
Doktori értekezés

Periodikus ipari folyamatok erőforrás eloszlását
optimalizáló algoritmusok és hatékony

szoftverimplementációik kutatása

Szerző:

Bartos Anikó

Témavezető:
Dr. Bertók Botond

Pannon Egyetem
Műszaki Informatikai Kar

Informatikai Tudományok Doktori Iskola

2019

Egyházy Tiborné
Szövegdoboz
DOI:10.18136/PE.2020.733

Periodikus ipari folyamatok erőforrás eloszlását optimalizáló algoritmusok és

hatékony szoftverimplementációik kutatása

Az értekezés doktori (PhD) fokozat elnyerése érdekében készült a Pannon Egyetem

Informatikai Tudományok Doktori Iskolája keretében

Írta: Bartos Anikó

Témavezető: Dr. Bertók Ákos Botond

Elfogadásra javaslom (igen / nem)

……………………….

Dr. Bertók Ákos Botod

 (témavezető)

A jelölt a doktori szigorlaton %-ot ért el,

Veszprém, 2018. 09. 20. ……………………….

 (a Szigorlati Bizottság elnöke)

Az értekezést bírálóként elfogadásra javaslom:

Bíráló neve: …........................ …................. igen /nem

 ……………………….

 (aláírás)

 Bíráló neve: …........................ ….................) igen /nem

 ……………………….

(aláírás)

A jelölt az értekezés nyilvános vitáján …..........%-ot ért el.

Veszprém, ……………………….

 (a Bíráló Bizottság elnöke)

A doktori (PhD) oklevél minősítése….................................

Veszprém, ……………………….

 (az EDHT elnöke)

Tartalomjegyzék

Szerzői nyilatkozat i

Tartalomjegyzék ii

Köszönetnyilvánítás iv

Kivonat v

Abstract vi

Abstracto vii

1. Bevezetés 1

2. Feladatmegfogalmazás 2

3. Szakirodalmi áttekintés 3
3.1. Ütemezési feladatok . 3

3.1.1. Ütemezési feladatok általános megfogalmazásai 4
3.1.2. MILP megoldások . 5
3.1.3. Állapottér bejáráson alapuló megoldások 6
3.1.4. S-gráf módszertan . 7

3.2. A folyamathálózat-szintézis alapjai . 7
3.2.1. P-gráf módszertan alapjai, alapfogalmak 7
3.2.2. Strukturális reprezentáció, P-gráf . 8
3.2.3. Axiómák . 9
3.2.4. A PNS paraméteres modellje . 10
3.2.5. Algoritmusok . 13

3.3. Alkalmazási területek . 16
3.3.1. Ütemezés TCPNS-el . 18
3.3.2. Multiperiódusos modellek . 19

3.4. Szoftver . 20
3.5. Megoldó algoritmusok párhuzamosításai . 21

ii

3.5.1. Branch & Bound algoritmusok párhuzamosítása 21
3.5.2. Párhuzamosított RCABB algoritmus . 22
3.5.3. Párhuzamosítási lehetőségek napjainkban 23

4. Multiperiódusos P-gráf 24
4.1. Kapacitáskiegyenlítés tárolók bevezetésével . 24
4.2. Multiperiódusos P-gráf modell általános leírása 26
4.3. A tárolók megvalósítása algoritmikusan . 29
4.4. Szoftveres megvalósítás . 37
4.5. Alkalmazhatósági területek . 39

4.5.1. Gyártástervezés . 39
4.5.2. Hulladékkezelés és karbantartási idők . 44
4.5.3. Energiatárolás . 51

4.6. A fejezet rövid összefoglalása . 70
4.6.1. A fejezethez tartozó tézis . 71
4.6.2. A fejezet témaköréhez kapcsolódó publikációk 71

5. Line Balancing 73
5.1. Probléma meghatározás . 74
5.2. Modellezés és megoldás a TCPNS egy egyszerűsített változatával 76
5.3. A probléma MILP modellje . 80
5.4. Szoftveres megvalósítás és visszajelzések . 82
5.5. A fejezet rövid összefoglalása . 84

5.5.1. A fejezethez tartozó tézis . 85
5.5.2. A fejezet témaköréhez kapcsolódó publikáció 85

6. A hálózatszintézishez kapcsolódó algoritmus fejlesztések 86
6.1. Az RCABB algoritmus párhuzamosításának megvalósítása CPU-n 86
6.2. Teszthalmaz készítése . 87
6.3. Paraméteroptimalizálás . 89
6.4. Az optimalizált megoldó hatékonyságnövekedése és összehasonlítás más megoldókkal 95
6.5. A fejezet rövid összefoglalása . 98

6.5.1. A fejezethez tartozó tézis . 98
6.5.2. A fejezet témaköréhez kapcsolódó publikációk 99

7. Összefoglalás 100

Irodalomjegyzék 101

Melléklet 107

iii

Köszönetnyilvánítás

Ezúton szeretnék köszönetet mondani mindazoknak, akik lehetővé tették, hogy ez a dolgozat
elkészüljön. Elsősorban témavezetőmnek, Dr. Bertók Botondnak tartozom köszönettel, aki éve-
ken át irányította munkámat, és értékes tanácsokkal látott el. Dr. Hegyháti Máténak szakmai
támogatásáért és a rengeteg segítéségért vagyok hálás. Riz Barnabásnak nem csak az idegen-
nyelvi lektorálást szeretném megköszönni, de a dolgozat elkészülése közbeni személyes támogatá-
sát is. Továbbá szeretnék köszönetet mondani kollégáimnak a Rendszer- és Számítástudományi
Tanszéken, akik munkám elvégzéséhez hozzájárultak, valamint családomnak és barátaimnak a
biztatásért. köszimatyi

iv

Kivonat

Napjainkban a globális verseny miatt a piaci szereplőknél alapvető fontosságú, hogy az ipari és üzleti
folyamatok hatékonyak legyenek. Egy vállalat csak akkor maradhat hosszú távon is életképes, ha fo-
lyamatai optimalizálva vannak, és a rendelkezésére álló erőforrásokból a lehető legtöbbet tudja kihozni.
Ezek a folyamatok azonban túlságosan is összetettek ahhoz, hogy számítógépes támogatás nélkül át-
láthatóak legyenek, még kisvállalatok esetében is. A számítógéppel történő döntéstámogatás nagyban
megkönnyítheti a vállalati vezetők és irányítók munkáját, és, ahogy egy dolgozatban megtalálható példa
mutatja, akár 25%-os hatékonyságjavulást is eredményezhet. A P-gráf módszertan egy olyan modellező
és optimalizáló eszközt biztosít, amely az elmúlt évtizedekben már számos területen bizonyította haté-
konyságát, és egy probléma legjobb, illetve N-legjobb megoldását visszaadva gyakran szolgáltatott alapot
döntéstámogató rendszerekhez is.

A legtöbb vállalatnál azonban az üzleti tervezés nem egyszeri, hanem az újabb információk alap-
ján rendszeresen megismételt. Ezek az időszakok ugyanakkor nem függetlenek egymástól, így szükséges
a különböző periódusokra különböző pontosságú, gördülő tervezést használni. Új eredményként multi-
periodikus tervezést támogató, optimalizáló modellek generálására és megoldására dolgoztam ki mód-
szereket, melyeket a dolgozatban bemutatok. Az eredmények között egyaránt megtalálhatóak általános
célú, illetve különböző feladatokra specializált metódusok, mint például a gyártástervezés, gyártósor
kiegyensúlyozás, valamint az energiaellátás elosztás.

A hosszútávú tervezés jelentősen csökkentheti a felmerülő kockázatokat, ellenben nagy mértékben

növeli a megoldandó optimalizálási feladat méretét. Az ilyen, nagy méretű feladatok megoldásához

elengedhetetlen egy olyan, hatékony megoldó algoritmus használata, mely maximálisan kihasználja a

döntéstámogató informatikai rendszer számítási kapacitását. Munkám eredményeként dolgozatomban

egy általános célú, a fenti feladatok mindegyikének megoldására képes folyamatoptimalizáló algoritmus

párhuzamos megvalósítását vezetem be, mely peer-to-peer típusú együttműködő feladatelosztást és au-

tomatikus adaptív paraméterhangolást is tartalmaz.

v

Abstract

Nowadays, due to the global competition, it is crucial for market participants that its industrial and
business processes should be effective. A company can only remain viable in the long term if its processes
are optimized, and get the most out of the resources at its disposal. However, these processes are too
complex to be transparent without computer support, even for small businesses. Computerized decision
support can greatly facilitate the work of corporate executives and managers, and as in the example in
this dissertation, can lead to efficiencies of up to 25%. The P-Graph methodology provides a modelling
and optimization tool that has proven its effectiveness in various areas over the past decades and has
often provided a basis for decision support systems by returning the best or N-best solution to a problem.

In most companies, however, business planning is not a one-off but repeated on the basis of new
information. However, these periods are not independent of each other, so it is necessary to use different
precision rolling plans for different periods. As a new result, I have developed methods for generating
and solving optimization models supporting multi-period planning, which is presented in this thesis.
The results include both general-purpose as well as specialized tasks, such as production planning, line
balancing, or energy distribution.

Although long-term planning can significantly reduce the risks involved, it greatly increases the size
of the optimization problem to be solved. In order to solve such large-scale tasks it is necessary to use
an effective solving algorithm that takes full advantage of the computational capacity of the decision
support system. As a result of my work, I introduce a parallel implementation of a process optimization
algorithm capable of solving each of the above tasks, which includes peer-to-peer collaborative task
allocation and adaptive parameter setting.

vi

Abstracto

Hoy en día, debido a la competencia global es fundamental para los partícipes del mercado que sus
procesos industriales y de negocios sean efectivos. Una empresa solo puede seguir siendo viable a largo
plazo si sus procesos están optimizados, y aprovechar al máximo los recursos a su disposición. Sin embar-
go, estos procesos son demasiado complejos para ser transparentes sin soporte informático, incluso para
pequeñas empresas. El soporte de decisiones por ordenador puede facilitar enormemente el trabajo de
los ejecutivos y gerentes corporativos, y como en el ejemplo de esta disertación, puede llevar a eficiencias
de hasta el 25 %. La metodología P-Graph proporciona una herramienta de modelado y optimización
que ha demostrado su efectividad en varios ámbitos durante las últimas décadas y a menudo ha propor-
cionado una base para los sistemas de soporte de decisiones al devolver la mejor o la N-mejor solución a
un problema.

No obstante, en la mayoría de las empresas, la planificación comercial no es un hecho aislado, sino
que se repite acorde a la nueva información. Pero, estos periodos no son independientes entre sí, por
lo que es necesario usar diferentes planes de precisión para diferentes periodos. Como nuevo resultado,
he desarrollado métodos para generar y resolver modelos de optimización que apoyan la planificación
de múltiples peroodos, que se presenta en esta tesis. Los resultados incluyen tareas especializadas y
de propósito general, como la planificación de la producción, el balanceo de líneas o la distribución de
energía.

Aunque la planificación a largo plazo puede reducir en garn medida los riesgos involucrados, aumenta
enormemente el tamaño del problema de optimización a resolver. Para resolver tales tareas a gran escala,
es necesario utilizar un algoritmo de resolución eficaz, que aprovecha al máximo la capacidad computa-
cional del sistema de apoyo a la decisión. Como resultado de mi trabajo, presento una implementación
paralela de un algoritmo de optimización de procesos capaz de resolver cada una de las tareas anteri-
ores, que incluye la asignación de tareas colaborativas punto a punto y la configuración de parámetros
adaptativa.

vii

1. fejezet

Bevezetés

A XX. század második felétől a számítógépek robbanásszerűen terjedtek el, nem csak a kuta-
tóközpontokban és az iparban, hanem a háztartásokban is. A folyamatosan növekvő számítási
kapacitású gépek segítségével számos olyan matematikai problémát sikerült megoldani, vagy iga-
zolni, mely korábban lehetetlennek bizonyult. Számítógépek és gépesítés bevezetésével az ipar is
termelékenyebb lett, és ezzel együtt egyre több helyen kezdtek el figyelni az optimalizálásra. Bár
az optimum megtalálására korábban is voltak módszerek, de igazán csak a számítógépes támoga-
tás elterjedésével kaptak nagyobb teret. Míg korábban, manuálisan nehézségekbe ütköztek egyes
feladatok felírásai és megoldásai, úgy a számítógépekkel egyre inkább elterjedő modellezőknek és
megoldóknak köszönhetően a legtöbb területen elérhetővé vált az optimalizálás megvalósítása.

Optimalizálást alkalmazni - főleg, ha annak eredménye kimagasló- nem csak kutatási szem-
pontból motiváló, hanem pozitív anyagi, gazdasági és környezeti hatása lehet. A kutatási témám
megválasztásánál és egyben a disszertáció elkészítésében is az inspirált, hogy ezen a területen
nem csak elméleti eredményeket lehet elérni, de a megfelelő algoritmusok és módszerek a gya-
korlatban is hasznosíthatók és erre igény is van. A következő néhány fejezetben bemutatásra
kerül a folyamathálózat-szintézis, mint optimalizálási módszertan, valamint ehhez a területhez
kapcsolódó kutatásaim és eredményeim. Többek között ilyenek a több periódusból álló modellek,
a gyártásoptimalizálás vagy a megoldó algoritmusok fejlesztése.

1

2. fejezet

Feladatmegfogalmazás

A képzésben eltöltött éveim alatt lehetőségem adódott számos projektmunkában részt venni.
Munkám során az ipari együttműködések keretében - például a Foxconn-nal, vagy SAGEM-el -
jó néhány valós életbeli döntéstámogatási feladattal találkozhattam, mely feladatok, akár a kisebb
vállalatoknál felmerülők is, szinte mindegyike jellegéből és összetettségéből adódóan valamilyen
számítógépes támogatást igényelt. A felmerülő kérdésekre a válaszokat keresve azt találtam, hogy
az irodalomban megtalálható modellekhez és megoldásokhoz sokszor kell valamilyen kiegészítés,
vagy akár egy újfajta megközelítés, modell felírása. Úgy vélem, hogy a megtalálható megoldá-
sokhoz aktívan hozzá tudok járulni a munkám során elért és itt bemutatott új eredményeimmel.
A dolgozatomban ezeket a feladatokat, és a feladatokra adott válaszokat, megoldásokat fogom
bemutatni.

2

3. fejezet

Szakirodalmi áttekintés

Ebben a fejezetben bemutatásra kerülnek azok a korábban már publikált módszerek és megoldá-
sok, melyek alapjául szolgáltak a kutatási tevékenységemnek, és amelyekre építve hoztam létre
az új eredményeimet. Ismertetésre kerülnek mind a metódusok előnyei, mind pedig hátrányai,
vagy esetleg hiányosságai, amikre adott válaszaim a dolgozat lényegi részét képezik. A fejezet
során ismertetni fogom az ütemezési feladatokat, azon belül is az ütemezési feladatok általános
megfogalmazását, a MILP és az állapottér bejáráson alapuló megoldásokat, valamint az S-gráf
módszertant. A fejezet áttekintést ad a folyamathálózat-szintézisről (Process Network Synthesis,
PNS), annak alapjairól, valamint az alkalmazási területekről, ahol hatékonyan alkalmazták már,
továbbá a modellezésére és megoldására szolgáló szoftverről és annak algoritmusairól, és azok
korábbi párhuzamosításáról.

3.1. Ütemezési feladatok

Ütemezési feladatok széles körben fordulnak elő az élet számos területén, legyen szó mezőgazda-
ságról, gyártásról, fuvarozásról vagy akár informatikai rendszerekről. Fontos, hogy rendelkezésre
álljanak olyan módszerek, algoritmusok és szoftverek, amelyek segítségével optimális vagy közel
optimális megoldást lehet kapni ezekre a problémákra. Mivel ütemezési feladatok esetén az egyes
lehetséges megoldások minősége nagy mértékben eltérhet, különösképpen fontos, hogy a lehető
legjobb megoldást találjuk meg a problémára. Fontos szempont az is, hogy egy ilyen megoldó a
felhasználó számára elfogadható időn belül legyen képes eredményt adni.

Az ütemezési feladatok célja többféle is lehet. Az egyik megközelítés az, hogy a lehető leg-
rövidebb idő alatt történjen meg az előre meghatározott, adott feladatok elvégzése, szakaszos
működésű berendezésekkel (például számítógépgyárban 100 gép összeszerelése), de lehet olyan
megközelítés is, ahol adott (fix) idő alatt kell a lehető legnagyobb profitot elérni (például egy
műszak alatt összeszerelendő számítógépek maximalizálása). Az ütemezési problémát tovább
bonyolítja, ha egy adott lépést, feladatot több műveleti egység is képes megoldani, vagy ha eset-
leg vannak átállási- és határidők. A feladatoknál felmerülhetnek különböző költségek, és az sem

3

mindegy, hogy milyen tárolási stratégiát lehet alkalmazni, ebből kifolyólag az ütemezési feladatok
megoldása nem triviális.

Az ilyen feladatokat kezdetben heurisztikus szabályok alapján próbálták megoldani, amely
módszerek fő hátránya, hogy nem tudják garantálni az optimális megoldást. Manapság már ké-
pesek vagyunk egy-egy ütemezési feladatosztályhoz egy speciális matematikai modellt felírni,
viszont egy általános, minden feladatosztályhoz jó megoldó nem áll rendelkezésre. Ez azért van,
mert a gyakorlatban egy ilyen feladatnál rengeteg változót kell figyelembe venni és bevezetni a
modell felírásánál, ráadásul a optimalizálás céljai is nagy mértékben eltérhetnek. A legáltalá-
nosabban a vegyes egészértékű lineáris optimalizálási modellek használhatóak, amelyekre már
több, általános megoldó szoftver is létezik. A fejezet további részében bemutatásra kerülnek az
ütemezési feladatok legelterjedtebb fajtái, majd ismertetem a kapcsolódást a folyamathálózat-
szintézissel, bemutatom a PNS alapjait, alkalmazási területeit és az eddig publikálásra került
eredményeit.

3.1.1. Ütemezési feladatok általános megfogalmazásai

Az ütemezési feladatok megértéséhez az alábbi alapfogalmakat kell bevezetni :

– Recept : A recept azokat a minimális információkat tartalmazza, amik a termékek előállítá-
sához szükségesek. Ilyen például a feladatok hálózata és az azokhoz rendelhető berendezések
is, ami tartalmazza továbbá azt, hogy egy berendezés egy feladatot mennyi idő alatt végez
el. A receptben egy feladathoz több bemenet és kimenet is tartozhat.

• Termék vagy cél : Terméknek vagy célnak nevezzük azokat az anyagokat, tárgyakat,
esetleg állapotokat, amiket a gyártórendszerben elő kívánunk állítani, vagy el akarunk
érni.

• Berendezés : Olyan eszköz vagy erőforrás, amit a termékek előállításához fel lehet
használni, és rendelkezésre állását tekintve megújuló, vagyis használata után újra ren-
delkezésre áll.

• Feladat : A feladatok olyan elemi tevékenységek, melyek további részekre már nem
bonthatók. Meghatározott idő alatt állítják elő az adott inputból az adott outputot.
Egy feladat végrehajtásához egy vagy több berendezés is rendelkezésre állhat, és a
végrehajtási ideje függ attól, hogy melyik berendezéssel kerül megvalósításra. Egy
berendezés egy időben csak egy feladatot végezhet el, és egy feladathoz csak egy
berendezés rendelhető.

– Adag : Ha az előállítandó termék mennyisége több, mint amennyi a recept egyszeri végre-
hajtásából keletkezik, akkor a recept többszöri alkalmazásával lehet előállítani az igényelt
termékmennyiséget. A recept egyszeri végrehajtásával egy adagnyi termék keletkezik.

A gyártás során keletkező félkész termékeknél jogosan merül fel a kérdés, hogy ezeket lehet-e
valahol tárolni a gyártás folyamata közben, akár valamilyen tárolóban, raktárban, akár magában
a műveletet végző berendezésben (például gyártószalag). A tárolásnál fontos, hogy a tárolási

4

kapacitás korlátozott-e, esetleg a tárolási időre vonatkozóan vannak-e megkötések. Ezek mentén
két csoportba lehet sorolni a tárolási stratégiákat.

– Stratégiák tárolási idő szempontjából

• UW (Unlimited wait) stratégia: Ez az egyik legegyszerűbb és legáltalánosabb stra-
tégia. Ekkor a tárolandó anyag az idővel nem veszít a tulajdonságaiból, így végtelen
ideig tárolható, mielőtt a következő feladatra lépne.

• LW (Limited wait) stratégia: Itt meg van határozva egy bizonyos idő, aminél tovább
a köztes anyagok nem tárolhatóak anélkül, hogy vesztenének tulajdonságaikból.

• ZW (Zero wait) stratégia: Ez tekinthető az LW stratégia egy speciális esetének is,
ahol a tárolási idő 0. Vagyis semmilyen mód nincs a tárolásra, és a legutolsó módosí-
tást végző berendezésben sem történhet tárolás, várakozás. Ekkor a félkész terméket
azonnal a következő folyamatra kell küldeni.

– Stratégiák tárolási kapacitás szempontjából

• UIS (Unlimited intermediate storage) stratégia: A félkész termékeket ebben az eset-
ben -gyakorlati szempontból tekintve- végtelen mennyiségben lehet tárolni. (Ilyen lehet
egy bérelt raktárterület, ahol telítettségkor további terület bérelhető.)

• NIS (Non intermediate storage) stratégia: Ebben az esetben a tárolás, várakozás a
gyártóberendezésben történik, mivel nincs erre dedikált külön hely. Ekkor a berende-
zést, amiben tárolás történik csak akkor lehet újra gyártásra használni, ha a benne
lévő félkész terméket eltávolítottuk.

• FIS (Finite intermediate storage) stratégia: Ebben az esetben is van köztes tárolásra
lehetőség, de a tárolók száma és mérete véges.

A valóságban elképzelhető ezen tárolási stratégiák valamilyen szintű kombinációja akár külön-
külön is az egyes félkész termékekre. A tárolók a több periódusú modelleknél is kulcsszerepet
játszanak, melyek későbbi fejezetekben kerülnek részletezésre.

3.1.2. MILP megoldások

A lineáris és nemlineáris programozási feladatokat tekintve a vegyes egészértékű, vagyis MILP
(Mixed Integer Linear Programming), illetve a MINLP (Mixed Integer Non-linear Programming)
modellek a legintenzívebben kutatott és publikált módszerek között vannak, és meghatározó
szerepet töltenek be az ütemezési feladatoknál is. Ebben a fejezetben bemutatásra kerülnek
ezeknek a problémáknak a legismertebb típusai.

Idő-diszkretizáción alapuló ütemezés

Az idő-diszkretizáción alapuló megoldások az elsők között kerültek publikálásra [1]. Ezek alapja,
hogy a teljes időintervallumon időpontok vagy időszeletek kerülnek definiálásra (Például egy nap

5

ütemezése órás bontásban.). A két módszer nagyon hasonló és az átjárás közöttük könnyen meg-
oldható, hiszen két időpont közötti részt lehet időszeletnek tekinteni, és az időszeletek kezdési
ideje egy időpontot jelöl. Az időszeletes felbontás általában szekvenciális folyamatokra, míg az
időpontokra bontás általánosabb hálózati problémákra jó. Ezeknél a problémáknál az időpon-
tokhoz bináris változók tartoznak, amelyek azt reprezentálják, hogy adott műveleti egységek az
abban az időpontban elkezdenek-e végrehajtani egy műveletet.

Mivel jól látható, hogy ezek a bináris változók az időpontok és feladatok számával ugrás-
szerűen növekednek, fontos, hogy a probléma leírásra olyan modell legyen megadva, ahol ezen
időpontok száma a lehető legkisebb, de mégis elegendőek a megfelelő optimalizáláshoz. Az egyik
ilyen módszer, ha kezdetben csak kevés időpont szám mellett történik az optimalizálás, majd az
időpontok számát egyesével növelve újra és újra megvalósul az optimalizálás mindaddig, amíg
két, egymást követő iteráció után ugyanaz az eredmény nem születik. Kellően sok időponttal már
megközelítőleg jól fel lehet írni egy modellt, de a túl sok időpont lassítja is ezt a folyamatot. A mo-
dellalkotók ebből adódóan megpróbálnak különböző technikák alkalmazásával kevesebb időpont
használatával olyan modelleket adni, ami gyorsabban, de még mindig megtalálja a megoldást.
Ezekben az gyorsításokban viszont megvan az esély arra, hogy véletlenül pont az optimumot
fogják kizárni. Az idő-diszkretizáción alapuló modellek egyik előnye, hogy széles körben használ-
hatók, hiszen a precedencia alapú modellekkel szemben nem kell a megoldás előtt, előre ismerni
a feladatok, termékek számát. A módszer továbbá megengedi, hogy ugyanazt a feladatot több
gép is végezhesse párhuzamosan.

Sorrendiségen alapuló modellek

A sorrendiségen, vagy precedencián alapuló modellek esetében nem szükséges, hogy az időho-
rizont felosztva, diszkretizálva legyen, aminek köszönhetően a modellben nem lesz ismeretlen
paraméter. Előnye, hogy amely problémát képesek megoldani, azt sokkal nagyobb hatékonyság-
gal teszik. Itt kulcsszerephez jut két, bináris változókat tároló halmaz: Yi,j valamintXi,j,i′ . Előbbi
azt mondja meg, hogy egy i-edik feladat hozzá van-e rendelve j-edik műveleti egységhez, míg
utóbbi értékei akkor lesznek ’1’-ek, ha mind i mind pedig i′ a j-ben van elvégezve, és i hamarabb
befejeződik, mint az i′ szekvencia.

A sorrendiségen alapuló modelleknek két fő változata van: azonnali és általános modellek. Az
általános modellnél a bináris változók felére van csak szükség (Xi,j,i′ komplementere az Xi′,j,i),
az azonnali előnye viszont, hogy abban számos jellemzőt egyszerűbb kifejezni. Léteznek hibrid
modellek is, amik ezeket a módszereket ötvözik.

3.1.3. Állapottér bejáráson alapuló megoldások

Diszkrét eseményű rendszerek modellezésére széles körben használt módszerek az automaták és
Petri-hálók[2]. A modellezésen túl kísérletek voltak arra, hogy ezekben a módszerekben rejlő
lehetőségeket kiaknázva az ütemezési problémákat meg is oldják velük. Ilyen az időzítéses Petri-
háló [3], ami már több ütemezési problémához is elegendő. Az ilyen megoldók legtöbbször Branch-
and-Bound algoritmust használnak az optimális megoldás megtalálásához.

6

Modellezéskor fontos, hogy az esetleges hibákat elkerüljük, és ne juthasson holtpontra a fel-
adat. Az állapottér bejáráson alapuló modellek előnye, hogy maga a modellezés elég egyértelmű.
Ennek a tulajdonságának köszönhetően jól hasznosíthatók a vezérlési döntési rétegben, hiszen
könnyű az integrációjuk, valamint, jellegükből fakadóan újraütemezésekhez is használhatóak,
azonban hatékonyságukban még mindig elmaradnak a MILP vagy S-gráf algoritmusok mögött.

3.1.4. S-gráf módszertan

Az S-gráf módszertant elsőként 1998-ban használták ütemezési feladatra [4]. A modell ebben
az esetben egy irányított gráfból, az S-gráfból áll, és ez a gráf reprezentálja mind a recepteket,
mind pedig a részleges vagy teljes ütemezést [5]. A gráfban a termékek és a feladatok csúcspon-
tokként kerülnek megjelenítésre. Ha két művelet között függőség, egymásra épülés van, akkor az
őket ábrázoló csúcsok között is lesz irányított él, és ezek az élek reprezentálják a köztük lévő
függőségeket is.

Az összes S-gráf algoritmus kiterjeszti a gráfot úgynevezett ütemezési élekkel, amik az algo-
ritmusok által generált ütemezési döntéseket reprezentálják. Minden egyes csúcspontnál igaz az,
hogy ha már megtörtént a döntés, akkor a csúcspont halmaza le lesz cserélve a kiválasztott egy-
séggel. A gráfban az ütemezési élek súlya alapesetben ’0’ ha nincs átállási, átviteli vagy tisztítási
idő a feladatban. Ezek az ütemezési élek továbbá kifejezik, hogy nem elegendő a műveleti egység-
nek végeznie az aktuális anyaggal mielőtt a következőre lépne, hanem recept szerint a következő
feladatnál, ahol az aktuális anyag input lesz (amit egy másik műveleti egység fog végezni) szintén
szabadnak kell lennie a műveleti egységnek, hogy fogadhassa az új anyagot. Ütemezési élek nélkül
az S-gráf megfelel a receptgráfnak.

3.2. A folyamathálózat-szintézis alapjai

Az iparban a gyártási és termelési folyamatoknál egy fontos kérdés, hogy hogyan kell úgy össze-
állítani a gyártórendszert a rendelkezésre álló és esetleg még nem álló erőforrásokból, továbbá
hogyan kell ezt a rendszert konfigurálni ahhoz, hogy az előállítandó termék gyártása optimális
legyen. 1992-ben Friedler és Fan professzor publikálta a folyamathálózat-szintézist, amely egy
strukturális tulajdonságokra építő technika, és választ ad a vegyipari termelési folyamatok mo-
dellezésének kérdéseire és optimalizálására [6]. A megfelelő szintézis az energiafogyasztást akár
50, a költségeket pedig 35%-al is képes csökkenteni, így elmondható, hogy egy igen hatékony
optimalizálási eljárás [7].

3.2.1. P-gráf módszertan alapjai, alapfogalmak

A folyamathálózat-szintézis fő építőelemei az anyagok és a műveleti egységek. A műveleti egysé-
gek anyagból vagy anyagokból valamilyen hozzáadott értékkel rendelkező új anyagot vagy anya-
gokat képesek előállítani, és ezen lépések sorozatával a nyersanyagokból terméket előállítani.

Jelölje M az anyagok halmazát, amely halmaz véges és nem üres. A kapcsolódó szintézis
feladat egy (P,R,O) hármassal adható meg, ahol P a termékeket, R a nyersanyagokat reprezen-

7

tálja, és P halmaz elemei azok az anyagok, termékek, amiket a folyamat során elő kell állítani,
R elemei pedig azok az anyagok, amik a gyártás megkezdése előtt rendelkezésre állnak, és nem
állítja elő őket a folyamat során használt berendezés.

P ⊂M, R ⊂M, valamint P ∩R = ∅. (3.1)

O reprezentálja a műveleti egységeket, amik az anyagok közötti átalakításokért felelnek. Mivel
O-nak mind kimenete, mind pedig bemenete is lehet, ezért egy rendezett párral, (α, β) ∈ O lehet
modellezni ezt a kapcsolatot, ahol α jelöli a be, β pedig a kimeneti anyagok halmazát. Köztes
anyagok azok az anyagok, amik be- és kimenetei is műveleti egységeknek. Ezek kiinduláskor
még nem állnak rendelkezésre, viszont a gyártás során keletkeznek és felhasználásra kerülhetnek
a termék előállításának érdekében. Azokat az anyagokat, amik gyártás során keletkeznek, de
nem használja fel őket egy műveleti egység sem és P halmaznak sem elemei, melléktermékeknek
hívják.

3.2.2. Strukturális reprezentáció, P-gráf

A kombinatorikus tulajdonságok kihasználásához a folyamat egyértelmű, strukturális reprezen-
tációja szükséges. Az anyagok és műveleti egységek kettőssége, és ezen elemek váltakozása miatt
a PNS strukturális reprezentációja egy irányított páros gráf, a P-gráf. A csúcsok két típusát az
anyagok és műveleti egységek adják, és a páros gráfok tulajdonságainak köszönhetően két azonos
típusú csúcs nem kapcsolódhat közvetlenül egymáshoz. A P-gráf tehát egy olyan (M ,O) pár, ahol
a gráf csúcsai

V =M ∪O. (3.2)

A gráf élei az

E = E1 ∪ E2 (3.3)

halmaz elemei, ahol

E1 := {(x, y)|y = (α, β) ∈ O, valamint x ∈ α} (3.4)

és

E2 := {(y, x)|y = (α, β) ∈ O, valamint x ∈ β}. (3.5)

A fenti, formális definícióban x az anyag típusú, y pedig a műveleti egység típusú csúcsokat
jelöli. α csúcsból mutat irányított él műveleti egység típusba, β csúcsba pedig műveleti egységből
mutat irányított él.

(M1, O1) gráf (M2, O2) részgráfja, azaz

(M1, O1) ⊆ (M2, O2) (3.6)

8

ha

M1 ⊆M2 valamint O1 ⊆ O2. (3.7)

A fentiek alapján egy folyamat struktúráját meg lehet adni a P-gráf formátumnak megfele-
lően az M , mint anyag, és O, mint műveleti egység halmazok felhasználásával. Az anyagokat a
gráf anyag típusú, míg a műveleti egységeket a műveleti egység típusú csúcsok reprezentálják.
Előbbieket körökkel, utóbbiakat téglalapokkal jelölik, a 3.1. ábrának megfelelő módon. Megkü-
lönböztetésre kerülnek a nyersanyagok, amiket háromszöggel ellátott körök, a köztes anyagok,
amiket teli körök, illetve a termékek, amiket koncentrikus körök reprezentálnak.

3.1. ábra. A folyamathálózat-szintézis szimbólumai

Egy műveleti egység és egy anyag típusú csúcs között akkor és csak akkor megy él, ha ez a
kapcsolat része a modellezendő folyamatnak. A műveleti egységek által felhasznált és előállított
anyagok arányai az élek súlyain jelennek meg. Az élek irányai a folyamat előrehaladásának irá-
nyával megegyezőek. Egy általános P-gráf reprezentáció, amely négy nyersanyagot, egy terméket,
és hét műveleti egységet tartalmaz a 3.2. ábrán látható.

3.2.3. Axiómák

Minden P-gráf struktúrának teljesítenie kell az alábbi öt axióma mindegyikét:

– (S1): Minden terméknek és célnak szerepelnie kell a gráfban.

– (S2): Egy M típusú csúcs nyersanyag, ha semmilyen műveleti egység nem állítja azt elő,
vagyis nincs bemenete.

– (S3): Minden O típusú csúcs, vagyis műveleti egység amelyet tartalmaz a gráf, előzetesen
definiálva kell, hogy legyen a szintézis feladatban.

– (S4): Minden O típusú csúcsból, azaz műveleti egységből kell, hogy vezessen legalább egy
út egy termékig.

– (S5): Ha egyM típusú csúcs a gráf része, akkor annak vagy bemenetének vagy kimenetének
kell lennie legalább egy műveleti egységnek.

(S1) axióma megköveteli, hogy minden termék vagy célként kitűzött feladat szerepeljen a
gráfban. Ez a követelmény viszonylag triviális, hiszen minden, ami cél vagy amire az optimalizálás

9

3.2. ábra. Példa egy P-gráf reprezentációra

történik része kell, hogy legyen a gráfnak. Az (S2) axióma szerint nyersanyag csak akkor lehet
egy anyag, ha nem gyártja azt semmi, ellenkező esetben köztes anyagként, vagy termékként kell
reprezentálni. (S3) axióma biztosítja, hogy csak a megengedett műveleti egységek jelenhetnek
meg a gráfban. (S4) axióma segít leredukálni a hálózatot azokra a műveleti egységekre, amik a
cél elérésében szerepet játszhatnak. Amely műveleti egységből nincs út a termékig az felesleges,
ezen túl pedig értékes kapacitásokat köthet le megoldáskor. Az (S5) axióma hasonló, mint az
(S4), csak anyagok tekintetében. Ha a gráf már redukálásra került az (S4) axióma miatt, úgy
csak olyan műveleti egységek szerepelnek benne, amelyek a termékekkel összekötöttek. Amely
anyag nincs összeköttetésben ezekkel a műveleti egységekkel, úgy szintén haszontalan a megoldás
szempontjából.

Az axiómák segítik a kezdeti struktúra analizálását, és kizárják azokat az anyagokat és mű-
veleti egységeket, amelyek semmilyen módon nem vesznek részt a termék előállításában vagy a
cél elérésében. Ezek a tételek továbbá segítenek a potenciális alternatív struktúrák vizsgálatánál
a számítási lépések csökkentésében is.

3.2.4. A PNS paraméteres modellje

A matematikai optimalizálási problémák változókból, korlátozásokból és a célfüggvényből állnak.
Egy PNS feladatnál a korlátozások tartalmazzák az anyagáramot, a nyersanyagok elérhetőségét,
valamint az előállítandó termékmennyiség alsó korlátját annak érdekében, hogy a kereslet kielé-
gítésre kerülhessen. Ezek a korlátozások a következő egyenletekkel fejezhetők ki [8]:

Minden mj anyagnál Lpj jelöli a termelés alsó, míg Upj a termelés felső korlátját. Ha mj

10

anyag nem egy termék, akkor

Lpj =

> 0 ∀mj ∈ P

0 egyébként.
(3.8)

mj nyersanyagnál Upj felső korlát nullára van állítva, egyébként pedig nagyobbnak, vagy
egyenlőnek kell lennie, mint Lpj :

Upj =

0 ∀mj ∈ R

≥ Lpj egyébként.
(3.9)

Az anyagoknál a bruttó fogyasztás felső korlátja is meghatározott.mj anyag esetén ez Ucj-vel
van jelölve. Nyilvánvaló, hogy nyersanyagok esetében ez több kell, hogy legyen, mint nulla, más
esetben viszont meg kell egyeznie nullával.

Ucj =

> 0 ∀mj ∈ R

0 egyébként.
(3.10)

Minden köztes anyagnál és mellékterméknél meg kell felelni a mennyiségi egyensúlynak oly
módon, hogy minden köztes anyagnál és mellékterméknél az előállított mennyiség nagyobb, vagy
egyenlő kell, hogy legyen, mint a fogyasztott mennyiség. A nyersanyagoknál, vagyis azoknál
az anyagoknál, amiket felhasznál a rendszer a bemenet negatív arányként jelenik meg. Ezt a
költségekkel szorozva negatív költség keletkezne, ami azt eredményezné, hogy a nyersanyagokat
minél nagyobb mennyiségben próbálná a modell felhasználni. Ennek elkerüléséhez szükséges az
Ucj változót negatív értékként venni:

Lj =

−Ucj ∀mj ∈ R

Lpj egyébként.
(3.11)

és

Uj = Upj . (3.12)

Célfüggvényként általában a hálózat bevételeinek maximalizálása vagy a költségek minima-
lizálása szokott megjelenni, de bármilyen tényezőre megtörténhet az optimalizálás, ha hozzá
valamilyen érték társul. Ilyen lehet az, amikor díjazás vagy büntetés kapcsolódik egy-egy tevé-
kenységhez. (Például, ha egységnyi igény kielégítése 10-el növeli a modell értékét, de a közben
keletkező 1m3 CO2 3-al csökkenti azt. A mértékegységet a modellező személy adja meg.) Jelen
esetben a költségek minimalizálása kerül bemutatásra, ahol a hálózat költsége megegyezik az
összes műveleti egység költségének és a nyersanyagok árának összegével. Mivel az optimalizálási
modell várhatóan biztosítani fogja a műveleti egységek optimális ellátását az optimális folya-
matstruktúra mellett, a költség többek között megadható, mint a mennyiségi terhelés függvénye,

11

például egy fix költségekkel rendelkező lineáris függvényként

cfi + cpixi (3.13)

ahol cfi a fix költség, cpi pedig egy arányossági konstans, xi pedig a műveleti egység terhelése,
amely jellemzően 0 és 1 között van, azaz 0-100 %. Ha mind a beruházási, mind pedig a működési
költség függvényekkel megadott, akkor a költségfüggvény ezeknek a kombinációja lesz.

A fix költségekkel rendelkező lineáris költségfüggvény paraméterei az alábbiak összegéből
tevődnek össze: cfopi és cpopi , ami a működési költség, valamint cfinv

i

kifizetési időszak és cpinv
i

kifizetési időszak ,
ami a beruházás évesített, arányosított költsége:

cfi =
cf invi

kifizetési időszak
+ cfopi (3.14)

cpi =
cpinvi

kifizetési időszak
+ cpopi (3.15)

mj ∈ R nyersanyag és mj ∈ P termék árát cmj jelzi, azon feltételezés mellett, hogy a köztes
anyagoknak nincs ára.

mj anyag és oi műveleti egység közötti kapcsolat a következő módon adható meg: aji az
mj oi általi termelése és fogyasztása közötti különbséget fejezi ki. Ez a következő két kifejezést
eredményezi :

αi = {mj ∈M : aji < 0} (3.16)

és

βi = {mj ∈M : aji > 0}. (3.17)

o∗ ⊆ O jelöli az optimális struktúrában szereplő műveleti egységeket, m∗ ⊆ M pedig az
anyagokat, ahol

m∗ =
⋃

(αi,βi)∈o∗
αi ∪ βi. (3.18)

Továbbá x∗ = [x1, x2, ..., xn]
T jelöli a műveleti egységek optimális terhelésének vektorát, a

célfüggvény pedig az alábbiakkal adható meg:

z∗ =
∑

(αi,βi)=oi∈o∗
(cfi + x∗i (cpi −

∑
mj∈α∪β

aijcmj)). (3.19)

A cél a paraméteres PNS-probléma (P,R,O,A, cp, cf , cm,u,Lp, Up,Uc) optimális megol-
dásának megtalálása, azaz a (m∗, o∗,x∗, z∗) hálózat elégítse ki a 3.20-3.24 feltételeket, a mellett,
hogy z∗ minimális.

∀oi = (αi, βi) ∈ o∗ : mj ∈ αi ⇐⇒ aji < 0,mj ∈ βi ⇐⇒ aji > 0 (3.20)

12

∀mj ∈ m∗ ∩R : −Ucj ≤
∑
oi∈o∗

ajix
∗
i ≤ 0 (3.21)

∀mj ∈ m∗ ∩ P : Lpj ≤
∑
oi∈o∗

ajix
∗
i ≤ Upj (3.22)

∀mj ∈ m∗ \ R \ P : 0 ≤
∑
oi∈o∗

ajix
∗
i ≤ Upj (3.23)

0 < x∗i ≤ ui ⇐⇒ oi ∈ o∗ (3.24)

(m∗, o∗,x∗, z∗) hálózat lokálisan optimális, akkor és csak akkor, ha a paraméteres PNS feladat
(P,R, o∗,A, cp, cf , cm,u,Lp, Up,Uc) optimális megoldása. A PNS kombinatorikus algoritmu-
sai, az MSG és SSG az RCABB algoritmus alapjai, amely algoritmus a korlátozás és szétválasztás
technikáját alkalmazva képes megoldani a paraméteres PNS problémákat [9].

3.2.5. Algoritmusok

3.3. ábra. A módszertan főbb lépései

Folyamathálózat szintézis esetén a P-gráf keretrendszerben használható három fő kombina-
torikus algoritmus az MSG, az SSG és az RCABB. Az MSG, vagyis a maximális struktúra
generátor (Maximal Structure Generator) biztosítja, hogy a struktúra az axiómáknak megfele-
lően legyen felépítve. Iteratív módon ellenőrzi a modellt az axiómák szerint és addig redukálja a
nem megfelelő részeket, amíg végül a struktúra az összes axiómának meg nem felel. Így távolítja
el például azokat a részeket, amik az optimalizálásban nem játszanak szerepet. A szükségtelen
részek levágása segít, hogy megoldáskor ne történjen feleslegesen számítás, ez által is gyorsítva
az algoritmusok működését. Optimalizálást önmagában nem végez, viszont, mivel ezzel az algo-
ritmussal sokszor jelentős mennyiségű de felesleges számítást lehet elkerülni, ezért a másik két
algoritmus futása előtt mindig végrehajtódik, mint egy nulladik lépés. Ez látható a 3.3. ábrán is.

13

Az SSG, azaz a megoldás-struktúra generátor (Solution Structure Generator) előállítja az
összes lehetséges megoldásstruktúrát. Csak és kizárólag kombinatorikusan vizsgálja a struktúrá-
kat, a paramétereket még nem veszi figyelembe, vagyis nem végez optimalizálás. Az SSG által
generált struktúrák tartalmazzák a legjobb és az N-legjobb megoldás struktúráját is.

Algoritmus 1: RCABB algoritmus
input : (m, o) : P-graph, N
output: best_networks

1 RCABB::Init;
2 if is_feasible then
3 solutions := ∅ b :=∞ ;
4 while subproblems 6= ∅ and (|solutions| < N or there exists subproblem (o−, o+, o0, z̃

∈ subproblems) such that z̃ < b) do
5 (o−, o+, o0, õ, x̃, z̃, depth):= SelectProblem(subproblems) ;
6 subproblems := subproblems \ { (o−, o+, õ, x̃, z̃, depth)} ;
7 if N = 1 then
8 o?={oi : γ(oi, xi) > 0} ;
9 else

10 o?= õ ;
11 end
12 RCABB::Branch&Bound;
13 end
14 return solutions ;
15 else
16 return ∅ ;
17 end

Algoritmus 2: RCABB::Init
1 N

2 subproblems := ∅;
3 o− := ∅; o+ := ∅; o0 := o ; o∗ := ∅ ; x∗ := 0; z∗ :=∞ depth = 0;
4 subproblems := subproblems ∪ {(o−, o+, o0, o∗, x∗, z∗, depth)}
5 (is_feasible, õ, x̃, z̃) = LP(o−, o+, o0) ;

A dolgozat szempontjából az egyik legfontosabb algoritmus az RCABB. Az ABB (Acce-
lerated Branch & Bound), vagyis a gyorsított korlátozás és szétválasztásos algoritmus már
figyelembe veszi a paramétereket is, ezáltal képes az optimalizálásra [9]. Az algoritmus vissza
tudja adni nem csak a legjobb, de az N -legjobb megoldást is ; többek között ez az egyik erőssége
a többi optimalizáló megoldóhoz képest. Az algoritmus az évekkel folyamatosan fejlődött, és a
korábban ABB-ként ismert módszert napjainkban már RCABB-ként is ismerik, ahol az "RC" a
"Relaxation Controlled"-ot jelenti. Ez az RCABB algoritmus van a grafikus fejlesztői felület, a
P-graph Studio mögött is [10].

Az algoritmussal való optimalizálásnál bármilyen célfüggvény használható, ami leírható egy

14

fix+lineáris modellel, hiszen az algoritmus a megoldás értékek (value) alapján tudja összehason-
lítani az egyik struktúrát a másikkal. Ennek köszönhetően nem csak költségre, de például időre
[11] vagy kockázatra is lehet optimalizálni [12].

Algoritmus 3: RCABB::Branch&Bound

1 if o0 = ∅ then
2 solutions := solutions∪{ (õ, x̃, z̃)};
3 if |solutions| ≥ N then
4 comment: update solution set
5 old = solutions ;
6 solutions := {s = (õ, x̃, z̃) ∈ old with the 1..N -th smallest values of z̃ };
7 b =z̃ where s = (õ, x̃, z̃) ∈ solutions with the N -th smallest value of z̃ ;
8 forall s = (o−, o+, o0, õ, x̃, z̃, depth) ∈ subproblems where z̃ > b do
9 comment: bounding

10 subproblems := subproblems\s;
11 end
12 end
13 else
14 comment: branching
15 ô=oi in o? where γi is maximal;
16 (is_feasible, õ, x̃, z̃) = RSGNX(LP(o−

⋃
{ô},o0/{ô},o+)) ;

17 if is_feasible then
18 subproblems=subproblems

⋃
{(o−

⋃
{ô},o0/{ô},o+, õ, x̃,̃z, depth) }

19 end
20 (is_feasible, õ, x̃, z̃) = RSGNX(LP(o−, o0 / {ô} , o+

⋃
{ô}));

21 if is_feasible then
22 subproblems=subproblems

⋃
{(o−,o0/{ô},o+

⋃
{ô}, õ, x̃,̃z, depth) }

23 end
24 end

Az RCABB algoritmus minden egyes lépésnél dönt egy műveleti egység bevételéről vagy
kizárásáról (1. algoritmus). A különböző alternatív struktúrák a lépésekkel létrejövő keresőfa
különböző ágain helyezkednek el, ahol minden csomópont egy részproblémának felel meg a kizárt
és bevett műveleti egységek alapján. A gyökértől bármely levél felé haladva minden egyes lépéssel
legalább egy műveleti egységgel fog nőni a kizárt vagy bevett műveleti egységek halmaza. Mivel a
műveleti egységek száma véges, ezért az algoritmus véges időn belül megáll. Legrosszabb esetben
ezeknek a lépéseknek a száma exponenciálisan növekszik, és n darab műveleti egység esetén akár
2n részhalmaz is keletkezhet.

Az algoritmus akkor áll meg, ha a leveleken megtalálta a felhasználó által kért megoldás-
számot. A keresőfa szélessége és magassága a nyitott részproblémáktól függ. Minden pontban az
algoritmus egy műveleti egységet bevesz és kizár, ezáltal kétfelé ágaztatva a keresést. Az általános
MILP megoldókkal ellentétben itt minden egyes új részproblémánál egy sor logikai követelmény
kerül vizsgálatra, például az axiómák alapján [13]. Ezek a követelmények az algoritmusleírásban
az RSGNX függvényben kerülnek megvalósításra. Az RSG és NX függvények részletesebben a

15

[13] és [14] publikációkban találhatók meg. Az RSG függvény kiterjeszti az o− halmazt a logikai
következmények miatt kizárt esetekkel, az NX pedig az o+ halmazt bővíti ki o− és o+ szerint,
szintén logikai következmények alapján. Ezekkel az algoritmusokkal csökkenthető a keresési fa
mélysége és szélessége anélkül, hogy az ott elhelyezkedő részproblémákat meg kellene oldani. Az
RCABB párhuzamosítását és a párhuzamosított algoritmus paraméteroptimalizálását mutatja
be a 6. fejezet.

3.3. Alkalmazási területek

Az évek során a PNS és a P-gráf alkalmazási területei folyamatosan bővültek és egyre több pub-
likáció született a témában. Ebben a fejezetben a teljesség igénye nélkül, csak a legjelentősebbek
kerülnek bemutatásra, melyek időrendi sorrendben az alábbiak:

– 1979-től : A PNS ötlete
A folyamathálózat-szintézis ötlete a hetvenes évek végén fogant meg és 1979-től több elő-
adás formájában is bemutatásra került.

– 1992: Az első publikáció
Az első nemzetközi folyóirat publikáció a témában 1992-ben jelent meg. Ekkor még csak
kémiai folyamatok ütemezése volt a cél [6].

– 1993: Polinomiális algoritmus a maximális struktúrához
Gráfelméleti megközelítésként polinomiális algoritmust alkalmaztak a maximális struktúra
generálásához [15].

– 1996: Kombinatorikusan gyorsított B&B
Publikálásra került az RCABB elődje, a kombinatorikusan gyorsított korlátozási és szétvá-
lasztási algoritmus a PNS-hez [9].

– 2000: Szétválasztási hálózatok, hulladékgazdálkodás és strukturális irányítha-
tóság
2000-ben látott napvilágot az első publikáció, amely a folyamathálózat-szintézist szétválasz-
tási hálózatok optimalizálására alkalmazta a szuperstruktúra kihasználásával [16]. Ugyan-
ebben az évben született meg az első írásos értekezés a PNS hulladékkezelés alkalmazására,
valamint a strukturális irányíthatóságra Varga József doktori disszertációjában [17].

– 2001: Hőintegráció
Bár előadás már 1999-ben is volt hőintegrációs témakörben a PNS vonatkozásában, mégis
2001-ben került először publikálásra [18].

– 2002: Reakcióút és az első könyvfejezet
Már 1997-ben és 1999-ben is volt nemzetközi előadás reakcióutak azonosítása témában,
azonban az első írásos publikáció csak 2002-ben látott napvilágot [19]. Ugyanebben az
évben került először publikálásra a PNS egy könyvfejezetben [20].

16

– 2003: Elindíthatóság vizsgálat
2003-ban a Petri-hálók és a PNS kombinációjával megszületett az első publikáció elindít-
hatóság vizsgálat témakörben a folyamathálózat-szintézishez kapcsolódóan [21].

– 2010: Szétválasztási hálózat: általános megfogalmazás
Korábban már több publikáció is érintette, de 2010-ben egy általános metódus került pub-
likálásra a szétválasztási hálózatok témaköréből P-gráf segítségével [22].

– 2011: Jármű-hozzárendelési probléma megoldása PNS-el
2011-re a PNS alkalmazási területe már széles körben kiterjedt. Bárány és társai ebben
az évben publikáltak egy olyan megközelítést, ahol jármű-hozzárendelési problémát oldot-
tak meg hálózatszintézis segítségével a költségek és a környezetre gyakorolt káros hatások
csökkentése érdekében [23]. Ez a probléma az ellátási lánc egyik lépését oldja meg, és az üte-
mezés irányába mutat, fix időpontok bevezetésével pedig már a járműütemezésre is választ
ad.

– 2012: Időkorlátos szintézis feladat, evakuálási útvonalak ütemezése, megbízha-
tóság
2012-ben megvalósításra került az ütemezési feladatok megoldása PNS-el, amikor is Kalauz
és társai publikálták a szintézis feladatok időkorlátokkal történő kibővítését [24]. Ugyan-
ebben az évben jelent meg J.C. Garcia-Ojeda és társainak cikke, melyben a P-gráfot eva-
kuálási útvonalak ütemezésére használták. Utóbbi publikáció jól jelzi annak a spektrumát,
hogy milyen különböző területeken sikerült eredményeket elérni PNS-el [25]. Bár előadások
korábban is voltak, az első publikáció a folyamathálózatok megbízhatóságáról az ellátási
láncok esetében szintén ekkor látott napvilágot [26].

– 2014: Ütemezés P-gráffal és a multiperiódusos P-gráf modellek ötlete
A folyamatok ütemezésére 2014-ben időkorlátos folyamathálózatokat alkalmaztak Frits és
társai. Egy kellően általános modellt sikerült bevezetni, ami egyik alapját képezi jelen
dolgozat egy fejezetének is [27]. Ugyanebben az évben született az ötlet a multiperiódusos
P-gráfok bevezetésére, bár ekkor még csak egy egyszerű esettanulmányon keresztül valósult
meg a több periódusos jelleg [28].

– 2015: Szoftver a modellezéshez és megoldáshoz; az RCABB algoritmus párhu-
zamosítása
2015-ben két korábbi, kezdetleges, de már felhasználói felülettel rendelkező szoftver alapján
implementálásra került a P-graph Studio, ahol grafikusan lehetett modellezni, és az elké-
szült struktúrákat megoldani [10]. (Részletesebben a 3.4. fejezet foglalkozik vele.) Szintén
ebben az évben került implementálásra az RCABB algoritmus egy modernebb megközelí-
tésű párhuzamosítása, amit később a paraméteroptimalizálás egészített ki [29]. (Ez utóbbi
a 6. fejezetben kerül bemutatásra.)

– 2016: P-gráf modell energiaelosztásra
Aviso és társai 2016-ban publikáltak egy tanulmányt, ahol energiaellátást valósítottak meg

17

multiperiódusos P-gráf modellel, izolált rendszereknél [30]. (Ez a publikáció a 4. fejezethez
kapcsolódik.)

– 2017: Általános áttekintés
Varbanov, Friedler és Klemes professzor urak 2017-ben egy publikációban összegezték a
P-gráffal az elmúlt évtizedekben elért eredményeket. A cikk jól összefoglalja, hogy honnan
indult és hova fejlődött a módszertan, ez által egy áttekintést adva a P-gráf múltjáról,
jelenéről és jövőjéről [31].

– 2018: Teljes telephely-rendszer tervezése P-gráf segítségével és különböző P-
graph Studio fejlesztések
2018-ban Walmsley és társai energiaellátó rendszert, vagyis hő- és áramellátást optimali-
záltak PNS-el [32]. (Ez a publikáció a 4. fejezethez kapcsolódik.) Ebben az évben került
továbbfejlesztésre és kiegészítésre a P-graph Studio a multiperiódusos modellek automati-
zálásával, illetve azzal, hogy hulladékgazdálkodási szempontokat is képes legyen figyelembe
venni [33].

3.3.1. Ütemezés TCPNS-el

Az elmúlt két évtizedben a szakaszos folyamatok ütemezése egyre inkább egy aktívan kutatott
területté vált, és számos eredmény született a témában. Mint a többi ütemezési feladatnál, itt
is az a cél, hogy feladatok és berendezések egymáshoz rendelése optimális legyen. A gyakorlat-
ban a legtöbb ilyen ütemezési feladatnál a folyamatok szekvenciális sorrendben vannak, de még
ezeknél a szekvenciális folyamatoknál is lehet többtermékes és többcélú (multipurpose) model-
lekről beszélni. A többtermékes folyamatoknál minden termékhez ugyanaz a szekvenciális recept
tartozik, míg a többcélúnál minden terméket ugyanazon lépések különböző szekvenciáival lehet
létrehozni. A leggyakrabban vagy a gyártási időt kell minimalizálni, vagy a teljesítmény, nyereség
maximalizálására kell törekedni.

A klasszikus ütemezési probléma kiterjesztése az MPTS (Malleable Parallel Task Schedul-
ing), ahol párhuzamosan több feldolgozó is képes kezelni egy feladatot. Bár ez a rugalmasság
a teljes feldolgozási, gyártási időt lecsökkentené, de ezzel együtt nagyban megnehezíti a prob-
léma megoldhatóságát. Frits és Bertók [27] 2014-ben bemutattak egy új megközelítést, ahol az
ütemezési problémákat folyamathálózat-szintézis (PNS) problémaként fogalmazták meg, illetve
lehetővé tették az automatikus modellgenerálást vegyes tárolási stratégiát követve. Általános
megoldást adtak az MPTS problémákra, mely továbbá garantálja az optimumot is. Ez volt az
időkorlátos, vagyis Time Constrained PNS (TCPNS).

Ehhez a szuperstruktúrát a TCPNS-nek megfelelően az ütemezés recept gráfját alapul véve
kell létrehozni, ahol az egyes műveleti egységek mint erőforrások fognak megjelenni. A cél egy
olyan folyamathálózat létrehozása, ami kielégíti a célokat miközben figyelembe veszi a feladatok
kapcsolatát. A szuperstruktúra létrehozása három lépésből áll :

– Alaptevékenységek meghatározása: Az alaptevékenységek közé tartoznak a berendezések
feladatokhoz való rendelése, az input betöltése a berendezésbe, valamint a végrehajtás.

18

– Recept élek gráfhoz rendelése: Az élek határozzák meg a sorrendet. A következő berendezés
csak akkor indulhat el, ha az azt megelőző befejezte a munkát.

– Tárolási politikától függően új állapotok bevezetése: A tárolási politika függvényében új
állapotokat kell bevezetni arra, hogy a tárolás az elvártaknak megfelelően történhessen.
Például biztosítani kell, hogy egy berendezés ne tudjon új feladatot vállalni addig, amíg az
átvitel meg nem történt. Ezt különböző előfeltételek bevezetésével lehet biztosítani.

Az eredményeik kimutatták, hogy amennyiben az ütemezési problémák időkorlátos PNS fel-
adatként kerülnek modellezésre, úgy utóbbi keretrendszer számos előnyét ki lehet használni a
megoldás érdekében. Az általános megfogalmazás miatt ez a matematikai modell automatikusan
generálható akár vegyes tárolási stratégia esetén is, anélkül, hogy szükség lenne időintervallumok
bevezetésére. A megoldás végén az optimum garantált. A gyártósor kiegyensúlyozás, vagy más
néven Line Balancing egy ehhez hasonló, de egyszerűbben modellezhető probléma, amivel a 5.
fejezet foglalkozik részletesebben.

3.3.2. Multiperiódusos modellek

Multiperiódusos problémák számos helyen előfordulnak a való életben. Ezek olyan esetek, ahol
valamilyen folyamatosság figyelhető meg, és az egymást követő periódusok nem függetlenek egy-
mástól. Ez a folyamatosság fellelhető a mezőgazdaságban, ahol a termények folyamatosan érnek,
de akár egy összeszerelő üzemnél is, ahol két nap között képesek tárolni a félkész termékeket,
amik végül hatással lesznek a következő napi termelésre is. Mivel számos helyen megjelenik a
multiperiódusos jelleg, ezért az optimalizálás területén is egyre nagyobb figyelmet kezd kapni.

Heckl, Halász, Szlama, Cabezas és Friedler 2014-ben publikálták az első olyan multiperiódu-
sos megközelítést, ahol P-gráfot használtak az ütemezésre. Esettanulmányukban egy almapucoló
üzem éves működését modellezték [34]. A kiinduló probléma szerint az üzem évente 30 tonna
almát pucolt meg, ami havi 2,5 tonna terhelést jelentett, vagyis elméletileg elég lett volna egy
2,5 tonna/hónap kapacitású hámozógép alkalmazása. A valóságban azonban az alma érése főleg
két hónapra datálható, emiatt szükséges volt a modell felbontása részekre, amely részek struk-
turálisan bár nagyon hasonlóak, paraméterezésüket tekintve eltérőek. Szükséges volt továbbá
megoldani a beruházási költség szétosztását a periódusok között azok hosszával egyenes arányú
súlyozással, és a fix költséget is ennek megfelelően arányosítani. Eredményeikben megmutatták,
hogy az eredeti struktúránál a valóság sokkal költségesebb, hiszen egy sokkal nagyobb kapaci-
tású gép szükséges a feladat elvégzéséhez. Munkájukkal felhívták a figyelmet a többperiódusú
modellekre és az annak megfelelő, pontos paraméterezésre. Publikációjuk és megközelítésük a
témában úttörő volt, ámbár eredményeik csak esettanulmányokhoz kapcsolódtak, és nem adtak
egy általános modell-leírást a többperiódusú problémák P-gráffal történő modellezéséhez. Ennek
hozományaként készült el, és a dolgozat részét képezi (4. fejezet) egy olyan általános leírás, ami
bármely, többperiódusú feladatnál segít a modell megvalósításában.

19

3.4. Szoftver

A P-gráfos modellek megoldásához kezdetben nyílt, felhasználói felülettel nem rendelkező progra-
mok és algoritmusok álltak rendelkezésre. A 2010-es évek elején kerültek először implementálásra
majd mindenki számára szabadon elérhetővé olyan szoftverek, amik már grafikus felülettel is
rendelkeztek. Ekkor még két külön applikáció létezett a P-gráf grafikus rajzolására, illetve annak
megoldására:

– A PNS Draw a napjainkban elérhető szoftver, a P-graph Studio felületéhez nagyon ha-
sonló, grafikus felületet kínált a P-gráf modell szerkesztéséhez. A "fogd és vidd" felületen
egyszerűen lehetett egy P-gráfot grafikusan felrajzolni [35].

– A PNS Studio a modellek megoldásában nyújtott segítséget. A modellt itt is fel lehetett
vinni, de csak az egyes elemek és tulajdonságainak megadásával, vagyis nem gráf formá-
tumban [36]. A két szoftver között volt átjárhatóság, de ezt csak körülményesen lehetett
megoldani.

2015-ben a két szoftver alapján egy ingyenesen elérhető, C# alapú asztali alkalmazás került
lefejlesztésre P − graphStudio néven a Pannon Egyetem Rendszer- és Számítástudományi Tan-
székén [10]. A szoftver alkalmas a grafikus modellezésre, annak felparaméterezésére, megoldására.
A 3.4. ábrán látható a megoldó felülete, ahol a PNS Draw-hoz hasonló módon, "fogd és vidd"
módszerrel lehet összeállítani egy P-gráf modellt.

3.4. ábra. A P-graph Studio felülete

Az egyes elemek paraméterbeállítása a bal oldalon történik, jobb oldalon pedig maga a mo-
dell található. Az állapotsoron legördülő menüből lehet kiválasztani a szükséges algoritmust,

20

és szintén itt lehet megadni a kívánt megoldásszámot, valamint a kölcsönösen kizáró műveleti
egységeket. Megoldás után a megoldások között lehet váltani a nézeten, a megoldások tulajdon-
ságai részletesen pedig a baloldalon találhatóak meg. A "Preferences" menüpont alatt számos
beállítási lehetőség található. Ilyen például az is, hogy a megoldás során keletkező plusz állomá-
nyokat ne törölje a rendszer a megoldás után. Ezek a P-gráf megoldónak a nyers ki- és bemenetei,
amik kompatibilisek a korábbi modellformátummal és megoldókkal. A modellben szereplő elemek
alapértelmezett beállításain érdemes változtatni (szintén a beállítások alatt), ha több, hasonló
tulajdonságú elem is szerepel a modellben. (Például, ha minden műveleti egység felső korlátja
10 darab.) A szoftver lehetőséget kínál a kinézet formázására, és az eredmények elmentésére
is számos lehetőséget ad. A grafikus (raszteres és vektorgrafikus) exportáláson túl lehetséges
vele táblázatos formában kimenteni a modellt, egységesítve, vagy részletesen, a megoldásokkal
együtt. Lehetséges vele ZIMPL formátumba is exportálni, ami egy olyan, egyszerű nyelv, ami-
ből könnyedén lehet az általános LP és MILP megoldók formátumába exportálni a problémát
[37, 38]. Ez a különböző megoldók összehasonlításánál játszhat szerepet. A P-graph Studio a
legújabb fejlesztések és hibajavítások tekintetében naprakész, megoldhatók vele a PNS-en kívül,
TCPNS feladatok is, valamint az ebben a dolgozatban szereplő multiperiódusos és párhuzamo-
sított részeket is tartalmazza.

3.5. Megoldó algoritmusok párhuzamosításai

A modellek optimalizálása fontos a hatékonyság miatt, azonban nem elég magát a módszert op-
timalizálni, programozástechnikailag is figyelni kell az erőforrások minél jobb kihasználására. A
számítógépek teljesítménynövekedésével és a többmagos megoldásokkal ma már pazarlás lenne
ezeket a tulajdonságokat nem kihasználni egy komplex, nagy számításigényű algoritmus eseté-
ben. Ha a probléma vegyes egész matematikai programozás lineáris (MILP), vagy nem lineáris
(MINLP) feladataként van definiálva, az általános megoldók csupán egy, a legjobb eredményt
adják vissza [8]. A P-gráf megoldónál az egyik legfontosabb és legtöbbet használt algoritmus az
RCABB (Relaxation Controlled Accelerated Branch and Bound), amely ezekkel ellentétben nem
csupán a legjobb, de az N-legjobb megoldást is képes visszaadni. A következőkben ismertetés-
re kerülnek a Branch and Bound algoritmus párhuzamosíthatóságának lehetőségei, valamint a
P-gráf megoldó RCABB algoritmusának korábban publikálásra került párhuzamosításának meg-
valósítása.

3.5.1. Branch & Bound algoritmusok párhuzamosítása

A Branch-and-Bound (vagyis korlátozás és szétválasztás) típusú algoritmusok párhuzamosításá-
hoz számos ajánlás került már publikálásra. A kereső algoritmus előrehaladását a legegyszerűbben
egy keresőfával lehet illusztrálni, ahol az elágazások a különböző alternatív döntések, és e dön-
tések kombinációi a részfák. A keresési algoritmusok párhuzamos implementációiban a szálak
vagy külön számítógépeken, processzorokon, vagy processzormagokon futnak, és jellemzően a
fent említett keresőfának egy-egy részfáját oldják meg [39, 40, 41]. A két fő osztálya ezeknek

21

az algoritmusoknak az elosztott és a közös memóriát használó rendszerek. A közös memóriájú
rendszereknél minden elérhető számítási egység memóriája fizikailag közös, és ezt a memóriát
mindegyik szál eléri [42, 43]. Az elosztott memóriájú rendszereknél minden szál a saját dedikált
memóriáját irányítja, ami nem érhető el a többi szál számára [44].

Az elosztott rendszerek egyik közös jellemzője, hogy létezik egy úgynevezett "mester" szál,
amelyik összehangolja a szálak működését [45, 46, 47]. A "szolgák", vagyis a többi szál csak
ezzel a mester szállal kommunikálhatnak, egymással nem [48, 49, 41]. A mester-szolga topológia
mellett egy másik népszerű párhuzamosítási megoldás a "kollegiális" rendszer [50]. Ezeknek a
rendszereknek egy fontos jellemzője a közös memória, amely globális változókat tartalmaz. Glo-
bális változók lehetnek a megoldások, a részmegoldások és a részfák, amik minden szál részére
egyformán elérhetőek [51, 41, 40]. Ezek a megoldások általában CPU magokon párhuzamosíta-
nak, de napjainkban egyre nagyobb tért hódít a GPU-n történő párhuzamosítás is [52, 39].

3.5.2. Párhuzamosított RCABB algoritmus

Az RCABB algoritmus korábbi változatának, az ABB algoritmusnak egy párhuzamosított válto-
zatát már 1995-ben elkészítették Varga és társai [53]. Az akkori megoldás a mester-szolga elven,
több processzoron működött. A párhuzamosított számítás megvalósításának topológiája azok-
ban az időkben jelentősen limitálta az információáramlás sebességét. A publikált megoldásban a
szolgák gyűrű topológiában helyezkedtek el, és ebben a gyűrűben kapott helyet a mester is. Ez
a 3.5. ábrán látható.

3.5. ábra. Az ABB algoritmus mester-szolga implementációja gyűrű topológiával

Minden blokkban a transzfer és a multiplexer üzeneteket küldhet és kaphat. Könnyű belátni,
hogy a mestertől az utolsó blokkba kézbesített üzenet jut el a leglassabban, mivel az információ
az összes köztes blokkon át kell, hogy haladjon, ahhoz, hogy elérjen az utolsóig. Hasonlóképp, ha
egy középen elhelyezkedő szolga választ akar küldeni a mesternek, az üzenetnek hosszú utat kell
bejárnia, hiszen egy -a közvetlenül mester mellett lévő- szolgát leszámítva egyik sem kapcsolódik
közvetlenül a mesterhez. Továbbá elmondható, hogy a mester egyetlen feladata az, hogy irányítsa
a szolgák munkáját.

22

3.5.3. Párhuzamosítási lehetőségek napjainkban

Az elmúlt évtizedekben egyre több és több mag jelent meg a processzorokban, amik képesek el-
érni egy közös memóriát. Ez lehetővé teszi egy olyan párhuzamosított algoritmus megvalósítását,
amely rugalmasabb, és hatékonyabban, kiegyenlítettebben képes a szálak terhelését megolda-
ni. A fő kérdés, ami felmerül a párhuzamosítással kapcsolatban, hogy hogyan lehet a leginkább
kiegyensúlyozott a szálak terheltsége amellett, hogy az egymás közti kommunikáció ideje a lehe-
tő legkevesebb legyen. A gyakori kommunikáció lassítja az algoritmust, de, ha a kommunikáció
ritkábban valósul meg, előfordulhat, hogy a szálak felesleges számításokat végeznek az informá-
cióhiány miatt. Ez a következők miatt történhet: Az úgynevezett vágás vagy korlátozás segít
abban, hogy a biztosan nem jó részproblémákat figyelmen kívül lehessen hagyni számítás köz-
ben, például, ha egy részproblémáról már megoldása előtt lehet tudni, hogy rosszabb értéket fog
adni, mint egy már megtalált megoldás, akkor felesleges megoldani azt. Ha viszont az információ
frissítési gyakoriság alacsony, elképzelhető, hogy egy szál megtalál egy olyan megoldást, ami mi-
att a többi szál figyelmen kívül kéne, hogy hagyjon részproblémákat, de mivel ez az információ
még nem ért el hozzájuk, ezért ezeket a felesleges részproblémákat is elkezdik megoldani, ami
szükségtelen idővesztességgel jár. A 6. fejezetben bemutatásra kerül az RCABB algoritmus több
magon megvalósított változata, valamint a párhuzamosítás paramétereinek optimalizálása annak
érdekében, hogy egy PNS feladatot a lehető leghatékonyabban legyen képes megoldani.

23

4. fejezet

Multiperiódusos P-gráf

Ahogy az már a 3. fejezetben is említésre került, a P-gráf módszertan az elmúlt években nyitott
a többperiódusos feladatok megoldása felé. Elsőként Heckl és társai publikáltak multiperiódusos
P-gráfról, majd az évek során egyre több cikk született a témában, de ezek csak esettanulmá-
nyok voltak speciális esetekre, nem pedig általánosan használható modellek és modell-leírások.
A következőkben ismertetésre kerülnek a multiperiódusos P-gráfhoz kapcsolódó új kutatási ered-
ményeim.

4.1. Kapacitáskiegyenlítés tárolók bevezetésével

Heckl és társai a 2014-ben publikált multiperiódusos P-gráfról szóló cikkükben egy almapucoló
üzem példáján keresztül mutatták be a periódusokra bontás relevanciáját. Az eredeti, nem pe-
riódusos modell szerint az üzem 30 tonna almát pucol meg évente -vagyis havonta 2,5 tonnát-,
ezért elegendő egy 2,5 tonna/hónap kapacitású hámozó berendezést venni. A valóságban azonban
az alma főként nyár végén és ősszel érik, ezért ott megnövekedett kapacitással kell számolni. A
4.1. táblázat alapján jól látható, hogy az eredetileg 170 e-val számolt modell költsége valójában
290 e. A 4.1. ábra reprezentálja a modell P-gráfos megvalósítását. Elmondható tehát, hogy a
periódusokra bontással a valóságot sokkal jobban leíró modell adható meg.

A példából jól látszik, hogy a nem egyenletes terhelés jelentős mértékben és negatívan hat
a költségekre, ezért felmerült a kérdés, hogy hogyan lehet ezt valamilyen módon kiegyenlíteni.
A megoldást a periódusok közötti tárolási lehetőségek adják, amiknek köszönhetően az anyagok
egy részét a következő periódusra lehet átvinni. Tárolónak minősül például egy pincehelyiség,
hűtőház, raktár vagy akár az összeszerelő szalag, azaz minden olyan hely, ahol két periódus között
az anyag elhelyezhető, tárolható, vagy utóbbi esetben otthagyható. Ez az anyag lehet nyersanyag,
köztes anyag vagy akár termék is. Nyersanyag és köztes anyagok tárolásánál a feldolgozást lehet
kiegyenlíteni a periódusok között.

A tárolással nem csak a munkavégzést lehet egyenletesebbé tenni, de akár piaci befolyásolás is
lehetséges a kínálat elosztásán keresztül. A fenti példából kiindulva, ha a megpucolt almákat nem

24

Eredeti modell Multiperiódusos modell
Periódus: 1. 1. 2. 3.

Periódus hossza (év) 1 5/12 5/12 2/12
Havi terhelés (t/hó) 2,5 1 2 7,5
Periódusos terhelés (t/per.) 30 5 10 15
Aktuális kapacitás (t/év) 30 12 24 90
Maximális kapacitás (t/év) 30 90
Kapacitás költség (e/per.) 96 17,5 32,5 46
Összes költség (e/év) 170 290

4.1. táblázat. Az almapucoló üzem egy és többperiódusú adatai

4.1. ábra. Az almapucolós példa három periódusú modellje

a gyártásukkor próbálják meg értékesíteni, hanem azokat tárolva, egy későbbi időpontban küldik
a piacra, amikor annak az ára már magasabb, mint a főszezonban, úgy több profitot érhetnek el.
Természetesen a tárolók esetében is számolni kell különböző költségekkel. Egy tárolónál -ahogy
általában az összes műveleti egységnél - felmerülhet fix, arányos, illetve beruházási költség is. Fix
költség esetén a tároló használata után egy fix összeg fizetendő, és ez független a tárolt anyagok
mennyiségétől. Arányos költség esetében a fizetendő összeg a tárolt anyag mennyiségével arányos.
Amennyiben a tárolót létre kell hozni - például felépíteni egy raktárat- úgy annak beruházási
költségei lehetnek, amik a kifizetési időszakban leosztásra kerülnek. Veszteségként jelenik meg
továbbá az amortizáció is. Tárolás során felmerülhet a kérdés, hogy az anyag, amit tárolni kell
egyáltalán eltárolható-e, vagyis tulajdonságait teljes mértékben megtartva kerül ki a tárolóból a
következő periódus elején, vagy sem. Az almának egy része megrohadhat a tárolás alatt, ahogyan
az akkumulátorok töltöttsége is csökken az idővel. Ezt a fajta veszteséget is figyelembe kell venni
a tervezéskor, hogy még pontosabb modell szülessen.

A tárolókat az egyes periódusok között műveleti egységek reprezentálják. A 4.2. ábrán a ko-
rábbi példa tárolókkal történő kiterjesztése látható, illetve annak is a legjobb megoldása. Ebben

25

4.2. ábra. Az almapucolós példa kiegészítése tárolóval

a példában a tároló már adott volt, vagyis nem volt szükség beruházási költségre, továbbá a
periódusok -ahogyan az évszakok is- ismétlődnek, így a harmadik periódus tárolója az első peri-
ódusba csatlakozik vissza. A tárolóban tárolt almák 5%-a megy tönkre, azaz a tárolókból kijövő
élek súlya 0,95 lesz. Látható, hogy a tárolók segítségével megvalósítható az arányosan elosztott
végrehajtás, és ekkor már elegendő lesz egy kisebb kapacitású hámozógép is. Az már a döntés-
hozók feladata, hogy mérlegeljék, az hoz-e több hasznot, ha az almák 100%-át képesek eladni,
vagy ha a nagyobb kapacitású gép helyett a kisebbet veszik meg.

4.2. Multiperiódusos P-gráf modell általános leírása

A multiperiódusos P-gráfhoz korábban csak esettanulmányok születtek, de nem létezett egy kel-
lően általános leírás, ami akár egy szoftveres implementáció alapja is lehet. Ahhoz, hogy egy
nem periodikus modellből multiperiódusost lehessen előállítani, az alábbi plusz információkra
van szükség:

– Periódusok száma : A periódusok száma adja meg, hogy hány periódusból fog állni a
modell.

– Periódusok nevei : Minden egyes periódushoz tartozik egy egyedi azonosító, vagy név.
Ez csupán a beazonosításra szolgál, a modellmegoldásban nem játszik szerepet. Az egyes
periódusokra bontásban az adattagok ezzel az azonosítóval kerülnek kiegészítésre, így a
későbbiekben akár szoftveresen is könnyebb lesz a végeredmény, azaz a megoldott modell
értelmezése.

– Periódusok hosszai : Ahogy az almapucolós példán is látszott, nem feltétlenül egyforma
hosszúak az egyes periódusok. Ez a költségek leosztásában játszhat szerepet. Mivel mo-
dellezési szempontból az egyes periódushosszak egymáshoz viszonyított aránya a lényeges,

26

ezért külön mértékegysége nincs.

– Anyagok tulajdonságai az egyes periódusokban : Az eredeti, nem periódusos modell
mellett megadható minden anyagra, hogy az egyes periódusokban milyen értéket vegyen
fel az áruk és a kötelező mennyiségük minimum, valamint maximum értéke. Amennyiben
ez nem kerül megadásra, úgy az eredeti modell szerinti értéket kapják.

– Kiterjesztés vagy felbontás? : Nem mindegy, hogy az eredeti modellt kell felbontani
több periódusra, avagy az eredeti modell egy periódust reprezentál, amit "többszörözni"
kell. Strukturálisan az eredmény ugyanaz, viszont előbbi esetben a műveleti egységeken
megjelenő költségeket arányosítani kell a periódusok hosszának megfelelően, míg utóbbi
esetben erre nincs szükség.

– Kivételek : Lehetnek olyan anyagok vagy műveleti egységek amiket nem lehet több peri-
ódusra bontani. Ilyen lehet az, amikor a teljes periódusra összességében van megadva egy
nyersanyag mennyisége, de az már lényegtelen, hogy az egyes periódusokban milyen mér-
tékben kerül felhasználásra, ezért lehetőséget kell biztosítani arra, hogy az ilyen kivételek
külön megadhatóak legyenek.

Multiperiódusos feladatoknál a megfelelő módosításokat a megoldás előtt kell végrehajtani,
hiszen ezek csupán a struktúrát és annak paramétereit érintik, a megoldásuk menete viszont
megegyezik egy nem-periódusos modell megoldásával. A struktúra létrehozásának általános le-
írását adja a 4. algoritmusnál látható pszeudokód. A könnyebb átláthatóság miatt ez három fő
részre lett bontva.

Algoritmus 4: Multiperiódusos szétbontás
input : Alap P-gráf, Periódusok tulajdonságai, Multiperiódusos adatok, Kivételek
output: Multiperiódusos struktúra

1 Masolas_Beillesztes ;
2 Beruhazasi_koltseg_kivezetes;
3 Kivetelek_es_Torles;

Az első fő lépésben a másolás és beillesztés játssza a fő szerepet (5. algoritmus). Kezdeti
lépésként meg kell határozni, hogy melyik az a struktúrarész amit a multiperiódusosság érint. Ez
minden olyan anyagra, műveleti egységre és élre igaz lesz, ami nem került korábban a kivételek
közé. Mivel a modellalkotás közben a meglévő struktúra egy része törlődik, szükséges tudni,
hogy melyek azok a műveleti egységek, amik a periódusos részhez tartoznak, és rendelkeznek
beruházási költséggel. Ezek az elemek egy külön halmazba kerülnek gyűjtésre.

Ezt követően a periódusszámnak megfelelő alkalommal a másolásra kijelölt struktúrát hozzá
kell adni a P-gráfhoz, figyelve arra, hogy ha az anyagnak volt egyéni, periódusos tulajdonság
megadva, úgy azokat kapja meg. Figyelmet kell még fordítani továbbá arra, hogy a periódusos
műveleti egységeknek volt-e fix költségük. Amennyiben igen, és a modellt nem "többszörözni"
kell, hanem részekre bontani (ahogyan az almapucoló példában is volt), úgy ezt a fix költséget
arányosítani kell a műveleti egységeken a periódusok hosszával arányosan. A műveleti egységek

27

beruházási költsége külön kerül majd reprezentálásra, így az minden esetben ’0’ lesz a most
beillesztett elemeknél. Mind anyagnál, mind pedig műveleti egységnél figyelni kell arra, hogy
egyéni, jól megkülönböztethető azonosítóval - P-gráf esetén névvel - legyenek ellátva az elemek.
Ez általában az eredeti elem neve + "_Periodus_" + periódus neve, mivel ebből az eredeti
elemet és a periódust is vissza lehet fejteni.

Algoritmus 5: Masolas_Beillesztes

1 masolandoStruktura := {M \MEx, O \OEx, E \ EEx};
2 szumPeriodusHossz :=

∑|Per|
i=1 peri → hossz;

3 foreach oi ∈ O \OEx do
4 if oi.beruhazasiKoltseg > 0 then
5 Oberuh.hozzaad(oi.masolat());
6 end
7 end
8 foreach peri ∈ Per do
9 beillesztettStruktura = P − graf.hozzaad(masolandoStruktura.masolat()) ;

10 foreach elem ∈ beillesztettStruktura do
11 if elem→ tipus = anyag then
12 if peri.vanEgyeniAnyagtulajdonsag(elem) then
13 elem.tulajdonsagok = peri.anyagTulajdonsagok(elem);
14 end
15 elem→ nev = elem→ nev + ”_Periodus_” + peri → periodusnev;
16 end
17 if elem→ tipus = muveletiegyseg then
18 elem.beruhazasiKoltseg = 0;
19 if elem→ fixkoltseg > 0 then
20 if felbontas then
21 elem→ fixkoltseg = (elem→ fixkoltseg/szumPeriodusHossz) ∗

∗ peri → hossz;

22 end
23 end
24 elem→ nev = elem→ nev + ”_Periodus_” + peri → periodusnev;
25 end
26 end
27 end

A második fő lépésben a beruházási költségek kivezetését kell megvalósítani (6. algoritmus).
Ez azért szükséges, mert a beruházás csak egyszer kell, hogy megvalósuljon, az onnantól érvényes
lesz az összes periódusban is. Ez egy fajta függőséget is reprezentál, vagyis, ha nem történik
beruházás, úgy a periódusokban sem lesz használható a műveleti egység. Tekinthető úgy is,
mint fizikai megvalósítás, a periódusokban pedig a használat jelenik meg. Ebben a lépésben a
korábban kigyűjtött, beruházási költségekkel rendelkező műveleti egységeken kell végigiterálni,
és mindegyiknél jelölni, hogy egy kivezetett, periódusokon kívül megjelenő elemről van szó, majd
ezt hozzáadni a gráfhoz. Ezt a műveleti egységet össze kell kötni köztes anyagokon a keresztül az
összes, periódusokban megtalálható használattal. Itt is figyelni kell a súlyozásra, vagyis, hogy a
periódusok hosszával arányos beruházási költség terhelődjön az egyes periódusos használatokra.

28

Ez, a kivezetett műveleti egységet az újonnan létrehozott köztes anyagokkal összekötő él súlyán
jelenik meg. Az új elemeket természetesen hozzá kell adni a gráfhoz.

Algoritmus 6: Beruhazasi_koltseg_kivezetes

1 foreach oi ∈ Oberuh do
2 oi → nev = oi → nev + ”_Eloszto”;
3 P − graf.hozzaad(oi) ;
4 foreach peri ∈ Per do
5 ujAnyag → nev = oi → nev + ”_Eloszto_” + peri → nev ;
6 ujEl1(oi, ujAnyag) ;
7 ujEl1→ suly = peri → hossz/szumPeriodusHossz ;
8 ujEl2(ujanyag,O.megtalal(o→ nev == oi → nev + ”_Periodus_” + peri → nev)) ;
9 P − graf.hozzaad(ujAnyag) ;

10 P − graf.hozzaad(ujEl1) ;
11 P − graf.hozzaad(ujEl2) ;
12 end
13 end

A harmadik fő lépésben a kivételek bekötését kell megvalósítani. Itt elegendő végigiterálni
a kivételekhez tartozó éleken, és megvizsgálni, hogy a kezdő vagy végpontjuk a nem kivétel
osztályhoz tartozik-e. Ez négyféleképpen valósulhat meg:

– A kezdőpontja olyan anyag, ami nem kivétel

– A kezdőpontja olyan műveleti egység, ami nem kivétel

– A végpontja olyan anyag, ami nem kivétel

– A végpontja olyan műveleti egység, ami nem kivétel

Ezeket az éleket meg kell valósítani minden egyes periódusra is. Tehát, ha eddig volt egy
él, aminek az egyik végpontja periódusos, míg másik végpontja a kivételekhez tartozó elem,
úgy a kivételekhez tartozó elemből minden egyes periódusba vezetni kell egy-egy élt. A gráfhoz
ezeket az új éleket hozzá kell adni, ezzel egy időben pedig az eredetit törölni. Zárásként pedig a
másolandó struktúrát, vagyis az eredeti gráfból azokat az elemeket, amik nem kivételek törölni
kell (7. algoritmus). Az algoritmus végrehajtása után előáll a már periódusokra bontott P-gráf
modell.

4.3. A tárolók megvalósítása algoritmikusan

Ahogy a fejezet elején szó volt róla, a tárolók segíthetnek abban hogy az anyagfelhasználás és
gyártás kiegyenlítettebb lehessen. Fontos, hogy legyen egy általános leírás a tárolók bevezetésére
is, viszont egy kellően általános tároló számos kérdést vet fel : Milyen anyagot lehet benne tárol-
ni? Egy vagy többféle anyag tárolására is képes? Van esetleg beruházási költsége? Mekkora a
kapacitása? A kapacitásból egy egység tárolt anyag mennyit foglal el? Minden periódus között
képes tárolni? Tároláskor amortizálódik a termék? ...stb.

29

Algoritmus 7: Kivetelek_es_Torles

1 foreach ei ∈ EEx do
2 foreach peri ∈ Per do
3 if (ei → honnan→ tipus == anyag)es(ei → honnan 6∈MEx) then
4 ujEl(M.megtalal(m→ nev == ei → honnan→ nev + ”_Periodus_” +

+ peri → nev), ei → hova);

5 P − graf.hozzaad(ujEl) ;
6 P − graf.torol(ei) ;
7 end
8 if (ei → honnan→ tipus == muveletiegyseg)es(ei → honnan 6∈ OEx) then
9 ujEl(O.megtalal(o→ nev == ei → honnan→ nev + ”_Periodus_” +

+ peri → nev), ei → hova);

10 P − graf.hozzaad(ujEl) ;
11 P − graf.torol(ei) ;
12 end
13 if (ei → hova→ tipus == anyag)es(ei → hova 6∈MEx) then
14 ujEl(ei → honnan,M.megtalal(m→ nev == ei → hova→ nev + ”_Periodus_” +

+ peri → nev));

15 P − graf.hozzaad(ujEl) ;
16 P − graf.torol(ei) ;
17 end
18 if (ei → hova→ tipus == muveletiegyseg)es(ei → hova 6∈ OEx) then
19 ujEl(ei → honnan,O.megtalal(o→ nev == ei → hova→ nev + ”_Periodus_” +

+ peri → nev));

20 P − graf.hozzaad(ujEl) ;
21 P − graf.torol(ei) ;
22 end
23 end
24 end
25 P − graf.torol(masolandoStruktura) ;

Ahhoz tehát, hogy egy tárolót implementálni lehessen az alábbiakat kell tudni:

– Tároló neve : A modellben a beazonosítást szolgálja.

– Beruházási költség : Ahogyan minden műveleti egységnek, úgy a tárolónak is lehet be-
ruházási költsége.

– Működési költségek : A működési költségnél felmerülhet fix költség és arányos költség is.
Ez tároló esetében lehet raktár bérleti díj, vagy a kölcsönzött raklapok díja.

– Kapacitás : A tárolóknak a való életben mindig van kapacitásuk, azonban erre nem csak
maximális, hanem minimális korlát is lehet. Ilyen az, amikor a bank előírja, hogy a számlán
- ahol a pénz kerül tárolásra időről időre- kell egy minimum összegnek lennie.

30

– Tárolható anyag vagy anyagok : Meg kell határozni, hogy melyek azok az anyagok a
P-gráf struktúrában, amiket a tároló képes a periódusok között mozgatni.

• Kezdőkészlet : Meg kell adni, hogy a tárolandó anyagból rendelkezésre áll-e kezdő-
készlet. Ez olyan mennyiség, ami már az első periódus előtt létezik, és akár már ott is
felhasználható.

• Melyik periódusból melyikbe lehet tárolni : Általában a tárolók minden periódus
között megtalálhatók, de lehetséges olyan megkötés is, hogy a beléjük tett anyagok
nem használhatók fel rögtön a következő periódusban, hanem csak az azutániban,
vagy még később. Amennyiben ciklikus modellről van szó, vagyis az utolsó periódus
után az első következik (például december után megint január), úgy lehetőséget kell
adni arra, hogy ott is megvalósulhasson tárolás.

• Amortizáció : A tárolóban elhelyezett anyagok idővel veszíthetnek tulajdonságaikból,
azaz amortizálódhatnak. Az amortizáció mértéke mindig ahhoz kötött, hogy mely
periódusok között valósul meg a tárolás. Két egymást követő periódus között is eltérhet
a tárolás amortizációja, de általában ez arányos a periódusok hosszával.

• Kapacitáshasználat : A tárolt anyagok bár mennyiségre megegyezhetnek, mégis
más-más kapacitásra lehet szükségük. Például egy pincehelyiségben elhelyezett hor-
dó többet vesz el a kapacitásból, mint az ugyanott elhelyezett raklap. Amennyiben
több anyag kerül tárolásra, fontos tudni, hogy melyik mennyit vesz el arányosan a
kapacitásból.

A következő példán keresztül szemléltetésre kerül, mennyire is összetett egy kellően általános
tároló megvalósítása. Adott egy hat periódusból álló modell, ahol két anyag,"A" és "B" termékek
tárolását kell megvalósítani egy pincével, aminek a beruházási költsége 500e Ft, és az alábbi
tulajdonságokkal bír :

A termék B termék

Kezdőkészlet van nincs
Kapacitás igény 1 6

Mikor tárol Amortizáció Mikor tárol Amortizáció
1-3 10% 1-2 10%
2-5 13% 2-4 20%

3-5 20%

4.2. táblázat. Példaadatok tárolóhoz

A tároló implementálásánál meg kell valósítani a periódusok közötti tárolást, vagyis "A" ter-
mék esetében az 1. és 3. periódus között 10%, a 2. és 5. periódus között 13% amortizációval.
Hasonlóan a három tárolási eseményt "B" termékre is létre kell hozni. A tárolások műveleti
egységként jelennek meg, és az amortizáció az ezekből kifele vezető élen jelenik meg. Mivel "A"
terméknek volt kezdőkészlete, ezért ennek létre kell hozni egy nyersanyagot, aminek a maximum

31

mennyisége a kezdőkészlet, valamint egy műveleti egységet, ami az előzőekhez hasonlóan a tá-
rolást reprezentálja. Mivel a tároló létrehozásának van beruházási költsége, ezért ez egy külön
műveleti egységen jelenik meg, amivel függőségi kapcsolatban állnak majd a tárolóhasználatok.
Ez az állapot látható a 4.3. ábrán.

4.3. ábra. Általános tároló illusztratív példa, kapacitásleosztás előtt

Mivel a tároló képes mind a két terméket tárolni, de nem egyforma súllyal, ezért különösen
figyelni kell arra, hogy egyik időpontban se léphesse túl a tárolóban tárolt elemek mennyisége a tá-
roló kapacitását. A kereszt-tárolások miatt venni kell az összes különböző tárolási idő-metszetet,
és ezekben külön-külön megvalósítani a kapacitás megkötését. A legegyszerűbben a tárolási met-
szeteket úgy lehet megállapítani, hogy az összes olyan helyet metszéspontnak kell jelölni, ahonnan
egy tároló elkezd tárolni, vagy ahová fog tárolni. A 4.4. ábrán ezek a metszéspontok vannak be-
jelölve.

4.4. ábra. Általános tároló illusztratív példa, metszések helyei

Minden metszéspont között, ahol több mint egy termék érintett a tárolásban egy köztes anyag
-műveleti egység- köztes anyag hármast kell felvenni. A beruházásból az első köztes anyagokba

32

éleket kell vezetni, hiszen csak akkor használhatók a tárolók, ha megvalósult a beruházás. Itt az
élek súlyát arányosítani kell a lefedett periódusok hosszával. A példában végül minden periódus-
közre esik ilyen elosztó, ezért 0,2-0,2 lesz az élek súlya. A műveleti egységeken fog megjelenni
korlátozásként a kapacitás, vagyis egyik periódusközön sem lépheti túl a tároló ezt a határt. A
műveleti egységek outputjaként megjelenő köztes anyagból a tárolásokba vezető éleken súlyként
fog megjelenni az, hogy melyik termék mekkora részt vesz el a tárolóból, vagyis a kapacitás igény.
Itt minden olyan tárolóba kell élt vezetni, ami érinti az adott periódusközt. Ez a súly "A" termék
esetén ’1’, "B" termék esetén ’6’. Természetesen a kezdőkészletet is be kell kötni a beruházáshoz,
de mivel ott, az első periódus előtt csak egy termék érintett a tárolásban, így el lehet tekinteni az
anyag-egység-anyag hármastól, és egyszerűen egy köztes anyaggal összekötni őket. A kész struk-
túra a 4.5. ábrán látható. A könnyebb átláthatóság végett a kapacitásszétosztás élei színessel
kerültek reprezentálásra.

4.5. ábra. Általános tároló illusztratív példa, kész modell

Jól látható, hogy egy olyan általános tároló megvalósítása, ami több, különböző méretű anya-
got képes tárolni nagy mértékben megnöveli a P-gráf struktúra komplexitását. A legtöbb, P-
gráffal megvalósításra kerülő probléma esetében azonban elegendő egy olyan tároló, ami csak
egy fajta anyagot tud tárolni. Az ilyenek jóval kevesebb hozzáadott plusz elem nélkül megvaló-
síthatók. Az alábbiakban bemutatásra kerül egy ilyen tároló létrehozásának pszeudokódja, ami
az előző, periódusos részhez erősen kapcsolódik. A modelltranszformációt az után kell elvégez-
ni, hogy már megtörtént a periódusokra bontás. Amennyiben a tároló csak egy anyagot képes
tárolni, úgy egy tárolt anyag mindig csak egy egység terhelést jelent a kapacitásban, így kapaci-
táshasználatát nem kell definiálni.

A 8. algoritmusban látható, hogy az összes tárolón végigiterálva négy fő lépést kell végre-
hajtani. Az első a beruházás megvalósítása, a második a kezdőkészletek létrehozása, harmadik
lépésben a periódusok közötti tárolást kell implementálni, majd ez után, amennyiben nyersanyag
tárolásáról van szó, módosításokat szükséges eszközölni a már periódusos gráfon. Ha a tárolóhoz
szükséges beruházás, úgy első lépésben az ennek megfelelő műveleti egységet kell a gráfhoz ad-
ni, hogy majd az új elemek hozzáadásakor a becsatlakoztatás egyszerűbb legyen. Ehhez egy új

33

Algoritmus 8: Egy-anyagos tároló megvalósítása
input : Multiperiódusos P-gráf, Anyagok eredeti nevei
output: Multiperiódusos struktúra kiegészítve tárolókkal

1 if Stor → meret! = 0 then
2 foreach stori ∈ Stor do
3 Tarolo_beruhazas ;
4 Tarolo_kezdokeszlet;
5 Tarolas;
6 Nyersanyag_tarolasa;
7 end
8 end

műveleti egységet kell felvenni tároló neve + "_Beruhazas" névvel, és megadni neki beruházási
költségként a tároló beruházási költségét. Ennek a kódja a 10. algoritmusban látható.

Algoritmus 9: Tarolo_beruhazas

1 if stori.beruhazasiKoltseg > 0 then
2 taroloBeruhazasMuveleti→ nev = stori → nev + ”_Beruhazas”;
3 taroloBeruhazasMuveleti→ beruhazasikoltseg = stori → beruhazasikoltseg;
4 P − graf.hozzaad(taroloBeruhazasMuveleti) ;
5 end

Második lépésként - amennyiben volt,- a kezdőkészletet kell bekötni. A kezdőkészlet olyan
tárolt anyag, ami már az első periódus előtt is rendelkezésre áll, és már az első periódusban is
felhasználható. Költsége általában korábban került levonásra. A kezdőkészlethez szükséges egy
új nyersanyagot adni a struktúrához, aminek a maximális mennyisége a tárolónál megadott kez-
dőkészlet mennyiségével lesz egyenlő. Ahhoz, hogy ez összeköttetésbe kerüljön az első periódus-
ban szereplő anyaggal, egy műveleti egységet is szükséges bevezetni, aminek a kapacitáskorlátai
megegyeznek a tárolónál megadott kapacitáskorlátokkal. A két új elemet össze kell kötni egy él
segítségével, valamint, az újonnan bevezetett műveleti egységet is össze kell kötni az első peri-
ódus anyagával. Ez utóbbi a neve alapján egyszerűen beazonosítható. Amennyiben beruházás
útján lett létrehozva a tároló, úgy szükséges ezt, a nulladik tárolásnak is megfeleltethető műve-
leti egységet hozzákötni a beruházást megvalósító műveleti egységekhez. Ez egy köztes anyagon
keresztül történik. Figyelni kell rá, hogy a beruházási költséget viselő műveleti egységből jövő él
súlya arányosítva legyen a tárolásokon (10. algoritmus).

A beruházás és a kezdőkészlet megvalósítása után a periódusok közötti tárolást kell imp-
lementálni. Ekkor végig kell iterálni a tárolásokon. Minden tárolás az alábbi hármasból áll :
kezdőperiódus (honnan), ami megmondja, hogy melyik periódusból kell tárolni, célperiódus (ho-
va), ami azt mondja meg, hogy melyik periódusba viszi át az anyagot, valamint az amortizáció
mértéke. Minden ilyen tároláshoz egy új műveleti egységet kell hozzáadni a gráfhoz. Az új mű-
veleti egység fix költségét arányosítani kell az általa megvalósuló tárolás hosszával. (Például fix
költség a havi bérleti díj, azonban, ha egy tárolás hossza két hónap, úgy ez duplázódik.) Ez

34

Algoritmus 10: Tarolo_kezdokeszlet

1 if stori.kezdokeszlet > 0 then
2 ujAnyag → nev = stori → nev + ”_” + eredetiAnyagnev(stori → anyag) +_Kezdo;
3 ujAnyag → tipus = nyersAnyag;
4 ujAnyag → maximalisMennyiseg = stori → kezdokeszlet;
5 P − graf.hozzaad(ujAnyag) ;
6 ujMuveletiEgyseg → nev = stori → nev + ”_” + eredetiAnyagnev(stori → anyag) +

+_Kezdo_muveleti;

7 ujMuveletiEgyseg → kapacitasMin = stori → kapacitasMin;
8 ujMuveletiEgyseg → kapacitasMax = stori → kapacitasMax;
9 P − graf.hozzaad(ujMuveletiEgyseg) ;

10 ujEl(ujAnyag, ujMuveletiEgyseg);
11 P − graf.hozzaad(ujEl) ;
12 ujEl2(ujMuveletiEgyseg,M.megtalal(m→ nev ==

= eredetiAnyagnev(stori → anyag)→ nev + ”_Periodus_” + Per[0]→ nev;

13 P − graf.hozzaad(ujEl2) ;
14 if stori.beruhazasiKoltseg > 0 then
15 ujAnyag2→ nev = stori → nev + ”_” + ”Beruhazasicsatolo”;
16 ujAnyag2→ tipus = koztesAnyag;
17 P − graf.hozzaad(ujAnyag2) ;
18 ujEl3(taroloBeruhazasMuveleti, ujAnyag2);
19 ujEl3→ suly = 1,0/stori → tarolasokSzama+ 1;
20 P − graf.hozzaad(ujEl3) ;
21 ujEl4(ujAnyag2, ujMuveletiEgyseg);
22 P − graf.hozzaad(ujEl4) ;
23 end
24 end

az új egység továbbá átveszi a tároló arányos költségét, minimum és maximum kapacitását. Ez
után a kezdőperiódusban szereplő anyagból élt kell vezetni bele, valamint egy kifele vezető él is
szükséges a célperiódus anyagába. Az amortizáció miatt azonban ez utóbbi él súlya 1 - (amor-
tizáció /100) lesz. (Az amortizáció mértéke % -os formában van megadva.) Amennyiben volt
beruházási költség, ez esetben is szükséges a beruházási műveleti egységgel való összekötés. Ez
egy köztes anyagon keresztül történik, illetve itt is szükséges a beruházási költség szétosztása az
egyes tárolásokra, így az új műveleti egységbe vezető él súlya arányos lesz a tárolás hosszával.
(11. algoritmus.)

Végül felmerülhet a kérdés, hogy mi a teendő akkor, ha nyersanyagot kell tárolni. A nyers-
anyag tárolásánál a probléma az, hogy ha a nyersanyag tárolóból is jöhet, akkor azt, strukturális
szempontból előállítja egy műveleti egység. Ez sérti a P-gráf axiómáit, hiszen a nyersanyagot nem
állítja elő semmi. Ebben az esetben a periódusoknál létre kell hozni egy-egy új nyersanyagot, ami
megkapja a tárolt anyag összes tulajdonságát (a nevét is), és egy új műveleti egységen keresztül
összekötni a meglévő nyersanyaggal, majd az eredeti anyag típusát megváltoztatni köztes anyag-
ra, törölni a tulajdonságait, és a nevét eredeti név + "_seged"-re változtatni. Vagyis meg kell
különböztetni a nem tárolható nyersanyagot, és azt, amit már lehet tárolni. Ezt a lépést végre-

35

Algoritmus 11: Tarolas

1 for j = 0; j < stori → tarolasokSzama; j ++ do
2 ujMuveletiEgyseg → nev = stori → nev + ”_” + j;
3 P − graf.hozzaad(ujMuveletiEgyseg) ;
4 periodushosszak = 0;
5 for k = Per.megtalal(per == stori.honnan[j] + 1; k < Per.megtalal(per ==

= stori.hova[j]; k ++)
do

6 periodushosszak+ = Per[k]→ hossz;
7 end
8 ujMuveletiEgyseg → fixkoltseg = stori → fixkoltseg ∗ periodushosszak ;
9 ujMuveletiEgyseg → aranyoskoltseg = stori → aranyoskoltseg ;

10 ujMuveletiEgyseg → kapacitasMin = stori → kapacitasMin ;
11 ujMuveletiEgyseg → kapacitasMax = stori → kapacitasMax ;
12 ujEl1(M.megtalal(m→ nev == eredetiAnyagnev(stori → anyag) + ”_Periodus_” +

+ stori.honnan[j]→ nev, ujMuveletiEgyseg);

13 P − graf.hozzaad(ujEl1) ;
14 ujEl2(ujMuveletiEgyseg,M.megtalal(m→ nev == eredetiAnyagnev(stori → anyag) +

+ ”_Periodus_” + stori.hova[j]→ nev, ujMuveletiEgyseg);

15 ujEl2→ suly = 1− (stori.amortizacio[j]/100);
16 P − graf.hozzaad(ujEl2) ;
17 if stori.beruhazasiKoltseg > 0 then
18 ujAnyag → nev = stori → nev + ”_” + ”Beruhazasicsatolo” + j;
19 ujAnyag → tipus = koztesAnyag;
20 P − graf.hozzaad(ujAnyag) ;
21 ujEl3(taroloBeruhazasMuveleti, ujAnyag);
22 if stori.kezdokeszlet > 0 then
23 ujEl3→ suly = 1/stori → tarolasokSzama+ 1;
24 else
25 ujEl3→ suly = 1/stori → tarolasokSzama;
26 end
27 P − graf.hozzaad(ujEl3) ;
28 ujEl4(ujAnyag, ujMuveletiEgyseg);
29 P − graf.hozzaad(ujEl4) ;
30 end
31 end

hajtva már nem sérülnek az axiómák. Ez a szétszedés a 12. algoritmusban látható. A lépéseket
végrehajtva a modellhez hozzáadhatók olyan tárolók, ami képesek egy-egy anyag tárolására a
különböző periódusok között, különböző amortizációs mérték mellett.

A több periódusra bontás és a tárolók hozzáadásának komplexitása O(k× (|O|+ |M |)), ahol
|O| a műveleti egységek, |M | az anyagok száma, k pedig a periódusszámot jelöli. Látható, hogy
minél több periódusból és elemből áll egy modell, annál bonyolultabb lesz a struktúra, amin a
tárolókkal történő kibővítés nem nehezít szignifikánsan.

36

Algoritmus 12: Nyersanyag_tarolasa

1 if stori → anyag → tipus == nyersAnyag then
2 foreach peri ∈ Per do
3 eredetiAnyag =M.megtalal(m→ nev == eredetiAnyagnev(stori → anyag) +

+ ”_Periodus_” + peri → nev;

4 ujAnyag → tipus = nyersAnyag;
5 ujAnyag → ar = eredetiAnyag → ar;
6 ujAnyag → minimalisMennyiseg = eredetiAnyag → minimalisMennyiseg;
7 ujAnyag → maximalisMennyiseg = eredetiAnyag → maximalisMennyiseg;
8 ujMuveletiEgyseg → nev = eredetiAnyag → nev+”_ellato_Periodus_”+ peri → nev;
9 P − graf.hozzaad(ujMuveletiEgyseg) ;

10 ujAnyag → nev = eredetiAnyag → nev;
11 eredetiAnyag → nev = eredetiAnyag → nev + ”_seged”;
12 eredetiAnyag → tipus = koztesAnyag;
13 eredetiAnyag → ar = 0;
14 eredetiAnyag → minimalisMennyiseg = 0;
15 eredetiAnyag → maximalisMennyiseg = alapertelmezett;
16 P − graf.hozzaad(ujAnyag) ;
17 ujEl1(ujAnyag, ujMuveletiEgyseg);
18 P − graf.hozzaad(ujEl1) ;
19 ujEl2(ujMuveletiEgyseg, eredetiAnyag);
20 P − graf.hozzaad(ujEl2) ;
21 end
22 end

4.4. Szoftveres megvalósítás

A P-graph Studio egy olyan keretrendszer, amely segít a P-gráffal való modellezésben és képes
alkalmazni arra a 3. fejezetben már említett algoritmusokat. Mivel a periódusokra bontás nagy
mértékben megnöveli az elemek számát, ezzel együtt a hibázási lehetőséget, viszont könnyen
automatizálható, ezért igény merült fel arra, hogy integrálva legyen a P-graph Studio keretrend-
szerben egy ezt segítő rész. A periódusok megadása csak az után lehetséges, ha az alap gráf már
modellezésre került. Ekkor az ikonsoron megjelenő naptár ikonra kattintva elő lehet hívni a pe-
riódusokat bekérő ablakot. Az ikonok a 4.6. ábrán, a multiperiódusos ablak és az abban elérhető
fülek pedig a 4.7. ábrán láthatók.

4.6. ábra. A multiperiódusos rész ikonjai a P-graph Studioban

37

4.7. ábra. A periódusok megadására szolgáló ablak

Elsőként a periódusok számát kell megadni, majd ezt követően egy legördülő menüből lehet
kiválasztani egy periódust. A periódusnak adható meg név és hossz is. Mivel ez utóbbi csak
arányszámban számít, így nincs mértékegysége. Minden egyes periódusban meg lehet adni az
anyagoknak külön-külön értékeket a minimum, maximum mennyiségre és az árra vonatkozóan
is. Az "Extension" jelölőnégyzettel lehet megadni, hogy a periódusokkal az eredeti struktúra
felbontásra vagy sokszorozásra kerül-e. Az anyagoknál, amennyiben nincs megadva érték, úgy az
eredeti struktúrában megkapott értékét fogja felvenni az egyes periódusokban is.

A második fülön a kivételeket lehet megadni. Ez lehet műveleti egység vagy anyag is. Ami
anyag a kivételek közé kerül az törlődik a periódusosnál kiválaszthatók közül. A harmadik fül a
periódusok gyorsabb megadását segíti, és azt, amikor az anyagtulajdonságok egyenkénti megadá-
sa már időigényes lenne. Ekkor a szoftver elkészít egy sablon Excel fájlt, amit adatokkal kitöltve,
és feltöltve a szoftverbe a periódusok gyorsabban megadhatók. A periódusok elmentése után a
szoftver nem "szedi szét" automatikusan a struktúrát. Ez majd csak megoldáskor következik be.
Az implementáció során figyelni kellett arra, hogy a program képes legyen kezelni a periódusok
megadása után történő változásokat az alapstruktúrában. (Például ha periódusosnak lett jelölve
valami, de végül az eredeti struktúrából a megoldás előtt ki lett törölve.)

A 4.8. ábrán már a tárolók beviteli ablaka látható. A név megadása után ki kell választani,
hogy melyik anyagot lehet benne tárolni, majd, amennyiben van, megadni a kezdőkészletet. A
tárolókra is vonatkoznak a műveleti egységek általános tulajdonságai, vagyis a fix és arányos
költségek, a kapacitások, illetve a beruházási költségek. Az ablak jobb alsó részén lehet felvinni,
hogy melyik periódusból melyik periódusba legyen képes tárolni, és milyen amortizáció mellett.
Mivel leggyakrabban minden periódus között lehetséges a tárolás, így lehetőség van egyetlen
felvitellel megadni azt (összes periódusból a következőbe). Megoldás után a szoftver szétbontja a
periódusoknak megfelelően az eredeti struktúrát, és, amennyiben volt, kiegészíti a tárolókkal is. A

38

4.8. ábra. A tárolók megadására szolgáló ablak

szétbontott struktúráról az eredeti struktúrára visszalépve lehetőség van rá, hogy az eredeti, nem
periódusos struktúrát módosítsa a felhasználó, illetve arra is, hogy a már szétbontott struktúrával
dolgozzon.

4.5. Alkalmazhatósági területek

A multiperiódusos jelleg számos helyen megjelenik a való életben. Ebben a fejezetben bemuta-
tásra kerül néhány többperiódusú probléma, és azok megoldásai, amiből publikációk is születtek.

4.5.1. Gyártástervezés

Magyarországon az összeszerelő üzemek az ipar egy jelentős részét teszik ki, számos munkahelyet
biztosítva. Az elmúlt években azonban annak ellenére, hogy ezek a munkahelyek nem igényelnek
speciális szaktudást, emberhiánnyal kellett szembesülni. A gyáraknak a fokozott munkaerőhiány
tekintetében még inkább figyelembe kell venni a lehetséges optimalizálási lehetőségeket. Ez már
a gyártástervezés szakaszában is megvalósulhat, vagyis amikor arról kell dönteni, hogy milyen
termék kerüljön következőnek a gyártósorra. Ezt több minden is befolyásolhatja:

39

– Megrendelések: A megrendelésekből kiderül, hogy melyik terméket kell majd legyártani, és
amennyiben a rendelés határidőt is von maga után, úgy azt az időintervallumot is leszűkíti,
hogy mikor lesz legyártva.

– Termékkód: A termékkódok megmondják, hogy pontosan milyen elemekből, alkatrészekből
kell állnia a terméknek.

– Mennyiség: A mennyiség határozza meg, hogy mennyit kell a termékből létrehozni. El-
képzelhető olyan eset, amikor az alkatrészek hiányában csak a mennyiség egy részért lehet
legyártani.

– Prioritás: A magasabb prioritású megrendeléseket hamarabb kell teljesíteni. Nem egyszerű
eldönteni, hogy a normál prioritású, de határidős, vagy a magasabb prioritású termék
kerüljön gyártásra.

– Státusz: A gyártástervezést befolyásolhatják a termékek és alkatrészek státuszai. (Például
ha egy szükséges anyag még nem érkezett be.)

Amennyiben a gyártás már több éve folyik, úgy az időszakos trendeket is figyelembe lehet
venni a tervezésnél, illetve az alkatrészek beérkezési idejét. Lehetnek úgynevezett termékcsaládok,
ahol a fő részek azonosak, és csak kisebb alkatrészekben térnek el egymástól a termékek.

A cél egy olyan modell elkészítése volt, ami nem csak az aktuális állapot alapján mondja
meg, hogy mely termék kerüljön következőnek gyártásba, de képes több periódussal, és ezzel
együtt például az alkatrész beérkezésekkel is számolni. A gyártásnál a termékpaletta alapján
adottak a termékek, illetve az, hogy mely termék melyik alkatrészekből áll, továbbá, hogy abból
az alkatrészből hány darab szükséges hozzá. Ez utóbbi egy mátrixszal adható meg, ahol a so-
rok a termékek, az oszlopok az alkatrészek, és az érték a szükséges mennyiség. A megrendelések
alapján egy-egy termék gyártásához prioritás is társulhat, ami a gyártás idejére lesz hatással. A
vállalat mondja meg, hogy a magas prioritású termékeket minimum hány nap alatt kell legyár-
tani, illetve, ha egy prioritásos terméknek a határideje egybeesik egy másik termékével, és nem
megoldható a korábbi teljesítés, úgy a prioritásos termék kerül legyártásra. Adott továbbá egy
mátrix, ami megadja, hogy melyik napon melyik alkatrészből mennyi fog beérkezni. Minden ter-
mékhez tartozik egy megrendelt mennyiség is. Egy alkatrész adott napi mennyisége megegyezik
az előző napi mennyiséggel, kivonva belőle az előző nap felhasznált mennyiséget valamint hoz-
záadva az aznap beérkezett mennyiséget. Egy darab termék összeszereléséhez szükséges annak
összes alkatrésze, és azokból is a szükséges mennyiség. Két vagy több különböző napi termelés
adott termékre vonatkozóan összeadódik, tehát mindegy, hogy hány nap alatt, és mekkora része
kerül legyártásra a termék megrendelt mennyiségének, csak a határidőig történjen meg az össze-
szerelés a várt mennyiségben. (Általában 28 napra kell előre tervezni.) Mivel a gyártósor egy
nap csak véges mennyiségű terméket tud gyártani, így adott egy napi kapacitásmaximum is, ami
az összeszerelésre vonatkozik. A cél ezek után az, hogy a termékek az alkatrészek beérkezésének
figyelembevételével a lehető leghamarabb, legkevesebb átállással legyártásra kerüljenek legkésőbb
a határidő napjáig, a rendelt mennyiségben.

40

4.9. ábra. Két termék három alkatrészből történő összeszerelése két munkanapon

A 4.9. ábrán két termék (számítógép) összeszerelése látható három alkatrészből két munkana-
pon szerelve. Az ábra közepén elhelyezkedő alkatrész mindkét termékhez szükséges. A cél, hogy
a termékekből a megfelelő mennyiség elkészüljön időre, de, hogy a határidő előtt mikor történik
meg a szerelés lényegtelen a teljesítés szempontjából. A modell automatikusan a rendelkezésre
álló alkatrészek alapján a lehető legjobb gyártási tervet fogja visszaadni. A meglévő alkatrészek-
ből viszont az a mennyiség, ami nem kerül felhasználásra, a következő napon vagy műszakban
szintén felhasználható lesz, ami tárolóval biztosítható. Az alkatrészeket folyamatosan szállítják a
gyáraknak, így ezzel is számolni kell. A kiegészített modell a 4.10. ábrán látható. A kék műveleti
egységek a raktárhelyiségek, amik abban segítenek, hogy a megmaradó anyagokat a következő
napokon is fel lehessen használni. Modell szinten minden alkatrészhez tartozik árubeérkezés, vi-
szont ennek értéke akár ’0’ is lehet. A gyártástervezők előre tudják, hogy melyik alkatrészből
mikor és mennyi fog érkezni, így az a modellnek könnyen megadható.

4.10. ábra. Tárolók és alkatrész beérkezések

Számításba kell venni azt is, hogy a gyártósorok nem végtelen kapacitásúak, és naponta
csak bizonyos mennyiséget tudnak előállítani egy-egy termékből. Szükséges tehát a kapacitás
bevezetése a modellbe. Nyersanyagokként kerülnek reprezentálásra minden egyes műszakhoz, és
az adott műszak összes összeszerelésének az egyik bemenetét adják. Ez látható a 4.11. ábrán
pirossal.

A modell megalkotása mellett fontos, hogy a paraméterek a megfelelő értéket kapják meg. A

41

4.11. ábra. Napi kapacitás

P-gráf alapbeállításaihoz képest a következő esetekben kell eltérni : A naponként beérkező anyag-
nál (ami nyersanyagként jelenik meg) a maximális volumen annyi, amennyi aznap a beérkezés
az egyes alkatrészekre. A termékeknél a rendelt mennyiség értéke lesz a megengedett maximális
mennyiség (max.flow), továbbá a termék rendelkezik egy árral, ami az optimalizálásnál játszik
szerepet. (Ez később kerül kifejtésre.) A gyártás műveleti egységénél a felső korlát a rendelt
mennyiség, az alsó korlát pedig attól függ, hogy mennyire van közel a teljesítési határidő. A
határidő előtti öt napon belül mindenképp le kell gyártani a termékeket. A gyártás műveleti
egységén az optimalizálásnál szerepet játszó arányos költség van. A tárolt alkatrész és gyártás
között az él súlya annyi, ahány abból a tárolt anyagból szükséges egy termékhez. A modell szem-
pontjából a termék előállítása kedvező és szükséges, így egy termék létrehozása 1010$ bevételt
generál a modell szempontjából. (Ez az érték nem egyenlő azzal az árral, amiért majd a vállalat
értékesíteni fogja.) A gyártáson arányos költség van, és ez a költség segít végül a gyártási sorrend
meghatározásában. Kiszámításához az alábbi változók szükségesek: duePrioMax (= 1), double-
Prio (= 5), prioritySize (= 99), prioMinCost (= 10), prioMaxCost (= 1000), maxBoundDays (=
5). Szükségesek továbbá az alábbi, nem fix értékű változók is:

– virtualPriority = A legnagyobb prioritás + 1−A termék prioritása

– timePriority = (duePrioMax/2)(hatralevő napok/doublePrio)

– taskTimePrio = 1 + Minimum(A legnagyobb prioritás,(virtualPriority * timePriority)) /
A legnagyobb prioritás * prioritySize

– taskValue = prioMinCost * taskTimePrio

– dailyValue = taskValue - (taskValue - prioMinCost) / összes nap száma * hányadik az
aktuális nap

Az gyártás arányos költsége a fenti változók ismeretében az alábbi:
aranyoskoltseg = termekara ∗ dailyV alue.

42

Az ismert adatok alapján már könnyen előállítható egy olyan P-gráf modell, ami akár több
napra és több termékre is képez tervezni. Ebben segít a 13. algoritmus, aminek bemenetei az
alábbiak: a Termékek halmaz tartalmazza a legyártandó termékeket, a Napok adja meg, hogy
mely napokra történjen a tervezés, az Alkatreszek halmazban az összeszereléshez szükséges alkat-
részek találhatók, az AlkatreszBe mátrix megadja, hogy az i-edik napon az a alkatrészből mennyi
érkezik be, az Eleme mátrix, aminek sorai a termékek, oszlopai az alkatrészek, és a benne ta-
lálható értékek megadják, hogy egy termékhez az adott alkatrészből mennyi szükséges, illetve a
Kapacitas, ami a gyártósor kapacitását jelenti.

Algoritmus 13: Gyartastervezes ⇒ multiperiodusos PNS
input : Termekek, Napok, Alkatreszek, AlkatreszBe, Eleme, Kapacitas
output: P,R,O parameteres szintezis modell

1 maxprio = 0 ;
2 forall t ∈ Termekek do
3 P :=P ∪ t(cm = 1010$, U = t→ rendeles) ;
4 if t→ priority > maxprio then
5 maxprio = t→ priority ;
6 end
7 end
8 forall i ∈ Napok do
9 forall a ∈ Alkatreszek do

10 ajbeerki(U = AlkatreszBeai) ;
11 R :=R∪ ajbeerki ;
12 ajbei :=({ajbeerki}{aji});
13 O :=O ∪ ajbei ;
14 if i 6= |Napok| then
15 ajraktari :=({aji}{aji+1});
16 O :=O ∪ ajraktari ;
17 end
18 end
19 R :=R∪ kapacitasi(U = Kapacitas) ;
20 forall t ∈ Termekek do
21 Lszerelit=0;
22 if Napok − i ≤ 5 then
23 Lszerelit = t→ rendeles ;
24 end
25 szerelit :=({kapacitasi}{t},

U = t→ rendeles, L = Lszerelit, cp
op = Aranyos_koltseg(t, |Napok|, i,maxprio)) ;

26 forall a ∈ Alkatreszek do
27 if Elemeta > 0 then
28 α(szerelit) := α(szerelit) ∪ Elemeta ∗ aji ;
29 end
30 end
31 O :=O ∪ szerelit ;
32 end
33 end

A fentiekben bemutatott eset csupán egy reprezentatív, könnyen átlátható és megérthető
példa. A valóságban a cégek több hétre előre terveznek és a termékpalettájuk is színesebb. A

43

Algoritmus 14: Aranyos_koltseg
input : Termekekt, Napok_szama, i, maxprio
output: cost

1 virtual_priority=maxprio+1-Termekekt → priority ;
2 timePriority=(1/2)((Napok_szama-i)/5);
3 taskTimePrio=1+Minimum{maxprio, (virtual_priority ∗ timePriority)}/maxprio ∗ 99 ;
4 taskValue = 10 ∗ taskT imePrio ;
5 dailyValue=taskV alue− (taskV alue− 10)/Napok_szama ∗ i ;
6 cost = 1010 ∗ dailyV alue ;

fenti leírás alapján egy magyarországi vállalattal közös projekt kapcsán implementálásra került
egy szoftver, ami a cég specifikus adataiból 28 napos tervezéssel létrehozza a gyártási tervet a fent
ismertetett módszer segítségével. A vállalat korábban manuálisan készítette el a gyártási tervet
és nem számolt a sorok kapacitáskorlátjával. Az eredmények kimutatták, hogy az optimalizálás
nagyban segíti a tervezést és annak egyenletes eloszlását, hiszen a jövőben beérkező alkatrészeket
is figyelembe veszi, illetve a kapacitáskorlát bevezetésével a modell sokkal jobban megközelítette
a valóságot.

Nyitott kérdés maradt a munkaerő bevezetése, illetve az, hogy a modell a két termék közötti
átállási időt is beleszámolja-e a tervezésbe. A munkások feladathoz rendelése nem triviális, és
a gyakorlat azt mutatja, hogy nem tervezhető annyira előre. Ez az 5. fejezetben kerül részlete-
sebben kifejtésre. A termékek közötti átállási idő minimalizálásával elérhető időnyereség a már
megvalósult gyártástervezési modellhez képest szintén minimális.

4.5.2. Hulladékkezelés és karbantartási idők

A vegyiparban, és az ahhoz kapcsolódó iparágakban gyakran keletkezik a termelés során káros
anyag melléktermékként, amit a hulladékgazdálkodásnak megfelelően kell kezelni. A környezeti
terhelés csökkentését szerencsére már kormányzati szinten is egyre komolyabban veszik. Szükséges
tehát ezt beépíteni az ellátási láncba. A káros anyagok keletkezése azonban nem egyszeri eset,
hanem időről időre foglalkozni kell vele. Nehezíti a tervezést, hogy bizonyos műveleti egységek a
karbantartási időszakok miatt időnként nem állnak rendelkezésre.

Szükségszerű tehát egy olyan modell kidolgozása ami képes megkülönböztetni a hulladékot,
és kikényszeríteni annak valamilyen "felhasználását". Fontos, hogy több periódusra legyen képes
tervezni, ahol karbantartási időszakok miatt műveleti egységek eshetnek ki. Az induló struktúra
egy termelési folyamat, ami az anyagok és műveleti egységek felsorolásával egy egyszerű gyártási
folyamatot ír le.

mik ∈M,ojk ∈ O, pk ∈ P (4.1)

ahol M az anyagok, O a műveleti egységek, P pedig a periódusok. A műveleti egységek

44

inputjai és outputjai is anyagok.

o+jk ⊆M,o−jk ⊆M (4.2)

További információként megjelenik, hogy mely anyag a kritikus hulladékkezelési szempontból,
mivel a kritikus anyagnak mindig el kell fogynia. (Az, hogy ezt egy termelésben részt vevő
műveleti egység fogyasztja, vagy direkt a hulladék eltávolítására dedikált műveleti egység, a
modell szempontjából lényegtelen.)

mc
ik ∈M critical,M critical ⊆M (4.3)

|M |∑
i=1

|P |∑
k=1

mc
ik

 = 0 (4.4)

A periódusok miatt az előállítandó, vagyis a várt termék mennyiség is eltérhet a különböző
időszakokban, de ettől ennél a példánál eltekintünk. Annál a periódusnál, ahol karbantartás
folyik, a karbantartást érintő műveleti egységnél a termelés felső korlátja ’0’ lesz, egyébként a
felső korlát a műveleti egység kapacitásával lesz egyenlő. A karbantartási idők megadhatók egy
mátrixszal, aminek sorai a műveleti egységek, oszlopai a periódusok, és értéke ’1’, ha az aktuális
periódusban karbantartás folyik.

Servicejk =

1 oj műveleti egységet pk periódusban szervizelik

0 egyébként
(4.5)

ojk ≤

0 Servicejk = 1

capacity(ojk) egyébként.
(4.6)

A periódusok között lehetséges az anyagok tárolása, de az új tároló építése beruházási költ-
séget von maga után. A periódus végén az eltárolandó mennyiséget az alábbi képlet adja:

mik = mik−1 + prod(mik)− cons(mik) (4.7)

prod(mipk) jelöli mi anyag gyártását k periódusban, cons pedig az anyag fogyasztását ugyan-
ekkor. Természetesen nem lehetséges negatív mennyiséget előállítani.

prod(mik) ≥ 0, cons(mik) ≥ 0 (4.8)

A tároló beruházása csak akkor szükséges, ha van tárolandó anyag.

O = O ∪

o∗mik
∃mik > 0

∅ egyébként
(4.9)

45

cost(o∗mik
) = cost(o∗mik

) + InvestmentCost/length(pk) (4.10)

o+jk = mik, o
−
jk = mik+1 : ojk = o∗mik. (4.11)

A cél, a minél nagyobb mennyiségű gyártás, melynek a termék felső korlátja szab határt,
viszont a gyártásért járó pozitív érték (ami akár lehet eladási ár is) ösztönzi a termelést. Fontos,
hogy ne maradjon kezeletlen kritikus anyag az utolsó periódus után. Optimálisnak tekinthető
a megoldás, ha az összes kritikus anyag kezelve van, az előállított termék mennyisége pedig a
lehető legtöbb a legkisebb költség mellett.

max

 |P |∑
k=1

|M |∑
i=1

(prod(mik) ∗mik.value)− (cons(mik) ∗mik.cost))

−
|P |∑
k=1

|O|∑
j=1

cost(ojk)

 (4.12)

Az anyagok tekintetében a cost és value annyiban különbözik, hogy míg első a célfüggvényt
negatívan érinti, és nyers, illetve köztes anyagokra vonatkozik, addig utóbbi a kész termékért
kapott honorárium. Mindkettő kifejezhető pénznemben is, de értelmezhető egyfajta súlyozott
értékként is. Ebben az alfejezetben egy példán keresztül bemutatásra kerül, hogyan lehet biztosí-
tani a hulladékkezelést periódusról periódusra figyelembe véve a tárolási lehetőségek kapacitását
és a karbantartási időket a folyamathálózat-szintézis segítségével.

A vinil-klorid, vagy monoklór-etilén (C2H3Cl) gazdaságilag az egyik legfontosabb vegyi anyag,
mivel különböző polimerek, például a polivinil-klorid készül a felhasználásával [54]. Az előállítása
etilénből (C2H4), klórból (Cl2) és oxigénből (O2) történik három reakciós egység segítségével. Az
egyik egység az etilén (C2H4) direkt klórozására, a másik az oxiklórozásra, a harmadik pedig az
etilén-diklorid (C2H4Cl2) pirolízisére szolgál [55]. A hidrogénklorid (HCl), melynek vizes oldata
a sósav, és ami jelen eljárásban priolízissel keletkezik, felhasználható az oxiklórozásnál, és ezáltal
teljes mértékben újrahasznosítható. Természetesen minden reakcióegységhez tartozik egy vagy
több szétválasztó egység, ami elkülöníti a melléktermékeket, visszaforgatja a hidrogénkloridot,
vagy megtisztítja a végterméket [56].

A 4.12. ábrán a vinil-klorid előállításának modellje látható. Termékként szerepel a modellben
a vinil-klorid, és nyersanyagként jelenik meg a Cl2, a kapacitás, a C2H4 és az O2. Az anyagként
megjelenő kapacitás az O1 műveleti egység, vagyis a direkt klórozás elérhető kapacitását hatá-
rozza meg. A modellben a műveleti egységeknek egyaránt van működési és beruházási költségük.
A pirossal jelölt anyag a HCl, ami hulladékkezelési szempontból különös figyelmet igényel.

A modell megoldása után a HCl nem marad felhasználatlanul a struktúrában, és a maxi-
málisan elérhető C2H3Cl mennyiséget lehet elérni. (A második legjobb megoldásban már jóval
kevesebb ez a mennyiség, és az hulladékkezelési szempontból is elfogadhatatlan.) Amennyiben az

46

4.12. ábra. A vinil-klorid gyártás

O1 műveleti egység karbantartást igényel, úgy a kapacitás maximuma ’0’ lesz, ezáltal csak egy
megoldás lesz elérhető: ha az egész folyamat leáll, a karbantartás idejére, annak ellenére, hogy
O2 és O3 is képes lenne ellátni a modell szempontjából ugyanazt a feladatot, mint O1. Ezeket
a leállásokat és a hulladékkezelési problémát el lehet kerülni a ciklikusság figyelembe vételével,
vagyis periódusok és tárolók bevezetésével.

A hulladékkezeléshez a PNS axiómáit (3. fejezet) ki kell egészíteni és további feltételeket kell
bevezetni. Ehhez meg kell különböztetni az elvárt és a potenciális termékeket. Az elvárt
terméknél megkövetelt egy minimum mennyiség, amit le kell gyártani, potenciális terméknél
viszont ez az alsó korlát lehet nulla. Mindkét terméktípusnak lehet ára és felső korlátja is. Egy
köztes terméket mindig teljes mértében fel kell használni, ha termelésének felső korlátja nulla,
vagyis nem lehet úgy gyártani, hogy a végén ne legyen felhasználva. Ezzel szemben minden olyan
köztes anyag, amiből maradhat meg valamekkora mennyiség, potenciális terméknek tekinthető.

A P-gráf struktúrát meghatározó axiómákat az alábbiakkal kell kibővíteni a hulladékkezelés
megfelelő modellezéséhez:

– (S1) Minden elvárt terméknek szerepelnie kell a gráfban.

– ...

– (S4) Minden műveleti egységből legalább egy út vezet elvárt- vagy potenciális termékbe.

47

– ...

– (S6) Minden, a folyamatok során keletkező nem kívánatos terméket legalább egy műveleti
egységnek fogyasztania kell.

Az (S6)-os axióma kijelenti, hogy léteznie kell legalább egy olyan műveleti egységnek ami
kezeli vagy megsemmisíti a potenciális hulladékot. A fenti példában ez teljesül is, hiszen az
O2 műveleti egység fogyasztja a HCl-t, de a termelésének maximuma nem korlátozott. Ha ez
korlátozódik nullára, úgy, bár a legjobb megoldás ugyanaz marad, de a második megoldás, ahol
korábban megmaradt a HCl, eltűnik. Ha karbantartás miatt a kapacitás nulla lesz, a legjobb
megoldás is eltűnik, hiszen nincs elég HCl a folyamat elindításához. Ez utóbbi eset elkerülhető
egy olyan tároló telepítésével, ahol elegendő HCl raktározható el a karbantartási időszak kezdete
előttről, így a folyamatok a karbantartási időszakban is elindíthatóak lesznek.

4.13. ábra. A vinil-klorid gyártás három periódusos modelljének optimális megoldása tárolókkal

Legyen tehát az alapstruktúra kiterjesztve három periódusra. Az első periódus 3800 óra, a
második 200 óra és a harmadik 4000 óra hosszúságú, úgy, hogy a második periódusban kar-
bantartással kell számolni, vagyis akkor a Kapacitás felső korlátja nulla lesz. Ahogy az eredeti

48

modellben, úgy itt is a HCl -t teljes mértékben fel kell használni. Ebből a célból egy olyan tároló
kerül bevezetésre, amely ezt az anyagot képes tárolni a periódusok között, ráadásul amortizáció
nélkül. A tárolót fel kell építeni, így beruházási költséggel rendelkezik.

A megoldás a 4.13. ábrán látható. A piros szín továbbra is a kezelendő, veszélyes hulladékot,
azaz a HCl-t jelöli. A zöld szín a tárolást, a kék a beruházást, vagy fizikai jelenlétet jelöli, míg
a feketék magát a műveleti egységek használatát. Az időszakok arányos hossza a beruházást és
használatot összekötő élek súlyain szerepel.

Megoldás #1 #2 #3 #4 #5 #6

B
er
uh

áz
ás

O1 4,04 4,04 4,04 4,04 2,11 2,11
O2 200m 200m 200m 200m 200m 200m
O3 200m 200m 200m 200m 200m 200m
O4 36,78 2,11 2,11 36,78 2,11 2,11
O5 36,78 2,11 2,11 36,78 2,11 2,11
O6 36,78 2,11 2,11 36,78 2,11 2,11

Tarolo 100m 1’021’190 1’021’190 1m

1.
P
er
ió
du

s

O1 1,92 1,92 1,92 1,92 1 1
O2 1 1
O3 1 1
O4 1 1 1 1 1 1
O5 1 1 1 1 1 1
O6 1 1 1 1 1 1

Tarolo 21’192 21’192 21’192 21’192

2.
P
er
ió
du

s

O1
O2 1,92 1,92
O3 1,92 1,92
O4 0,92 0,92
O5 0,92 0,92
O6 0,92 0,92

Tarolo 21’192 21’192

3.
P
er
ió
du

s

O1 1 0,08 1
O2 1 2 1,92 1
O3 1 2 1,92 1
O4 1 1 0,92 1
O5 1 1 0,92 1
O6 1 1 0,92 1

Költség USD/h -22’923e -16’493e -15’930e -15’921e -15’120e -8’118e

4.3. táblázat. Megoldási struktúrák

A 4.3. táblázat tartalmazza az összes lehetséges megoldást. Ahogy az az eredményekből kide-
rül, megéri felépíteni a tárolót, és amennyiben ez megtörténik, úgy a karbantartási időszak alatt
is folytatódhat a termelés, hiszen az első periódusról marad elég HCl. Az első periódusban O2 és
O3 nem vesz részt a folyamatban, mivel használniuk kéne HCl-t, viszont a második periódusban
csak ők képesek biztosítani a termelést a korábbról elraktározott HCl segítségével. Az utolsó
periódusban minden műveleti egység újra elérhető, így nincs szükség arra, hogy erre az időszakra
HCl tárolódjon.

49

A második legjobb megoldás az, amikor a karbantartási időszak alatt a termelés leáll, viszont
tárolás ekkor is megvalósul. Érdekes megfigyelni a bevétel drasztikus csökkenését az első és má-
sodik, valamint az ötödik és hatodik megoldások között. Ez abból következik, hogy a második
legjobb megoldástól egy, míg a hatodik megoldásnál már két időszak alatt is teljes leállás van.
Ha nem lenne megkötés a HCl felhasználására, úgy, bár a legjobb megoldás nem változna, a
megoldások száma 11-re nőne.

Egy ilyen, többperiódusú modell, ahol hulladékkezelés és karbantartási idők is szerepelnek,
egyszerűen létrehozható. Ebben nyújt segítséget a 15. algoritmus, aminek bemenete az alap-
struktúra, a periódusok, ha van, akkor a tárolók, a karbantartás, illetve az, hogy melyik anyag
fontos hulladékkezelés szempontjából. A periódusoknál adott a hossz, a tárolóknál, azon felül,
hogy milyen anyagot tárolnak, fontos tudni, hogy van-e beruházási költségük, a karbantartások
mátrix soraiban pedig a periódusok, oszlopaiban a műveleti egységek szerepelnek, és "igaz" az
értéke annak a cellának, ahol karbantartás folyik.

Az eredmények sikeresen bemutatják, hogy a folyamathálózat-szintézis képes arra is választ
adni, hogy hogyan történjen a hulladékkezelés, valamint segíthet a karbantartási időszakokkal
való tervezésben, illetve segít eldönteni különböző beruházási kérdéseket is. A megadott algorit-
mussal a hasonló természetű problémák könnyedén modellezhetők és reprodukálhatók.

Algoritmus 15: Hulladékkezelés és karbantartás ⇒ multiperiódusos PNS
input : (P,R,O) alapstruktúra, Periodusok, Tarolok, Karbantartas, Hulladek
output: (Pm,Rm,Om) multiperiódusos modell

1 forall o ∈ O do
2 if cf inv

o > 0 then
3 oinvest({}{}, cf inv = cf inv

o) ;
4 forall i ∈ Periodusok do
5 β(oinvest) :=β(oinvest) ∪ i→ hossz ∗ oinvest_i ;
6 end
7 Om :=Om ∪ oinvest ;
8 end
9 end

10 forall t ∈ Tarolok do
11 if t→ Investment > 0 then
12 tarolot({}{}, cf inv = cf inv

t) ;
13 forall i ∈ Periodusok do
14 if i 6= 1 then
15 β(tarolot) :=β(tarolot) ∪ touti−1 ;
16 end
17 end
18 Om :=Om ∪ tarolot ;
19 end
20 end

50

21 forall i ∈ Periodusok do
22 forall p ∈ P do
23 pi=p;
24 Pm :=Pm ∪ pi ;
25 end
26 forall r ∈ R do
27 ri=r;
28 Rm :=Rm ∪ ri ;
29 end
30 forall o ∈ O do
31 oi=o;
32 cf inv

oi = 0 ;
33 oi({α(o)⇒ i, oinvest_i}{β(o)⇒ i}) ;
34 if Karbantartasio = igaz then
35 oi(U = 0) ;
36 end
37 Om :=Om ∪ oi ;
38 end
39 if i 6= 1 then
40 forall t ∈ Tarolok do
41 taroloti−1({(t→ anyag)⇒ i− 1, tOut_i−1}{(t→ anyag)⇒ i}) ;
42 Om :=Om ∪ taroloti−1 ;
43 end
44 end
45 end
46 forall m ∈ (α(O) ∪ β(O)) do
47 if m ∈ Hulladek then
48 m(U = L = 0) ;
49 end
50 end

4.5.3. Energiatárolás

Mivel az energiahasználat jelenti a háztartások legnagyobb kiadását, vagyis a fűtés, gáz, meleg
víz és a villamos energia, ezért érdemes ezek használatát valamilyen módon optimalizálni, azaz
ütemezni. Egy sikeres optimalizálással azonban nem csak a háztartási költségek csökkenthetők,
de a környezeti terhelés is kisebb lehet. Szerencsére ez utóbbi szempont nem csak elméleti és
kutatási szinten került fókuszba, hanem a gyakorlatban is egyre nagyobb hangsúlyt kap.

Háztartási fűtési- és hűtési energia ellátás optimalizálása

A háztartások hűtési és fűtési energiaigénye a különböző periódusokban eltérő, viszont egy jól
meghatározható fogyasztási profil szerint történik. Az energia ára is változhat periódusonként,
ami leggyakrabban napszakhoz kötött. (Például éjszakai áram.) A 4.14. ábrán látható az áram
árának alakulása egy nap, illetve a napi energiaigény. Észrevehető, hogy a fűtés és meleg víz
használata reggel és este jelentősebb, ezzel ellentétben hidegre leginkább kora délután van igény
(például klíma). A napi igények mellett ciklikus tendenciát mutat az éves igény is. A 4.15. ábrán

51

láthatók a különböző igények éves lebontásban.

4.14. ábra. Áram árak és igény

4.15. ábra. Az igények éves eloszlása

A cél a háztartási hűtési és fűtési energia elosztásának optimalizálása a felmerülő költségek
alapján. Ehhez adottak a meleg és hideg energiára való igények periódusokra lebontva:

0 ≤ mk,0 ≤ hk (4.13)

1 ≤ k ≤ periódusszám. (4.14)

Adott továbbá periódusonként a gáz és áram ára:

0 ≤ cost(gk),0 ≤ cost(ak) (4.15)

Lehetséges tárolók alkalmazása, ami bizonyos veszteség mellett képes egyik periódusból a
másikba átvinni az előállított hideg, vagy meleg anyagot (pl. : bojler). Ezekhez viszont beruházás

52

szükséges, aminek anyagi vonzata van. Tároló alkalmazásakor elegendő lehet kevesebb áram vagy
gáz fogyasztása, ha korábbi, kisebb költségű periódusból megmaradt a hideg vagy meleg áramból
valamennyi. Minden periódusban az előállított mennyiség nagyobb, vagy egyenlő kell, hogy legyen
mint a periódusra vonatkozó igény.

marad(mk) = marad(mk−1) ∗ (100− amortizacio(tarolom)/100) + gk −mk (4.16)

marad(hk) = marad(hk−1) ∗ (100− amortizacio(taroloh)/100) + ak − hk (4.17)

mk ≤ marad(mk−1) ∗ (100− amortizacio(tarolom)/100) + gk (4.18)

hk ≤ marad(hk−1) ∗ (100− amortizacio(taroloh)/100) + ak (4.19)

0 ≤ marad(hk), 0 ≤ marad(mk) (4.20)

minvestmentCost =

investmentCost(tarolom) ∃marad(mk) ≥ 0

0 egyébként
(4.21)

hinvestmentCost =

investmentCost(taroloh) ∃marad(hk) ≥ 0

0 egyébként
(4.22)

A cél a költségek csökkentése amellett, hogy az összes igény kielégítésre kerül :

min

(periodusszam∑
k=1

(
gk ∗ cost(gk) + ak ∗ cost(ak)

)
+

hinvestmentCost +minvestmentCost

)
(4.23)

Az alap probléma P-gráf modellje viszonylag egyszerű: Egy-egy nyersanyag reprezentálja a
gázt és az elektromos áramot, amikből egy-egy műveleti egység segítségével lehet a fűtést és hűtést
megvalósítani. Az igények a termékeken vannak, mint elvárt mennyiség. Ebből a struktúrából
kell annyit létrehozni, amennyi az igény szerinti periódusszám. Ez lehet egy heti modell fél órás
bontásban, vagy akár egy éves modell napi bontásban is. A felbontás attól függ, mennyire kell
részletesen és hosszan előre tervezni.

Mivel a periódusok nem függetlenek egymástól, és az előállított hideg, valamint meleg tárolá-
sára vannak eszközök, így a periódusok közötti átvitel megvalósítható. Ehhez szükséges a tárolók
beruházása. A tárolás viszont mindkét esetben veszteséggel jár. A 4.16. ábrán egy ilyen modell

53

látható, ahol egy nap igénye (január 4.) két órás felbontásban került implementálásra. A tárolás
vesztesége ennél a példánál 13%.

4.16. ábra. Egy 12 periódusos modell tárolással

A modellt megoldva a 4.17. ábrán látható struktúra lesz a legjobb megoldás. Látható, hogy
tárolóra szükség van, viszont csak arra, ami a meleget tudja tárolni (például bojler), hiszen csak
ez aktív a struktúrában. Ekkor az első, a hatodik, és a tizenegyedik periódusnál történik táro-
lás. Joggal merül fel a kérdés, hogy miért éri meg beruházni és tárolni ezekben az időszakokban,
mintsem előállítani, amikor az előállításhoz szükséges gáz ára nem változik. A válasz abban rejlik,
hogy a melegítésnek a fix költsége magas, és ezek azok az egymást követő periódusok, amikor kel-
lően kevés az igény ahhoz, hogy a tárolóban elférjen mindkét periódus igénye. Amennyiben nem
egy téli, hanem egy nyári nap kerül modellezésre, a megoldás után kiderül, hogy olyankor még
inkább megéri a tároló használata (4.18. ábra). A nyári időszakban a meleg igény sokkal alacso-
nyabb, mint télen, ezért több órai igénynek megfelelő mennyiséget is el lehet tárolni ugyanabban
a tárolóban.

4.17. ábra. A legjobb megoldás - január

Egy ilyen modell létrehozása könnyen automatizálható a szükséges információk ismeretében.
A 16. algoritmus levezeti, hogyan lehet generálni egy több periódusból álló PNS modellt a ház-
tartási meleg-, és hideg igényre. Az algoritmus bemenete a Hideg- és MelegIgény, ami minden

54

4.18. ábra. A legjobb megoldás - július

periódusra megmondja, hogy mennyi a háztartás elvárt mennyisége. Szükséges tudni, hogy mek-
kora a költsége egy egységnyi igény kielégítésének. Ez a gáz, illetve elektromos áram árával lesz
arányos, és a változó árak miatt ezeket is minden periódusra meg kell adni. Szükséges továb-
bá tudni, hogy mennyibe kerül a tárolók telepítése, és mekkora a veszteség vagy amortizáció a
tárolásnál.

Algoritmus 16: Hűtési-, fűtési energia tárolás ⇒ multiperiódusos PNS
input : HidegIgeny, MelegIgeny, GazAra, AramAra, MelegTarolo, HidegTarolo
output: (Pm,Rm,Om) multiperiódusos modell

1 Om :=Om ∪ hidegBeruhazas({}{}, cf inv = HidegTarolo→ koltseg) ;
2 Om :=Om ∪melegBeruhazas({}{}, cf inv =MelegTarolo→ koltseg) ;
3 for i = 1; i ≤ |HidegIgeny|; i++ do
4 Pm :=Pm ∪ hidegigenyi(L = HidegIgeny[i]) ;
5 Pm :=Pm ∪melegigenyi(L =MelegIgeny[i]) ;
6 Rm :=Rm ∪ arami(cm = AramAra[i]) ;
7 Rm :=Rm ∪ gazi(cm = GazAra[i]) ;
8 Om :=Om ∪ hutesi({arami}{hidegigenyi}) ;
9 Om :=Om ∪ futesi({gazi}{melegigenyi}) ;

10 if i 6= 1 then
11 Om :=Om ∪melegTaroloi−1({melegigenyi−1,melegTaroloBeruhi−1}{(1−

−MelegTarolo→ veszteseg/100) ∗melegigenyi}) ;
12 Om :=Om ∪ hidegTaroloi−1({hidegigenyi−1, hidegTaroloBeruhi−1}{(1−

−HidegTarolo→ veszteseg/100) ∗ hidegigenyi}) ;
13 β(hidegBeruhazas) := β(hidegBeruhazas) ∪ hidegTaroloBeruhi−1 ;
14 β(melegBeruhazas) := β(melegBeruhazas) ∪melegTaroloBeruhi−1 ;
15 end
16 end

Az eredmények megmutatták, hogy csak a melegített anyagot éri meg tárolni, viszont a tá-
rolással még a beruházási költség ellenére is csökkenthető a kiadás. Felmerülhet a kérdés, hogy
milyen paraméterek mellett érné meg a hideg, vagyis hűtött anyag tárolása. Erre egy megtérülés-
becslés, vagy egy szenzitivitás analízis adhat választ, ami a következő bekezdésben részletezésre
kerül.

55

Új technológiák megtérülés-becslésének módszere időszakonként változó erőforrások
és igények mellett

Az új technológiák bevezetése a legtöbb esetben valamilyen beruházási költséggel jár, aminek
okán a befektetőket főként az érdekli, hogy megtérül-e, és ha igen mikor, az adott beruházás. Az
ilyen befektetések megtérülésének becslésében még inkább kihívást jelent, ha időszakról időszakra
változnak a felhasználási igények, a rendelkezésre álló erőforrások vagy nyersanyagok, ráadásul
az időszakok egymástól nem függetlenek, mert tárolásra is lehetőség van. Jogosan merül tehát
fel a kérdés, hogy mik azok a paraméterhatárok, ami alatt még megéri, viszont felette már nem
a tervezett beruházás. Egy megfelelően paraméterezett multiperiódusos modellt megoldva válasz
kapható ezekre a kérdésekre. Az alábbiakban egy kisebb példán keresztül bemutatásra kerül,
hogy hogyan lehet a P-graph Studio szoftvert használni ilyen célokra.

Egy háztartás melegítés céljából napkollektort tervez telepíteni. Az igények minden periódus-
ra adottak:

0 ≤ mk, (4.24)

1 ≤ k ≤ periódusszám. (4.25)

A megtérülés kiszámítását nagyban nehezíti, hogy nem egyforma mértékben képes előállíta-
ni a meleg vizet, hiszen a termelése függ az időjárási viszonyoktól : napos időben többet képes
termelni, borús időben kevesebbet, éjszakai termelése pedig elhanyagolhatóan kevés. Ebből ki-
folyólag szükséges minden periódusra egy olyan előrejelzés, hogy a napkollektor a maximális
kapacitásának hány százalékát tudja előállítani.

0 ≤ nk, (4.26)

A kollektorral k periódusban előállítható meleg víz erősen függ a kapacitástól :

nk ∗ kollektorkapacitas. (4.27)

A napkollektor mellett a telepítés után is megmarad az a lehetőség, hogy amennyiben nem
elég a kollektorral előállított meleg víz, úgy azt a szolgáltatótól vett gáz segítségével elő lehet
állítani, de ez plusz költségekkel jár. Egy periódusban egységnyi meleg vízhez felhasznált gáz
mennyisége az alábbi:

0 ≤ gk (4.28)

A felmelegített vizet a periódusok között, vagyis a nap folyamán, és a napok között boj-
lerben lehet tárolni, ami már rendelkezésre áll, viszont tárolás közben a víz hőt veszthet, így
amortizációval kell számolni. A periódus végén megmaradó meleg víz kiszámítható az alábbiak
szerint:

56

marad(mk) = marad(mk−1) ∗ (100− amortizacio(tarolom)/100)+

gk + (nk ∗ kollektorkapacitas)−mk. (4.29)

A szükséges igényt mindenképpen elő kell állítani :

mk ≤ marad(mk−1) ∗ (100− amortizacio(tarolom)/100)+

gk + (nk ∗ kollektorkapacitas). (4.30)

A kollektort nem csak fel kell építeni, de annak beruházási költsége is van, így ráfordítást
igényel. Továbbá figyelembe kell venni, hogy mekkora kapacitású napkollektor az, amivel a várt
mennyiség elérhető. A kollektor, mivel meg kell építeni, rendelkezik beruházási költséggel és ebből
kifolyólag kifizetési periódussal is, ami a megtérülésnél számít. Ez utóbbi egy ilyen beruházás
esetén több éves időtartam, így a beruházási költség arányosan fog megjelenni.

ninvestmentCost =

investmentCost(n) ∃nk ∗ kollektorkapacitas ≥ 0

0 egyébként
(4.31)

A szolgáltatótól vett gáz alapján kiszámítható, hogy egységnyi meleg vizet milyen költségen
lehet előállítani, illetve meghatározható, hogy a periódusok között mennyit hűl a tárolt meleg
víz. A tárolásnak jelenleg nincsenek költségei. A modell mértékegységei mindig egységnyi meleg
víz előállításához viszonyulnak. A cél a meleg víz előállítás költségének csökkentése:

min

(periodusszam∑
k=1

(
gk ∗ ar(g)

)
+ ninvestmentCost

)
. (4.32)

A probléma egy napi modellje a 4.19. ábrán kerül szemléltetésre. Látható, hogy a gázszolgálta-
tás műveleti egységként jelenik meg, hiszen mindig elérhető. Ahhoz, hogy kollektorral is lehessen
meleg vizet előállítani, szükséges egyfajta beruházás, illetve a használatához arra az információra
is szükség van, hogy mennyi a beérkező napsugárzás. Ez nyersanyagként van bekötve a kollektor
használatához. A beruházást és a beérkező napsugárzást kétféleképp is meg lehet valósítani egy
P-gráfban. Az egyik megközelítés, hogy a kollektor kapacitáskorlátja a műveleti egységre kerül,
a beérkező sugárzásnál pedig pontos érték van megadva felső korlátnak. Az itt bemutatott mo-
dellben azonban a kapacitás az éleken jelenik meg, így a beérkező sugárzás mértéke egy arány
lehet: értéke ’1’, ha teljes kapacitáson tud üzemelni, ’1/2’, ha csak a kapacitásának felét tudja
kitermelni, ...stb.

A probléma éves modellje havi bontásban a 4.20. ábrán látható. Mivel itt már több periódus
is szerepel a modellben, megjelenik a bojler, mint egy fajta tároló a periódusok között, ahol a
víz hűlése, amortizációként a periódusokba érkező éleken kerül megjelenítésre. Amennyiben a
modell megfelelően került felparaméterezésre, azt megoldva egyszerűen látható, hogy megéri-e

57

4.19. ábra. Egy napi modell

az adott beruházás, vagy sem. A beruházás akkor éri meg, ha a megoldásban az ábrázolt modell
felső részén található beruházást megtestesítő műveleti egység aktív. Ez olyankor is aktív lehet,
amikor szükséges gázt is venni a melegítéshez.

4.20. ábra. Éves modell havi bontásban

Abban az esetben, ha a beruházás nem térül meg, a megoldásstruktúrában inaktív marad
a beruházási műveleti egység. Ez látható a 4.21 ábrán is. Ebben az esetben inaktív minden
kollektorhoz köthető anyag és műveleti egység, valamint a tárolás sem éri meg, hiszen minden
nap ugyanolyan költségen lehet gázt venni a szolgáltatótól és azzal előállítani a meleg vizet, amely
esetben a víz hűlésével, vagyis amortizációval sem kell számolni. Felmerülhet a kérdés, hogy mik

58

4.21. ábra. Nem térül meg a beruházás

azok a határok, amiken belül még mindig megéri a kollektor beruházása, és mikor nem éri már
meg. Ennél a példánál ez leginkább négy fő paraméterrel befolyásolható:

– Tervezett megtérülési időszak

– Kollektor beruházási költsége

– Kollektor mérete

– Szolgáltatótól vett gáz ára

Ezek a paraméterhatárok közelítéses módszerekkel jól beazonosíthatók, változtatásukkal és a
modell újbóli megoldásával pedig megállapítható, hogy az új érték mellett megéri-e az új befek-
tetés, vagy sem. Egy beruházás gondolata sok esetben a beruházási költség miatt kerül elvetésre.
A kollektor telepítésénél is felmerülhet, hogy melyik az az összeg, amit még érdemes ráfordítani,
és mennyi fölött nem fog már megtérülni. A beruházási költséget a műveleti egység viseli. Ugyan-
így meg lehet vizsgálni, hogy kisebb kollektorral kevésbé vagy jobban érné-e meg. Ez esetben a
kollektor kapacitásmaximumán kell változtatni. A szolgáltatótól vett gáz ára is erősen befolyá-
solhatja a megtérülésszámítás eredményét, ahogyan a tervezett megtérülési időszakok hossza is
hatással van rá.

Egy ilyen beruházás lemodellezésében segít a 17. algoritmus, ahol a bemeneti adatok sorban
a következők: gáz ára (amivel egységnyi meleg vizet lehet előállítani), meleg víz igény minden
periódusra, időjárás-előrejelzés a kollektor termeléséhez, a kollektor tulajdonságai, úgy, mint a
beruházási költség vagy a kapacitás, valamint annak a mértéke, hogy a tárolt meleg víz mennyire
hűl le két periódus között. A P-graph Studioban történő modellezésnél a szoftver lehetőséget nyújt
a műveleti egységek beruházásának megadására (4.22. ábra, bal oldal), illetve a tervezett kifizetési
időszak hosszának beállítására is. Ezt a programon belül a "Preferences": "Problem Settings"
menüben, azon belül is az "Operating units" fül alatt adható meg (4.22. ábra, jobb oldal). A
modellt megoldva egyszerűen megkapható, hogy az adott beruházásba megéri-e invesztálni.

59

Algoritmus 17: Meleg víz igény és kollektorberuházás ⇒ multiperiódusos PNS
input : GazAr, MelegvizIgeny, Elorejelzes, Kollektor, Amortizacio
output: (Pm,Rm,Om) multiperiódusos modell

1 Om :=Om ∪ kollektorBeruhazas({}{}, cf inv =
= Kollektor → beruhazasiKoltseg/Kollektor → kifizetesiIdoszak) ;

2 for i = 1; i ≤ |MelegvizIgeny|; i++ do
3 Pm :=Pm ∪melegvizIgenyi(L =MelegvizIgeny[i]) ;
4 Rm :=Rm ∪ termelesi(U = Elorejelzes[i]) ;
5 Om :=Om ∪ gazzalMelegitesi({}{melegvizIgenyi}, cpop = GazAr) ;
6 Om :=Om ∪ kollektorralMelegitesi({termelesi,Kollektor → kapacitas ∗

∗ beruhazasi}{Kollektor → kapacitas ∗melegvizIgenyi}) ;
7 β(kollektorBeruhazas) := β(kollektorBeruhazas) ∪Kollektor → kapacitas ∗ beruhazasi ;
8 if i 6= 1 then
9 Om :=Om ∪ tarolasi−1({melegvizIgenyi−1}{Amortizacio ∗melegvizIgenyi}) ;

10 end
11 end

4.22. ábra. Beruházási költség és kifizetési időszak beállítása a P-graph Studioban

Megújuló forrásból származó energia tárolása és elosztása microgrid rendszerben

Az okos város, SmartCity koncepciónál a döntéshozók gyakran használják a rendelkezésükre
álló információkat arra, hogy az árakon keresztül befolyásolják a fogyasztást a villamosenergia-
hálózatokban, ahol az energiát nem csak megújuló forrásból tudják biztosítani. Számos esettel
lehet találkozni, ahol a fogyasztói szokások megfigyelése alapján változtatják az energiaárakat

60

[57]. Az ilyen hálózatok, ahol nagy mennyiségű adat áll rendelkezésre a fogyasztói szokásokról,
nem csak az elektromos hálózatok esetében használhatóak ki, de akár hulladékkezelésnél is jól
hasznosíthatóak [58]. A többperiódusos forgatókönyvek széles körben jelen vannak az ellátási
láncok különböző részein, de ez még nem jellemző az energiaellátási területeken. Napjainkban a
Pinch Analízis vált népszerűvé az elektromos hálózatok optimalizálásánál, de még mindig nincs
egy olyan módszer, amely hosszabb időtávval kalkulálna az energiaelosztásról, és ami a korábbi
előrejelzéseket venné alapul [59]. A villamosenergia-hálózatok korszerűsítésének köszönhetően az
intelligens hálózatokat nemzeti szinten is üzemeltetik, és bár van valamilyen szintű fogyasztói
megkülönböztetés, ez általában a magas és az alacsony feszültség alapján történik és nem pedig
prioritás alapú [60].

4.23. ábra. Az áramellátás alapstruktúrája

Az alábbiakban egy olyan optimalizációs módszer kerül bemutatásra, ahol az elektromos
hálózatban főként megújuló forrásból származik az energia, viszont emiatt nem folyamatosan
biztosított, illetve a fogyasztók prioritás alapján is megkülönböztetésre kerülnek. A megújuló
forrásokon kívül nagyon indokolt esetben használható egy dízelgenerátor, de ennek használata
a magas költségek miatt elkerülendő. A hálózat tartalmaz továbbá akkumulátorokat korlátozott
kapacitással, amik segíthetnek a periódusok közötti energiaelosztás kiegyensúlyozásában. Az op-
timalizálási cél a fogyasztóknak juttatott elektromos energia mennyiségének maximalizálása, de
legfejlebb annyi, amennyi azok igénye.

Az energiaellátás tervezése véges időhorizonton történik, például egy napra, vagy egy hétre
kalkulálva. Ezt az időszakot több kisebb periódusra kell bontani annak megfelelően, hogy mennyi-
re részletes adatok állnak rendelkezésre a megújuló energiaforrásokhoz és a fogyasztáshoz. Ezek az

61

adatok már fél-, vagy negyed órás pontossággal is rendelkezésre állnak. A modell központjában az
energiamennyiség áll, amit a periódusok alatt mind termelnek, mind pedig fogyasztanak az egyes
entitások. Az áramszolgáltatás különböző prioritású fogyasztók között valósul meg. A hálózat
továbbá tartalmazhat akkumulátorokat, amik képesek a töltés tárolására, viszont különböző ál-
lapotuk miatt (új, vagy használt) különböző hatásfokkal képesek ezt tenni. Az akkumulátoroknak
lehet kezdeti töltöttsége, amit már az első periódus alkalmával is fel lehet használni, illetve lehet
igény arra, hogy az utolsó számított periódus után mennyi töltöttség maradjon benne. Annak
érdekében, hogy a kritikus, vagyis magasabb prioritású fogyasztó minden időszak alatt biztosan
megkaphassa a szükséges áramellátást, a modell tartalmaz költségesebb, de alternatív megol-
dást, például egy dízelgenerátort. A korlátozott kapacitás miatt ebből is lehet több a modellben,
ahogyan a megújuló erőforrást használó termelőből is. A 4.23. ábra a rendszer architektúráját
mutatja be, beleértve az energiaelosztási vezérlést és az optimalizálást. Az ábrán látható, hogy
az optimalizáló információt kap az üzemanyagtartályról és az akkumulátor töltöttségi szintjeiről,
valamint az energiatermelésre és -felhasználásra vonatkozó előrejelzésekről az elkövetkező peri-
ódusokra vonatkozóan. A modell a rendelkezésére álló adatok alapján egy áramelosztási tervet
készít.

4.24. ábra. Egy periódus struktúrája

4.25. ábra. Többperiódusos modell

A 4.24. ábrán látható a modell egyperiódusú modellje, ahol a főbb egységek kiemelésre ke-
rültek. Legyen

C,E,R,B,G ∈M, (4.33)

62

ahol C a fogyasztók halmaza, E az energiamennyiség, R a megújuló energiaforrást használó
termelők, B az akkumulátorok halmaza, G pedig azon termelők halmaza, amik költségesen, de
mindig tudnak áramot biztosítani. A probléma többperiódusos modellje a 4.25. ábrán látható.
Itt már jól megfigyelhető a periódusok kapcsolódása egymáshoz a tárolt energián keresztül.

A felhasználható áram maximális mennyiségét i-edik periódusnál az alábbi képlet adja:

Ei =MaxFlow(Ri +Bi ∗ (100− UsageAmort(B))), (4.34)

1 ≤ i ≤ N, (4.35)

ahol N a periódusok száma és

Ri =

|R|∑
j=1

MaxFlow(Rji), (4.36)

Bi =

|B|∑
j=1

MaxFlow(Bji), (4.37)

UsageAmort(B) =

|B|∑
j=1

UsageAmort(Bj), (4.38)

ahol |B| a rendszerben lévő akkumulátorok, |R| pedig a megújuló erőforrást használó termelők
száma. (Ha két akkumulátor van a modellben, akkor |B| = 2.) Mivel egy akkumulátorból nem
lehet tökéletesen 100%-ban visszakapni a benne lévő töltöttséget, így egy minimális veszteséggel
számolni kell. Rji jelöli az i-edik periódusban a j-edik, megújuló forrást használó termelő által
megtermelt energiát, Bji pedig az i-edik periódusban a j-edik akkumulátor töltöttségét. Rji érté-
két a rendelkezésre álló adatok adják, mint például időjárás-előrejelzés napelem esetén. (Ennek
a kiszámítása, vagyis, hogy milyen időjárás mekkora energiával jár, már túlmutat a dolgozat
keretein. A megvalósult modellben ezek készen kapott, kiszámított adatok.) Az akkumulátor
töltöttségét az alábbiaknak megfelelően lehet kiszámítani:

Bji =


Bjinit i = 1

Store_Bji−1 ∗ (100− StorageAmort(B
j))+

Load_Bji−1 ∗ (100− LoadAmort(B
j))

egyébként,
(4.39)

ahol

Store_Bji + Load_Bji ≤ Capac_B
j (4.40)

Store_Bji = Bji − Usage(B
j
i) (4.41)

63

Load_Bji = Ei − (Ci −Gi). (4.42)

Load_Bji + Store_Bji ≥ Remain(B
j); i = |N |. (4.43)

Bjinit jelöli a j-edik akkumulátor kezdeti töltöttségét. A korábban említett amortizációhoz ha-
sonló veszteség keletkezhet az akkumulátorok tárolásánál (StorageAmort), valamint töltésénél
(LoadAmort). Store_Bji jelöli a j-edik akkumulátor i-edik periódus utáni tárolt mennyiségét,
Store_Bji pedig az i-edik periódusban való töltését. Usage(Bji) azt jelöli, hogy a j-edik akkumu-
látorból az i-edik periódusban mennyit használtak a fogyasztók. Mivel az akkumulátoroknak van
egy fix kapacitásuk, ami fölé nem mehetnek, ezért biztosítani kell, hogy a tárolás és a visszatöltés
összege ezt ne haladhassa meg. Erre hivatott a Capac_Bj , mely a modellben minden periódusnál
külön-külön meg fog jelenni, de értéke állandó. Gi az i-edik periódusban a nem megújuló ener-
giaforrást használó termelőknek jelzi a használatát, vagyis amennyi áramot azok szolgáltattak a
fogyasztóknak.

A modell értékét az növeli, ha minél több fogyasztói igény kerül kielégítésre, ezért szükséges
az igények kielégítésére valamilyen "honoráriumot" alkalmazni. A modellben bár ez bevételként
fog megjelenni, nem valódi bevételről van szó, csupán a modell befolyásolására szolgáló összegről,
így a továbbiakban "értékként" lesz jelölve. Ezen értékeken keresztül lehet közvetve megadni a
prioritást. A magasabb prioritású fogyasztónak magasabb, míg a kisebb prioritású fogyasztónak
alacsonyabb lesz ez az értéke, ezért a modell elsőként mindenképp a magasabb prioritású fogyasz-
tókat fogja kiszolgálni. A generátorra hasonló módon valamilyen "költséget", negatív értéket kell
állítani, hiszen használata elkerülendő. A feladat meghatározásától és a modell beállításától függ,
hogy melyik fogyasztó honnan kaphat áramot. Ezt modell szinten az értékeken keresztül lehet
befolyásolni. Íme, néhány példa kétfogyasztós és egy generátoros esetben:

– V alue(C1) ≥ V alue(C2) ≥ Cost(G) : Ebben az esetben mindként fogyasztó használhatja
a generátort. Mivel az "költséggel" jár, így a modell továbbra sem azt fogja elsődlegesnek
tekinteni, és csak szükség esetén fogja használni. Ez azzal is jár, hogy minden periódusban
minden fogyasztó teljes mértékben kielégítésre kerül.

– V alue(C1) ≥ Cost(G) ≥ V alue(C2) : Ekkor csak C1 fogyasztó használhatja a generátort,
hiszen C2 értéke kisebb, mint a generátor használati "költsége". Ebben az esetben felme-
rülhet, hogy C2 fogyasztó nem minden periódusban kapja meg a szükséges áramellátást.

– Cost(G) ≥ V alue(C1) ≥ V alue(C2) : Itt sem C1, sem pedig C2 nem használhatja a gene-
rátort.

Fontos, hogy a kisebb prioritású fogyasztók összértéke ne haladhasson meg egy magasabb
prioritású fogyasztói értéket! (A prioritás száma minél kisebb, annál fontosabb, vagyis az 1-es a
legfontosabb prioritású.) Az érték megadásához ezért az alábbi képlet ajánlott:

V alue = 1000 ∗ 1

2x−1
, ahol x = priority (4.44)

64

A P-gráf modellben az áramszükséglet a maximális, és nem a szükséges, vagyis minimális
paraméterénél jelenik meg a fogyasztóknál. Az érték miatt mindenképpen a lehető legtöbb ára-
mot próbálja szolgáltatni a modell, de nem kerül megoldhatatlan állapotba, amennyiben nem
tudja ezt teljesíteni. További kérdés lehet az akkumulátorok használata fogyasztói prioritás függ-
vényében. Amennyiben a modell nem engedi meg egy fogyasztónak, hogy az akkumulátorokat is
használhassa, abban az esetben a fogyasztót, mint terméket és az áramot, mint köztes terméket
összekapcsoló műveleti egység kapacitásának felső korlátja meg kell, hogy egyezzen az aktuális
periódus megújuló forrást használó termelői által előállított áram mennyiséggel. A modell célja
az, hogy a lehető legtöbb igény kerüljön kielégítésre. A célfüggvény tehát:

max
(N∑
i=1

(|C|∑
j=1

V alue(Cji)−
|G|∑
j=1

Cost(Gji)
))
. (4.45)

A modell teljes körű generálásához az előbbiekből a következő input adatokra
van szükség: Cost(G), Rji , Cji , Priority(Cj), Cj fogyasztó energia ellátásának enge-
délyei (például használhat-e generátort vagy akkumulátort), Bjinit, Capac_Bj , Storage-
Amort(Bj), LoadAmort(Bj), UsageAmort(Bj), ahol i jelöli a periódust, j pedig az egységek
beazonosítására szolgál. Ezen adatok ismeretében a fenti egyenletek alapján bármennyi periódus-
ra megadható a pontos modell. Minden periódus közepén az energia (Ei), mint köztes anyag áll.
Ehhez kerül bekötésre egy műveleti egységen keresztül az Rji , valamint a Bji . A Bji és Ei közötti
műveleti egységből kiinduló él súlya 1−UsageAmort(Bj) lesz. A gráfhoz kell adni a töltést és tá-
rolást szimbolizáló műveleti egységeket. Bji -ből a tárolóba, Ei-ből pedig a töltésbe fog él vezetni.
Ezekhez minden periódusban tartozik egy kapacitás is, mint nyersanyag, amiből egy-egy él vezet
ezen műveleti egységekbe. Amennyiben az első periódus kerül modellezésre, úgy az akkumulá-
torok kezdeti töltöttségét (Bjinit) egy nyersanyag fogja reprezentálni, ami egy műveleti egységen
keresztül bekötésre kerül Bji -hez. Amennyiben nem az első periódus, úgy az előző periódus táro-
lójából és töltéséből (amik műveleti egységek) a megfelelő amortizációval csökkentett éleket kell
vezetni Bji -be. A periódusnál nyersanyagként fog megjelenni a drágább, nem megújuló energiát
használó berendezés által szolgáltatott energia. Ezt követően minden fogyasztó, mint termék fog
megjelenni, a termék ára pedig a fent kiszámított V alue lesz. Ei-ből egy-egy él fog vezetni a ter-
mékekhez tartozó műveleti egységekbe, ahonnan szintén él vezet a termékekhez. Ha a fogyasztó
csak a megújulót használhatja, úgy ennek a műveleti egységnek a felső korlátja meg fog egyezni
a megújuló által termelt energia (Rji) mennyiségével. Amennyiben egy fogyasztó használhatja a
generátort, úgy szükséges egy-egy műveleti egységet hozzáadni a gráfhoz, majd Gi-t ezzel, illet-
ve ezt Cji -vel összekötni. Minden fogyasztónak külön-külön szükséges egy ilyen műveleti egység
a generátorhasználathoz. Az utolsó ciklusban a tárolóból és az akkumulátor töltésből egy-egy
él vezet a termékként reprezentált maradó töltöttségi igénybe, aminek alsó korlátja az igényelt
mennyiség.

A bemeneti adatok alapján könnyedén generálható egy ilyen, multiperiódusos modell. Ebben
nyújt segítséget a 18. algoritmus. Az egyik bemenet a Megujulok, ami több megújuló forrást
használó termelőt is magában foglalhat. Egy-egy ilyen termelőnél minden egyes periódusra meg

65

kell adni, hogy mennyi áramot tud előállítani. Ez akár az időjárás-előrejelzés alapján, számítás-
sal is történhet. A másik szükséges információ a Fogyasztok ismerete. Ez szintén egy halmaz,
ami a különböző fogyasztókat foglalja magában. Egy-egy fogyasztó rendelkezik prioritással és
minden periódusra megvan, hogy mennyi az áram-igénye. A 18. algoritmusnál észrevehető, hogy
prioritással nem, viszont fogyasztói értékkel számol. Ez az érték általában a prioritástól függ,
és egy javasolt módszer a kiszámítására a 4.44. egyenletben található. A Generator szintén tar-
talmaz egy értéket. Ez nem az üzemanyagár, hanem a használatának a "költsége", vagy más
néven "büntetése". Ha értéke magasabb, mint a legmagasabb prioritású fogyasztó prioritásból
számolt értéke, úgy egyik fogyasztó sem használhatja. A generátort csak azon fogyasztók hasz-
nálhatják, akinél a kiszolgálásának a számított értéke magasabb, mint a generátor értéke. Mivel
ez a különböző eseteknél eltérhet, így célszerű, ha az algoritmus külön bekéri. Szükséges még
ismerni a rendszerhez tartozó akkumulátorokat is, amik az Akkuk halmazban vannak. Egy-egy
akkumulátor rendelkezik kapacitással, információról arra vonatkozóan, hogy mennyi a kezdeti töl-
töttsége, illetve mennyi töltöttségnek kell maradnia az utolsó periódus után, valamint különböző
amortizációs értékekkel, százalékban kifejezve: töltési-, használati-, és tárolási amortizáció.

Motivációs példa:

A fenti leírás segítségével bármilyen hosszú, és bármekkora felbontású (periódus hosszára ért-
ve) esetet lehet modellezni. Bár lehet, hogy elsőre egyszerűnek tűnik az áramelosztás kiszámítása,
hosszabb időszak esetén az korántsem triviális. A megoldó hatékonyságának szemléltetésére egy
esettanulmány került kidolgozásra a 4.4. táblázatban található paramétereknek megfelelően. A
példa két fogyasztót tartalmaz különböző prioritásokkal, akiknek az igényét egy naperőmű és
egy nem túl jó állapotú akkumulátor biztosítja. A 4.26. ábrán látható az igények előrejelzése
és a naperőmű várható termelése fél órás bontásban. Az KKV, vagyis a kis és közepes vállal-
kozás energiaigényének előrejelzése a [61] alapján, a háztartások igényének előrejelzése pedig a
[62] hivatkozás alapján történt. A naperőmű adatai saját mérések alapján, felskálázással kerül-
tek meghatározásra. Mindhárom adat a valóságnak megfelel és összehasonlítható, még akkor
is, ha nem ugyanazon a helyen és időben került megállapításra. A modellben elsőként a KKV
igényének kielégítése a cél, hiszen magasabb prioritású, a háztartások csak ezután juthatnak
áramhoz. Generátor használata erősen elkerülendő (a struktúra épp ezért nem is tartalmazza),
az elektromosságot csak és kizárólag a naperőmű és az akkumulátor biztosítja, ameddig tudja.

A naperőmű mérete úgy lett skálázva, hogy a KKV igényét magas rendelkezésre állás mellett
ki tudja elégíteni. Ez azt vonja magával, hogy többször is lesz extra termelés. Az extra termelés
elosztásának stratégiái és a modell jósága a másodlagos prioritású fogyasztónak juttatott áram
alapján mérhető és összehasonlítható, hiszen az elsődleges fogyasztó igényei mindig kielégítésre
kerülnek. Egy általános, heurisztikus áramelosztási stratégia alkalmazásakor az akkumulátorok
töltöttségének szintjétől teszik függővé a másodlagos fogyasztónak juttatott áramot. Extrém
esetben a háztartás csak akkor kaphat energiát, ha a magasabb prioritású fogyasztók teljesen
ki vannak elégítve és az akkumulátorok teljesen fel vannak töltve. Az esettanulmányban a má-
sodlagos fogyasztónak a szükséglete 114,393 kWh. Ha ez a fogyasztó csak akkor kaphat áramot,
ha az akkumulátorok teljesen töltöttek, akkor összesen 9,163 kWh energiát fog csak kapni, ami

66

Algoritmus 18: Periodikus termeles elorejelzes es fogyasztoi igenyek ⇒ multiperiodusos
PNS

input : Megujulok, Fogyasztok, Akkuk, Generator
output: (Pm,Rm,Om) multiperiodusos modell

1 for i = 1; i ≤ |Fogyasztok1 → igeny|; i++ do
2 var szumMegujulobol = 0 ;
3 for r ∈Megujulok do
4 Rm :=Rm ∪megujulori (U = r → termelesi) ;
5 Om :=Om ∪megujulobolri ({megujulori }{ei}) ;
6 szumMegujulobol+ = r → termelesi ;
7 end
8 Rm :=Rm ∪ generatori(cm = Generator → ertek) ;
9 for c ∈ Fogyasztok do

10 Pm :=Pm ∪ fogyasztoci (U = c→ igenyi, cm = c→ ertek) ;
11 Om :=Om ∪ fogyasztonakci ({ei}{fogyasztoci}) ;
12 if c→ csakMegujulobol then
13 fogyasztonakci (U = szumMegujulobol)
14 end
15 Om :=Om ∪ generatorbolci ({generatori}{fogyasztoci}) ;
16 end
17 for b ∈ Akkuk do
18 Rm :=Rm ∪ akkuKapacbi (U = b→ kapacitas) ;
19 if i=1 then
20 Rm :=Rm ∪ akkub

1(U = b→ kezdetiToltottseg) ;
21 end
22 Om :=Om ∪ akkubolbi ({akkub

i}{(100− (b→ hasznalatiV eszteseg))/100 ∗ ei}) ;
23 if i = |Fogyasztok1 → igeny| then
24 Pm :=Pm ∪maradbi (L = b→ maradjon) ;
25 Om :=Om ∪ toltesbi ({ei, akkuKapacbi}{(100− (b→ toltesiV eszteseg))/100 ∗maradbi}) ;
26 Om :=Om ∪ tarolasbi ({akkub

i , akkuKapac
b
i}{(100− (b→ tarolasiV eszteseg))/100 ∗

∗maradbi}) ;
27 else
28 Om :=Om∪ toltesbi ({ei, akkuKapacbi}{(100− (b→ toltesiV eszteseg))/100∗akkub

i+1}) ;
29 Om :=Om ∪ tarolasbi ({akkub

i , akkuKapac
b
i}{(100− (b→ tarolasiV eszteseg))/100 ∗

∗ akkub
i+1}) ;

30 end
31 end
32 end

Periódusok: Egy hét félórás bontásban
Fogyasztó # 1: KKV 1-es prioritású
Fogyasztó # 2: Háztartás 2-es prioritású
Megújuló: Naperőmű
Akkumulátor: Kapacitás: 75/2 kWh Kezdő töltés: 75/2 kWh

Tárolási veszteség: 2% /fél óra
Diesel generátor: jelenleg elérhetetlen

4.4. táblázat. A motivációs példa paraméterei

67

4.26. ábra. 168 órára becsült áram igények és termelés

elhanyagolható mennyiség.
Ez a mennyiség növelhető, ha a háztartás már az előtt kaphat áramot, hogy az akkumulátorok

töltöttségi szintje elérné a 100%-ot. Például, ha a másodlagos fogyasztók már 90%-tól kezdhetnék
használni az akkumulátort, akkor a 90% feletti részt használhatnák fel. Kiszámítva ekkor 18,561
kWh jut nekik. Ezt a határt csökkentve növelhető a háztartásoknak juttatott energia mennyisége,
de megvan annak a kockázata, hogy végül emiatt nem lehet majd kielégíteni teljes mértékben a
magasabb prioritású fogyasztót. Figyelve erre megállapítható, hogy ez a határ 83%-nál van az
esettanulmányban. Ha a háztartás már 82%-tól használhatná az akkumulátort, akkor egy későbbi
időpontban a tárolt energia már nem lesz elég az KKV-nek. Ez látható a 4.27. ábrán is.

4.27. ábra. Háztartás áramellátása

A fent bemutatott P-gráf alapú megközelítésnek köszönhetően a több periódusos optimali-
zálás előre vetíti az energia rendelkezésre állását a későbbi periódusok során, amit kihasználva

68

növelhető az áramellátás. Ennek eredményeképpen kiszámíthatóvá válik, mikor kaphat a ház-
tartás áramot anélkül, hogy a tervezési horizont bármelyik időszakában hatással lenne a KKV
ellátására. A 336 periódusosból álló P-gráf modell generálása és megoldása után az eredmények
alapján a háztartás összesen 114,393 kWh-ot kap, ami az igényeinek 100%-át fedezi. Ez szintén
látható a 4.27. ábrán.

4.28. ábra. A fogyasztói igények kielégítése és az akkumulátor töltöttsége

A 4.28. ábra talán még jobban illusztrálja az eredményeket. Látható, hogy bár heurisztikus
megoldásnál is van, hogy a háztartás az igényének megfelelően 100%-osan megkapja az áramot,
de ez csak ritkán fordul elő, míg a folyamathálózat-szintézissel mindig elég energia jut neki a
teljes időszak alatt. Az ábra továbbá azt is jól megmutatja, hogy ez az akkumulátor kiegyen-
súlyozott használatának köszönhető. Heurisztikus megoldásnál az akkumulátor töltöttsége az
idővel felhalmozódik a KKV ellátásától függetlenül. Ezzel szemben a PNS biztosítja, hogy az
akkumulátorban elég töltöttség legyen a KKV számára, az extra töltöttséget pedig kiszolgáltatja
a háztartásoknak.

Az optimalizálási módszer segítségével további kérdések kerülhetnek megválaszolásra, például,
hogy szükséges vagy elégséges-e az adott kapacitású akkumulátor, vagy, hogy hogyan befolyásolja
a kezdeti akkumulátor töltöttség a későbbi elosztást. A kérdésekre a válaszokat egyfajta érzékeny-
ség vizsgálat adja meg. A 4.5. táblázatból kiderül, hogy ha 75/2 kWh kapacitású akkumulátor
szerepel a modellben, és az kezdetben teljesen fel van töltve, úgy a fogyasztói igények 100%-ban
kielégíthetők. Ha viszont kezdetben nincs feltöltve, sem a KKV, sem pedig a háztartás igényeit
nem lehet teljes mértékben kielégíteni. Mivel a KKV igényeit mindenképpen ki kell elégíteni,
ezért szükséges egy generátor használata. Látható, hogy a generátorból 14,508 kWh energiát kell
kapni, hogy megfelelően biztosítva legyen az ellátás. Ezt az első periódusokban kapja a KKV,
egészen addig, amíg a naperőmű már nem biztosít elegendő áramot.

69

Ha az akkumulátor kapacitása 60/2 kWh-ra csökken, de teljes töltéssel indul, a háztartás
igényei csak részben kerülnek kielégítésre, vagyis egy ennél kicsivel nagyobb akkumulátorra lesz
szükség. 65/2 kWh már megfelelő lenne az igények teljes kielégítéséhez. Ahhoz, hogy a teljes
ellátás garantálva legyen, 20,176/2 kWh kezdeti töltöttségnek kell lenni. További két eset lett
még megvizsgálva: kisebb akkumulátor kapacitás egy generátor bevezetése mellett, ahol az egyik
esetben csak a KKV, a másik esetben pedig mindkét fogyasztó használhatja a generátort. Azt
eldönteni, hogy megéri-e kisebb akkumulátort beszerezni, és néha generátorral kiegészíteni a
termelést, már a döntéshozók feladata.

Kezdeti töltés Kapacitás Generátor KKV kap Háztartás kap
(kWh) (kWh) (kW) (kWh) (kWh)
75/2 75/2 unavailable 742.710 114.393
0/2 75/2 unavailable 728.201 109.129
0/2 75/2 14.508, only SME 742.710 109.129
60/2 60/2 unavailable 742.710 109.572
65/2 65/2 unavailable 742.710 114.393

20.176/2 65/2 unavailable 742.710 114.392
50/2 50/2 3.046, only SME 742.710 102.618
50/2 50/2 14.821, both 742.710 114.393

4.5. táblázat. Optimális áramellátás különböző konfigurációk mellett

A fenti példa és a modell egy, az egyetemmel konzorciumban lévő vállalat igénye kapcsán szü-
letett. Elmondható, hogy a való életben több problémánál is felmerül a multiperiódusos jelleg,
ahol akár több száz periódusra nézve kell elvégezni az ütemezést. A fogyasztók megkülönbözte-
tése prioritás szempontjából is sok helyen felmerülhet. Ezeket a P-gráf modelleket bár grafikusan
már nem lehet megjeleníteni, de ez nem is cél, hiszen a döntéshozók számára sokszor ismeretlen a
P-gráf felépítése. Az eredményeket ezért érthető formában kell visszaadni. A bemutatott modell
alkalmas arra, hogy kezelje a fogyasztói prioritásbeli különbségeket, képes több száz periódussal
is számolni, a fogyasztási-, és időjárási előrejelzések alapján egy optimális ütemezést visszaadni,
valamint a microgrid rendszerekbe is beágyazható. A korábbi, heurisztikus megoldáshoz képest
a modellel jelentősen növelhető a háztartásoknak juttatott energia, illetve előnye, hogy minimá-
lisra csökkenti a túltermelést amellett, hogy a fogyasztói elégedettséget növeli. Az erőforrások
egyenletes kihasználása miatt a környezetre gyakorolt káros hatások is csökkenthetők. Egy ilyen
megoldó alapjául szolgálhat az üzemanyag beszerzés ütemezésének, hiszen látszik, hogy mikor és
mennyi üzemanyagra lesz szükség. A későbbiekben a modell kibővíthető az összevont periódu-
sos igényekkel (például 3 periódus alatt kell egy bizonyos mennyiséget szolgáltatni), vagy több
forgatókönyv segítségével akár kockázatbecslés is végezhető [63].

4.6. A fejezet rövid összefoglalása

A fejezetben a folyamathálózat-szintézisen belül multiperiódusos modellekkel foglalkoztam. Meg-
mutattam, hogy a periódusok közötti tárolás hogyan képes a terhelést elosztani a periódusok kö-
zött, ezáltal erőforrásokat és költséget spórolva. Mivel korábban csak esettanulmányokban jelent

70

meg a multiperiódusos modell, szükségét éreztem egy általános modell elkészítésének. Az alapmo-
dellt változó és nem-változó részekre bontva a többperiódusos modell algoritmikusan generálható.
Általános modellt adtam a multiperiódusos modellek létrehozására, valamint a periódusok közöt-
ti tárolás megvalósítására. Ezeket az általános modelleket nem csak algoritmikusan dolgoztam ki,
de szoftveresen is megvalósítottam és integráltam ezt a modellgenerálási lehetőséget a P-graph
Studioba. A fejezet második felében különböző alkalmazhatósági területeken szemléltettem a
multiperiódusos modellek relevanciáját, úgy, mint a gyártástervezés, a hulladékgazdálkodás vagy
a karbantartási idők. Kiemelten vannak jelen a dolgozatban a különböző energiatárolást meg-
valósító multiperiódusos modellek. Az egyik ilyen, egy ipari együttműködés keretében felmerült
megújuló forrásból származó energiaelosztási probléma, ahol különböző prioritású szereplők igé-
nyeit kell kielégíteni az időjárás-előrejelzések és akkumulátor töltöttségek figyelembe vételével.
A bemutatott modell alkalmazásával jelentősen növelhető a fogyasztók igényeinek kielégítése.

4.6.1. A fejezethez tartozó tézis

Kidolgoztam egy általános modellt a folyamathálózat-szintézis multi-periodikus le-
írásához és a periódusok közötti tárolók megvalósításához.

(a) Megállapítottam, hogy a multiperiódusos modellek változó és nem-változó részekre bont-
hatók, melyek modell szinten is megkülönböztethetőek. Egy multiperiódusos modell ezek
alapján algoritmikusan generálható a változó részek paramétereinek megadásából.

(b) Mivel a legtöbb gyártási folyamat rendelkezik valamilyen tárolási lehetőséggel, ezért a mul-
tiperiódusos modell leírást kiterjesztettem a periódusok közötti tárolók bevezetésével. A
tárolók megvalósítására szintén egy általános modellt dolgoztam ki.

(c) Algoritmust adtam arra, hogyan kell generálni az egyperiódusú modellből több periódusból
álló és tárolókat tartalmazó modellt.

(d) Speciális feladattípusokon keresztül mutattam be az általános multiperiódusos modell para-
méterezésének lehetőségeit, úgy mint a gyártásütemezés vagy az energiaelosztás, ahol ipari
együttműködés keretében, valós esettanulmányokban is alkalmazásra került a módszer.

4.6.2. A fejezet témaköréhez kapcsolódó publikációk

Nemzetközi folyóiratcikk

– Bertók Botond és Bartos Anikó: Renewable energy storage and distribution scheduling
for microgrids by exploiting recent developments in process network synthesis, Journal of
Cleaner Production, 2019. (IF = 6,395) [64]

– Bertók Botond és Bartos Anikó: Algorithmic process synthesis and optimisation for multip-
le time periods including waste treatment: Latest developments in P-graph Studio software,
folyóirat: Chemical Engineering Transactions, 70. szám, 97-102. oldal, 2018. [33]

71

Nemzetközi konferencia előadások

– Bartos Anikó, Bertók Botond és Szlama Adrián: Optimal design of multi-period process
networks including storages for renewable resources, konferencia: International Congress
on Sustainability Science Engineering, Balatonfüred, Magyaroroszág, 2015. [65]

– Bartos Anikó és Bertók Botond: P-graph Framework: Computer Aided Model Generation
and Solution for Supply Network Optimization Problems, konferencia: European Working
Group on Location Analysis Meeting 2015., Budapest, Magyarország, 2015. [66]

– König Éva, Bartos Anikó és Bertók Botond: Free Software for the Education of Supply
Chain Optimization, konferencia: VOCAL Optimization Conference: Advanced Algorithms
2016., Esztergom, Magyarország, 2016. [67]

– Bartos Anikó és Bertók Botond: Estimation of the return of investment in new technologies
regarding periodically changing demands, availability of resources, and storages, konferen-
cia: Chemical Engineering Days 2017, Veszprém, Magyarország, 2017. [68]

– Bartos Anikó és Bertók Botond: Software for Economical Evaluation of Utilizing Periodi-
cally Available Renewable Resources, konferencia: SPIL 2017 (Energy, water, emission, &
waste in industry an cities), Brno, Csehország, 2017. [69]

72

5. fejezet

Line Balancing

Közép- és Kelet-Európában az ipar egy jelentős részét teszik ki a különböző összeszerelő üzemek.
Az autóipari és elektronikai gyárakban a termékeket kész alkatrészekből, gyártósor vagy szalag
mellett szerelik össze főként emberi erőforrást használva. Tipikusan, különböző összeszerelési lé-
péseket kell egymás után végrehajtania a betanított munkaerőnek, és bár ez a fajta munkavégzés
nem igényel speciális tudást vagy szakképzést, és rövid időn belül bárki képes beletanulni, mégis a
gyárak jelentős munkaerőhiánnyal küzdenek. Az üzemekbe érkező megrendelések teljesítése szem-
pontjából fontos, hogy a vállalat a lehető legtöbbet hozza ki az erőforrásaiból, ezért lényeges a
munkaerő-feladat optimális, azaz egyenletes elosztása. A szakirodalom ezt a típusú optimalizálást
gyártósor kiegyensúlyozásnak, vagy line balancing-nak hívja, és ott érdemes igazán alkalmazni,
ahol tömegtermelés folyik, és egy adott típusú terméket hosszabb ideig gyártanak ugyanazon a
soron [70]. (Például egy napig ugyanazt a típusú számítógépet állítják elő.)

Bár gyártószalagot elsőként Chicagói húsüzemek alkalmaztak, mégis Ford tette ismertté 1913-
ban, és már ezekben a korai években is megpróbálták ütemezni az általuk való termelést [71].
1955-ben Salveson azonosította az egyensúlyi késleltetést, vagy elvesztegetett időt, mint minima-
lizálandó célt és már lineáris programozási feladatokként közelítette meg a problémát [72]. Az
optimalizálás mind lokális, mind pedig globális szinten cél volt, és kiterjedt nem csak az össze-
szerelés megvalósítására, de a gépek és a munkaerő fizikai elhelyezésére is. Az évekkel és a gyárak
fejlődésével egyre több helyen vezettek be optimalizálási megoldásokat, amik a gyártószalagok
elhelyezésétől és gyártott termékek variációjától is függtek [73].

Ezek közül a legelterjedtebbek az úgynevezett egysoros modellek, ahol egy terméket gyárta-
nak, a vegyes összeszerelő sorok, ahol több termék is megjelenik a gyártósoron, a multi-modellek,
ahol átállás is várható, és a kétoldali gyártósorok, ahol a szalag mindkét oldalán találhatók sze-
relőállomások [74, 75]. Az eladásokat tekintve olyan megoldások is születtek, ahol a túltermelés
büntetésként plusz költséget vont maga után, valamint léteznek sztochasztikus és heurisztikus
megoldások is [76]. Ebben a fejezetben egy egyszerű egysoros modell kerül bemutatásra, ahol
az elvégzendő feladatok sorrendje kötött, továbbá ennek megvalósítása P-gráffal, ahol nem csak
az optimális, de az N-legjobb eredmény is megkapható. A fejezet végén bemutatásra kerül egy
elkészült szoftver, illetve annak felhasználó-oldali visszajelzése.

73

5.1. Probléma meghatározás

5.1. ábra. Döntéstámogatás PNS-sel

A bemutatásra kerülő vonal-kiegyensúlyozási problémánál különböző típusú számítógépeket
szerelnek össze egyszerű, egysoros szalag mellett a már rendelkezésre álló alkatrészekből egy
magyarországi összeszerelő üzemnél. Bár több, különböző típusú termék összeszerelése folyik a
gyárnál, mégis vannak olyan szerelési lépések, amik megegyeznek az egyes termékeknél. A gyár-
tástervezés szakaszában azt határozzák meg, hogy melyik terméket mikor szereljék össze a gyár-
tósoron, aminek alapjául a megrendelési idők, határidők és prioritások szolgálnak, valamint az,
hogy az összeszereléshez szükséges összes alkatrész rendelkezésre áll-e. A termelésvezető feladata
meghatározni azt, hogy a beérkezett munkaerőből ki milyen feladatot végezzen a nap folyamán
a már kiválaszott, legyártandó terméken, és ezzel együtt törekednie is kell arra, hogy ezek a
feladatok lehetőleg egyenletesen legyenek szétosztva közöttük. Ez az elosztás a szalag melletti
összeszerelést tekintve optimális, ha minden munkás nagyjából ugyanannyi ideig foglalkozik egy
termék összeszerelési lépéseivel ez által minimalizálva a ciklusidőt. A gyakorlatban ez a kiosztás
manuálisan, intuíciókon alapulva történt. Az előre tervezés is nehézkes, ugyanis az, hogy pon-
tosan hány munkást lehet beállítani dolgozni, csak az adott műszak elején derül ki, ezért az

74

ütemezést és beosztást minden műszak elején újra meg kell csinálni a maximális hatékonyság
elérése érdekében. A folyamatos és lehetőleg minél gyorsabb tervezés miatt a gyárnak szüksége
volt egy optimalizáló szoftverre, ami segíti ezt az elosztást.

A vállalati döntéseket nagy mértékben képes támogatni a folyamathálózat-szintézis, és az 5.1.
ábrán látható folyamatábrából jól kiolvasható, hogy hogyan képes beépülni a vállalatirányítási
rendszerekbe. Erre kétféle megközelítést lehet alkalmazni: vagy egy általános MILP modell kerül
felírásra, és frissítésre, és azt kell megoldani akár egy általános MILP megoldóval, vagy a PNS
modell kerül frissítésre egy külön modullal és végül azt kell megoldani a P-gráf megoldóval. Utóbbi
esetben, vagyis amikor csak a modell kerül felírásra, el lehet tekinteni a grafikus reprezentációtól.
Ekkor a modell megoldására elegendő csak a P-graph Studio alatt is megtalálható P-gráf megoldó
szoftver.

A cél egy olyan modell és ezzel együtt szoftver elkészítése volt, ahol a legyártandó termék
típusának és a munkába állítható alkalmazottak számának tudatában a kimenet egy sorkiosztás,
ami mellett a ciklusidő a lehető legkisebb. Fontos megjegyezni, hogy itt az összeszerelési lépések
sorrendje kötött. A munkások munkaállomásokhoz vannak rendelve, és egy műszakon belül nem
változtatják a munkaállomásukat, vagyis egy munkás csak egy adott, egymás utáni lépéssorozatot
képes végrehajtani egy terméken. Ez a fent látható kétféle megközelítésben is bemutatásra kerül,
vagyis mind P-gráf modellel, mind pedig egyszerű MILP felírással. A szoftver felépítése az 5.2.
ábrán látható.

5.2. ábra. A szoftver sematikus felépítése

Formálisan ez, vagyis a gyártósor kiegyensúlyozási probléma a következőképp adható meg:

objectivefunction = min{cycle} (5.1)

cycle = max{w1t, ..., wit, ..., wnt} (5.2)

75

ahol wi t a az összes, szereléssel töltött ideje az i -edik munkásnak és n pedig az aznapi mun-
kások száma, akikre kioszthatóak a feladatok. Egy munkás összes, szereléssel töltött idejét az
alábbi képlet adja meg:

wit =

l∑
j=k

sj (5.3)

m = |S| (5.4)

@j : 1 6 k 6 j 6 l 6 m, sk ∈ wiS, sl ∈ wiS, sj /∈ wiS (5.5)

∀sj ∈ ∪wiS : wiS ⊆ S (5.6)

ahol k az első és l az utolsó részfeladat, amit a wi munkás végez, és sj a j -edik részfeladat ideje.
S jelöli a részfeladatok halmazát. Az optimalizáláshoz szükséges ismerni az összes összeszereléshez
szükséges részlépést és azok idejét. Ezeket az összeszerelési időket előre le kell mérni minden
egyes termék esetén, és mátrixos formában eltárolni. Ez a későbbiekben bővíthető, amennyiben
új termék gyártásába kezdene a vállalat, de az optimalizálás során rejtve marad a felhasználó
elől.

5.2. Modellezés és megoldás a TCPNS egy egyszerűsített vál-
tozatával

5.3. ábra. Két taszkos két berendezéses ütemezési feladat

Ahogy arról a 3. fejezetben is szó volt, az ütemezési feladatok jól megoldhatók időkorlátos

76

folyamathálózat-szintézis feladatként. A gyártósor kiegyensúlyozás is egy ilyen, ütemezési prob-
léma, ami a kötött sorrendje és a lineáris jellege miatt a standard modell egy egyszerűsített
változataként is felírható. A transzformáció végigvezetéséhez legyen a kiindulóstruktúra az 5.3.
ábrán látható, két taszkból és két berendezésből álló ütemezési feladat. Mindként berendezés
képes mindkét taszk végrehajtására, és az első taszk a második előfeltétele. A második taszk
elkészültével a termék is létrejön.

5.4. ábra. Az elhagyható részek eliminálása és átrendezés

Line balancing feladatoknál a berendezések az egyes emberek lesznek, akik képesek az össze-
szerelésre, a taszkok pedig az összeszerelés egy-egy lépései. Mivel az összeszerelés lépéseinek
sorrendje kötött és a dolgozóknak egymás utáni lépéseket kell végrehajtaniuk, így nincs szükség
a visszafele váltásokra. Az általános struktúrából ezek az élek és műveletek elhagyhatók lesznek.

Arra sincs szükség, hogy az idő minden műveletnél mérve legyen, hiszen egy ilyen, lineáris
folyamatnál az összidő az eltelt idővel lesz egyenlő. A gyártósor kiegyensúlyozás szempontjából
felesleges elemek eltávolításával létrejött struktúra az 5.4. ábrán, bal oldalon látható. Az ábra
jobb oldala pedig ugyanaz, csak egy átrendezés után. Mivel meg kell tudni különböztetni, hogy
melyik munkás melyik összeszerelési lépést végezte el, vagyis az ábrán látható köztes anyagot
melyik műveleti egység állította elő, ezért szükséges azt szétbontani több részre.

Egy munkás egy félkész termékkel két dolgot tehet: vagy elvégzi a következő összeszerelési lé-
pést, vagy átadja a soron következő dolgozónak azt. Az átadás megvalósítására be kell vezetni egy
műveleti egységet. Ez minden köztes anyagnál, és minden egymást követő munkásnál szerepelni
fog. A kibővített modell az 5.5. ábrán, bal oldalon látható.

Ahhoz, hogy a ciklusidő mérhető legyen, szükséges bevezetni egy ezt reprezentáló nyersanya-
got, valamint köztes anyagokként az egyes munkások idejét. Ez utóbbiból kiinduló súlyozott élek
segítségével adható meg, hogy melyik munkafolyamat mennyi időt vesz igénybe. Ahhoz, hogy
végül kiderüljön, mennyi a ciklusidő, vagyis az a leghosszabb idő, amit egy munkás összeszere-
léssel tölt, be kell vezetni egy-egy műveleti egységet minden munkás ideje fölé, és ebbe bevezetni
a nyersanyagként megjelenő ciklusidőt.

A módosított gráf az 5.5. ábrán, jobb oldalon látható. A ciklusidőt az újonnan bevezetésre

77

5.5. ábra. A struktúra kiegészítése

került nyersanyagra állított költség fogja megadni megoldáskor. Ahhoz, hogy modellszinten a
gyártás végbemenjen a költség ellenére is, a termék minimum és maximum mennyiségét 1-re kell
állítani. Így lehet megkapni, hogy mennyi lesz egy termék ciklusideje. El kell kerülni, hogy a mo-
dell részmunkával számoljon, olyan értelemben, hogy egy összeszerelési lépést ne bontson kisebb
részekre. Ehhez a műveleti egységek alsó korlátját szintén 1-ben kell meghatározni, vagyis vagy
egy teljes részmunkát végez az egység, vagy semmit. A modellt megoldva a költség megmondja,
hogy mennyi lesz egy termék ciklusideje, azaz a leghosszabb idő, amit egy munkás szereléssel
tölt.

5.6. ábra. Szemléltető példa három alkalmazottal és öt részfeladattal

78

Valamennyivel bonyolultabb, de még mindig egy szemléletes, áttekinthető példa látható az
5.6. ábrán, ahol három dolgozó végez egy öt lépésből álló szerelési folyamatot. Az egyes lépések
idejei az alábbiak:

Felpakolás Kicsomagolás Összecsavarozás Lezárás Lepakolás

1 s 2 s 5 s 4 s 3 s

5.1. táblázat. Szerelési lépések idejei - példa

Az ábrán egy-egy sor megfeleltethető egy-egy szerelési lépésnek, míg az oszlopok a humán-
erőforrást reprezentálják. Jól látható, hogy minden lépésnél lehetséges a félkész termék átadása a
következő munkás számára, illetve, hogy a részmunkák idejei súlyozott élekként jelennek meg (kék
színnel jelölve). A feladaton az RCABB algoritmust futtatva az 5.7. ábrán látható struktúra jön
ki eredményül, mint legjobb megoldás, ahol a ciklusidő 7 másodperc, és a második és harmadik
dolgozó is 7-7 másodperc alatt végez a részfeladataival. A legjobb esetben az első dolgozó csak
az első részfeladatot végzi, míg a második és harmadik munkás két-két, egymás utáni műveletet
hajt végre. Ideális esetben minden munkás (

∑m
j=1 sj)/n időt töltene szereléssel, de általában

ilyen leosztás nem valósítható meg. Az elérhető ciklusidő a munkások létszámával fordítottan
arányos.

5.7. ábra. Szemléltető példa legjobb megoldása

A modell második legjobb megoldásánál szintén 7 másodperc a ciklusidő, viszont ezt más
leosztás eredményezi. A harmadik legjobb megoldásnál a ciklusidő 8-ra emelkedik, de ekkor az
összeszerelés lépései három helyett két munkásra terhelődnek. Ebből következik az is, hogy két

79

5.8. ábra. Szemléltető példa második és harmadik legjobb megoldása

munkás esetén a ciklusidő 8 másodperc. A második és harmadik legjobb megoldás az 5.8. ábrán
látható. A munkások számának növelésével kiderül, hogy 4 munkással már 5 másodperc alatt is
teljesíthető az összeszerelés, de ez már nem csökkenthető tovább, hiszen a leghosszabb részfeladat
ideje 5 másodperc. Ezek az időigényesebb részlépések nagyobb ciklusidőt okozhatnak.

A P-gráf erősségeinek kiaknázásához ebben az esetben nem szükséges a grafikus reprezentáció,
elég csak a matematikai modell megvalósítása. Mivel egy jól leírható problémáról van szó, a
modellgenerálás automatikus lehet, amennyiben ismert a munkások száma és a részfeladatok
idejei. Ehhez segítséget nyújt a 19. algoritmus, ami a bemeneti gyártósor-kiegyensúlyozási adatok
alapján előállít egy P-gráf modellt.

5.3. A probléma MILP modellje

A gyártósor kiegyensúlyozás megfogalmazható lineáris programozási feladatként, ahol az opti-
mum értéket a lineáris függvények szélén kell keresni és ahol a feltételek lineáris egyenlőtlen-
ségekként jelennek meg. Számos ingyenesen elérhető MILP megoldó létezik már a piacon, így
célszerű lehet ilyen irányból is megadni a line balancing problémát. A MILP modellben válto-
zóként fog megjelenni a ciklusidő (CT), a munkások idejei (wt), valamint két mátrix: melyik
munkás melyik tevékenységet végzi (WP

i,j), és ki kinek adja át a feladatot, ha végzett (WA
i,j).

WP
i,j egy bináris mátrix, ahol ’1’-es értékként jelenik meg, hogy melyik dolgozó melyik részfel-

adatot fogja végezni. WA
i,j szintén bináris mátrix, amely megadja, hogy a munkás kinek adja át a

félkész terméket, amikor az összes részfeladatával végzett. n jelöli a munkások számát, m pedig
az elvégzendő feladatok számát.

Ct ≥ 0

∀i ∈ {1..n},∀j ∈ {1..m} : WP
i,j ,W

A
i,j ∈ {0,1}

(5.7)

80

Algoritmus 19: Line balancing ⇒ PNS
input : W, S
output: P,R,O parameteres szintezis modell

1 P :=ProcessComplete(L=U=1);
2 R :=Cycle(cm = 1$) ;
3 forall i ∈W do
4 CalcTimeMax:=({Cycle}{wit});
5 end
6 O :=O∪ CalcTimeMax;
7 forall i ∈W do
8 forall j ∈ S do
9 if j = 1 then

10 SjWi :=({sj ∗ wit }{ sjoverwi}, L=1);
11 else
12 if j = sm then
13 SjWi :=({sj ∗ wit, sj−1overwi }{ProcessComplete},L=1);
14 else
15 SjWi :=({sj ∗ wit, sj−1overwi }{ sjoverwi },L=1);
16 end
17 end
18 O :=O ∪ SjWi ;
19 if i 6= wn then
20 wipasssj :=({sjoverwi }{ sjoverwi+1});
21 O :=O ∪ wipasssj ;
22 end
23 end
24 end

A cél a ciklusidő minimalizálása:

min Ct (5.8)

Korlátként az alábbiak jelennek meg: Minden részfeladatot szét kell osztani a munkások
között.

∀j ∈ {1..m} :
n∑
i=1

WP
i,j = 1 (5.9)

Minden munkásra igaz, hogy a ciklusidő ≥ mint a munkás összmunkaideje, amit az általa
elvégzett részmunkák idejének összege ad. Ez kezdetben nullával kerül inicializálásra, majd ehhez

81

adódik hozzá az elvégzett feladatok ideje.

∀i ∈ {1..n} : wti ≤ Ct

∀i ∈ {1..n} : wti =

m∑
j=1

sj ∗WP
i,j

WP
1,1 = 1

(5.10)

WP mátrixot, ami azt jelöli, hogy melyik munkás melyik feladatot fogja végezni, és amiből
látható, hogy melyik lesz az utolsó feladata, szintén korlátozni kell annak érdekében, hogy a mun-
kások egymásnak adják majd a félkész terméket anélkül, hogy egy lépést még kisebb részlépésekre
bontanának, illetve garantálni kell, hogy csak egymást követő lépéseket tudjanak végrehajtani.

∀i ∈ {2..n},∀j ∈ {2..m} : WP
i,j−1 +WA

i−1,j−1
= WP

i,j +WA
i,j−1

(5.11)

∀j ∈ {2..m} : WP
1,j−1 = WP

1,j +WA
1,j−1 (5.12)

Egy mindenki számára elérhető ingyenes megoldó vegyes egész értékű feladatokhoz a COIN-
OR CBC [77, 78]. Amennyiben a fenti leírás alapján létrehozott .lp fájl a COIN-OR CBC-vel
megoldásra kerül, az eredmény, vagyis a ciklusidő megtalálható lesz egy szöveges, bárki számára
könnyen olvasható fájlban. Az eredmények a P-gráf megoldóval összhangban vannak, eltekintve
attól, hogy ezek a megoldók csak a legjobb, míg a P-gráf algoritmusai az N -legjobb megoldást ad-
ják vissza. Mivel mind MILP, mind pedig P-gráf megközelítésben egy jól meghatározható modell
írja le a feladatot, ezért azt könnyű automatizálni, valamint egy olyan szoftvert létrehozni, ahol
grafikus felületen megadhatók a főbb adatok, és ami az eredményeket akár a laikusok számára is
érhető formában tudja visszaadni.

5.4. Szoftveres megvalósítás és visszajelzések

Mivel a termelésvezetők -vagyis akik eldöntik, hogy az aznapi munkára fogható emberek közül ki
milyen feladatot végezzen- nem akarnak vagy nem tudnak matematikai modelleket felírni min-
den nap az optimalizálás érdekében, ezért szükséges egy olyan szoftver létrehozása, ami a lehető
legegyszerűbb módon képes generálni egy optimális sorkiosztási tervet. Egy ilyen létrehozott
szoftver képe az 5.9. ábrán látható. A felhasználó egy legördülő menüből egyszerűen ki tudja
választani a gyártandó termék típusát, és egy számok megadására szolgáló mezőben megadhatja,
hogy hány munkásra kívánja szétosztani a feladatokat. A részidőket tartalmazó táblázat - mivel
ennek a módosítása nem szükséges minden egyes optimalizálásnál-, a menü alatt érhető el. Ez
a táblázat szabadon szerkeszthető, vagyis, ha új terméket készül bevezetni a vállalat, annak le-
mért idejeivel egyszerűen kiegészíthető, vagy a már nem gyártott termékek adatai törölhetőek.
A szoftver indításakor a táblázat beolvasásra kerül, és a termékek nevei ezek alapján az adatok
alapján kerülnek a lehulló menübe. A "Solve problem" gombra kattintva legenerálódik és megol-
dásra kerül a modell, aminek eredménye a döntéshozók számára is könnyen olvasható táblázatba

82

íródik ki.

5.9. ábra. A szoftver felépítése

A szoftver egy magyarországi összeszerelő üzemmel konzultálva készült és valós életbeli, éles
adatokkal lett tesztelve. A vállalat az együttműködés során jelezte, hogy bár vannak olyan termé-
kei, melyeknek nevei és azonosítói megegyeznek, mégis, eltérő lépésekből állhat az összeszerelésük.
Ez a megrendelések egyéni igényei miatt van, így megoldást kellett találni arra, hogy hogyan le-
het úgy megadni egy terméket, hogy közben az egyes lépések opcionálisak maradjanak. Mivel az
alternatíváknál is kötött a sorrend, vagyis, az összes lehetséges, egyéni szerelés unióját véve a sze-
relésnek megadható egy sorrendiség, ezért csak azt kell megadni, hogy az összes lépésből melyik
szükséges ténylegesen az aktuális szereléshez. Az időket tartalmazó mátrixban ezért egy egyéni
jelölést bevezetve megadható, hogy mely lépések fixek az egyes típusoknál és melyek lehetnek
opcionálisak. A szoftver fő ablakában a típus kiválasztása után az opcionális lépések felsorolásra
kerülnek, így a gyártásvezető könnyedén ki tudja választani az éppen relevánsakat, és azok alap-
ján végezheti el az optimalizálást. A vállalattól kapott input adat 21 különböző termék lépéseit
tartalmazta, ahol minimum 48, legfeljebb pedig 128 lépésből állt egy-egy szerelés.

Az 5.10. ábrán a szoftver kimeneti felépítése látható Excel formátumban, két munkalapon.
Ez az 5.6. ábra megoldása is egyben. Jól látható, hogy melyik munkás melyik feladatot kell,
hogy végezze, illetve a szerelési lépésekkel hogyan nő egy-egy munkás ideje. A gyártásvezető
ezek alapján már ki tudja osztani az aznapi feladatokat a beosztottainak. A vállalattól pozitív
visszajelzés érkezett a szoftverre, ahol az eredmények magukért beszélnek. A korábbi, manuális
sorfelállítással szemben szoftveres segítséggel akár 20-25%-nyi hatékonyságnövekedést is el tudtak
érni. Egy ilyen összehasonlítás látható az 5.11. ábrán.

A szoftver lehetőségei tovább növelhetők a párhuzamosított munkavégzés bevezetésével, vagy-

83

5.10. ábra. Példa a kimenetre

5.11. ábra. A manuális és szoftverrel segített sorkiosztás összehasonlítása

is, ha egy nagyobb részfeladatot akár két emberre is ki lehet osztani. A probléma megoldása az
egyszerűtől a kevésbé triviálisakig is terjedhet, hiszen felmerül a kérdés, hogy hány embert lehet
párhuzamosítani, vagy hány részre lehet egy nagyobb feladatot bontani. A nagy részfeladatok
miatt bekövetkező ciklusidő növekedésre ez egy megoldást kínálhat.

Összegzésként elmondható, hogy egy olyan modellt, majd erre építve szoftvert sikerült létre-
hozni, amit a magyarországi összeszerelő üzemek is felhasználhatnak hatékonyságnövelés érdeké-
ben. Mivel ezekben a gyárakban egyre gyakoribb a munkaerőhiány, így fontos, hogy folyamataik
optimalizálva legyenek, és a rendelkezésre álló erőforrásokat a lehető leghatékonyabban használják
ki. Az elkészült szellemi termékeket és szoftvert egy összeszerelő üzemmel való közös kooperá-
ciónak köszönhetően sikerült valós adatokon is tesztelni. Az átadást követően a visszajelzések
alapján azt a mindennapi tervezés során, a gyakorlatban is használják, jelentős hatékonyságnö-
vekedést elérve vele.

5.5. A fejezet rövid összefoglalása

A fejezetben számos magyarországi nagyvállalatot is érintő témakörrel, a gyártósor kiegyensú-
lyozással foglalkoztam. A feladat arra keresi a választ, hogy a gyártósor mellett dolgozók közül

84

ki melyik részfeladatot lássa el ahhoz, hogy a leggyorsabban, vagyis a legrövidebb ciklusidővel
létrejöjjön egy termék. A problémát általános, ütemezési feladatként közelítettem meg, majd a
modellt a feladat speciális jellegéből adódóan redukáltam és egészítettem ki, melyből egy általá-
nos, mennyiségkorlátos hálózatszintézis feladat modellt alkottam meg. A fejezetben ismertettem
a probléma általános MILP modelljét, végül bemutattam a modell szoftveres implementációját,
melyet valós piaci adatokon teszteltem. A modell eredményességét alátámasztja a vállalatnál
elért ∼ 20%-os ciklusidő-csökkenés.

5.5.1. A fejezethez tartozó tézis

Létrehoztam egy modellt a gyártósor kiegyensúlyozás problémához a korábban PNS-
el megvalósított általános ütemezés alapján.

(a) Módszert adtam a "line balancing", vagyis a gyártósor kiegyensúlyozás ütemezési feladat-
ként való felírására.

(b) Levezettem, hogy a gyártósor kiegyensúlyozási probléma ütemezési feladatát időkorlátos
hálózatszintézis feladatként, majd annak egyszerűsítése után mennyiségkorlátos hálózat-
szintézis feladatként hogyan lehet megfogalmazni.

(c) A modell és a hozzá készült döntéstámogatási rendszerbe építhető szoftver hatékonyságát
és eredményességét valós piaci adatokon teszteltem.

5.5.2. A fejezet témaköréhez kapcsolódó publikáció

Nemzetközi folyóiratcikk

– Bartos Anikó és Bertók Botond: Production line balancing by P-graphs, folyóirat: Opti-
mization and Engineering, 1-18. oldal, 2019. (IF = 1,824) [11]

85

6. fejezet

A hálózatszintézishez kapcsolódó
algoritmus fejlesztések

Ahogy arról már a 3. fejezetben is szó volt, nem csak modellezési szempontok mentén lehet op-
timalizálni egy algoritmust, de programozástechnikailag is jelentős hatékonyságnövekedés érhető
el, például párhuzamosítással. A Branch & Bound algoritmusok párhuzamosítására már számos
megoldást kínál a szakirodalom. A P-gráf egyik fontos algoritmusának, az RCABB-nek egy koráb-
bi változatához már elkészült egy párhuzamosított megoldás, de az nem a CPU magjain, hanem
külön processzorokon valósította meg a párhuzamos eljárást. A modern számítógépek mindegyike
már több maggal rendelkezik, ezért pazarlás lenne ezt nem kihasználni, főleg nagyobb számítás-
idejű problémáknál. Ebben a fejezetben bemutatásra kerül egy több magon megvalósított Branch
& Bound algoritmus, valamint annak paraméteroptimalizálása.

6.1. Az RCABB algoritmus párhuzamosításának megvalósí-
tása CPU-n

A párhuzamosítás igényel némi módosítást az RCABB algoritmuson. Ebben az esetben nem
csak egy központi tároló van, ahol a megoldások és részproblémák megosztásra kerülnek, ha-
nem minden szál rendelkezik saját tárolóval is a részproblémái számára. Ez a struktúra a 6.1.
ábrán látható. Amennyiben egy szál saját részprobléma tárolója kiürül, vagyis minden részprob-
lémát már kifejtett, úgy egy kérést küldhet a többi szál felé. Egy központi helyen -nevezzük
postaládának- vannak a globális változók, amik minden szál számára elérhetőek. Ez a postaláda
szolgál többek között a részproblémák megosztására is.

Az algoritmus indulásakor az egyik szál a kezdeti problémát a saját tárolójába menti, ahol
elkezdi kifejteni, megoldani azt. A többi szál ekkor még csak vár, illetve elküldött már egy-egy
kérést a postaládába részprobléma igénylésre. Ha a kezdeti szál saját részprobléma tárolójában
a részproblémák száma elér egy előre meghatározott szintet, illetve van igény a többi szál felől

86

6.1. ábra. A szálak közötti adatok megosztása

részproblémára, úgy a szál a saját tárolójából áttesz egyet a postaládába. Áttételkor a rész-
probléma a saját tárolóból törlődik. A várakozó szálak közül a leggyorsabb észreveszi, hogy a
postaládában megosztásra került egy részprobléma, ezért átteszi a saját tárolójába, majd elkezdi
kifejteni azt. Ilyenkor a postaládából a részprobléma törlődik. Fontos, hogy egyszerre csak egy
szál módosíthassa a postaláda tartalmát. A részproblémák megosztása és elvitele a szálak között
nem prioritás alapú, hanem mindig az a szál fog cselekedni, amelyik leghamarabb észlelte az
igényt vagy megosztást.

A globális változók között, a megosztott részproblémákon kívül megtalálhatóak a megoldások
és ezzel együtt az aktuális korlát értéke is. A szálak mindig csak akkor oszthatnak meg részprob-
lémát, ha a saját tárolójukban a részproblémák száma meghalad egy előre meghatározott szintet,
valamint van igény a többi szál részéről részproblémára. A szálak nem csak indulásakor kerülhet-
nek várakozó állapotba, hanem akkor is, ha már minden részprobléma kifejtésre került a saját
tárolójukból. A várakozó szálak folyamatosan kérdezik le a postaládát, hogy van-e benne megosz-
tott tartalom, amit megkaphatnak. A keresés akkor ér véget, ha a részprobléma-igények száma
egyenlő a szálak számával, vagyis minden lokális tároló üres, és a postaládában sincsen megosz-
tott részprobléma. Minden szál viselkedése azonos, nincs megkülönböztetett szerepű közöttük. A
6.2. ábra felső részén látható folyamatábra illusztrálja az egyes szálak viselkedését a végrehajtás
közben. Az ábra alsó részén egy példaműködés látható két szálon történő futtatáskor.

A 6.3. ábrán látható egy, a már párhuzamosított megoldó futtatását szemléltető keresőfa, ahol
az egyes színek azt reprezentálják, hogy melyik szál dolgozta fel az adott csomópontot. Jól látható,
hogy a szálak terheltsége közel azonos. A párhuzamosítás után elvégzett tesztelések eredményei
azt mutatták, hogy a párhuzamosítással jelentős mértékben megnövekedett a hatékonyság.

6.2. Teszthalmaz készítése

Ahhoz, hogy az algoritmusok hatékonyságát megfelelően lehessen mérni, elengedhetetlen, hogy
legyen egy teszthalmaz, amely nagy számú, különböző méretű és bonyolultságú problémát tartal-
maz. 1998-ban Bertók és társai kifejlesztettek a P-gráfhoz egy probléma generátort, ami számos

87

6.2. ábra. Állapotdiagram és kommunikáció két szál között

konfigurációs lehetőséggel rendelkezik, és képes létrehozni a P-gráf formátumának megfelelő prob-
lémát [79]. Egy konfigurációs fájlon keresztül többek között beállítható a műveleti egységek, a
nyers- és köztes anyagok, a termékek és melléktermékek száma, amit egy diszkrét eloszlást meg-

88

6.3. ábra. Részfák feldolgozása szálak szerint

Elem Minimum szám Maximum szám

Műveleti egység 9 90
Nyersanyag 1 45
Köztes anyag 7 116
Termék 1 5
Él 35 479

6.1. táblázat. Teszthalmaz tulajdonságai

valósító függvény biztosít. Beállítható, hogy a műveleti egységeknek átlagosan mennyi input és
mennyi output anyaga lehet, valamit egyéb topológiát befolyásoló tényezők is, úgy mint a hurkok
száma.

A P-gráf probléma generáló szoftver segítségével elkészült egy 150 tesztfájlt tartalmazó prob-
lémahalmaz, a 6.1. táblázatban látható tulajdonságokkal. (A részletes tulajdonságok a melléklet-
ben találhatóak.) Ezek a fájlok online is publikálásra kerültek, hogy mások számára is segítséget
nyújthassanak hasonló tesztelésekhez [80]. A párhuzamosított algoritmus és annak paraméterop-
timalizálása is ezeken a fájlokon került tesztelésre.

6.3. Paraméteroptimalizálás

Az RCABB algoritmus párhuzamosításának megvalósítása során felmerült néhány kérdés: Mi-
lyen gyakran ellenőrizzék a szálak a tárolót, hogy ne vegyen el túl sok időt, de ne történjen
felesleges számítás információhiány miatt? A szálak az általuk kifejtésre kerülő keresőfa melyik
részéről osszanak meg a többiekkel részproblémát? Minimum hány megoldás kell, hogy maradjon
a saját tárolóban megosztás után? Ezek, és maga a szálak száma nyitott beállításként kerültek
implementálásra. A párhuzamosított algoritmus a következő paraméterbeállításokkal bír :

– Szálak száma: Az első paraméter a szálak száma, ami, amennyiben értéke ’1’, úgy a többi
paramétert feleslegessé is tudja tenni, hiszen akkor a párhuzamosítás jelentőségét veszti.

89

Ez a szám azt mondja meg, hogy hány szál dolgozzon a részproblémákon egyszerre. A
paraméter alapérzelmezett értéke: MAX, vagyis az összes lehetséges szálon dolgozzon.

– Megosztási stratégia: Ezzel azt lehet megadni, hogy a szálak igény esetén a saját tárolójuk
elejéről vagy végéről adjanak-e részproblémát a postaládába. Vizuálisan elképzelve ezek a
részproblémák a keresőfa felsőbb illetve alsóbb részein helyezkednek el. "GlobalNext" stra-
tégiánál a keresőfa felső részéről történik a megosztás, hiszen ez a teljes keresőfát nézve
globálisan a következő kifejtendő részfeladat. "LocalNext" stratégiakor a megosztás egy
alsóbb szintről történik. A paraméter alapérzelmezett értéke: 75% LocalNext, 25% Global-
Next.

– Ellenőrzési gyakoriság: Ezzel azt lehet beállítani, hogy milyen sűrűn (hány ciklusonként)
történjen meg a postaláda ellenőrzése. Ez részprobléma megosztásnál és igénylésnél is sze-
repet játszik. A paraméter alapérzelmezett értéke: ’1’, vagyis minden ciklusban ellenőriz.

– A saját tárolóban maradó részproblémák minimum száma: Azt mondja meg, hogy mini-
mum hány részprobléma kell, hogy maradjon - vagy más megközelítésben legyen a meg-
osztás után- a tárolóban ahhoz, hogy az megoszthasson közülük egyet igény esetén. A
paraméter alapérzelmezett értéke: ’1’, vagyis 1 megoldás maradjon legalább a saját táro-
lóban.

Ezek a paraméterek képesek befolyásolni a párhuzamos megoldó viselkedését abban az eset-
ben, ha a szálak száma több, mint egy, ezáltal növelve a hatékonyságot. Vagyis kijelenthető, hogy
az összes paraméter függ a szálak számától. Mivel a többi paraméter sem feltétlenül független
egymástól, ezért az optimalizálás során először az alap beállításokhoz képest egyesével történt a
paraméterhangolás, majd a keresési tér leszűkítése után együtt.

A következőkben bemutatott konfigurációk mindegyike az előző fejezetben említett 150 min-
tapéldán lett tesztelve 1, 5, 10, 20 és 50 legjobb megoldást kérve. Minden teszt három alkalommal
lett futtatva a pontosabb eredmények érdekében, vagyis több, mint 25000 alkalommal futott a
megoldó a paraméteroptimalizálás során. A legjobb paraméterbeállítás meghatározásán túl fel-
merült a kérdés, hogy vajon függ-e a probléma strukturális tulajdonságától vagy sem az, hogy
mi lesz a legjobb beállítás, illetve milyen tulajdonságokat is kéne ehhez figyelembe venni.

Szálak száma: Az első paraméter a szálak száma, ami 1, 2, 4, 6 és 8 szálon került tesztelésre.
Az eredmények a várakozásoknak megfelelően kimutatták, hogy a szálak számával a hatékonyság
is növekszik. A 6.4. ábrán a számítási összidők láthatók különböző szálszám és különböző kért
megoldásszámok mellett, azonban ha a kért megoldásszám kevesebb, mint 5 és a feladat maximum
30 műveleti egységet tartalmaz, úgy két szálon futtatni a leghatékonyabb. Ez az eredmény abból
következik, hogy kis, gyorsan megoldható feladatoknál feleslegesen időt veszítünk a szálak közötti
kommunikációval. Két szál viszont még mindig hatékonyabban tudja megoldani a feladatot ebben
az esetben is, mint egy szál. A 6.5. ábra megmutatja, hogy 5 megoldás kérésekor nagyjából 30
műveleti egységnél érdemes váltani két szálról a maximálisan elérhetőre.

90

6.4. ábra. A számítási összidők összehasonlítása különböző számú szálak mellett

6.5. ábra. Két szálon futtatni csak akkor éri meg, ha a kért megoldások száma és a feladat mérete
is kicsi

Megosztási stratégia: Egy másik fontos kérdés, hogy a már felfedezett keresőfának mely
részéről kell részproblémát küldenie a szálnak a postaládába, ha egy másik várakozik. Ezt rövi-
den megosztási stratégiának hívják. Az alsóbb szintekről való megosztást "LocalNext" stratégi-
ának nevezik és felgyorsíthatja a keresést, valamint megoldást találhat egyfajta mohó stratégiát
megvalósítva. Ezzel ellentétben, ha magasabb szintről történik a megosztás, azt "GlobalNext"
stratégiának hívják, és csökkenti annak a kockázatát, hogy túl sok erőforrás legyen elpazarolva
egyetlen irányba. A mérések kimutatták, ahogy az a 6.6. ábrán is látható, hogy a legtöbb esetben
a LocalNext stratégia a jobb választás.

Ennek ellenére, ha a kért megoldásszám igen magas (50 feletti), a 25% LocalNext stratégia
bizonyul a leghatékonyabbnak a bonyolultabb problémáknál, vagyis ahol már a nulladik lépésnél
is látható, hogy legalább 10 műveleti egységről kell dönteni. Ez a 6.7. ábrán látható. Továbbá, ha

91

6.6. ábra. Keresési stratégiák összehasonlítása

6.7. ábra. 25% LocalNext stratégiát szerencsés 10-es szintű nehézség fölött választani

a kért megoldások száma minimum 50, de legfeljebb 50 műveleti egységet tartalmaz a probléma,
akkor a GlobalNext stratégia bizonyul a leggyorsabbnak. A 6.8. ábrán látható, hogy 50 kért
megoldásnál 50 műveleti egység környékén szükséges stratégiát váltani. Ez a szabály erősebb,
mint az előző.

Az eredmények kimutatták, hogy a GlobalNext stratégia akkor hatékony, ha majdnem a
teljes keresőfát be kell járni ahhoz, hogy a kért számú megoldást az algoritmus megtalálja. Eb-
ben az esetben a párhuzamos szálak szinte függetlenül működhetnek, hiszen elegendő minimális
kommunikáció is.

Ellenőrzési gyakoriság: Az ellenőrzési gyakoriság a párhuzamosított algoritmus harmadik
paramétere. Ennek a beállítása azért fontos, mert amikor egy szál ellenőrzi a postaládát, akkor
az összes többi szál nem fér ahhoz hozzá. Gyakori ellenőrzés esetén ez késedelmet okozhat a
számításban, ha viszont ritkán történik vizsgálat, úgy a szálak az információhiány miatt lehet,

92

6.8. ábra. GlobalNext stratégiát alkalmazni abban az esetben a legjobb, ha a műveleti egységek
száma nem jelentős, de a kért megoldások száma magas

hogy felesleges számításokat végeznek. A számításokból kiderült, hogy annak ellenére, hogy az
ellenőrzés blokkolja a postalását, mégis az a leghatékonyabb, ha az minden ciklusban ellenőrzésre
kerül. Ez látható a 6.9. ábrán is.

6.9. ábra. Számítási idő különböző ellenőrzési gyakoriság mellett

Amennyiben a kért megoldások száma legalább 50, és legalább 90 műveleti egységet tartalmaz
a struktúra, úgy elegendő a postaládát csak minden második ciklusban ellenőrizni. Az 6.10. ábrán
megfigyelhető, hogy a törés 50 kért megoldás esetén 90 műveleti egységnél van. A tapasztalatok
azt mutatják, hogy általában ritkán ürül ki az egyes szálak saját részprobléma tárolója, viszont
abban az esetben egy másik szál azonnal meg tud osztani velük.

Saját tárolóban maradó részproblémák minimum száma: Az utolsó paraméter ami
befolyásolni tudja a megoldó működését a megosztáskor saját tárolóban maradó részproblémák

93

6.10. ábra. Ha több, mint 50 a kért megoldások száma, és a struktúra 90 vagy afölötti műveleti
egységgel rendelkezik, hatékony, ha csak minden második ciklusban történik ellenőrzés

minimum száma, vagyis, hogy megosztás után legalább hány részprobléma kell, hogy maradjon a
szál saját tárolójában ahhoz, hogy megoszthasson egyet a többiekkel. Ha ez az érték alacsony, úgy
elképzelhető, hogy a szál gyakran kifogyhat a saját részproblémáiból és másoktól kell visszakérnie,
ami felesleges körökhöz vezet. Ha ez a szám túl magas, a többi szálnak kellhet túl sokáig várnia
ahhoz, hogy részproblémát kapjon amennyiben kiürült a saját tárolója. A tesztek kimutatták,
hogy nem kell az előbbitől lényegesen tartani, és a szál akkor is megoszthat, ha utána csupán egy
részprobléma marad a saját tárolójában, vagyis ha csak két részproblémával rendelkezik, abból
is megoszthatja az egyiket (6.11. ábra).

6.11. ábra. A számítási idő függ attól is, hogy minimum hány részprobléma kell, hogy maradjon
a szálak saját tárolójában megosztás után

A tesztek eredményét összegyűjtve elkészítettem a 6.12. ábrán látható folyamatábrát, ami a

94

probléma struktúráját alapul véve segítséget nyújthat abban, hogy mi az optimális paraméter-
beállítás. Ez a döntési folyamat a P-gráf megoldójában is implementálásra került. A párhuza-
mosított RCABB algoritmus indulása előtt a szoftver ellenőrizni a feladat struktúráját, vagyis a
műveleti egységek számát, azt, hogy minimum hány műveleti egység van az első lépéskor amikről
majd dönteni kell, illetve a kért megoldások számát, és ennek megfelelően a folyamatábra alapján
elvégzi a megfelelő paraméterbeállítást.

6.12. ábra. Folyamatábra a legjobb paraméterbeállítás kiválasztásához

6.4. Az optimalizált megoldó hatékonyságnövekedése és
összehasonlítás más megoldókkal

A paraméteroptimalizálás után felmerült a kérdés, hogy mennyivel is sikerült növelni a haté-
konyságát az algoritmusnak, ezért összehasonlításra került az adaptív, a fix legjobb és az eredeti
paraméterbeállítás. (A nem párhuzamos megoldóhoz képest jelentős a hatékonyságnövekedés, ami
az előző fejezetben bemutatásra is került, így itt azzal nem releváns összehasonlítani.) A 6.13.
ábrán látható, hogy fixen az átlagosan legjobb paraméterbeállítások használata 11%-al növelte a
párhuzamosított algoritmus hatékonyságát futási összidőre nézve, 1, 5, 10, 20 és 50 megoldásokat
kérve a 6.2. fejezetben bemutatott teszthalmazon. Az átlagosan legjobb paraméterbeállítások az
alábbiak:

– A lehető legtöbb szál használata a számításokhoz

– LocalNext megosztási stratégia alkalmazása

95

6.13. ábra. Az eredeti, a fix legjobb, valamint az adaptív paraméterbeállítással rendelkező
RCABB futási idejének összehasonlítása

– A megosztási kérelmek ellenőrzése minden ciklusban

– Legalább egy, saját tárolóban maradó részprobléma a megosztás után

Még 2% teljesítménynövekedés érhető el a fix beállítások helyett adaptív beállítás használatá-
val, vagyis amikor a szoftver a megoldás előtt a probléma struktúráját megvizsgálva maga állítja
be a paramétereket. Fontos figyelembe venni, hogy a problémák mintegy harmadánál az adaptív
beállítás akár 10%-al is képes csökkenteni a számítási időt, azonban meg kell jegyezni, hogy minél
több a kért megoldások száma, annál kisebb lesz a különbség hatékonyság szempontjából a fix
és az adaptív beállítások között.

6.14. ábra. Az adaptív és fix beállítások összehasonlítása

96

A 6.14. ábráról leolvasható, hogy az esetek 59%-ában az adaptív megoldás bizonyult ha-
tékonyabbnak, viszont ekkor a megoldó átlagosan 3,4 másodperccel volt gyorsabb, mint a fix
beállítás mellett. Azokban az esetekben, amikor a fix beállítás bizonyult hatékonyabbnak, ez az
előny csupán 0,7 másodperc volt, vagyis több időt lehet veszíteni ha az adaptív beállítás lenne
a hatékonyabb, a választás mégis a fix beállításra esik. Kijelenthető tehát, hogy megéri adaptív
beállításokkal használni a megoldót.

6.15. ábra. A COIN-OR CBC, a párhuzamosítatlan RCABB, a fix paraméterbeállítású RCABB
valamint az adaptív paraméterbeállítású RCABB összehasonlítása

6.16. ábra. A párhuzamosított algoritmus manuális paraméterezhetősége a P-graph Studioban

Az elkészült párhuzamos, illetve paraméter-optimalizált megoldó szerencsés, ha nem csak
saját magával, de legalább egy független MILP megoldóval is összehasonlításra kerül. A válasz-
tás a széles körben ismert és szabadon felhasználható COIN-OR CBC-re esett, mivel ugyanaz

97

a lineáris programozási megoldó az alapja, nevezetesen a COIN-OR CLP, ami az RCABB LP
megoldójának is az alapja [77, 78]. A 6.15. ábrán látható összehasonlítás megmutatja, hogy a
párhuzamosított RCABB algoritmus, majd a fix paraméterbeállítású, illetve az adaptív para-
méterbeállítású RCABB algoritmus is sokkal hatékonyabb, mint a COIN-OR CBC a legjobb
megoldás keresésében a már említett teszt halmazon mérve. Az ábrán a problémák futási idő
szerint vannak rendezve. Fontos megjegyezni, hogy a COIN-OR CBC megoldó is párhuzamosí-
tott, és a tesztek során végzett CPU vizsgálat igazolta, hogy mind az RCABB, mind pedig a
COIN-OR CBC a számításokhoz kihasználja az összes rendelkezésre álló szálat.

Az elkészített tesztfájlok és a mérési eredmények online publikálásra kerültek [80]. Az eredmé-
nyes tesztelések után a párhuzamosított RCABB algoritmus integrálásra került a P-graph Studio
megoldójába [10]. A megoldó alapértelmezetten az adaptív beállításokkal működik, de lehetőség
van egyéni beállításokra is a "Preferences" - "Solver Settings" menüpont alatt. Ez látható a
6.16. ábrán is. A paraméterbeállítások csak akkor válnak elérhetővé, ha a szálak száma külön
megadásra kerül.

6.5. A fejezet rövid összefoglalása

A fejezetben ismertettem a folyamathálózat-szintézis megoldó algoritmusának, az RCABB-nek
a párhuzamosítását, ami a korábbi megoldással ellentétben már képes több processzormagon,
elosztottan futtatni a Branch & Bound alapú algoritmust. A szálak közötti kommunikáció közös
tárolókon alapszik, ahol a szálak részproblémákat tudnak megosztani egymással, illetve le tudják
kérdezni az aktuális korlátot is, hiszen a megoldás-struktúrák tárolása is a közös részben valósul
meg. Az elkészített megoldó a szálakat egyenletesen terheli. Az algoritmus jóságának mérésé-
hez létrehoztam egy teszthalmaz bázist, ami nyilvánosan elérhető, így alapot képezhet a későbbi
algoritmusfejlesztésekhez is. A párhuzamosítás megvalósítása több kérdést is felvet, melyek pa-
raméterként jelennek meg. Ilyen lehet a futtatáshoz használt szálak száma vagy az ellenőrzési
gyakoriság. A teszthalmaz segítségével elsőként megállapítottam, hogy általánosan mely beál-
lítások bizonyulnak a leghatékonyabbnak, majd a probléma struktúrájától függően, adaptívan
határoztam meg a legjobb beállítást. Az elért eredményeket más megoldókkal is összevetettem,
ahol az általam elkészített algoritmus egyértelműen hatékonyabbnak bizonyult. Ezt követően
integráltam a párhuzamosított, adaptív paraméterbeállítású megoldót a P-graph Studioba, meg-
hagyva a lehetőséget a manuális beállításnak.

6.5.1. A fejezethez tartozó tézis

Elkészítettem és optimalizáltam a P-gráf egyik megoldó algoritmusának párhuzamo-
sított változatát.

(a) Kidolgoztam a P-gráfhoz tartozó RCABB algoritmus párhuzamosítását, ami garantálja az
N-legjobb megoldást is.

(b) Létrehoztam egy mindenki számára elérhető teszt-bázist a PNS megoldók teszteléséhez.

98

(c) A létrehozott tesztbázis segítségével meghatároztam, hogy általánosságban mely paramé-
terbeállítások a legjobbak az elkészült párhuzamosított algoritmushoz.

(d) Feladatosztályokat hoztam létre, és ezen osztályokra külön-külön határoztam meg a leg-
jobb paraméterbeállítást. Az osztályozás segítségével az algoritmus paraméterbeállítását
adaptívvá tettem.

(e) Kísérletileg igazoltam az elkészült megoldó hatékonyságát, más, ingyenesen elérhető meg-
oldók összehasonlításán keresztül.

6.5.2. A fejezet témaköréhez kapcsolódó publikációk

Nemzetközi folyóiratcikk

– Bartos Anikó és Bertók Botond: Parameter tuning for a cooperative parallel implementa-
tion of processnetwork synthesis algorithms, folyóirat: Central European Journal of Ope-
rations Research, 1-22. oldal, 2018. (IF = 1,26) [29]

Nemzetközi konferencia-kiadványokban megjelent közlemények

– Bartos Anikó és Bertók Botond: Analysis of Search Strategies for Parallel Implementation
of a Process-Network Synthesis Solver, kiadvány: ASCONIKK 2014, 13. oldal (2014) [81]

– Bartos Anikó és Bertók Botond: Synchronization and Load Distribution Strategies for
Parallel Implementations of P-graph Optimizer, kiadvány: MACRo 2015, 303-313. oldal
(2015) [82]

Nemzetközi konferencia előadások

– Bartos Anikó: Teaching Tools in the Logistics Tasks, konferencia: TIIKM’S 1st Annual
International Conference on Education, Peking, Kína, 2015. [83]

– Bartos Anikó és Bertók Botond: Parameter tuning for a cooperative parallel implementati-
on of process-network synthesis algorithms, kiadvány: VOCAL Optimization Conference:
Advanced Algorithms 2016, 96. oldal, 2016. [84]

– Bartos Anikó és Bertók Botond: Energy Storage Capacity Optimization for Residential
Areas, konferencia: 2nd eseia Conference on Smart and Green Transitions in Cities and
Regions, Graz, Ausztria, 2016. [85]

99

7. fejezet

Összefoglalás

A dolgozatban bemutatásra kerültek a folyamathálózat-szintézishez szorosan kapcsolódó új, tu-
dományos eredmények. A 4. fejezet átfogóan foglalkozott a multiperiódusos modellekkel. A ko-
rábban publikált eredményekkel ellentétben létrehozásra került egy általános modell-leírás a több
periódusból álló feladatokhoz, illetve bevezetésre került a periódusok közötti tárolás megvalósítá-
sa. Az általános modellek alapján a P-graph Studio szoftverben implementálásra is kerültek ezen
új részek. A fejezet részletesen is bemutat több, ehhez a témához kapcsolódó esettanulmányt,
és azok P-gráffal történő megoldását. Ezek közül is kiemelkedik az energia tárolása, és az áram
szolgáltatás ütemezése microgrid rendszerben. Az eredmények egyértelműen igazolják a módszer
hatékonyságát.

Az 5. fejezet egy ütemezési problémával, a gyártósor kiegyensúlyozással foglalkozik. A prob-
léma egy korábbi, a témában publikált modell alapján megvalósítható, viszont szigorú korlátai
miatt annál általánosabban is leírható, így könnyen automatizálhatóvá válik. Az általános mo-
dell leíráson túl a fejezet bemutatja a kapcsolódó, elkészült szoftvert, ami valós környezetben,
egy összeszerelő üzemben is tesztelésre került. A visszajelzések megmutatták, hogy a korábbi
kiosztáshoz képest a modellel és szoftverrel támogatott sorkiosztással akár 20-25%-nyi hatékony-
ságnövekedés is elérhető.

Az utolsó, 6. fejezet a P-gráf egyik alap algoritmusának, az RCABB-nek a párhuzamosításáról
és annak paraméteroptimalizálásáról szól. Az ehhez kapcsolódó kutatások egyik "mellékterméke-
ként" létrehozásra került egy mindenki számára elérhető tesztadathalmaz. A párhuzamosítással
és a megfelelő paraméterbeállítással jelentősen gyorsult az algoritmus futása. Az optimalizált
algoritmus az ingyenesen elérhető P-graph Studio alatt is implementálásra került.

Összességében kijelenthető, hogy az elért eredmények újak, és önálló kutatás részeként ke-
rültek megvalósításra. A létrejött algoritmusok a gyakorlatban használt szoftverek alatt is ki-
vitelezésre kerültek, a visszajelzések pedig pozitívak voltak. Elmondható tehát, hogy nem csak
elméleti, de gyakorlatban is hasznos eredmények születtek.

100

Irodalomjegyzék

[1] E Kondili, CC Pantelides, and RWH Sargent. “A general algorithm for short-term sche-
duling of batch operations—I. MILP formulation”. In: Computers & Chemical Engineering
17.2 (1993), pp. 211–227.

[2] CG Cassandras and S Lafortune. Introduction to discrete event systems. Springer Science
& Business Media, 2009.

[3] B Berthomieu and M Menasche. “An enumerative approach for analyzing time Petri nets”.
In: Proceedings IFIP. Citeseer. 1983.

[4] E Sanmarti, F Friedler, and L Puigjaner. “Combinatorial technique for short term schedul-
ing of multipurpose batch plants based on schedule-graph representation”. In: Computers
& chemical engineering 22 (1998), S847–S850.

[5] E Sanmarti et al. “Combinatorial framework for effective scheduling of multipurpose batch
plants”. In: AIChE Journal 48.11 (2002), pp. 2557–2570.

[6] F Friedler et al. “Combinatorial algorithms for process synthesis”. In: Computers & Che-
mical Engineering 16 (1992), pp. 313–320. doi: 10.1016/S0098-1354(09)80037-9.

[7] JJ Siirola. “Industrial applications of chemical process synthesis”. In: Advances in chemical
engineering. Vol. 23. Elsevier, 1996, pp. 1–62.

[8] B Bertok, M Barany, and F Friedler. “Generating and analyzing mathematical program-
ming models of conceptual process design by P-graph software”. In: Industrial & Enginee-
ring Chemistry Research 52 (2013), pp. 166–171. doi: 10.1021/ie301155n.

[9] F. Friedler et al. “Combinatorially accelerated branch-and-bound method for solving the
MIP model of process network synthesis”. In: State of the Art in Global Optimization
(1996), pp. 609–626. doi: 10.1007/978-1-4613-3437-8_35.

[10] Uni-Pannon:DCS. P-Graph Studio. Version 5.2.2.2. 2018. url: http://p-graph.org/.

[11] A Bartos and B Bertok. “Production line balancing by P-graphs”. In: Optimization and
Engineering (2019), pp. 1–18. doi: 10.1007/s11081-019-09462-1.

[12] E Konig, Z Sule, and B Bertok. “Comparison of optimization techniques in the P-graph
framework for the design of supply chains under uncertainties”. In: INFORMATION SE-
CURITY (), p. 35.

101

http://dx.doi.org/10.1016/S0098-1354(09)80037-9
http://dx.doi.org/10.1021/ie301155n
http://dx.doi.org/10.1007/978-1-4613-3437-8_35
http://p-graph.org/
http://dx.doi.org/10.1007/s11081-019-09462-1

[13] F Friedler, JB Varga, and LT Fan. “Decision-mapping: a tool for consistent and complete
decisions in process synthesis”. In: Chemical Engineering Science 50.11 (1995), pp. 1755–
1768.

[14] LT Fan et al. “Mechanisms of ammonia-synthesis reaction revisited with the aid of a novel
graph-theoretic method of determining candidate mechanisms in deriving the rate law of a
catalytic reaction”. In: Hungarian Journal of Industrial Chemistry 29.1 (2001), pp. 71–80.

[15] F Friedler et al. “Graph-theoretic approach to process synthesis: polynomial algorithm for
maximal structure generation”. In: Computers & Chemical Engineering 17 (1993), pp. 929–
942. doi: 10.1016/0098-1354(93)80074-W.

[16] Z Kovacs et al. “Separation-network synthesis: global optimum through rigorous super-
structure”. In: Computers & Chemical Engineering 24.8 (2000), pp. 1881–1900.

[17] J Varga. “Extensions of the Process-Network Synthesis Problem”. PhD thesis. Univesity of
Veszprem, 2000.

[18] AB Nagy et al. “Integrated synthesis of process and heat exchanger networks: algorithmic
approach”. In: Applied Thermal Engineering 21.13-14 (2001), pp. 1407–1427.

[19] LT Fan, B Bertok, and F Friedler. “A graph-theoretic method to identify candidate me-
chanisms for deriving the rate law of a catalytic reaction”. In: Computers & chemistry 26.3
(2002), pp. 265–292.

[20] MS Peters et al. Plant design and economics for chemical engineers. Vol. 4. McGraw-Hill
New York, 1968.

[21] Sz Gyapay and A Pataricza. “A combination of Petri nets and Process Network Synt-
hesis”. In: SMC’03 Conference Proceedings. 2003 IEEE International Conference on Sys-
tems, Man and Cybernetics. Conference Theme-System Security and Assurance (Cat. No.
03CH37483). Vol. 2. IEEE. 2003, pp. 1167–1174.

[22] I Heckl, F Friedler, and LT Fan. “Solution of separation-network synthesis problems by the
P-graph methodology”. In: Computers & Chemical Engineering 34.5 (2010), pp. 700–706.

[23] M Barany et al. “Solving vehicle assignment problems by process-network synthesis to
minimize cost and environmental impact of transportation”. In: Clean Technologies and
Environmental Policy 13.4 (2011), pp. 637–642. doi: 10.1007/s10098-011-0348-2.

[24] K Kalauza et al. “Extending process-network synthesis algorithms with time bounds for
supply network design”. In: Chemical Engineering 29 (2012). doi: 10.3303/CET1229044.

[25] JC Garcia-Ojeda, B Bertok, and F Friedler. “Planning evacuation routes with the P-graph
framework”. In: Chemical Engineering Transactions 29 (2012), pp. 1531–1536. doi: 10.
3303/CET1229256.

[26] B Bertok et al. “Combinatorial algorithm for synthesizing redundant structures to increase
reliability of supply chains: application to biodiesel supply”. In: Industrial & Engineering
Chemistry Research 52.1 (2012), pp. 181–186. doi: 10.1021/ie301393d.

102

http://dx.doi.org/10.1016/0098-1354(93)80074-W
http://dx.doi.org/10.1007/s10098-011-0348-2
http://dx.doi.org/10.3303/CET1229044
http://dx.doi.org/10.3303/CET1229256
http://dx.doi.org/10.3303/CET1229256
http://dx.doi.org/10.1021/ie301393d

[27] M Frits and B Bertok. “Process scheduling by synthesizing time constrained process-
networks”. In: Computer Aided Chemical Engineering. Vol. 33. Elsevier, 2014, pp. 1345–
1350. doi: 10.1016/B978-0-444-63455-9.50059-3.

[28] I Heckl et al. “Process synthesis involving multi-period operations by the P-graph frame-
work”. In: Computers & Chemical Engineering 83 (2015), pp. 157–164. doi: 10.1016/j.
compchemeng.2015.04.037.

[29] Aniko Bartos and Botond Bertok. “Parameter tuning for a cooperative parallel implementa-
tion of ProcessNetwork Synthesis algorithms”. In: Central European Journal of Operations
Research (2018), pp. 1–22.

[30] KB Aviso, JY Lee, and RR Tan. “A P-graph model for multi-period optimization of isolated
energy systems”. In: Chemical Engineering Transactions 52 (2016), pp. 865–870. doi: 10.
3303/CET1652145.

[31] PS Varbanov, F. Friedler, and JJ Klemes. “Process network design and optimisation using
P-graph: The success, the challenges and potential roadmap”. In: Chemical Engineering
Transactions 61 (2017), pp. 1549–1554. doi: 10.3303/CET1761256.

[32] TGWalmsley et al. “Total site utility system structural design using P-graph”. In: Chemical
Engineering Transactions 63 (2018), pp. 31–36. doi: 10.3303/CET1863006.

[33] B Bertok and A Bartos. “Algorithmic process synthesis and optimisation for multiple time
periods including waste treatment: Latest developments in P-graph Studio software”. In:
Chemical Engineering Transactions 70 (2018), pp. 97–102.

[34] I Heckl et al. “Modeling multi-period operations using the P-graph methodology”. In: Com-
puter Aided Chemical Engineering 33 (2014), pp. 979–984. doi: 10.1016/B978-0-444-
63456-6.50164-2.

[35] A Keresszegi. “PNS Draw”. In: (2010).

[36] Uni-Pannon:DCS. “PNS Studio”. In: (2011).

[37] T Koch. “ZIMPL”. In: (2001).

[38] T Koch. “Rapid mathematical programming”. In: (2005).

[39] I Chakroun and N Melab. “Operator-level gpu-accelerated branch and bound algorithms”.
In: Procedia Computer Science 18 (2013), pp. 280–289.

[40] Y Evtushenko, M Posypkin, and I Sigal. “A framework for parallel large-scale global opti-
mization”. In: Computer Science-Research and Development 23.3-4 (2009), pp. 211–215.

[41] B Bourbeau, TG Crainic, and B Gendron. “Branch-and-bound parallelization strategies
applied to a depot location and container fleet management problem”. In: Parallel Compu-
ting 26.1 (2000), pp. 27–46.

[42] J Clausen and M Perregaard. “On the best search strategy in parallel branch-and-bound:
Best-First Search versus Lazy Depth-First Search”. In: Annals of Operations Research 90
(1999), pp. 1–17.

103

http://dx.doi.org/10.1016/B978-0-444-63455-9.50059-3
http://dx.doi.org/10.1016/j.compchemeng.2015.04.037
http://dx.doi.org/10.1016/j.compchemeng.2015.04.037
http://dx.doi.org/10.3303/CET1652145
http://dx.doi.org/10.3303/CET1652145
http://dx.doi.org/10.3303/CET1761256
http://dx.doi.org/10.3303/CET1863006
http://dx.doi.org/10.1016/B978-0-444-63456-6.50164-2
http://dx.doi.org/10.1016/B978-0-444-63456-6.50164-2

[43] EA Pruul, GL Nemhauser, and RA Rushmeier. “Branch-and-bound and parallel computa-
tion: A historical note”. In: Operations Research Letters 7.2 (1988), pp. 65–69.

[44] DA Bader, WE Hart, and CA Phillips. “Parallel algorithm design for branch and bound”. In:
Tutorials on Emerging Methodologies and Applications in Operations Research. Springer,
2005, pp. 5–1.

[45] U Honig and W Schiffmann. “A parallel branch-and-bound algorithm for computing opti-
mal task graph schedules”. In: International conference on grid and cooperative computing.
Springer. 2003, pp. 18–25.

[46] C Cartis, JM Fowkes, and NIM Gould. “Branching and bounding improvements for glo-
bal optimization algorithms with Lipschitz continuity properties”. In: Journal of Global
Optimization 61.3 (2015), pp. 429–457.

[47] L Barreto and M Bauer. “Parallel branch and bound algorithm-a comparison between
serial, openmp and mpi implementations”. In: Journal of Physics: Conference Series 256.1
(2010), p. 012018.

[48] J Eckstein. “Distributed versus centralized storage and control for parallel branch and
bound: mixed integer programming on the CM-5”. In: Computational Optimization and
Applications 7.2 (1997), pp. 199–220.

[49] GH Dastghaibifard et al. “A parallel branch and bound algorithm for vehicle routing prob-
lem”. In: Proceedings of the International MultiConference of Engineers and Computer
Scientists. Vol. 2. 2008, pp. 19–21.

[50] TG Crainic, B Le Cun, and C Roucairol. “Parallel branch-and-bound algorithms”. In:
Parallel combinatorial optimization 1 (2006), pp. 1–28.

[51] DL Miller and JF Pekny. “Results from a parallel branch and bound algorithm for the asym-
metric traveling salesman problem”. In: Operations Research Letters 8.3 (1989), pp. 129–
135.

[52] M Mezmaz, N Melab, and D Tuyttens. “A multithreaded branch-and-bound algorithm for
solving the flow-shop problem on a multicore environment”. In: Large Scale Network-Centric
Distributed Systems (2013), pp. 53–70.

[53] JB Varga, F Friedler, and LT Fan. “Parallelization of the accelerated branch-and-bound
algorithm of process synthesis: application in total flowsheet synthesis”. In: Acta Chimica
Slovenica 42 (1995), pp. 15–15.

[54] RW McPherson, Ch M Starks, and GJ Fryar. “Vinyl chloride monomer... What you should
know”. In: Chemischer Informationsdienst 10.28 (1979), no–no.

[55] A Lakshmanan and LT Biegler. “A case study for reactor network synthesis: the vinyl
chloride process”. In: Computers & Chemical Engineering 21 (1997), S785–S790.

[56] JA Cowfer and AJ Magistro. Vinyl Polymers, Vinyl Chloride. Volume 23 of (Eds: Martin
Grayson and David Eckroth) Kirk-Othmer Encyclopedia of Chemical Technology. 1983.

104

[57] H Chen et al. “Autonomous demand side management based on energy consumption sche-
duling and instantaneous load billing: An aggregative game approach”. In: IEEE Transac-
tions on Smart Grid 5.4 (2014), pp. 1744–1754. doi: 10.1109/TSG.2014.2311122.

[58] CPC Bong et al. “The role of smart waste management in smart agriculture”. In: Chemical
Engineering Transactions 70 (2018), pp. 937–942. doi: 10.3303/CET1870157.

[59] WH Liu et al. “Power Pinch Analysis supply side management: strategy on purchasing
and selling of electricity”. In: Clean Technologies and Environmental Policy 18.8 (2016),
pp. 2401–2418. doi: 10.1007/s10098-016-1213-0.

[60] HM Liou. “The development of electricity grid, smart grid and renewable energy in Taiwan”.
In: Smart Grid and Renewable Energy 8.06 (2017), p. 163. doi: 10.4236/sgre.2017.86011.

[61] State Government of Victoria. Smart meters executive summary. 2017. url: https://
www.energy.vic.gov.au/electricity/smart-meters/reports-and-consultations/
advanced - metering - infrastructure - customer - impacts - study - volume - 1 /
executive-summary (visited on 04/19/2019).

[62] UCI Machine Learning Repository. Individual household electric power consumption Data
Set. 2012. url: https://archive.ics.uci.edu/ml/datasets/individual+household+
electric+power+consumption (visited on 04/19/2019).

[63] E Konig and B Bertok. “Process graph approach for two-stage decision making: Tran-
sportation contracts”. In: Computers & Chemical Engineering 121 (2019), pp. 1–11. doi:
10.1016/j.compchemeng.2018.07.011.

[64] B Bertok and A Bartos. “Renewable energy storage and distribution scheduling for mic-
rogrids by exploiting recent developments in Process Network Synthesis”. In: Journal of
Cleaner Production (2020).

[65] A Bartos, B Bertok, and A Szlama. “Optimal design of multi-period process networks
including storages for renewable resources”. In: International Congress on Sustainability
Science Engineering ICOSSE. 2015.

[66] A Bartos and B Bertok. “P-graph framework: Computer aided model generation and solu-
tion for supply network optimization problems”. In: European Working Group on Location
Analysis Meeting 2015. 2015, p. 29.

[67] E Konig, A Bartos, and B Bertok. “Free software for the education of supply chain opti-
mization”. In: VOCAL Optimization Conference: Advanced Algorithms 2016. 2016, p. 17.

[68] A Bartos and B Bertok. “Estimation of the return of investment in new technologies regard-
ing periodically changing demands, availability of resources, and storages”. In: Chemical
Engineering Days 2017. 2017.

[69] A Bartos and B Bertok. Software for economical evaluation of utilizing periodically available
renewable resources. 2017.

105

http://dx.doi.org/10.1109/TSG.2014.2311122
http://dx.doi.org/10.3303/CET1870157
http://dx.doi.org/10.1007/s10098-016-1213-0
http://dx.doi.org/10.4236/sgre.2017.86011
https://www.energy.vic.gov.au/electricity/smart-meters/reports-and-consultations/advanced-metering-infrastructure-customer-impacts-study-volume-1/executive-summary
https://www.energy.vic.gov.au/electricity/smart-meters/reports-and-consultations/advanced-metering-infrastructure-customer-impacts-study-volume-1/executive-summary
https://www.energy.vic.gov.au/electricity/smart-meters/reports-and-consultations/advanced-metering-infrastructure-customer-impacts-study-volume-1/executive-summary
https://www.energy.vic.gov.au/electricity/smart-meters/reports-and-consultations/advanced-metering-infrastructure-customer-impacts-study-volume-1/executive-summary
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
http://dx.doi.org/10.1016/j.compchemeng.2018.07.011

[70] P Sivasankaran and P Shahabudeen. “Literature review of assembly line balancing prob-
lems”. In: The International Journal of Advanced Manufacturing Technology 73.9-12 (2014),
pp. 1665–1694. doi: 10.1007/s00170-014-5944-y.

[71] JM Wilson. “Henry Ford vs. assembly line balancing”. In: International Journal of Produc-
tion Research 52.3 (2014), pp. 757–765. doi: 10.1080/00207543.2013.836616.

[72] ME Salveson. “The assembly line balancing problem”. In: The Journal of Industrial Engi-
neering (1955), pp. 18–25.

[73] N Kumar and D Mahto. “Assembly line balancing: a review of developments and trends in
approach to industrial application”. In: Global Journal of Research In Engineering (2013).

[74] MRAMake, MFFA Rashid, and MM Razali. “A review of two-sided assembly line balancing
problem”. In: The International Journal of Advanced Manufacturing Technology 89.5-8
(2017), pp. 1743–1763. doi: 10.1007/s00170-016-9158-3.

[75] M Aghajani, R Ghodsi, and B Javadi. “Balancing of robotic mixed-model two-sided assemb-
ly line with robot setup times”. In: The International Journal of Advanced Manufacturing
Technology 74.5-8 (2014), pp. 1005–1016. doi: 10.1007/s00170-014-5945-x.

[76] H Fazlollahtabar, H Hajmohammadi, and A Es’haghzadeh. “A heuristic methodology for
assembly line balancing considering stochastic time and validity testing”. In: The Inter-
national Journal of Advanced Manufacturing Technology 52.1-4 (2011), pp. 311–320. doi:
10.1007/s00170-010-2708-1.

[77] J Forrest et al. “coin-or/Cbc: Version 2.9.9”. In: 1317566 (2018). doi: 10.5281/zenodo.

[78] J Forrest and R Lougee-Heimer. “CBC user guide”. In: Emerging theory, methods, and
applications. INFORMS, 2005, pp. 257–277. doi: 10.1287/educ.1053.0020.

[79] B Bertok, F Friedler, and LT Fan. “Random generation of test problems for process synt-
hesis”. In: CHISA ’98 (13th International Congress of Chemical and Process Engineering)
(1998).

[80] Test base. p- graph.org/wp- content/uploads/2017/12/test_base.zip. Accessed:
2018-07-01.

[81] A Bartos and B Bertok. “Analysis of search strategies for parallel implementation of a
Process-Network Synthesis solver”. In: ASCONIKK 2014 (2014), p. 13.

[82] A Bartos and B Bertok. “Synchronization and load distribution strategies for parallel imp-
lementations of P-graph optimizer”. In: MACRo 2015 1.1 (2015), pp. 303–313.

[83] A Bartos. “Teaching tools in the logistics tasks”. In: TIIKM’S 1st Annual International
Conference on Education. Vol. 1. 2015, p. 27.

[84] A Bartos and B Bertok. “Parameter tuning for a cooperative parallel implementation of
Process-Network Synthesis algorithms”. In: VOCAL Optimization Conference: Advanced
Algorithms 2016. 2016, p. 96.

[85] A Bartos and B Bertok. “Energy storage capacity optimization for residential areas”. In:
2nd eseia Conference on Smart and Green Transitions in Cities and Regions. 2016, p. 1.

106

http://dx.doi.org/10.1007/s00170-014-5944-y
http://dx.doi.org/10.1080/00207543.2013.836616
http://dx.doi.org/10.1007/s00170-016-9158-3
http://dx.doi.org/10.1007/s00170-014-5945-x
http://dx.doi.org/10.1007/s00170-010-2708-1
http://dx.doi.org/10.5281/zenodo
http://dx.doi.org/10.1287/educ.1053.0020
p-graph.org/wp-content/uploads/2017/12/test_base.zip

Melléklet

A "p-graph.org"-on található tesztadatok tulajdonágai:

N
am

e

#
of

op
.u
ni
ts

#
of

m
at
er
ia
ls

di
ffi
cu

lt
y

N
am

e

#
of

op
.u
ni
ts

#
of

m
at
er
ia
ls

di
ffi
cu

lt
y

N
am

e

#
of

op
.u
ni
ts

#
of

m
at
er
ia
ls

di
ffi
cu

lt
y

N
am

e

#
of

op
.u
ni
ts

#
of

m
at
er
ia
ls

di
ffi
cu

lt
y

0 9 14 6 39 15 26 0 78 35 57 3 117 70 117 0
1 10 20 4 40 15 25 0 79 38 65 17 118 70 120 13
2 10 25 6 41 15 29 0 80 38 55 15 119 70 111 2
3 10 18 4 42 15 22 0 81 40 55 14 120 70 108 15
4 10 15 5 43 15 23 0 82 43 74 7 121 70 115 11
5 10 14 6 44 15 26 0 83 46 67 9 122 70 115 14
6 11 14 4 45 15 25 0 84 46 68 0 123 70 123 0
7 11 21 3 46 15 23 0 85 47 77 20 124 70 104 19
8 11 17 1 47 15 33 6 86 50 78 0 125 70 113 18
9 11 18 7 48 15 21 8 87 50 84 8 126 70 112 30
10 12 23 7 49 17 28 1 88 50 93 15 127 70 108 20
11 12 20 0 50 18 27 7 89 50 81 2 128 70 117 18
12 13 16 5 51 18 31 0 90 50 84 15 129 70 107 19
13 13 22 0 52 18 30 12 91 50 80 7 130 70 113 6
14 13 26 2 53 24 48 9 92 50 79 9 131 70 115 4
15 13 20 6 54 24 37 1 93 50 90 8 132 70 109 4
16 14 22 7 55 29 46 0 94 50 81 10 133 70 115 14
17 14 25 0 56 29 52 0 95 50 87 21 134 70 101 26
18 14 28 7 57 30 57 9 96 50 78 5 135 70 102 7
19 14 14 6 58 30 55 5 97 50 83 19 136 90 140 5
20 15 27 3 59 30 49 9 98 50 87 13 137 90 158 13
21 15 28 10 60 30 50 10 99 50 73 12 138 90 143 3
22 15 26 10 61 30 53 11 100 50 81 7 139 90 160 26
23 15 24 7 62 30 53 4 101 50 95 14 140 90 133 4
24 15 31 3 63 30 48 16 102 50 85 8 141 90 148 3
25 15 23 8 64 30 48 3 103 50 80 9 142 90 140 1
26 15 24 6 65 30 49 8 104 50 82 0 143 90 155 41
27 15 27 8 66 30 54 19 105 50 86 12 144 90 142 23
28 15 31 5 67 30 53 12 106 50 101 0 145 90 149 28
29 15 31 4 68 30 53 10 107 50 85 0 146 90 136 4
30 15 22 2 69 30 58 13 108 50 80 8 147 90 143 2
31 15 26 6 70 30 50 0 109 50 90 0 148 90 149 3
32 15 22 5 71 30 51 0 110 50 86 0 149 90 143 8
33 15 33 5 72 30 40 0 111 50 68 5
34 15 29 5 73 30 44 13 112 54 74 25
35 15 29 7 74 30 41 0 113 55 97 3
36 15 24 7 75 30 48 0 114 68 102 5
37 15 30 3 76 30 50 0 115 70 101 30
38 15 27 0 77 35 56 3 116 70 109 24

107

	Szerzői nyilatkozat
	Tartalomjegyzék
	Köszönetnyilvánítás
	Kivonat
	Abstract
	Abstracto
	Bevezetés
	Feladatmegfogalmazás
	Szakirodalmi áttekintés
	Ütemezési feladatok
	Ütemezési feladatok általános megfogalmazásai
	MILP megoldások
	Állapottér bejáráson alapuló megoldások
	S-gráf módszertan

	A folyamathálózat-szintézis alapjai
	P-gráf módszertan alapjai, alapfogalmak
	Strukturális reprezentáció, P-gráf
	Axiómák
	A PNS paraméteres modellje
	Algoritmusok

	Alkalmazási területek
	Ütemezés TCPNS-el
	Multiperiódusos modellek

	Szoftver
	Megoldó algoritmusok párhuzamosításai
	Branch & Bound algoritmusok párhuzamosítása
	Párhuzamosított RCABB algoritmus
	Párhuzamosítási lehetőségek napjainkban

	Multiperiódusos P-gráf
	Kapacitáskiegyenlítés tárolók bevezetésével
	Multiperiódusos P-gráf modell általános leírása
	A tárolók megvalósítása algoritmikusan
	Szoftveres megvalósítás
	Alkalmazhatósági területek
	Gyártástervezés
	Hulladékkezelés és karbantartási idők
	Energiatárolás

	A fejezet rövid összefoglalása
	A fejezethez tartozó tézis
	A fejezet témaköréhez kapcsolódó publikációk

	Line Balancing
	Probléma meghatározás
	Modellezés és megoldás a TCPNS egy egyszerűsített változatával
	A probléma MILP modellje
	Szoftveres megvalósítás és visszajelzések
	A fejezet rövid összefoglalása
	A fejezethez tartozó tézis
	A fejezet témaköréhez kapcsolódó publikáció

	A hálózatszintézishez kapcsolódó algoritmus fejlesztések
	Az RCABB algoritmus párhuzamosításának megvalósítása CPU-n
	Teszthalmaz készítése
	Paraméteroptimalizálás
	Az optimalizált megoldó hatékonyságnövekedése és összehasonlítás más megoldókkal
	A fejezet rövid összefoglalása
	A fejezethez tartozó tézis
	A fejezet témaköréhez kapcsolódó publikációk

	Összefoglalás
	Irodalomjegyzék
	Melléklet

