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Összefoglaló

Ez a  doktori  értekezés  új  eszközöket  és  módszereket  mutat  be,  amelyek  a  specifikusan  a
hőcserélő  hálózat  módosítására  lettek  kifejlesztve.  A módosítási  (retrofit)  folyamat  legelső
lépése  az  adatgyűjtés  és  kivonás  a  folyamat-adatok  mért  készleteiből.  A  munka  első
felfedezése egy új módszer javaslata, amely megkönnyíti az hőcserélő hálózatokra vonatkozó
adatok összeegyeztetését a hő-integrálás elemzésére. Ezen munka elején bemutatott iteratív
módszer  különbözik  a  hagyományos  összeegyeztetés  módszertől.  A módszert  részletesen
ismertetjük  –  beleértve  a  felhasznált  modelleket  és  algoritmusokat.  Bemutatjuk  a  részletes
értekezést mint pl. az összeegyeztetés kezdő paramétereinek a hatása az eredményekre. Az
iteratív módszer hátrányait azonosítottuk és különböző stratégiákat fejlesztettünk ki a hátrányok
megoldására.  Az  esettanulmányokban  az  iteratív  módszerek  különböző  stratégiáinak  az
egyesítésével  elfogadható  eredményeket  értünk  el.  Ez  a  nagyobb  számú  paraméterek
felhasználásával érhető el. Az adatok összeegyeztetését ezután kiterjesztettük az ún. Total Site
szintre. A Total Site bonyolultságát figyelembe véve, a modell magába foglalja a segédközeg-
rendszert  és felszerelést,  mint pl.  a fűtők, hűtők és turbinák, viszont  a hőcserélők az egyes
üzemekben nem szerepelnek a modellben.

Az összeegyeztetett paraméter készletek elérése után, a következő lépés ezek bemutatása volt
a hőcserélő hálózat  struktúrájával összefüggésben.  Míg a hagyományos rácsábrázolás elég
információt  tartalmaz  a  retrofit  folyamathoz,  nem  tartalmaz  elég  adatot  a  felhasználó
interakciójához  és  döntés  hozatalához.  A  második  felfedezés  bevezet  egy  új  eszközt  a
hőcserélő hálózat módosításához a szükséges részletes adatok bemutatására, amely jobban
támogatja a mérnökök döntéseit a módosítás folyamatában. Ez az eszköz a módosított retrofit
termodinamikai diagram (angolul: Shifted Retrofit Thermodynamic Diagram). Ez tartalmazza a
pinch elemzés jellemzőit. Az eszközt fel lehet használni nem csak a folyamat pinch, hanem a
hálózati  pinch  valamint  a  segédközeg  pinch  előfordulásának  a  meghatározására.  A  jobb
vizualizálással,  az  új  eszköz többféle  felhasználását  tárgyaljuk  meg a  hő-visszanyerés  jobb
növekedés  érdekében.  Irodalmi  esettanulmány  használtunk  fel  a  módosított  retrofit
termodinamikai diagram felhasználásának és hasznosságának a bemutatására. 

A  termodinamikailag  megvalósítható  retrofit  tevékenységek  gazdaságilag  nem  feltétlenül
megvalósíthatóak.  Az utolsó  fejezet  a meglévő hőcserélő hálózat  alternatív  retrofit  módszer
felfedezést  tárgyalja,  különösen  a  hulladék-hő  újrafelhasználásával.  A módszer  reális  ipari
esettanulmány felhasználásával kerül bemutatásra, amelynek magasak a beruházási költségei
az  első  retrofit  javaslatok  elérésére.  Az  esettanulmányban  a  hulladék-hő  újrafelhasználása
javasolt  némely  áramok fűtésére.  Ezzel  csökkentjük  a  segédközegek  felhasználását.  Bár  a
javasolt megoldást hasonlít az eredeti javasolt módosításhoz a segédközegek felhasználásának
a csökkentése szempontjából, sokkal jobban teljesít a költségek megtakarítás és a megtérülés
szempontjából.



1. Bevezető

Az  energia  visszanyerés  a  vegyi  üzemekben  már  négy  évtizede  be  vezették  (Klemeš  és
Kravanja, 2013). A fizikai-betekintési módszerek fontos része a folyamat-integráció. Ez egyike
az első munkák közül a Linnhoff és Flower (1978) cikke. A mai szintig való fejlődést már mások
összegezték  (Klemeš és  mtsai,  2014)  és  kifejezetten a  hő-integráció  (Klemeš és  Kravanja,
2013). Bakhtiari és Bedard (2013) módosította a hálózati pinch megközelítést a bonyolultabb
hálózatok  kezelésére  az  áramok  szegmentálására  és  szétválasztására,  többek  közt
felhasználva  az  egyes   hőcserélőkre  jellemző  specifikus  értéket  a  minimális  megengedett
hőmérsékleti különbségre.

Miközben  a  hő-integráció  fontos  a  vegyi  üzemekben,  a  meglévő  hőcserélő  hálózat  retrofit
módosítása  is  fontos  (Klemeš,  2013).  Megfigyelhető,  hogy  a  közelmúltban  a  hő-integráció
fókusza a meglévő vegyi üzemek retrofit módosítására irányult át. Ez annak a következmények,
hogy a meglévő hőcserélő hálózat évek után elavult lett. A vegyi, petrokémiai, energetikai és
egyéb iparágak az energiaköltségek (BP, 2013) és a egyre szigorúbb környezeti szabályozások
(Europai  Bizottság,  2011)  miatt  szeretnének  javítani  üzemük  energiahatékonyságát.  Az
ingadozó energia árak, a termelés növekedése és a folyamat berendezések változásai miatt a
retrofit  módosítások csökkenthetik  a  működési  költségeket  némi  tőkebefektetéssel.  Számos
különböző módszer  került  bemutatásra a  retrofit  probléma megoldására.  Általánosságban a
módszerek  a  fizikai  betekintésre,  matematikai  optimalizálásra  vagy  a  kettő  kombinációján
alapulnak. 

Az  első  lépés  a  hőcserélő  hálózat  retrofit  folyamat  elkezdésére  az  adatkivonás  a  meglévő
hőcserélő hálózatra. A tervezési értékadatok elavultak lehetnek és nem pontosak az évek során
változtatott  beállítások  és  egységek  hozzáadások  következtében.  Az  adategyeztetés  fontos
lépés az adatkivonás folyamatában a hőcserélők retrofit módosítására. Csak két paramétert kell
összeegyeztetni ebben a folyamatban. Az összes felhasznált korlátok közül az energiamérleg
korlát  okozza  a  nem-linearitást  a  modellben  mert  ez  két  fajta  paramétert  korlátoz.  Az  új
bevezetett  módszer  megoldja ezt  a nem-linearitást  a 3.2 szakaszban,  amely iteratív  módon
kapcsol össze két lineáris almodellt. Az esettanulmány felhasználásával bemutattuk, hogy az
iteratív módszer képes elfogadható eredményeket produkálni rövidebb számítási idő alatt. A 3.3
szakaszban az iteratív módszer korlátait tárgyaltuk. A korlátok leküzdésére három különböző
stratégiát fejlesztettünk ki. A 3.4 szakaszban egy új út van bemutatva az ún. Total Site adatok
összeegyeztetés  problémájának  a  megoldására.  A  modell  a  segédközeg  rendszer  adat
összeegyeztetés  probléma  került  bemutatásra  illusztratív  valamint  ipari  esettanulmány
demonstrálásával. Összefoglalva, az iteratív módszer kevesebb számítási erőfeszítést használ
az  kisebb  pontosság  rovására,  összehasonlítva  a  szimultán  módszerrel.  A  módszer
alkalmazható  a  hő-integrálás  tanulmányokban  különösen  a  hőcserélő  hálózat  retrofit
módosítására, amelyhez nem használunk nagyon pontos adatokat. 

Az összeegyeztetett adatok elérése után, a következő lépés a hőcserélő hálózat rács ábrázolás
szerkesztése  az  elemzésre.  A hagyományos  rács  diagram  elégtelen  és  kellemetlen  a  hő-
integráció elemzésére. Tovább fejlesztett vizuális eszköz a hőcserélő hálózat szükséges a hő-
integráció  elemzés  megkönnyítésére.  A  4.  szakaszban  bemutatjuk  a  kiterjesztetett  rács
ábrázolást  az  ún.  Eltolódott  retrofit  termodinamikai  rács  ábrázolás  (SRTGD).  A  SRTGD
egyedülálló szolgáltatáskészlettel rendelkezik, amivel elősegíti  a kedvező retrofit  lehetőségek
azonosítására. Mivel ugyanabban a nézetben mutatja a CP-t (vagy terhelés), hőmérséklet és a
hálózat, lehetővé teszi a felhasználóknak az egyidejű termodinamika, áram kapacitások és a



topológia  egyidejű  figyelembe  vételét  mint  faktorokat.  Ennek  eredményeként  a  SRTGD
hatékonyan használható a pinch technológia beépítésével, a folyamat pinch és a hálózati pinch
azonosítására. A bemutatott példák és az esettanulmány egyértelműen bemutatják az új eszköz
előnyeit.  Bemutattuk,  hogy a  SRTGD képes a megvalósítható  megoldások szűrését  a  nem
megvalósíthatóktól,  a  vizuális  információ  bemutatásával  a  kedvezőbb  hő-út  kiválasztására.
Amikor  a  hő-út  kiválasztásra  kerül,  a  SRTGD  rámutat  a  hálózati  pinch  helyére  valamit  a
maximális elérhető hő-visszanyerést. Azonban, a legnagyobb jelentőséggel bír az energiaárak
és az előrejelzések ingadozási lehetőségeinek felmérése.

A 4. szakaszban a hőcserélő hálózatok mátrix ábrázolását javasoljuk a szintézis vagy a retrofit
feladatok  támogatására.  Jól  szervezett  lehet,  és  segíthet  a  mérnököknek  a  rendszer
elemzésében  a  pontosság  megőrzésével.  A  HENSM  rögzíti  a  hőcserélő  hálózat  minden
hőcserélőjének hőmérsékletét, hőmérsékletkülönbségét és teljesítményét. A hőcserélők mindkét
végén  levő  hőmérséklet  különbség  felhasználásával,  a  mátrixszal  meg  lehet  határozni  a
folyamat és a hálózati pinch helyét. A retrofit út elemzés alatt a mátrixban látható a hőcserélő
potenciálja, hogy a hálózati pinch helyén van. A HENSM-et egy esettanulmányban mutatjuk be.
Az áram szétosztást nem tudjuk szemléltetni a mátrixban. 

A folyamat hő-integráció elemzése alatt, vannak olyan esetek, amikor a segédközeg fogyasztás
csökkentése a hőcserélő hálózat retrofit módosításával nem megvalósítható más szempontok
miatt.  A  javasolt  hőcseréló  hálózat  retrofit  módosítása  termodinamikailag  megvalósítható
ellenben gazdaságilag lehet, hogy nem megvalósítható. Különösen az alacsony hőmérsékleti
hőcseréló hálózat tartományában, ahol általában hulladék-hőnek tekintik,  ezt a hőt többnyire
nem nyerik vissza. Ha ez a helyzet áll elő, a hőt felhasználhatjuk a hőcserélő hálózat retrofit
módosítása  során.  Az  5.-dik  szakasz  sikeresen  bemutatja,  hogy  ha  a  segédközeg
felhasználását  nem  tudjuk  csökkenteni  gazdasági  okok  miatt,  a  hulladék-hő  felhasználása
megfontolandó  lehetőséget  jelent.  Illusztratív  és  ipari  esettanulmány  felhasználásával  ,  azt
állapítottuk  meg,  hogy  a  hulladék  hő  áramok  túl  alacsony  hőmérséklettel  rendelkeznek  a
segédközeg  felhasználás  csökkentésére.  Ebben  az  esettanulmányban  a  tervezett  hő-út
létrehozására irányuló kísérlet nagy beruházási költségeket eredményezett. Ezért a hőcserélő
hálózatot úgy módosítottuk, hogy a hulladék hő áramokat forró víz előállítására használtuk fel. A
szakasz  a  hőcserélő  különböző  elrendezéseit  valamint  ezek  flexibilitását  és  összetettségét
tárgyalja különböző körülmények alatt.



2. A javasolt eszközök és módszerek

2.1 Iteratív módszer az energia rendszerek adat összeegyeztetésére

Az  iteratív  módszer  egy  alternatív  módszer  a  szimultán  módszernek.  A módszer  szimultán
módszerben  modelljét két al-modellre. A két al-modell közötti iterálással, a módszer az egyik
paramétert konstans tartja (pl. hőmérséklet) miközben a másik paramétert összeegyezteti (pl.
CP), amíg el nem ér egy elfogadható konvergenciát. Kétféle paraméter van összeegyeztetve
külön-külön miközben továbbra is  fenntartja  a másik  paraméter  fontosságát  a modellekben.
Annak ellenére, hogy az iteratív módszer bizonyos pontatlanságokkal rendelkezik, az szimultán
módszerhez  képest  lényegesen  kisebb  számítási  intenzitást  igényel  és  egyszerűbben
megvalósítható. A 3.3 ábra bemutatja az iteratív módszert. A 3.5 ábra bemutatja az algoritmust
a modellek megoldására.
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subject to: subject to:
Mass balance constraints
RCPi , HI=RCPi , HO (3.2)

RCPi ,CI=RCPi ,CO (3.3)

Energy balance constraints Energy balance constraints
RCPi , HI (RT i , HI−RT i , HO )=RCPi ,CI (RT i ,CO−RT i ,CI )(3.4) RCPi , HI (RT i , HI−RT i , HO )=RCPi ,CI (RT i ,CO−RT i ,CI )(3.4)

where RT is set to be constant where RCP is set to be constant

Constraints from network for example
Constraints from network for 
example

RCPi1,HO=RCPi2,HI (3.5) RT i1,HO=RT i2,HI (3.7)

RCPi1,CO=RCP i2,CI (3.6) RT i1,CO=RT i2,CI (3.8)

Ábra 3.1: A CP modellben és T modellben használt egyenletek



Ábra 3.2: A javasolt iteratív módszer algoritmusai



Az  ún.  Total  Site-ban  nagy  számú  hőcserélő,  fűtő  és  hűtő  van.  Mindegyik  vegyi  üzem
rendelkezik  saját  egyéni  kémiai  berendezésekkel  és  hőcserélő  hálózattal.  Ezeknek  a  vegyi
üzemeknek az egyik közös és egyetlen jellemzője, hogy ugyanazon segédközeg rendszerhez
kapcsolódnak. Ahelyett, hogy minden hőcserélőt bevonnának az összes adat összeegyeztetés
feladatba,  először  a  segédközeg  rendszeren  kivitelezzük  az  adat  összeegyeztetést.  A
segédközeg-rendszer adat összeegyeztetése után minden egyes üzem hőcserélő hálózatának
az  adat  összeegyeztetését  is  végre  hajtjuk  az  elősző  szakaszban  bevezetett  módszer
felhasználásával. Feltételezzük, hogy a Total Site-ban használt segédközegek nem keverednek
össze.

A használt segédközegeknek (pl. gőz, forró olaj, hűtővíz) minden típusának saját készlete van. 
Minden gőz áramot, hűtőt és fűtőt fekete dobozokként modellezünk. A hő-integrációs 
elemzésben a gőz áramlások a diagramban általában energiaáramlási sebességben, például 
kW, fejezzük ki. Meg kell említenünk, hogy az energia-áramot nem tudjuk közvetlenül mérni. 
Ehelyett, az adat összeegyeztetés folyamatában minden áram áramlását tömegáramban mérjük
és fejezzünk ki. Különösen a nem-izotermikus segédközegek felhasználásával működő fűtő- és 
hűtőberendezéseknél az ellátás és visszatérési áramokat tömegáramlatát mérjük. Ezzel a 
hozzáállással a célfüggvény csak tömegáramlatokat tartalmaz, és a berendezés körül a 
tömegegyensúlyra korlátozódik.

2.2 Előrehaladott  vizualizáció  a  hő-integációban  a  hőcserélő  hálózat
retrofit módosításra

A hőcserélő  hálózat  grafikus  megjelenítésére  hagyományosan  a  rácsábrázolást  használjuk.
Azonban a hagyományos rácsábrázolás nem mutat be bizonyos fontos jellemzőket, például a
hő-kapacitás  jelentőségét  és  a  pinch  helyét.  Továbbra  is  szükség  van  egy  megfelelő
vizualizációs  és  döntéshozó  eszközre,  amely  képes  azonosítani,  használni  és  leküzdeni  a
hőcserélő hálózat gátló tényezőit a nagyobb hő-visszanyerés elérésére. Az ilyen eszköz fontos,
mivel segíthet a felhasználóknak döntéseket hozni, és hatékonyan támogathatja a matematikai
optimalizálási modellek megformálását. Mint ilyen eszközt az Eltolódott retrofit termodinamikai
rács ábrázolást javasoljuk ebben a tanulmányban.

A SRTGD jellemzői a következők. A vízszintes tengely nyomon követi a hőmérsékleti skálát,
míg a függőleges tengely a CP skálát reprezentálja. Minden áramot téglalap alakban mutatunk
be, ahol a téglalap szélességét az áram hőmérsékleti  tartományának megfelelő, miközben a
magasságot a CP szerint állapítjuk meg. A téglalap területe a cserélhető hő mennyiségét jelenti.
Az áramot szegmensekre lehet osztani, ahol minden egyes szegmens egy hőcserélőben lévő
áramot  képvisel.  Amint  a  4.2.  Ábrán látható,  két  áramnak két  szegmense van amelyet  a 2
számmal jelzünk. Ezek az E2 hőcserélő meleg és hideg részei, és a HS2 és CS1 áramokhoz
tartoznak. Az E2 hőcserélőnél a  és a  jelzésű vonalakat ennek a hőcserélőnek a hideg  és① ②

meleg végű kapcsolódásának nevezzünk. 

Minden hő-visszanyerési hőcserélőnek két kapcsolódása van a végénél, miközben a fűtő- és
hűtőberendezés csak szegmensként jelenítünk meg az áramok téglalapjain. A kapcsolódások
fontosak mert ezek jelzik a hőátadás termodinamikai megvalósíthatóságát. Mivel a meleg áram
hőmérsékletét  eltoljuk  a  ΔTmin  csökkentésével  az  tényleges  hőmérsékletről,  a  függőleges



kapcsolódás (nulla hőmérséklet különbséggel) mutatja a pinch pontot, legyen az folyamat pinch
vagy  a  hálózat  pinch.  A megvalósítható  hőátadásra  a  hőcserélő  kapcsolódásoknak  pozitív
dőlésének kell lennie, ez egyenértékű azzal, hogy a meleg áramnak magasabb a hőmérséklete,
mint a hozzárendelt hideg áramnak.

Ábra 4.3: A HEN példa egy SRTGD használatával

A hőcserélő hálózat grafikus bemutatásának van néhány korlátozása. 1. Az adatok pontossága
csökkentet, amikor grafikus ábrázolást használunk. A pontos értékeket nem tudjuk közvetlenül
megállapítani. 2. A grafikus ábrázolás bonyolult, ha sok hőcserélő van a hőcserélő hálózatban.
3. Fontos adatok, mint például a hőmérséklet-különbségek a hőcserélők végein, nem láthatók
közvetlenül a grafikonon.

Ezért javasoltuk a hőcserélő hálózat számszerű megjelenítését mátrix formájában. A hőcserélő
hálózat áram mátrixa (HEN Stream Matrix –HENSM) lehetővé teszi a grafikus ábrázolás tárgyalt
hátrányai javítását. Azonban, a HENSM nem nyújt ugyanolyan a betekintést a feladatban, mint
a  grafikon,  és  ezért  a  két  eszközt   együttesen  érdemes  használni.  Az  egyes  hőcserélőkre
vonatkozó  adatokat  számszerűen  vannak  rögzítve  és  közvetlenül  valamit  pontosan
hozzáférhetőek. Ez a mátrix egy nagyszámú hőcserélővel rendelkező hőcserélő hálózatot is
képes rögzíteni,  mivel  nem használ  vonalakat  vagy kapcsolódásokat.  Ez  egy jól  szervezett
reprezentáció, amely támogatja a folyamat elemzését. A hőmérséklet különbségeket közvetlenül
követhetjük és értékelhetjük, ami segít a pinch helyének a meghatározásában. A hő-út nyomon

Process



követése a retrofit elemzés során a hő-visszanyerést korlátozó szűk keresztmetszetű hőcserélőt
közvetlenül meghatározhatjuk.

 
Hot
Stm

H1 H1 H1 H2 H3 H4 H5

 
CP
(kW/°
C)

86 86 86 21 185 24 129

 
TS
(°C)

310 239 167 299 273 230 206

   
TT
(°C)

239 167 103 173 254 133 178

HEX
No.

Cold
Stm

CP
(kW/°
C)

TS
(°C)

TT
(°C)

       
Heater
Duty
(kW)

HETD
(°C)

CETD
(°C)

3 C1 144 52 91  5,557  66.6 40.6
7 C1 144 91 116  3,623  80.2 77.4
6 C1 144 116 132  2,292  88.3   6.7
4 C1 144 132 150  2,689 138.6 31.6
2 C1 144 150 193  6,135  35.6   6.8
5 C1 144 193 217  3,431  46.1 51.4
1 C1 144 217 260  6,141 14,453  40.4 11.7

 

Cool
er
Duty
(kW)

657 1,142 817 881

Ábra 4.5: Az esettanulmány HENSM ábrázolása

2.3 A hőcserélő hálózat módosítása a hulladék-hő felhasználására

A forró víz előállításához az első lépés az ellátás és a kívánt célhőmérséklet meghatározása.
Meg kell  határozni a minimális hőmérsékletkülönbséget az áram és a forró víz között  is. Az
előrehaladott  grafikus  hőcserélő  hálózat  ábrázolások,  mint  például  az  SRTGD,  segítenek
meghatározni azt a hőmérsékleti területet, amelyet fel tudunk használni forró víz előállítására.
Az előállított forró víz mennyisége kiszámítható a hőmérsékleti tartomány hő-terheléséből. Az
előzetes gazdasági elemzés elvégezhető a tőkeköltség és a bevétel kiszámításával a termelt
forró  víz  értékesítésével.  További  gazdasági  elemzést  lehet  végezni  a  melegvíz-előállító
rendszer és a hőcserélők szükségletének elrendezésével.

Három különböző általános elrendezés van a forró vízkör számára:

1. Párhuzamos vízmelegítés a segédközeget előállító áram szétosztásával

2. Soros vízmelegítés egy fő vízfolyással 

3. Párhuzamos és soros vízmelegítés kombinációja 

Annak ellenére, hogy mindkét elrendezésnek vannak előnyei vannak, a választás eseti alapon
történik.



3. Új tudományos felfedezések a doktori értekezésben

Értekezés 1: Az első felfedezés a meglévő hőcserélő hálózat (HEN) adat összeegyeztetése a
hő-integráció  és  a  pinch  elemzés  céljából.  Ez  egy  döntő  lépés,  mielőtt  bármiféle  retrofit
módosítást eszközölnénk. Csak két paramétert lehet összeegyeztetni, a tömegáramlást és a
hőmérsékletet.  Mivel  mindegyik  hálózatnak  számos  hőcserélője  van,  minden  hőcserélőnek
hőmérséklet-  és  áram  adatokat  tartalmaz.  A  bonyolultság  abból  ered,  hogy  a  korlátozó
egyenletek,  amelyeket  a  modellben  használunk  nagymértékben  nem-lineárisak.  A
hagyományos  módszernek  amit  az  adat  összeegyeztetésben  folyamán  használunk  nagy  a
számítási  kapacitás igénye.  Ebben az értekezettben bevezetett  iteratív módszer megoldja a
nem-linearitást az adat összeegyeztetési folyamatban. Az iteratív módszer biztosítja a pontos
eredményeket kevesebb számítási  kapacitással.  Bár az iteratív módszernek vannak korlátai,
ebben a munkában stratégiákat dolgoztunk ki e korlátozások megoldására. Ezután a tanulmány
kiterjesztettük az energia és a gőzrendszerre az ún. Total Site szintre. A modell bonyolítása
nélkül,  mivel  a  Total  Site  számos  hőcserélővel  rendelkezik,  először  csak  az  energia-  és
gőzrendszerbe tartozó berendezések kerültek összeegyeztetésre. (Kapcsolódó publikáció: P[4],
P[5])

Értekezés 2:  A második felfedezés a hőcserélő hálózat rácsábrázolásból származik. Egy új,
reprezentatív ábrát vezettünk be a Eltolt retrofit termodinamikai rácsábrázolás (SRTGD) néven,
amely  a  folyamatok  retrofit  módosítására  használhatunk.  A hagyományos  rácsábrázoláshoz
képest  az  SRTGD  az  y-tengelyen  minden  egyes  áram  hőtartalmát  mutatja,  miközben  a
hőmérsékletkülönbségeket  az  x  tengelyen  mutatja  be.  Az  SRTGD  nem  csak  az  egyes
hőcserélők hő-tartamát  mutatja  a hozzá tartozó hőátadási  területnek megfelelően,  hanem a
pinch helyét is. Az SRTGD egy meglévő hőcserélő hálózat módosítását is bemutatja. A mátrix
ábrázolás korai fogalmát is tárgyaljuk, hőcserélő mátrix néven. Az ilyen ábrázolás csökkenti a
grafika  ábrázolásának  nehézségét,  és  a  szimulációs  szoftver  bemenetként  használható.
(Kapcsolódó publikáció: P[2], P[6], P[8])

Értekezés 3: A harmadik felfedezés a hulladék-hő hasznosítása a segédközeg előállítására. A
hőcserélő  hálózat  retrofit  módosítás  általános  célja  az,  hogy  csökkentjük  a  segédközeg
felhasználását. Különböző eszközök felhasználásával, mint például a pinch elemzés,meg lehet
határozni a  minimális segédközeg igényt valamint módosításokat lehet kivitelezni a cél elérés
érdekében. Meg kell jegyezni, hogy vannak olyan esetek, hogy bár a javasolt hőcsere hálózat
retrofit  módosítási  opciók  termodinamikailag  megvalósíthatók,  egyéb  szempontok  alapján
azonban  nem  megvalósíthatókat.  A  gazdasági  megvalósíthatóság  egyike  azoknak  a
tényezőknek,  amelyek  gátolhatják  a hőcserélő  hálózat  retrofit  módosítását.  A hő-integrációs
elemzés  elvégzése  után  megállapítható,  hogy  bár  a  módosítás  megvalósítható,  de
gazdaságilag nem megvalósítható. Különösen a hőcserélő hálózat alacsonyabb hőmérsékleti
tartományában az ilyen alacsony hőmérsékletű áramokat gyakran hulladék-hőnek tekintik, és
általában nem foglalkoznak ezeknek a hő-visszanyerésével. Ebben az értekezésben tárgyaljuk
a ilyen hulladék-hő hasznosításának a lehetőségei,  amely bevételekhez vezetnek.  Egyszerű
lépések mutatunk be a hulladék-hő potenciáljának azonosítására. Tárgyaljuk a forróvíz-előállító
áramkör  konfigurációját,  és  általános  elképzelést  adunk  meg  arról,  hogy  hogyan  lehetne
maximalizálni  a  hulladék-hő  felhasználását,  amelyet  egyébként  figyelmen  kívül  hagynánk.
(Kapcsolódó publikáció: P[1], P[7], P[12])
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