

ERGONOMIC AND TECHNICAL EXAMINATION OF VIRTUAL ENVIRONMENTS

Theses of doctoral (PhD) dissertation for public
discussion

Author:

Veronika Szücs

Engineer in computer science, MSc

University of Pannonia
Doctoral School of Information Science

Supervisor: Cecília Sik Lányi, PhD.

Veszprém
2019

CONTENT

Actuality and Importance of the Research Topic	3
Aim of the Research, Motivation	3
Applied Tools and Methods.....	5
New Scientific Results	7
Recommendations for Future Research Directions.....	10
Publications of the Author	10
Independent citations	16
References.....	17

ACTUALITY AND IMPORTANCE OF THE RESEARCH TOPIC

Nowadays, in a growing number of areas of life, a Gamification approach is used to solve certain problems and to popularize certain activities [10, 11]. Of course, the field of application cannot be absent from the field of application [2, 8, 14, 18, 19, 29].

Virtual Reality (VR) technology provides a unique toolkit for effective rehabilitation, whether phobia treatment or motion therapy for stroke patients [24, 27, 28]. Its usefulness is significant, the therapy can be implemented in a function-central, goal-oriented and motivating environment.

Unfortunately, stroke has now become one of the most common diseases. In Hungary, stroke is one of the most common causes of death and the most common disability-causing illness. This requires the incorporation of modern technology tools into effective stroke therapy.

Defects in color vision are often neglected because most people do not consider it a serious problem. Approximately 15% of the population is affected by different color vision errors [15]. A common mistake in computer applications is the inadequate combination of background and foreground colors, which can render web pages, software, games, users with color vision errors unusable.

The role of virtual reality-based "serious game" software solutions in post-stroke rehabilitation is also important. Several frameworks, even in the home environment, have been developed in recent years worldwide [1, 5, 6, 7, 9, 12, 13, 14, 15, 17, 20, 22, 23, 25, 26, 30]. Unfortunately, many of them did not spread, did not replace the hopes. The main reason for the failure of these rehabilitation projects is the experience of previous projects that patients and supporters and nurses find it difficult to use new IT tools, difficult to personalize therapy, and patients lose motivation [29].

In my dissertation I present my researches and results on the visualization of virtual environments on the one hand, and on the other hand, a solution that supports motion rehabilitation applications that are already in operation and will be developed in the future, so that in the rehabilitation the movement therapy can be fully adapted to the patient's needs, condition to ensure a sense of success, to maintain patient motivation.

AIM OF THE RESEARCH, MOTIVATION

Visibility, spot-on, color-optimized interface - on the one hand due to the problems of vision, as a side effect of stroke, because of visual problems, on the

other hand, because of the large number of visually impaired people in the population related to digital technologies in general.

It was an important factor in my research to investigate the spatial representation in rehabilitation applications and games [21].

Deficiencies in color vision may include acquired illnesses or inherited diseases. Unfortunately, stroke leading to death worldwide, for example, in the United States, nearly 800,000 people fall victim each year - every 20th is fatal [4]. Approximately 610,000 of these cases received stroke for the first time; It is a multiple of repetitive cases of 185,000 people. According to data from ophthalmologists, optometrists, 10% of the male population lives with a color vision defect or is completely colorless. This data indicates a statistically significant number of subjects at the incidence of stroke.

In the digital worlds and in virtual environments, I have focused the visibility tests on the web display area because this area is where the highest number of target audiences reaches the content that appears. In all cases, color accuracy studies are an important question as to how we look at color fidelity. There are so many contents on the Internet that although I could have chosen the most frequently viewed pages, I visited most often photo galleries, probably I would not have been able to perform an exact examination in the absence of reference data. However, I was in a very fortunate position when it came to light that in the LED4ART - High Quality and Energy Efficient LED Illumination for Art project [16] between 2012 and 2014 is our research laboratory, the Virtual Environments and Light Science Research Laboratory have been given the opportunity to modernize and design the interior lighting of the Sistine Chapel. In the Sistine Chapel, under the guidance of Professor János Schanda, colorimetric measurements of the frescoes of the chapel were made, which meant that I had a reference measurement of an original environment that could be used to carry out serious research on digital reproductions on the Internet.

Nowadays, the digital reproduction of many works of art and paintings is available on the Internet, either in a personalized and uploaded version, or on their own official websites of galleries and museums, in many cases in online galleries for their own virtual museum tours. Searches from the Internet are the result of a variety of sources, when Google or any other search engine searches for works of art, and the number of hits is ten thousand. The visual quality of the results, at first sight, shows a very large dispersion, either in image size, image resolution or simply in terms of appearance. The question is, therefore, is there a significant difference between the digital reproductions of original works from several online databases and the original works of art. The purpose of my studies and measurements was to discover the causes of perceived differences.

The other area I studied was to analyze the computer interactions of users. There are also a number of initiatives in the health sector [11], mainly in the field of rehabilitation where exercise is used. There are "serious" games

(development games, their original English name "serious games") that can be used to supplement physical therapy because they use motion elements to control them that the therapist recommends. In these software, the patient's movement is monitored through an optical device and indicated when the exercise is done properly. There are applications where the user is placed in a virtual reality, for example, handling his phobia or reducing his frustration with the rehabilitation procedure.

Kinect Control allows users to interact with the program without any tools to be handled, using only their own body, motion patterns, and gestures, which also enhances the user experience. My research is motivated by the fact that the difficulties of the device can be eliminated and, for example, Kinect or other similarly optical sensors can be successfully applied at any stage of the rehabilitation therapy.

APPLIED TOOLS AND METHODS

Test materials and method used for testing of color reproduction:

For the examinations, four frescoes were measured for the work by the researchers of the Virtual Environment and Light Science Laboratory at the Sistine Chapel frescoes.:

- Cosimo Rosselli: Crossing of the Red Sea
- Cosimo Rosselli: Tables of the Law
- Sandro Botticelli: Temptation of Christ
- Michelangelo Buonarroti: Last Judgment

For each of the four frescoes I used three sets of input data:

- CIELAB data provided by the Vatican, which refer to D50 illumination, CIE 2 ° viewing angle, were my reference data during the tests;
- directly measured reflection spectrum data on selected frescoes;
- digital reproduction (soft-copy) from four different Internet sources, displayed on a calibrated LCD monitor.

For each fresco, I chose the details of the color patches for the measurements. The selected samples were measured with an X-rite Eye-One (i1) spectrometer at 10nm in a wavelength range of 380 nm and 730 nm. For colorimetric calculations, the data recorded in 10 nm increments were converted to a 5 nm scale, because it was in line with the laboratory's previous practice and work, but no measurement range correction was made because such information was not available for the Vatican's measurement data, all data were treated in the same way and since the measurements are reproduced in different media, the measurement range correction would not have provided much more insight into the problem..

Due to similar considerations, the evaluation of the measurements was performed in the CIELAB color space and I did not use more sophisticated colorimetric calculations, but the systematic measurement errors are negligible because the measurements were always done with the same calibrated measuring instrument.

For digital reproductions, the white point peak was considered to be $R = G = B = 255$, which corresponds to the 5352 K correlated color temperature. For the other spectra I used the D50 white point, as the information indicates that the Vatican CIELAB values were also calculated with this reference illumination. Calculations were performed using CIE 1931 2 ° color matching functions.

In the course of my research I determined the degree of measurement uncertainty and characterized the reliability of the series of measurements by statistical tests. I have tested the repeatability of the measurements, as well as the homogeneity measurement for the calibrated publishers. After that I performed an examination of the original and digital reproduction of the scenes, and then I carried out measurements on the display of different browsers, which means 1100 measurements.

Test Material and methods related to user interaction:

For the tests, I used 7 different motion patterns for motion therapy and two VR games with a 16-person test group, which means 224 sets of motion data, each data set containing at least 10 complete motion cycles, i.e. 2240 motion cycles.

I investigated whether data coming from the Kinect sensor should be cleared because these data contained incorrectly measured data and values that were not measured by the sensor, but only estimated values. Then I examined whether the result of the motion cycle identification process depends on the processing algorithm when processing the motion description set. Based on the data sets I made the reconstruction of motion patterns in 2 and 3 dimensions. After reconstructing, real-time detection and classification of motion patterns was investigated, and an application was created to visualize the motion record data set, to display previously recorded movements.

NEW SCIENTIFIC RESULTS

In the context of ergonomic and technical testing of virtual environments, I have produced the following results based on application-related visibility considerations:

Thesis Group I: Examination of color fidelity in Virtual Environments

I.1. thesis: Significant differences of $\Delta E^* \geq 3.2$ between the colors of the real world's original objects and their color reproduction.

My research has shown that there is a significant difference in color fidelity between the original real objects and their digital reproductions.

I.2. thesis: The source of the discrepancy found in Thesis I.1 is complex. One reason is the different display technology of browsers, which is significant in color rendering, $\Delta E^* \min = 4.49$ and $\Delta E^* \text{ mean} = 17.33$ deviations.

Measurements show that these differences are not due to measurement errors and are not random variations but are caused by a lack of color space information for processing, decoding and displaying different image compression and decoding techniques, incorrectly applied or simply digital reproductions.

Not only is it essential for people with color vision problems, but it is also important for intimate visionary people to have the right color information displayed and not to allow color coding for the sole information to be communicated.

Recommendation for partial solution of the problem:

When processing digital reproductions (digital camera, scanner), make sure the image maker does not miss the color space information or delete the EXIF information from the JPEG images.

In the case of digitally stored reproductions, as little compression as possible should be minimized by storing information.

Related own publications: S1, S4, S6, S8, S10, S14, S20, S24, S31, S35, S39, S46.

Of these, 7 were published as the first author.

I summarize the results of user interaction and the usability aspects of virtual environments in the following theses:

Thesis Group II: Motion Descriptive Data Analysis, Motion Pattern Recognition, Reconstruction and Visualization

2.1. Thesis: If modern input devices do not provide proper interaction in motion rehabilitation applications, they cannot be used in daily practice, and their market introduction is not realized.

The experience gained in the StrokeBack¹⁷ project, as well as the experience gained at the National Institute of Medical Rehabilitation in Hungary, confirms that the continuous success and motivation of the user is an important condition for the practical application of new technologies and developments.

Recommendation for a solution:

There is a need to develop a method that ensures the continuous success of the user in Kinect's sensory rehabilitation applications in a real-time process.

Related own publications: S7, S15, S18, S19, S21, S22, S28, S29, S30, S32, S36, S40, S42, S47

2.2. Thesis: Although the motion description data from the Kinect sensor is not error-free, it is also suitable for further real-time processing without prior error correction.

My performed examinations have shown that the motion description data that can be extracted from the Kinect sensor contains estimated values when the sensor loses contact with the user and also contains incorrectly measured coordinate data. In the course of the investigations it was concluded that the preliminary correction of the data is not necessary, because during the later processing the deviation resulting from these errors in the recognition and classification of the gestures does not result in a significant difference either in the negative or in the positive direction. In an optimal environment without error correction, the detection ratio (R_f) is $R_f = 97\%$, with Lagrange interpolation correction $R_f = 93\%$, after 9th polynomial matching $R_f = 97\%$, which means a $+/-1$ correctly recognized motion for a sample of 30 cycles.

2.3. tézis: The method of processing motion description data influences the efficiency of processing and gesture recognition, thereby maintaining the user's sense of success.

My studies have shown that in the Kinect sensor, different methods of processing skeleton-associated motion descriptor data showed different results in recognizing gestures.

Recommendation for a solution:

Using methods developed simultaneously with research, the Distance Vector Based Gesture Recognition (**DVGR**), and the Reference Distance Based Synchronous/Asynchronous Movement Recognition (**RDSMR/RDAMR**), gestures used by users to control applications in therapeutic applications in rehabilitation applications can be recognized in real time with high accuracy.

2.4. Thesis: The classification of the motion pattern requires the use of a real-time classification method adapted to the user's specific needs.

Based on the experience gained during the research and the review of the literature, the misidentified movements and expectations of inadequate level of movement coordination in applications controlled by Kinect have led to a feeling of failure by users and have lost motivation for further use.

Recommendation for a solution:

Simultaneously with the research, I developed a real-time process, the Real-Time Adaptive Motion Pattern Classification (RAMPC) to support Kinect's sensory control of motion-rehabilitation development games, applications that, in response to user needs, based on relative reference base generation, define controllable parameters acceptance range for accepting user gestures. This method makes Kinect sensor-driven motion rehabilitation applications applicable to all phases of therapy, so it will not cause any failure in the exercise, even in the case of a high degree of motion limitations and will therefore most likely maintain the user's ongoing motivation.

2.5. Thesis: The post-reconstruction and visualization of motion patterns can be used to visualize therapeutic exercise tasks in a home-care environment and in a telemedicine environment in a form that can be easily understood by healthcare professionals.

During my research, it has been proven that VR-based or conventional motion therapy under personal supervision is more effective, the degree and direction of the patient's development is more controllable because there is not enough and meaningful information on performing rehabilitation practices in a telemedicine environment in a home environment and it may be costly to transmit large amounts of data on the communication channel.

Recommendation for a solution:

At the same time as the research, I realized the **Re (al) Play!** - motion pattern reconstruction application. For Kinect sensory motion rehabilitation applications, motion description data can be stored in a file and stored in plain text format. The transmission of this small content on the Internet does not generate significant costs.

Files containing motion patterns (exercise data) can be visualized with a reconstructive 'Re (al) Play!' application to the therapist. In the application, it is possible to replay the motion pattern and to display the range of motion of the body parts involved in the observation in the selected plane of the space as a function of time on a graph. Based on this two information, the therapist gets a complete picture of the patient's development and the effectiveness of the exercises.

Additional own publications related to Thesis Group II.: S2, S12, S13, S23, S25, S27, S34, S37, S43, S44, S48, S49, S50

The 5 The publication of the results related to the **2.1, 2.2, 2.3, 2.4** sub-theses is currently under review (At the time of submission of the dissertation, the first author, impact factor publication was published: S [52]).

RECOMMENDATIONS FOR FUTURE RESEARCH DIRECTIONS

Based on the results of the research, it requires further research in the field of spatial displaying to determine if there is a possibility to develop a fix for the current image compression process that will allow for more accurate image information recovery.

Another question about user interaction related to virtual environments is whether the improvement of the user's movements can be predicted by a predictive algorithm, and based on such a prediction, the base can be generated from the previous motion descriptors, the reference to the **DVGR / RDMSR / RDAMR / RAMPC** algorithms. It is also necessary to further investigate whether the width of the adaptive acceptance range can be limited based on previous motion description patterns when classifying motion patterns.

In the field of virtual reality-based rehabilitation applications, the spread of mobile devices cannot be ignored, and the use of humanoid robots is a questionable area that raises further questions. A more far-reaching aspect of the use of mobile devices is the field of communication and communication protocols, because today's technological development is basically aimed at improving cloud-based storage and cloud-based computing capacity utilization.

PUBLICATIONS OF THE AUTHOR

[S1.] **Veronika Szucs**, Cecilia Sik Lanyi, Ferenc Szabo, Peter Csuti: Colour-chek in stroke rehabilitation games. Alternative Medicine Research Yearbook 2017. Joav Merrick (editor). Nova Science Publishers Inc. New York 2018. (ISBN: 978-53613-726-2 Hardcover, ISBN: 978-53613-727-9 E-book), (ISSN: 2162-3759)

[S2.] Haas R, **Szucs V**, Sik-Lanyi C: A flash technology-based labyrinth game with Kinect control. In: Powell W, Rizzo A S, Sharkey P M, Merrick J (szerk.) Virtual Reality: Recent Advances for Health and Wellbeing. New York: Nova Science Publishers, 2017. pp. 73-86. (ISBN:978-1-53612-454-5)

[S3.] Nemeth R, **Szucs V**, Sik-Lanyi C: A kinect sensor-controlled game for the early diagnosis of visual problems. In: Powell W, Rizzo A S, Sharkey P M, Merrick J. (szerk.) Virtual Reality: Recent Advances for Health and Wellbeing. New York: Nova Science Publishers, 2017. pp. 87-100. (ISBN:978-1-53612-454-5)

[S4.] C Sik-Lányi, **Veronika Szücs**, Tibor Guzsvinecz: Usability and colour-check of a healthcare WEB-site. In: 2017 IEEE 30th Neumann Colloquium (NC). Konferencia helye: Budapest, Magyarország, 2017.11.24 -2017.11.25. pp. 000111-000116. DOI:10.1109/NC.2017.8263263

[S5.] Sik-Lanyi C, Shirmohammadi S, Guzsvinecz T, Abersek B, **Szucs V**, Van Isacker K, Grudeva P, Lazarov A: How to Develop Serious Games for Social and Cognitive Competence of Children with Learning Difficulties. In: IEEE 8th International Conference on Cognitive InfoCommunications: CogInfoCom. Konferencia helye, ideje: Debrecen, Magyarország, 2017.09.11 -2017.09.14. (IEEE) Piscataway (NJ): IEEE Computer Society, 2017. pp. 321-326. (ISBN:978-1-5386-1264-4)

[S6.] Sik-Lanyi C, **Szucs V**, Guzsvinecz T: Usability and Colour-check of a Healthcare WEB-site. In: Szakál Anikó (szerk.) IEEE 30th Jubilee Neumann Colloquium: Neumann Colloquium 2017. Konferencia helye, ideje: Budapest, Magyarország, 2017.11.24 - 2017.11.25. Budapest: Óbudai Egyetem, 2017. pp. 111-116. (ISBN:978-1-5386-4635-9)

[S7.] Sikné Lányi Cecília, **Szücs Veronika**, Guzsvinecz Tibor: A VR/AR jelenlegi, illetve prognosztizált felhasználási területei az egészségügyben. XV. Jubileumi Országos Infokommunikációs Konferencia, Budapest, 2017. május 18. (2017)

[S8.] **Szucs V**, Sik Lanyi C: Online colour representation of museum artefacts (Chapter 27). In: Janet Best (szerk.) Colour Design (Second Edition). Cambridge: Woodhead Publishing Ltd, 2017. pp. 641-651. (ISBN:9780081012703)

[S9.] **Szucs V**, C Sik-Lanyi: Computer aided rehabilitation; Applications' lifecycle In: 2017 IEEE 30th Neumann Colloquium (NC). Konferencia helye, ideje: Budapest, Magyarország, 2017.11.24 -2017.11.25. pp. 000147-000150.

[S10.] **Szücs V**, Sik-Lanyi C: Colour fidelity of online museums. p. 25. 1 p. 6th Colour Specialist International Conference in Hungary, International Interdisciplinary Conferenceon Colourand Pattern Harmony, 21-23 May, 2017, Pápa, Hungary (2017)

[S11.] Godár M , **Szücs V**, Sik-Lanyi C: Memory Game and special HCI device in stroke therapy LECTURE NOTES IN COMPUTER SCIENCE 9758: pp. 545-548. (2016) International Conference Computer Helping People with Special Needs. Linz, Ausztria: 2016.07.13 -2016.07.15. (ISBN 978-3-319-41263-4)

[S12.] Guzsvinecz Tibor, Magyar Attila , Sikné Lányi Cecília , **Szücs Veronika**: Adaptív szabályozó interfész tervezése Kinect szenzoros mozgásrehabilitációs alkalmazáshoz. In: Bari Ferenc, Almási László (szerk.) Orvosi Informatika 2016. A XXIX. Neumann Kollokvium konferencia-kiadványa. 146 p. Konferencia helye, ideje: Szeged, Magyarország, 2016.12.01 -2016.12.02. Szeged: Neumann János Számítógéptudományi Társaság (NJSZT), 2016. pp. 45-48. (ISBN:978-963-306-514-3)

[S13.] Haas R, **Szucs V**, Sik-Lanyi C: Labyrinth game with Kinect control. In: Paul Sharkey, Albert 'Skip' Rizzo (szerk.) 11th International Conference on Disability, Virtual Reality and Associated Technologies: Proceedings. Konferencia helye, ideje: Los Angeles (CA), Amerikai Egyesült Államok, 2016.09.20 -2016.09.22. Reading: University of Reading, 2016. pp. 307-310. (ISBN:978-0-7049-1547-3)

[S14.] Hirschler R, Oliveira D F, **Szücs V**, Sik-Lányi C: Visual colour control in industry -the state of the art. In: Klára Wenzel, Cecília Sik-Lányi (szerk.) Lux et Color Vespremiensis. 117 p. Konferencia helye, ideje: Veszprém, Magyarország, 2016.10.14 - 2016.10.15. Budapest: Budapest University of Technology and Economics, 2016. pp. 14-15. (ISBN:978-963-313-238-8)

[S15.] Mogánné Tölgyesy Szilvia, **Szücs Veronika**, Sikné Lányi Cecília: A virtuális valóság alkalmazásának új lehetősége az Országos Orvosi Rehabilitációs Intézetben. In: Dr Fazekas Gábor, Dr Boros Erzsébet, D Dénes Zoltán, Dr Mayer Ágnes, Mezei Zoltán, Dr Tóth István (szerk.) Orvosi Rehabilitáció és Fizikális Medicina Magyarországi Társasága XXXV. Vándorgyűlése. 85 p. Konferencia helye, ideje: Budapest, Magyarország, 2016.08.31 -2016.09.03. Budapest: Orvosi Rehabilitáció és Fizikális Medicina Magyarországi Társasága (ORFMMT), Paper P02.

[S16.] Nemeth R, **Szücs V**, Sik-Lányi C: Kinect sensor controlled game for early diagnosis of visual problems. In: Paul Sharkey, Albert 'Skip' Rizzo (szerk.). 11th International Conference on Disability, Virtual Reality and Associated Technologies: Proceedings. Konferencia helye, ideje: Los Angeles (CA), Amerikai Egyesült Államok, 2016.09.20-2016.09.22. Reading: University of Reading, 2016. pp. 351-354. (ISBN:978-0-7049-1547-3)

[S17.] Paxian Sz, **Szücs V**, Sik-Lányi C, Shirmohammadi S, Abersek B, Lazarov A, van Isacker K: Target group questionnaire in the "ISG for Competence" project. LECTURE NOTES IN COMPUTER SCIENCE 9759: pp. 317-320. (2016) International Conference Computer Helping People with Special Needs. Linz, Ausztria: 2016.07.13 -2016.07.15. (ISBN 978-3-319-41266-5)

[S18.] Sebők Dávid, **Szücs Veronika**, Sikné Lányi Cecília: Kinect-tel vezérelt stroke terápiás rendszer prototípusa. In: Bari Ferenc, Almási László (szerk.) Orvosi Informatika 2016. A XXIX. Neumann Kollokvium konferencia-kiadványa. 146 p. Konferencia helye, ideje: Szeged, Magyarország, 2016.12.01 -2016.12.02. Szeged: Neumann János Számítógép-tudományi Társaság (NJSZT), 2016. pp. 41-44. (ISBN:978-963-306-514-3)

[S19.] Sik lányi C, **Szücs V**: Motivating Rehabilitation Through Competitive Gaming. In: E Vogiatzaki, A Kruckowski (szerk.) Modern Stroke Rehabilitation through e-Health-based Entertainment. Cham (Svájc): Springer International Publishing, 2016. pp. 137-167. (ISBN:978-3-319-21292-0)

[S20.] **Veronika Szücs**, Cecília Sik Lányi: Color Rendering of Images in the Internet and Print Reproductions of the Sistine Chapel's Frescos. LEUKOS The Journal of the Illuminating Engineering Society Volume 12, 2016 - Issue 1-2: Special Issue on Color Rendition. pp.101-110. <https://doi.org/10.1080/15502724.2014.1000495> IF:0,67

[S21.] Tatár András, Magyar Attila, **Szücs Veronika**: Humanoid robot alkalmazása a mozgáskoordináció fejlesztésben és rehabilitációban. In: Bari Ferenc, Almási László (szerk.) Orvosi Informatika 2016. A XXIX. Neumann Kollokvium konferencia-kiadványa. 146 p. Konferencia helye, ideje: Szeged, Magyarország, 2016.12.01 -2016.12.02. Szeged: Neumann János Számítógép-tudományi Társaság (NJSZT), 2016. pp. 49-52. (ISBN:978-963-306-514-3)

[S22.] Béres-Molnár Katalin Anna, **Szücs Veronika**, Folyovich András, Bessenyei Dávid, Sikné Lányi Cecília: Kinecttel támogatott stroke-terápiás rendszer fejlesztése. VASCULARIS NEUROLÓGIA 7:(1. Suppl.) p. 24. (2015)

[S23.] Béres-Molnár Katalin Anna, **Szücs Veronika**, Folyovich András, Bessenyei Dávid, Sikné Lányi Cecília: Kinecttel támogatott stroke-terápiás rendszer fejlesztése. A

Magyar Stroke Társaság XII. konferenciája és a Magyar Neuroszonológiai Társaság IX. konferenciája, Sopron, 2015. szeptember 17-19. (2015)

[S24.] Guzsvinecz Tibor, **Szücs Veronika**, Sikné Lányi Cecília: Világítástechnikai kutatások és fejlesztések a támogató technológiákban. XIV. Lux et Color Vesprimiensis Szimpózium, Veszprém, 2015. november 13. (2015)

[S25.] Guzsvinecz T, **Szücs V**, Sik Lányi C: Developing movement recognition application with the use of Shimmer sensor and Microsoft Kinect sensor. In: Sik-Lányi C, Hoogerwerf E-J, Miesenberger K (szerk) Assistive Technology: Building Bridges: 13th European AAATE conference. 1112 p. Konferencia helye, ideje: Budapest, Magyarország, 2015.09.09 -2015.09.12. (217) Amsterdam: IOS Press, 2015. pp. 767-772. (Studies in Health Technology and Informatics; 217.) (ISBN:978-1-61499-565-4)

[S26.] Maroti D, **Szücs V**, Sik Lányi C: Digital Arts Supported by Science: International Journal of Arts & Sciences. Vienna, 20-24 April 2015. (2015)

[S27.] Mintal F A, **Szücs V**, Sik Lányi C: Developing movement therapy application with Microsoft Kinect control for supporting stroke rehabilitation. In: Sik-Lányi C, Hoogerwerf E-J, Miesenberger K (szerk.). Assistive Technology: Building Bridges: 13th European AAATE conference. 1112 p. Konferencia helye, ideje: Budapest, Magyarország, 2015.09.09 -2015.09.12. (217) Amsterdam: IOS Press, 2015. pp. 773-781. (Studies in Health Technology and Informatics; 217.) (ISBN:978-1-61499-565-4)

[S28.] Sik Lányi C, **Szücs V**, Mogan Tolgyesy Sz, Toth Z: Wheelchair driving simulator - Computer aided training for person with special needs. In: Baranyi Peter (szerk.) 2015 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom). Konferencia helye, ideje: Győr, Magyarország, 2015.10.19 -2015.10.21. (IEEE) New York: IEEE, 2015. pp. 381-384. (ISBN:978-1-4673-8129-1)

[S29.] Sikné Lányi Cecília, Mogánné Tölgysesi Szilvia, Tóth Zoltán, **Szücs Veronika**: Kerekesszék szimulátor. In: Kósa István, Vassányi István (szerk.) Új alapokon az egészségügyi informatika: A XXVIII. Neumann Kollokvium konferencia-kiadványa. 186 p. Konferencia helye, ideje: Veszprém, Magyarország, 2015.11.20 -2015.11.21. Veszprém: Neumann János Számítógép-tudományi Társaság (NJSZT), 2015. pp. 64-69. (ISBN:978-615-5036-10-1)

[S30.] Sikné Lányi Cecília, **Szücs Veronika**: A StrokeBack projekt tapasztalatai a fejlesztéstől a klinikai bevezetésig. XIII. IME Országos Egészségügyi Infokommunikációs Konferencia, Budapest, 2015. május 20. (2015)

[S31.] **Szücs V** Sik Lányi C, Szabo F, Csumti P: Colour-Check in Stroke-Rehabilitation Games (Chapter 18). In: P M Sharkey, J Merrick (szerk.) Recent Advances on Using Virtual Reality Technologies for Rehabilitation. 186 p. Jerusalem: Nova Science Publishers, 2015. pp. 129-138. (Disability Studies) (ISBN:978-1-63484-028-6)

[S32.] **Szücs Veronika**, Sikné Lányi Cecília: A StrokeBack projekt tapasztalatai a fejlesztéstől a klinikai bevezetésig. IME: INTERDISZCIPLINÁRIS MAGYAR EGÉSZSÉGÜGY / INFORMATIKA ÉS MENEDZSMENT AZ EGÉSZSÉGÜGYBEN 14:(7) pp. 55-58. (2015)

[S33.] **Szücs Veronika**, Boleraczki Miklós, Farkas Ferenc, Mészely Attila, Szikszai Zoltán, Kovács Zoltán, Sikné Lányi Cecília: Játék fejlesztés a Second Life Virtual Ability

szigetére. In: Kósa István, Vassányi István (szerk.) Új alapokon az egészségügyi informatika: A XXVIII. Neumann Kollokvium konferencia-kiadványa. 186 p. Konferencia helye, ideje: Veszprém, Magyarország, 2015.11.20 -2015.11.21. Veszprém: Neumann János Számítógép-tudományi Társaság (NJSZT), 2015. pp. 70-73. (ISBN:978-615-5036-10-1)

[S34.] **Szücs Veronika**, Guzsvinecz Tibor, Paxián Szilvia, Sikné Lányi Cecília: Mozgásfelismerő alkalmazás Shimmer- és Microsoft Kinect szenzor vezérléssel. In: Kósa István, Vassányi István (szerk.) Új alapokon az egészségügyi informatika: A XXVIII. Neumann Kollokvium konferencia-kiadványa. 186 p. Konferencia helye, ideje: Veszprém, Magyarország, 2015.11.20 -2015.11.21. Veszprém: Neumann János Számítógép-tudományi Társaság (NJSZT), 2015. pp. 74-77. (ISBN:978-615-5036-10-1)

[S35.] **Szücs Veronika**, Tasnádi Bálint, Hirschler Róbert, Sikné Lányi Cecília: Színes árnyékok és két alapszínes vetítés a digitális korban. XIV. Lux et Color Vesprimiensis Szimpózium, Veszprém, 2015. november 13. (2015)

[S36.] Sik Lányi C, **Szücs V**, Nyeki A: Most Important in the Design: Focus on the Users' Needs, a Case Study. In: Stephanidis Constantine Antona Margherita (eds) Universal Access in Human-Computer Interaction: Universal Access to Information and Knowledge. Konferencia helye, ideje: Heraklion, Görögország, 2014.06.22 -2014.06.27. Heraklion: Springer International Publishing, 2014. pp. 617-625. (ISBN:978-3-319-07439-9)

[S37.] Sik Lányi C, Szabó F, Csuti P, **Szücs V**, Nyeki A: „Gardener” Serious Game for Stroke Patients. In: K Miesenberger (eds)14th International Conference on Computers Helping People with Special Needs: Part I. Konferencia helye, ideje: Saint-Denis, Franciaország, 2014.07.09 -2014.07.11. pp. 272-275.

[S38.] Sik Lányi C, **Szücs V**, Klung J: "Logical Blocks" Multimedia Game Development for Students with Intellectual Disabilities. In: Constantine Stephanidis (eds) HCI International 2014 - Posters' Extended Abstracts. Konferencia helye, ideje: Heraklion, Görögország, 2014.06.22 -2014.06.27. Heraklion: Springer International Publishing, 2014. pp. 371-375. (ISBN:978-3-319-07856-4)

[S39.] Sik Lányi C, **Szücs V**, Szabó F, Csuti P.: Color-check int he Stroke-rehabilitation games. In: Paul Sharkey, Lena Pareto, Jurgen Broeren, Martin Rydmark 10th International Conference on Disability, Virtual Reality and Associated Technologies. Konferencia helye, ideje: Gothenburg, Svédország, 2014.09.02 -2014.09.04. Gothenburg: University of Reading, 2014. pp. 393-397. (ISBN:978-0-7049-1546-6)

[S40.] Sik Lányi C, **Szücs V**: Games applied for therapy in stroke tele-rehabilitation. INTERNATIONAL JOURNAL OF STROKE 9:(3) pp. 300-303. (2014). 9th World Stroke Congress. Isztambul, Törökország: 2014.10.22 -2014.10.25. **IF:4,09**

[S41.] Sik Lányi C, **Szücs V**, Stark J: Virtual reality environments development for aphasic clients. INTERNATIONAL JOURNAL OF STROKE 9: p. 241. (2014) 9th World Stroke Congress. Isztambul, Törökország: 2014.10.22 -2014.10.25. **IF:4,09**

[S42.] Sik Lányi C, **Szücs V**: Research of the effectiveness of virtual environments in post-stroke rehabilitation: Challenging Presence. In: A Felnhofer, O. D. Kothgassner (szerk.) 15th International Conference on Presence. Konferencia helye: Bécs,

Ausztria, 2014.03.16 -2014.03.19. Wien: Facultas Verlags- und Buchhandels AG, 2014. pp. 83-88. (ISBN:978-3-7089-1081-9)

[S43.] Sik Lányi C, **Szücs V**: „StrokeBack” telemdicina rendszer. In: XXVII. Neumann Kollokvium. Konferencia helye, ideje: Szeged, Magyarország, 2014.11.21 -2014.11.22. p. 23.

[S44.] Sikné Lányi Cecília, **Szücs Veronika**: „StrokeBack” telemedicina rendszer. In: Bari Ferenc, Almási László (szerk.) Orvosi Informatika 2014: A XXVII. Neumann Kollokvium konferencia-kiadványa. 162 p. Konferencia helye, ideje: Szeged, Magyarország, 2014.11.21 -2014.11.22. Veszprém: Pannon Egyetem, 2014. pp. 87-90. (ISBN:978-963-396-040-0)

[S45.] **Szücs V** Paxian S, Sik Lányi C: Augmented Reality: Where it Started from and Where It's Going. In: Cecilia Sik Lanyi (szerk.) The Thousand Faces of Virtual Reality. Rijeka: InTech, 2014. pp. 37-56. (ISBN:978-953-51-1733-9)

[S46.] **Szücs V**, Sik Lányi C: Stroke-rehabilitációs játékok tesztelése színtévesztők igényei alapján. In: XIII. Lux et Color Vesprimensis. Konferencia helye, ideje: Veszprém, Magyarország, 2014.10.13 -2014.11.13. Veszprém: p. 15.

[S47.] Sik Lányi C, **Szücs V**: Abilities and limitations of assistive technologies in post-stroke therapy based on virtual/augmented reality: Assistive Technology: From Research to practice. In: P Encarnação (szerk.) 12th European AAATE conference. Konferencia helye, ideje: Vilamoura, Portugália, 2013.09.19 -2013.09.22. IOS Press, pp. 1087-1091.

[S48.] Sik Lányi C, **Szücs V** Antal P, Dömök T, László E: Developing the „Birdie” game for stroke patients’ rehabilitation: Assistive Technology: From Research to practice. In: P Encarnação (szerk.) 12th European AAATE conference. Konferencia helye, ideje: Vilamoura, Portugália, 2013.09.19 -2013.09.22. IOS Press, pp. 1006-1012.

[S49.] Sik Lányi C, **Szücs Veronika**: Telemedicina rendszer adatbázis-elemzése: Az e-Health kihívásai. In: Kósa István, Vassányi István (szerk.) Az e-Health kihívásai: XXVI. Neumann Kollokvium. 210 p. Konferencia helye, ideje: Veszprém, Magyarország, 2013.11.22 -2013.11.23. Veszprém: Pannon Egyetem, 2013. pp. 187-191. (ISBN:978-615-5044-90-8)

[S50.] Doemok Tamas, **Szücs Veronika**, Laszlo Erika, Lanyi Cecilia Sik: "Break the Bricks" Serious Game for Stroke Patients. LECTURE NOTES IN ARTIFICIAL INTELLIGENCE 7382: pp. 673-680. (2012) 13th International Conference on Computers Helping People with SpecialNeeds (ICCHP). Linz, Ausztria: 2012.07.11 - 2012.07.13.

[S51.] Sik Lányi C, **Szücs V** Dömök T, László E: Developing serious game for victims of stroke. In: P M Sharkey, E Klinger (szerk.) 9th International Conference on Disability: Virtual Reality and Associated Technologies Proceedings. Konferencia helye, ideje: Laval, Franciaország, 2012.09.10 -2012.09.12. pp. 503-506.

[S52.] Szücs, V., Guzsvinecz T., Magyar A: Improved algorithms for movement pattern recognition and classification in phisical rehabilitation. User Modeling and User-Adapted Interactions. Research article. Springer. pages 14. ISSN: 0924-1868 (Print) 1573-1391 (Online). IF:2.808 (bírálat alatt)

[S53.]

INDEPENDENT CITATIONS

[FI-1.] [S50.] Korn Oliver, Schmidt Albrecht: Gamification of Business Processes: Re-designing Work in Production and Service Industry, Procedia Manufacturing 3: 3424-3431 (2015) DOI: 10.1016/j.promfg.2015.07.616

[FI-2.] [S50.] Biswas Dwaipayan, Cranny Andy, Maharatna Koushik: Body area sensing networks for remote health monitoring, In: Modern Stroke Rehabilitation through e-Health-based Entertainment. Springer, 2016. pp. 85-136, DOI: 10.1007/978-3-319-21293-7_4

[FI-3.] [S51.] Vogiatzaki Emmanouela, Gravezas Yannis, Dalezios Nikos, Biswas Dwaipayan, Cranny Andy, Ortmann Steffen, Langendorfer Peter, Lamprinos Ilias, Giannakopoulou Gioula, Achner Josy: Telemedicine system for game-based rehabilitation of stroke patients in the FP7-“StrokeBack” project, In: Networks and Communications (EuCNC), 2014 European Conference on. IEEE, 2014. pp. 1-5. ISBN: 147995280X

[FI-4.] [S51.] Biswas Dwaipayan, Maharatna Koushik, Panic Goran, Mazomenos Evangelos B, Achner Josy, Klemke Jasmin, Jörges Michael, Ortmann Steffen: Low-Complexity Framework for Movement Classification Using Body-Worn Sensors. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 25: (4) 1537-1548 (2017)

[FI-5.] [S37.] Dwaipayan Biswas Andy Cranny Koushik Maharatna: Body Area Sensing Networks for Remote Health Monitoring In: Modern Stroke Rehabilitation through e-Health-based Entertainment. Springer International Publishing, 2016. pp. 85-136. DOI: 10.1007/978-3-319-21293-7_4 ISBN: 978-3-319-21292-0

[FI-6.] [S40.] Boda I, Toth E, Csont I, Nagy LT: Toward a knowledge base of literary content focusing on the ancient Library of Alexandria in the three dimensional space. INTERNATIONAL CONFERENCE ON COGNITIVE INFOCOMMUNICATIONS 1: (1) 251-258 (2015)

[FI-7.] [S40.] Izso L: The significance of cognitive infocommunications in developing assistive technologies for people with non-standard cognitive characteristics CogInfoCom for people with non-standard cognitive characteristics. INTERNATIONAL CONFERENCE ON COGNITIVE INFOCOMMUNICATIONS 1: (1) 77-82 (2015)

[FI-8.] [S40.] István Boda, Erzsébet Tóth, istván Csont, László T Nagy: Toward a knowledge base of literary content focusing on the ancient Library of Alexandria in the three dimensional space. In: CogInfCom 2015; 6th IEEE International Conference on Cognitive Infocommunication. Győr, Magyarország: (2015.), pp. 251-258

[FI-9.] [S40.] Lajos Izsó: The significance of cognitive infocommunications in developing assistive technologies for people with non-standard cognitive characteristics. In: CogInfCom 2015. 6th IEEE International Conference on Cognitive Infocommunication. Győr, Magyarország: (2015.), pp. 77-82.

[FI-10.] [S40.] Boda I, Toth E, Csont I, Nagy LT: Toward a knowledge base of literary content focusing on the ancient Library of Alexandria in the three dimensional space. INTERNATIONAL CONFERENCE ON COGNITIVE INFOCOMMUNICATIONS 1: (1) 251-258 (2015)

[FI-11.] [S40.] Izso L: The significance of cognitive infocommunications in developing assistive technologies for people with non-standard cognitive characteristics CogInfoCom for people with non-standard cognitive characteristics. INTERNATIONAL CONFERENCE ON COGNITIVE INFOCOMMUNICATIONS 1: (1) 77-82 (2015)

[FI-12.] [S28.] Jabeen Farzana, Tao Linmi, Tian Linlin: One Bit Mouse for Virtual Reality. 2016 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY AND VISUALIZATION (ICVRV 2016) ICVRV 2016: 442-446 (2016) DOI: 10.1109/ICVRV.2016.81

[FI-13.] [S19.] Reyes HC, Arteaga JM: Multidisciplinary production of interactive environments to support occupational therapies. JOURNAL OF BIOMEDICAL INFORMATICS 63: 90-99 (2016) DOI: 10.1016/j.jbi.2016.08.002

[FI-14.] [S20.] Schanda J, Csuti P, Szabo F: A New Concept of Color Fidelity for Museum Lighting: Based on an Experiment in the Sistine Chapel. LEUKOS 12: (1-2) 71-77 (2016) DOI: 10.1080/15502724.2014.978503

REFERENCES

- [1.] Arias, P., Robles-García, V., Sanmartín, G., Flores, J., & Cudeiro, J. (2012). Virtual Reality as a Tool for Evaluation of Repetitive Rhythmic Movements in the Elderly and Parkinson's Disease Patients. PLoS ONE, 7(1), e30021. <http://doi.org/10.1371/journal.pone.0030021>
- [2.] Aymerich-Franch, L. Presence and emotions in playing a group game in a virtual environment: the influence of body participation. Cyberpsychol Behav Soc Netw. 2010;13:649-654.
- [3.] Barfield, W., Rosenberg, C., Lotens, W.A. Augmented-Reality Displays. In Barfield, Woodrow and Thomas A. Furness III (editors). Virtual Environments and Advanced Interface Design. Oxford University Press (1995), 542-575. ISBN0-19-507555-2.
- [4.] Centre for Disease Control and Prevention. Stroke Statistics. Accessed 2015. June 6. URL: https://www.cdc.gov/stroke/statistics_maps.htm
- [5.] Deutsch, J. E., Paserchia, C., Vecchione, C., et al. Improved gait and elevation speed of individuals post-stroke after lower extremity training in virtual environments. Journal of Neurologic Physical Therapy. 2004;28(4):185-186. doi: 10.1097/01253086-200412000-00054.
- [6.] Dunning, K., Levine, P., Schmitt, L., Israel, S., Fulk, G. An ankle to computer virtual reality system for improving gait and function in a person 9 months poststroke. Topics in Stroke Rehabilitation. 2008;15(6):602-610. doi: 10.1310/tsr1506-602.
- [7.] Flynn, S., Palma, P., Bender, A. Feasibility of using the Sony PlayStation 2 gaming platform for an individual poststroke: a case report. Journal of Neurologic Physical Therapy. 2007;31(4):180-189. doi: 10.1097/npt.0b013e31815d00d5.
- [8.] Fritz, S., Peters, D., Merlo, A., Donley, J. Active video-gaming effects on balance and mobility in individuals with chronic stroke: a randomized controlled trial. Topics in Stroke Rehabilitation. 2013;20(3):218-225. doi: 10.1310/tsr2003-218.

[9.] Fung, J., Richards, C.L., Malouin, F., McFadyen, B.J., Lamontagne, A. A treadmill and motion coupled virtual reality system for gait training post-stroke. *Cyberpsychology and Behavior*. 2006;9(2):157–162. doi: 10.1089/cpb.2006.9.157.

[10.] Gamification - <http://www.gamestar.hu/gamification> Ellenőrizve: 2018. május 31.

[11.] Gamification az egészségügyben - <http://hitconsultant.net/2014/06/16/15-healthcare-gamification-startups-to-watch/> Ellenőrizve: 2018. május 31.

[12.] Holden, M.K., Dyer, T. Virtual environment training: a new tool for rehabilitation. *Neurology Report*. 2002;26:62–71.

[13.] Holden, M.K. Virtual environments for motor rehabilitation: review. *Cyberpsychology & Behavior*. 2005;8(3):187–211. doi: 10.1089/cpb.2005.8.187.

[14.] Keshner, E.A. (2004). Virtual reality and physical rehabilitation: a new toy or a new research and rehabilitation tool? *Journal of NeuroEngineering and Rehabilitation*, 1, 8. <http://doi.org/10.1186/1743-0003-1-8>

[15.] Lamontagne, A., Fung, J., McFadyen, B.J., Faubert, J. Modulation of walking speed by changing optic flow in persons with stroke. *Journal of NeuroEngineering and Rehabilitation*. 2007;4, article 22 doi: 10.1186/1743-0003-4-22.

[16.] LED4Art Project. URL: <http://www.led4art.eu/> Ellenőrizve: 2016. június 8.

[17.] Mirelman, A., Patritti, B.L., Bonato, P., Deutsch, J.E. Effects of virtual reality training on gait biomechanics of individuals post-stroke. *Gait & Posture*. 2010;31(4):433–437. doi: 10.1016/j.gaitpost.2010.01.016.

[18.] Qin, H., Rau, P.P., Salvendy, G. Measuring Player Immersion in the Computer Game Narrative. *Int J Hum Comput Interact*. 2009;25:107–133. doi: 10.1080/10447310802546732.

[19.] Riva, G. From toys to brain: Virtual Reality applications in Neuroscience. *Virtual Reality*. 1998;3:259–266.

[20.] Saposnik, G., Levin, M. Virtual Reality in Stroke Rehabilitation A Meta-Analysis and Implications for Clinicians. *Stroke* (42)5:1380–1386. DOI:10.1161/STROKEAHA.110.605451. 2011.

[21.] Sik Lányi, C., Szücs, V., Dömők, T., László, E. Developing serious game for victims of stroke, Proceed 9th Intl Conf on Disability, Virtual Reality and Assoc. Technologies, Laval, 2012:503–6.

[22.] Sik Lanyi, C., Nyeki, A., Szücs, V. Most Important in the Design: Focus on the Users' Needs, a Case Study. C. Stephanidis and M. Antona (Eds.): UAHCI/HCII 2014, Part II, LNCS 8514, p 617–625. 2014.

[23.] Sik Lanyi, C., Szücs, V. Games applied for Therapy in Stroke Tele-rehabilitation. 9th World Stroke Congress, 22–25 Oct 2014. Istanbul. *International Journal of Stroke*, Volume 9, Issue Supplement S3, pp.241. 1–345. ISSN: 1747-4949. 2014. IF:4,09

[24.] Sik Lányi, C., Szucs V.: Motivating Rehabilitation Through Competitive Gaming. In: E Vogiatzaki, A Krukowski (eds.) *Modern Stroke Rehabilitation through e-Health*.

based Entertainment. Switzerland: Springer International Publishing, 2016. pp. 137-167. (ISBN:978-3-319-21292-0)

- [25.] Subramanian, S.K., Levin, M.F. Viewing medium affects arm motor performance in 3D virtual environments. *J Neuroeng Rehabil.* 2011;30:8-36.
- [26.] Sveistrup, H., McComas, J., Thornton, M., Marshall, S., Finestone, H., McCormick, A., Babulic, K., Mayhew, A. Experimental studies of virtual reality-delivered compared to conventional exercise programs for rehabilitation. *Cyberpsychol Behav.* 2003;6:243-249.
- [27.] Szücs, V., Sik Lanyi, C. Abilities and limitations of assistive technologies in post-stroke therapy based on virtual/augmented reality. *Assistive Technology: From Research to practice*, P. Encarnaçao et al. (Eds), 12th European AAATE conference, IOS Press, p 1087-1091. Vilamoura, Algarve, Portugal, 19-22 September 2013., DOI:10.3233/978-1-61499-304-9-1087. 2013.
- [28.] Szücs, V., Sik Lanyi, C. Research of the effectiveness of virtual environments in post-stroke rehabilitation. In *Challenging Presence*, A. Felnhofer and O. D. Kothgassner(Eds), 15th International Conference on Presence, Vienna, Austria, 16-19 March 2014, Facultas Verlags- und Buchhandels AG, Vienna, p 83-88. 2014.
- [29.] Ustinova, K.I., Leonard, W.A., Cassavaugh, N.D., Ingersoll, C.D. (2011). Development of a 3D immersive videogame to improve arm-postural coordination in patients with TBI. *Journal of NeuroEngineering and Rehabilitation*, 8, 61. <http://doi.org/10.1186/1743-0003-8-61>
- [30.] Yavuzer, G., Senel, A., Atay, M.B., Stam, H.J. "Playstation eyetoy games" improve upper extremity-related motor functioning in subacute stroke: a randomized controlled clinical trial. *Eur J Phys Rehabil Med.* 2008;44:237-244.