

where (x∗1, x
∗
2) is the unique positive solution of the system

x2
1 = 3.8x1 + 0.7x2 + 20,

x2
2 = 0.15x1 + 7x2 + 21.

(5.5.9)

We solve the System (5.5.9) numerically by a fixed point iteration defined similarly

to (5.5.8) from the starting value (0, 0). The numerical results can be seen in Table

5.5.4. We conclude that (x∗1, x
∗
2) = (7.3921 . . . , 9.3616 . . .). Therefore Corollary 5.3.2
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yields

5.4778 . . . ≤ lim inf
t→∞

x1(t) ≤ lim sup
t→∞

x1(t) ≤ 7.3921 . . . ,

5.2430 . . . ≤ lim inf
t→∞

x2(t) ≤ lim sup
t→∞

x2(t) ≤ 9.3616 . . . .
(5.5.10)

We plotted the numerical solution of the System (5.5.6) in Figure 5.5.2 corre-

sponding to the initial functions (ϕ1(t), ϕ2(t)) = (3, 2), (ϕ1(t), ϕ2(t)) = (7, 7) and

(ϕ1(t), ϕ2(t)) = (9, 10). The horizontal lines in Figure 5.5.2 correspond to the upper

and lower bounds listed in (5.5.10), respectively. We also observe that the difference

of the components of every two solutions converges to zero, i.e., the two solutions

are asymptotically equivalent which coincide (5.3.15) in Theorem 5.3.3. �
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Figure 5.5.2: Numerical solution of the System (5.5.6).

Example 5.5.3. Consider the 2-dimensional population model:

ẋ1(t) = (1+0.8 cos t)x1(t−2.05)
1+(2+sin(0.1t))x1(t−2.05)

+ 2(1+0.5 cos t)x1(t−1.5)
1+(2+sin(0.1t))x1(t−1.5)

+ 4x2(t− 1.8)

−3x1(t)− (4 + sin t)x2
1(t);

ẋ2(t) = 2x2(t−0.3)
1+esin tx2(t−0.3)

+ 4x2(t−1)
1+esin tx2(t−1)

+ (1 + esin t)x1(t− 2.5)

−2x2(t)− 2e2 sin tx2
2(t).

(5.5.11)

Using Corollary 5.4.1, we see that

lim inf
t→∞

x1(t) ≥ x∗1, and lim inf
t→∞

x2(t) ≥ x∗2,
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k x
(k)
1 x

(k)
2

0 0 0
1 3.4641 1.0831
2 4.7663 2.5795
3 5.2031 3.7627
4 5.4246 4.8659
5 5.4659 5.1549
6 5.4721 5.2008
7 5.4751 5.2419
8 5.4777 5.2429
9 5.4778 5.2430
10 5.4778 5.2430

Table 5.5.3: Numerical solution
of the System (5.5.7)

k x
(k)
1 x

(k)
2

0 0 0
1 4.4721 4.6552
2 6.3445 7.3850
3 7.0199 8.5877
4 7.2586 9.0666
5 7.3436 9.2503
6 7.3744 9.3198
7 7.3918 9.3608
8 7.3920 9.3615
9 7.3921 9.3616
10 7.3921 9.3616

Table 5.5.4: Numerical solution
of the System (5.5.9)

where (x∗1, x
∗
2) is the unique positive solution of the system

x1 + 1.66667x2
1 = 0.4x1

1+3x1
+ 1.33333x2,

x2 + 7.3891x2
2 = 3x2

1+2.7183x2
+ 0.68395x1.

(5.5.12)

We solve the System (5.5.12) numerically by a fixed point iteration

x
(k+1)
1 =

√
1

1.66667
[

0.4x
(k)
1

1+3x
(k)
1

+ 1.33333x
(k)
2 − x

(k)
1 ],

x
(k+1)
2 =

√
1

7.3891
[

3x
(k)
2

1+2.7183x
(k)
2

+ 0.68395x
(k)
1 − x

(k)
2 ].

(5.5.13)

We compute the sequence defined by the iteration (5.5.13) starting from the ini-

tial value (0, 0.1). The first ten terms of this sequence are displayed in Table

5.5.5. We can observe that the sequence is convergent and its limit is (x∗1, x
∗
2) =

(0.2493 . . . , 0.2219 . . .).

Similarly, we can see that

lim sup
t→∞

x1(t) ≤ x∗1, and lim sup
t→∞

x2(t) ≤ x∗2,

where (x∗1, x
∗
2) is the unique positive solution of the system

x1 + x2
1 = 1.6x1

1+x1
+ 1.33333x2,

x2 + 0.1353x2
2 = 3x2

1+0.3679x2
+ 1.85915x1.

(5.5.14)

We solve the System (5.5.14) numerically by a fixed point iteration defined similarly
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to (5.5.13) from the starting value (0, 0.1). The numerical results can be seen in Table

5.5.6. We conclude that (x∗1, x
∗
2) = (2.5077 . . . , 5.7392 . . .). Therefore Corollary 5.4.1

yields

0.2493 . . . ≤ lim inf
t→∞

x1(t) ≤ lim sup
t→∞

x1(t) ≤ 2.5077 . . . ,

0.2219 . . . ≤ lim inf
t→∞

x2(t) ≤ lim sup
t→∞

x2(t) ≤ 5.7392 . . . .
(5.5.15)

We plotted the numerical solution of the System (5.5.11) in Figure 5.5.3 correspond-

ing to the initial functions (ϕ1(t), ϕ2(t)) = (0.1, 0.02) and (ϕ1(t), ϕ2(t)) = (3, 6). �
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Figure 5.5.3: Numerical solution of the System (5.5.11).

k x
(k)
1 x

(k)
2

0 0 0.1
1 0.2828 0.2111
2 0.2864 0.2287
3 0.2699 0.2258
4 0.2605 0.2241
5 0.2554 0.2231
6 0.2469 0.2214
7 0.2491 0.2218
8 0.2493 0.2219
9 0.2493 0.2219
10 0.2493 0.2219

Table 5.5.5: Numerical solution
of the System (5.5.12)

k x
(k)
1 x

(k)
2

0 0 0.1
1 0.3651 2.5332
2 2.6771 5.8300
3 2.4960 5.7462
4 2.5073 5.7382
5 2.5074 5.7388
6 2.5075 5.7389
7 2.5076 5.7390
8 2.5077 5.7391
9 2.5077 5.7392
10 2.5077 5.7392

Table 5.5.6: Numerical solution
of the System (5.5.14)
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Example 5.5.4. Consider the 2-dimensional Nicholson’s population model:

ẋ1(t) = (1 + 0.8 cos t)x1(t− 2.05)e−x1(t−2.05)

+(4 + cos t)x1(t− 1.5)e−x1(t−1.5) + 0.3x2(t)− 3x1(t);

ẋ2(t) = 2x2(t− 0.3)e−x2(t−0.3) + 4x2(t− 1)e−x2(t−1)

+(1 + 0.2 sin t)x1(t)− 2x2(t).

(5.5.16)

Using Corollary 5.4.2, we can see that

lim sup
t→∞

x1(t) ≤ x∗1, and lim sup
t→∞

x2(t) ≤ x∗2,

where (x∗1, x
∗
2) is the unique positive solution of the system

x1 = 2.2667H(x1) + 0.1x2,

x2 = 3H(x2) + 0.6x1,
(5.5.17)

where H(u) is defined by (5.4.17). We solve the System (5.5.17) numerically by a

fixed point iteration

x
(k+1)
1 = 2.2667H(x

(k)
1 ) + 0.1x

(k)
2 ,

x
(k+1)
2 = 3H(x

(k)
2 ) + 0.6x

(k)
1 .

(5.5.18)

We compute the sequence defined by the iteration (5.5.18) starting from the initial

value (0, 0.1). The numerical results can be seen in Table 5.5.7. We conclude that

(x∗1, x
∗
2) = (1.0045 . . . , 1.7063 . . .). Therefore Corollary 5.4.2 yields

lim inf
t→∞

x1(t) ≤ lim sup
t→∞

x1(t) ≤ 1.0045 . . . ,

lim inf
t→∞

x2(t) ≤ lim sup
t→∞

x2(t) ≤ 1.7063 . . . .
(5.5.19)

We plotted the numerical solution of the System (5.5.16) in Figure 5.5.4 correspond-

ing to the initial functions (ϕ1(t), ϕ2(t)) = (0.1, 0.8) and (ϕ1(t), ϕ2(t)) = (1.5, 2). �



Chapter 5. Boundedness of positive solutions of a system of DDEs 89

20 40 60 80 100
0

0.5

1

1.5

Time    t

x 1(t
)

0 20 40 60 80 100

1

1.2

1.4

1.6

1.8

2

Time    t

x 2(t
)

Figure 5.5.4: Numerical solution of the System (5.5.16).

k x
(k)
1 x

(k)
2

0 0 0.1
1 0.0100 0.2775
2 0.1743 1.1283
3 0.4447 1.3704
4 0.7832 1.5735
5 0.9685 1.6848
6 1.0019 1.7048
7 1.0044 1.7062
8 1.0045 1.7063
9 1.0045 1.7063
10 1.0045 1.7063

Table 5.5.7: Numerical solution of the System (5.5.17)



Chapter 6

Conclusion

In this chapter we summarize the new results of the Thesis. Also we give the list of

our publications and conference lectures related to this work.

6.1 New scientific results

Publications and conference abstracts are listed below. Some parts of this Thesis

are published in (P1), (P2) and (P3).

Thesis 1: Sufficient conditions are given to guarantee the persistence and the uni-

form permanence of the positive solutions of nonlinear delay differential equa-

tions (related publication: (P1) and (P3)):

1.1: We establish sufficient conditions for the persistence of the positive solu-

tions of the nonlinear scalar delay differential equation

ẋ(t) = r(t)
(
g(t, xt)− h(x(t))

)
, t ≥ 0. (6.1.1)

(Lemma 3.2.3)

1.2: We establish sufficient conditions to guarantee the uniform permanence

of the positive solutions of the scalar Equation (6.1.1). (Theorem 3.2.4)

90
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1.3: In several special cases of the scalar Equation (6.1.1) explicit upper and

lower estimates of the limit super and limit inferior of the solutions are

obtained. (Corollaries 3.3.1, 3.3.3, 3.3.4, 3.3.6, 3.3.7, 3.3.8, 3.3.9, 3.3.10)

1.4: Sufficient conditions are formulated for that all positive solutions of the

scalar Equation (6.1.1) converge to a constant limit. (Corollary 3.2.5 and

Corollary 3.3.5 for a special case)

1.5: We establish sufficient conditions to the uniform permanence of the pos-

itive solutions of a system of first order nonlinear delay differential equa-

tions

ẋi(t) =
n∑
j=1

n0∑
`=1

αij`(t)hij(xj(t−τij`(t)))−ri(t)fi(xi(t))+ρi(t), 1 ≤ i ≤ n.

(6.1.2)

(Theorem 5.2.4)

1.6: In several special cases of the System (6.1.2) (including n-dimensional

population models with patch structure) upper and lower estimates of

the limit super and limit inferior of the components of the solutions are

obtained using the unique positive solutions of an associated system of

nonlinear algebraic equations. (Corollaries 5.3.2, 5.4.1, 5.4.2)

1.7: Sufficient conditions are formulated for that all positive solutions of the

System (6.1.2) converge to a constant limit. (Corollary 5.3.1)

Thesis 2: Sufficient conditions are given for the asymptotic equivalence of positive

solutions of nonlinear delay differential equations (related publications (P1)

and (P3)):

2.1: We establish sufficient conditions implying that for all 0 < p < q, q ≥ 1
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all positive solutions of the equation

ẋ(t) =
n∑
k=1

αk(t)x
p(t− τk(t))− β(t)xq(t)

are asymptotically equivalent. (Corollary 3.3.2)

2.2: We establish sufficient conditions to guarantee that all positive solutions

of the system

ẋi(t) =
n∑
j=1

n0∑
`=1

αij`(t)xj(t−τij`(t))−ri(t)xqii (t)+ρi(t), qi > 1, 1 ≤ i ≤ n

are asymptotically equivalent. (Theorem 5.3.3)

Thesis 3: Sufficient conditions are given implying the existence and uniqueness of

positive solutions of a system of nonlinear algebraic equations.(related publi-

cation: (P2)):

3.1: We establish sufficient conditions for the existence and uniqueness of the

positive solutions of the nonlinear system of algebraic equations:

γi(xi) =
n∑
j=1

gij(xj), 1 ≤ i ≤ n. (6.1.3)

(Theorem 4.2.1)

3.2: In several special cases of the System (6.1.3) we establish sufficient con-

ditions for the unique positive solutions. (Corollaries 4.3.1, 4.3.2, 4.3.3,

4.3.4)

6.2 Publications and conference lectures

Publication and conference lectures of Nahed A. Mohamady are listed below. Some

parts of this Thesis are published in (P1), (P2) and (P3).
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6.2.1 Publications in refereed SCI journal (related to this

Thesis)

(P1) István Győri, Ferenc Hartung, Nahed A. Mohamady, On a Nonlinear Delay

Population Model, Applied Mathematics and Computation 270(2015)909-925.

(IF: 1.345)

(P2) István Győri, Ferenc Hartung, Nahed A. Mohamady, Existence and Unique-

ness of Positive Solutions of a System of Nonlinear Algebraic Equations, Pe-

riod. Math. Hung., DOI 10.1007/s10998-016-0179-3, 2016. (IF: 0.286)

(P3) István Győri, Ferenc Hartung, Nahed A. Mohamady, Boundedness of Positive

Solutions of a System of Nonlinear Delay Differential Equations, to appear in

Discrete and Continuous Dynamical Systems- Series B. (IF: 1.227)

6.2.2 Publication in refereed journal (not related to this

Thesis)

(P4) M. M. A. El-Sheikh, R. Sallam, N. Mohamady, Oscillation Criteria for Second

Order Nonlinear Neutral Differential Equations, Electronic Journal of Differ-

ential Equations an Control Processes, ISSN 1817-2172, No. 3 (2011) 1-17.

(P5) M. M. A. EL-Sheikh, R. Sallam, N. Mohamady, New Oscillation Criteria for

General Neutral Delay Third Order Differential Equations, International Jour-

nal of Mathematics and Computer Applications Research (IJMCAR) ISSN

2249-6955 Vol. 3, Issue 2, (Jun 2013) 183-190.

(P6) M. M. A. El-Sheikh, R. Sallam, N. Mohamady, On the Oscillation of Third

Order Neutral Delay Differential Equations, Appl. Math. Inf. Sci. Lett. 1,

No. 3,(2013)77-80.
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(P7) M. M. A. EL-Sheikh, R. Sallam, Nahed A. Mohamady, New Criteria for Os-

cillation of Second Order Nonlinear Dynamic Equations with Damping Time

Scales, International Journal of Research in Applied, Natural and Social Sci-

ences (IJRANSS) ISSN(E): 2321-8851; ISSN(P): 2347-4580 Vol. 3, Issue 3

(Mar 2015) 79-86.

6.2.3 International conference presentations related to the

Thesis

(C1) István Győri, Ferenc Hartung, Nahed A. Mohamady, Boundedness of so-

lutions of nonlinear delay differential equations, 10th Colloquium on the Qual-

itative Theory of Differential Equations 2015, Bolyai Institute, University of

Szeged, Hungary, July 1-4, 2015.

(C2) István Győri, Ferenc Hartung, Nahed A. Mohamady, Persistence and Per-

manence of Nonlinear Delay Population Models, The Second International

Conference on New Horizons in Basic and Applied Science, Hurghada , Egypt,

August 1-6, 2015.

(C3) István Győri, Ferenc Hartung, Nahed A. Mohamady, Boundedness of

positive solutions of a system of nonlinear delay differential equations, O.D.

EQUATIONS BRNO 2016, Faculty of Science, Masaryk University, Brno,

Czech Republic, June 6 - 8, 2016.
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Appendix A

In this Appendix, we give some proofs of some of our results.

A.1 Proofs of some results in Chapter 3

Proof of Lemma 3.2.1. It is clear from condition (H2) that the IVP (3.2.3) and

(3.2.4) has at least one solution for all (T, y∗, c) ∈ (R+ × (0,∞) × R+). Any of

the corresponding solution y(t) = y(T, y∗, c)(t) is considered. First we show that if

c ≥ 0 and y∗ 6= h−1(c), then y(t) 6= h−1(c) for all t ≥ T . Suppose that there exists

a t1 > T such that y(t1) = h−1(c). Thus, by separating variables in (3.2.3) and

integrating from T to t1, we get∫ t1

T

ẏ(t)

c− h(y(t))
dt =

∫ t1

T

r(t)dt.

Introducing the new variable u = y(t) and using (H2) with v = h−1(c) we get

∞ =

∫ h−1(c)

y∗

1

c− h(u)
du =

∫ t1

T

r(t)dt,

which contradicts the continuity of r. Thus y(t) 6= h−1(c) for t ≥ T . Note that for

c = 0 and y∗ > 0, the above result yields that y(t) > 0 for all t ≥ T .

Now let us prove part (i). Since 0 < y(T ) < h−1(c), then either 0 < y(t) < h−1(c)

for any t ≥ T and we are done, or there exists a t2 > T such that 0 < y(t) < h−1(c)

for 0 < t < t2 and either y(t2) = 0 or y(t2) = h−1(c). But this later case is not

possible, since y(t) 6= h−1(c) for all t ≥ T . If y(t2) = 0, then one can easily see that

103
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ẏ(t2) ≤ 0. On the other hand, we get by (H1), (H2) and from (3.2.3) that

ẏ(t2) = r(t2)[c− h(y(t2))] = r(t2)[c− h(0)] = cr(t2) > 0,

which is a contradiction. Hence 0 < y(t) < h−1(c) for any t ≥ T, and therefore

ẏ(t) > 0. Since y(t) is bounded, the solution y(t) exists for all t ≥ T, and since it is

monotone increasing, y(t) has a finite limit at ∞, and

N := lim
t→∞

y(t) ≤ h−1(c).

We show that N = h−1(c). Otherwise N < h−1(c), in this case since ẏ(t) > 0, by

integrating (3.2.3) from T to t we get

y(t) = y(T ) +

∫ t

T

r(s)[c− h(y(s))]ds ≥ y(T ) +

∫ t

T

r(s)[c− h(N)]ds,

and as t→∞ we have by (H1) that

N ≥ y(T ) + [c− h(N)]

∫ ∞
T

r(s)ds =∞.

This contradicts with the boundedness of y(t), and hence

N = h−1(c).

Now we prove part (ii). If y(T ) = h−1(c), then it is clear that y(t) = h−1(c) is an

equilibrium solution of (3.2.3) and (3.2.4), and it is easy to argue that y(t) = h−1(c)

is the unique solution in this case.

The proof of part (iii) is similar to the proof of part (i), so it is omitted here.

Finally, we show the uniqueness of the solution. Let T ≥ 0, y∗ > 0 and c ≥ 0 be

fixed. Suppose both y1 and y2 satisfy the corresponding IVP (3.2.3) with (3.2.4). It

follows from properties (i)–(iii) that both solutions exist on [T,∞), and y1(t) > 0

and y2(t) > 0 for all t ≥ T . Suppose there exist t2 > T such that y1(t2) > y2(t2)

(the opposite case can be treated similarly). Then there exists t1 ∈ [T, t2) such that

y1(t1) = y2(t1) and y1(t) > y2(t) for t ∈ (t1, t2). Define z(t) := y1(t)− y2(t). Then z

is continuously differentiable, z(t1) = 0, z(t) > 0 for t ∈ (t1, t2). On the other hand,

Eq. (3.2.3) and the strict monotonicity of h imply

ż(t) = ẏ1(t)− ẏ2(t) = r(t)
(
h(y2(t))− h(y1(t))

)
< 0, t ∈ (t1, t2),
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which is a contradiction. This yields that y1(t) = y2(t) must hold for t > T . �

A.2 Proofs of some results in Chapter 5

Proof of Lemma 5.2.3. The proof of part (i) is obtained directly from Theo-

rem 4.2.1, where we can rewrite (5.2.16) in the form (4.2.1) with γi(u) := fi(u) −

miihii(u)− li and gij(u) := mijhij(u) for each 1 ≤ i 6= j ≤ n and gii(u) = 0. Now, to

prove the existence of a positive solution for System (5.2.16), we check that condi-

tions (A) and (B) of Theorem 4.2.1 are satisfied. For condition (A), we have that

γi(u) = 0 if and only if

fi(u)

hii(u)
=

li
hii(u)

+mii, 1 ≤ i ≤ n. (A.2.1)

The left hand side of (A.2.1) is increasing and the right hand side of (A.2.1) is

decreasing, moreover, either the left hand side or the right hand side is a strictly

monotone function. Therefore, condition (A) of Theorem 4.2.1 holds, if we show

lim
u→0+

fi(u)

hii(u)
< lim

u→0+

li
hii(u)

+mii, 1 ≤ i ≤ n, (A.2.2)

and

lim
u→∞

fi(u)

hii(u)
> lim

u→∞

li
hii(u)

+mii, 1 ≤ i ≤ n. (A.2.3)

If li > 0 and hii(0) = 0, then (A.2.2) follows, since the left hand side of (A.2.2) is

always finite, since fi(u)
hii(u)

is monotone increasing. If li > 0 and hii(0) > 0, then the

right hand side of (A.2.2) is finite and positive, but lim
u→0+

fi(u)
hii(u)

= 0 using (A3). If

li = 0, then assumption (5.2.17) yields (A.2.2). Relation (A.2.3) follows immediately

from (5.2.18). Hence condition (A) is satisfied.

To check condition (B), we see that gij(u) := mijhij(u), 1 ≤ i 6= j ≤ n, and

gii(u) = 0 are increasing on R+, and relation (4.2.3) is equivalent to
n∑
j=1
j 6=i

mijhij(u) < fi(u)−miihii(u)− li,
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which is satisfied if and only if
n∑
j=1

mij
hij(u)

fi(u)
+

li
fi(u)

< 1.

Therefore, using (5.2.18), (4.2.3) is satisfied when u is large enough and hence con-

dition (B) is satisfied. Therefore (5.2.16) has a positive solution. For the proof of

the uniqueness of the positive solution of the System (5.2.16), we check that con-

ditions (C) and (D) of Theorem 4.2.1 are satisfied. Since mij ≥ 0 and hij(u) > 0

for u > 0, for each 1 ≤ i, j ≤ n, then condition (C) is satisfied. To check condition

(D), suppose mij > 0. Then the function

γj(u)

gij(u)
=

fj(u)−mjjhjj(u)− lj
mijhij(u)

=
fj(u)

mijhij(u)
− mjjhjj(u)

mijhij(u)
− lj
mijhij(u)

is monotone increasing on (0,∞), by (A4) and (C1). By assumption (C3), there ex-

ists i 6= j such that
γj(u)

gij(u)
is strictly monotone increasing on (0,∞), and so condition

(D) is satisfied. Hence the System (5.2.16) has a unique positive solution.

Now we prove (ii). From (5.2.19) we have

xi ≥ f−1
i

(
n∑
j=1

mijhij(xj) + li

)
, 1 ≤ i ≤ n. (A.2.4)

Assumption (A3) and (5.2.17) yield that there exists a small u∗ such that

0 < u∗ < xi, 1 ≤ i ≤ n. (A.2.5)

and

1 ≤
n∑
j=1

mij
hij(u

∗)

fi(u∗)
+

li
fi(u∗)

,

or equivalently,

0 < u∗ ≤ f−1
i

(
n∑
j=1

mijhij(u
∗) + li

)
, 1 ≤ i ≤ n. (A.2.6)

Now we construct a sequence (x
(0)
i , ..., x

(k)
i , ...) such that

x
(0)
i = u∗ and x

(k+1)
i = f−1

i

(
n∑
j=1

mijhij(x
(k)
j ) + li

)
, k ≥ 0, 1 ≤ i ≤ n,

(A.2.7)
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and we prove that the sequence (x
(0)
i , ..., x

(k)
i , ...) converges. For this, we prove that

the sequence (x
(0)
i , ..., x

(k)
i , ...) is monotone increasing and bounded from above. First

we show

x
(k+1)
i ≥ x

(k)
i , for all k ≥ 0, 1 ≤ i ≤ n. (A.2.8)

For this aim, we use the mathematical induction, so at k = 0 we have, by (A.2.6)

and (A.2.7),

x
(1)
i = f−1

i

(
n∑
j=1

mijhij(x
(0)
j ) + li

)
= f−1

i

(
n∑
j=1

mijhij(u
∗) + li

)
≥ u∗ = x

(0)
i , 1 ≤ i ≤ n.

Next, we assume, for some k ≥ 0, that

x
(k)
i ≥ x

(k−1)
i , 1 ≤ i ≤ n. (A.2.9)

Then, by (A.2.7) and (A.2.9),

x
(k+1)
i = f−1

i

(
n∑
j=1

mijhij(x
(k)
j ) + li

)
≥ f−1

i

(
n∑
j=1

mijhij(x
(k−1)
j ) + li

)
= x

(k)
i , 1 ≤ i ≤ n.

Hence the sequence (x
(0)
i , ..., x

(k)
i , ...) is monotone increasing for all k ≥ 0, 1 ≤ i ≤

n. Now to prove that the sequence (x
(0)
i , ..., x

(k)
i , ...) is bounded from above for all

k ≥ 0, 1 ≤ i ≤ n, we show that

x
(k+1)
i ≤ xi, for all k ≥ 0, 1 ≤ i ≤ n. (A.2.10)

Again we use the mathematical induction, so at k = 0 we have, by (A.2.4), (A.2.5)

and (A.2.7),

x
(1)
i = f−1

i

(
n∑
j=1

mijhij(x
(0)
j ) + li

)

= f−1
i

(
n∑
j=1

mijhij(u
∗) + li

)

≤ f−1
i

(
n∑
j=1

mijhij(xj) + li

)
≤ xi, 1 ≤ i ≤ n.

Next, we assume, for some k ≥ 0, that

x
(k)
i ≤ xi, 1 ≤ i ≤ n. (A.2.11)
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Then, by (A.2.4), (A.2.7) and (A.2.11), we have

x
(k+1)
i = f−1

i

(
n∑
j=1

mijhij(x
(k)
j ) + li

)

≤ f−1
i

(
n∑
j=1

mijhij(xj) + li

)
≤ xi, 1 ≤ i ≤ n,

and hence the sequence (x
(0)
i , ..., x

(k)
i , ...) is bounded from above for all k ≥ 0, 1 ≤

i ≤ n. Now since the sequence is monotone increasing and bounded from above,

then it converges and has a finite limit, i.e.,

lim
k→∞

x
(k)
i = x∗i , 1 ≤ i ≤ n,

and clearly, x∗ = (x∗1, ..., x
∗
n) is the unique positive solution of (5.2.16). On the

other hand, we know that

x
(k)
i ≤ xi, k ≥ 0, 1 ≤ i ≤ n,

which implies

x∗i ≤ xi, 1 ≤ i ≤ n,

and hence the proof of (ii) is completed.

The proof of part (iii) is similar to that of part (ii), so it is omitted here. �

Proof of Theorem 5.2.4. In the proof we will use the notations

xϕi (∞) := lim inf
t→∞

xi(ϕ)(t) and xϕi (∞) := lim sup
t→∞

xi(ϕ)(t).

By conditions (5.2.4), (5.2.5), (5.2.7) and relation (5.2.10), we have for any T ≥ τ

that

0 ≤ mij(T ) := inf
t≥T

n0∑̀
=1

αij`(t)

ri(t)
≤ sup

t≥T

n0∑̀
=1

αij`(t)

ri(t)
=: Mij(T ) <∞, 1 ≤ i, j ≤ n;

(A.2.12)

0 ≤ li(T ) := inf
t≥T

ρi(t)

ri(t)
≤ sup

t≥T

ρi(t)

ri(t)
=: Li(T ) <∞, 1 ≤ i ≤ n; (A.2.13)
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and

0 < xi(T ) := inf
t≥T−τ

xi(t) ≤ sup
t≥T−τ

xi(t) =: xi(T ) <∞, 1 ≤ i ≤ n. (A.2.14)

Thus from (A.2.12), (A.2.13), (A.2.14) in (5.2.1) we get

ẋi(t) ≥ ri(t)

 n∑
j=1

n0∑̀
=1

αij`(t)

ri(t)
hij(xj(T )) + li(T )− fi(xi(t))



≥ ri(t)

 n∑
j=1

inf
t≥T

n0∑̀
=1

αij`(t)

ri(t)
hij(xj(T )) + li(T )− fi(xi(t))


≥ ri(t)

[
n∑
j=1

mij(T )hij(xj(T )) + li(T )− fi(xi(t))

]
, t ≥ T, 1 ≤ i ≤ n,

or equivalently

ẋi(t) ≥ ri(t) [Ci(T )− fi(xi(t))] , t ≥ T, 1 ≤ i ≤ n, (A.2.15)

where Ci(T ) :=
n∑
j=1

mij(T )hij(xj(T )) + li(T ). From (A.2.15) and the comparison

theorem of differential inequalities we get

xi(t) ≥ yi(t), t ≥ T, 1 ≤ i ≤ n,

where yi(t) = y(T, ϕi(T ), Ci(T ), ri, fi)(t), 1 ≤ i ≤ n are the solutions of the differ-

ential equations

ẏ(t) = ri(t)
(
c− fi(y(t))

)
, t ≥ T ≥ 0, (A.2.16)

with c = Ci(T ) and with the initial condition

yi(T ) = xi(T ), 1 ≤ i ≤ n. (A.2.17)

So, from Lemma 3.2.1, we see that

lim
t→∞

yi(t) = f−1
i (Ci(T )) , 1 ≤ i ≤ n.

Thus, for any T ≥ τ ,

xϕi (∞) := lim inf
t→∞

xi(ϕ)(t) ≥ lim
t→∞

yi(t) = f−1
i (Ci(T )) , 1 ≤ i ≤ n.
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But

lim
T→∞

f−1
i (Ci(T )) = lim

T→∞
f−1
i

(
n∑
j=1

mij(T )hij(xj(T )) + li(T )

)

= f−1
i

(
n∑
j=1

lim
T→∞

mij(T )hij(xj(T )) + lim
T→∞

li(T )

)

= f−1
i

(
n∑
j=1

mijhij(x
ϕ
j (∞)) + li

)
, 1 ≤ i ≤ n.

Therefore

xϕi (∞) ≥ f−1
i

(
n∑
j=1

mijhij(x
ϕ
j (∞)) + li

)
, 1 ≤ i ≤ n,

or equivalently

fi(x
ϕ
i (∞)) ≥

n∑
j=1

mijhij(x
ϕ
j (∞)) + li, 1 ≤ i ≤ n.

Since all the conditions of Lemma 5.2.3 are satisfied with mij = mij and li = li,

it can be applied, and we obtain

xϕi (∞) ≥ x∗i , 1 ≤ i ≤ n,

where x∗ = (x∗1, . . . , x
∗
n) is the unique positive solution of the System (5.2.25). In a

similar way we can get

xϕi (∞) ≤ x∗i , 1 ≤ i ≤ n,

where x∗ = (x∗1, . . . , x
∗
n) is the unique positive solution of the System (5.2.26). Hence

the proof is completed. �

Proof of Theorem 5.3.3. Let ϕ, ψ ∈ Cn
+ be fixed and define νi(t) := xi(ϕ)(t)

and ωi(t) := xi(ψ)(t). Then

ν̇i(t) =
n∑
j=1

n0∑
`=1

αij`(t)νj(t− τij`(t))− ri(t)νqii (t) + ρi(t), t ≥ 0, 1 ≤ i ≤ n,

and

ω̇i(t) =
n∑
j=1

n0∑
`=1

αij`(t)ωj(t− τij`(t))− ri(t)ωqii (t) + ρi(t), t ≥ 0, 1 ≤ i ≤ n.
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Now, introduce zi(t) := νi(t)− ωi(t), then

żi(t) =
n∑
j=1

n0∑
`=1

αij`(t)zj(t−τij`(t))−ri(t)zi(t)
qi−1∑
r=0

νri (t)ω
qi−1−r
i (t), t ≥ 0, 1 ≤ i ≤ n,

or equivalently

żi(t) = −ai(t)zi(t) +
n∑
j=1

n0∑
`=1

αij`(t)zj(t− τij`(t)), t ≥ 0, 1 ≤ i ≤ n, (A.2.18)

where ai(t) := ri(t)
qi−1∑
r=0

νri (t)ω
qi−1−r
i (t). We can consider (A.2.18) as the perturbation

of the scalar ordinary differential equation

ẏi(t) = −ai(t)yi(t), t ≥ 0, 1 ≤ i ≤ n.

Thus, for any T ≥ 0 and 1 ≤ i ≤ n, the solution of (A.2.18) satisfies

zi(t) = zi(T )e−
∫ t
T ai(u)du +

∫ t

T

e−
∫ t
s ai(u)du

n∑
j=1

n0∑
`=1

αij`(s)zj(s− τij`(t)) ds, t ≥ T.

(A.2.19)

The definition of ai(t), (5.3.13) and assumption (5.3.14) yield, for each i = 1, . . . , n,

lim sup
t→∞

n∑
j=1

n0∑̀
=1

αij`(t)

ai(t)
≤ lim sup

t→∞

1
qi−1∑
r=0

νri (t)ω
qi−1−r
i (t)

lim sup
t→∞

n∑
j=1

n0∑̀
=1

αij`(t)

ri(t)

≤ 1

qimii

n∑
j=1

lim sup
t→∞

n0∑̀
=1

αij`(t)

ri(t)

≤

n∑
j=1

mij

qimii

< 1.

Thus, there exist 0 < η < 1 and T1 ≥ 0 such that
n∑
j=1

n0∑̀
=1

αij`(t)

ai(t)
< η < 1, t ≥ T1,

or equivalently
n∑
j=1

n0∑
`=1

αij`(t) ≤ ηai(t), t ≥ T1, 1 ≤ i ≤ n. (A.2.20)

We introduce zj(∞) := lim sup
t→∞

zj(t), 1 ≤ j ≤ n. For every ε > 0, there exists a
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T ≥ T1 such that

|zj(s−τij`(t))| ≤ zj(∞)+ε ≤ max
1≤l≤n

zl(∞)+ε, s ≥ T, 1 ≤ i, j ≤ n, 1 ≤ ` ≤ n0.

(A.2.21)

Using (A.2.19), (A.2.20) and (A.2.21), we get

|zi(t)| ≤ |zi(T )|e−
∫ t
T ai(u) du +

∫ t

T

e−
∫ t
s ai(u) du

n∑
j=1

n0∑
`=1

αij`(s)|zj(s− τij`(t))| ds

≤ |zi(T )|e−
∫ t
T ai(u) du +

(
max
1≤j≤n

zj(∞) + ε
)
η

∫ t

T

e−
∫ t
s ai(u) duai(s) ds

= |zi(T )|e−
∫ t
T ai(u) du +

(
max
1≤j≤n

zj(∞) + ε
)
η(1− e−

∫ t
T ai(u) du)

for t ≥ T and 1 ≤ i ≤ n. Taking the limit supermum for both sides as t→∞, and

using (A1) and Lemma 5.2.2, and that∫ ∞
T

ai(u)du =

∫ ∞
T

ri(u)

qi−1∑
r=0

νri (u)ωqi−1−r
i (u)du

≥

(
inf
t≥T

qi−1∑
r=0

νri (t)ω
qi−1−r
i (t)

)∫ ∞
T

ri(u)du

= ∞,

we obtain

zi(∞) ≤ η( max
1≤l≤n

zl(∞) + ε), 1 ≤ i ≤ n.

Thus

max
1≤i≤n

zi(∞) ≤ η max
1≤i≤n

zi(∞) + ηε,

which implies

max
1≤i≤n

zi(∞) ≤ ηε

1− η
.

Since ε > 0 can be arbitrary small, we get max
1≤i≤n

zi(∞) = 0 and consequently

lim
t→∞

zi(t) = 0, 1 ≤ i ≤ n. Hence the proof is completed. �
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