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Kivonat 

Kétfázisú áramlásokat leíró modellek és szimulációk alkalmazása és 

fejlesztése 

A doktori dolgozatban a kétfázisú rendszerek modellezési és szimulációs 

kihívásaival foglalkozom, és az azon belül végzett tudományos eredményeimet 

mutatom be. Gáz-szilárd és folyadék-szilárd rendszerek a vegyipar számos 

műveletében előfordulnak, például keverésnél, szétválasztásnál vagy fluidizáció 

esetében. A modellezési lehetőségeknek széles választéka áll a kutatók 

rendelkezésére, melyeket megfelelően kiválasztva és alkalmazva egy-egy 

vegyipari technológiafejlesztési probléma megoldásában hatékonyan 

felhasználhatunk. A dolgozatban az elméleti bevezetőt követően a kísérletekhez és 

a szimulációs számításokhoz szükséges módszereket és eszközöket ismertetem, 

majd gyakorlati részként az újonnan kialakított, kétfázisú rendszerek 

fáziskölcsönhatásával is számoló modelleket mutatom be esettanulmányokon 

keresztül. A biomassza elgázosító reaktor hidrodinamikáját vizsgáló, többfuratos 

jetkeverő keverőteljesítményét jellemző, laboratóriumi fluidizációs berendezést 

modellező, adszorpciós, valamint szedimentációs folyamatot részletesen leíró 

modellek reprezentatív mintáját adják azon esetek kezelésének, amelyekhez jól 

használható implementációkat fejlesztettem. A direkt numerikus szimulációk, 

ezen belül az immersed boundary módszer volt a leggyakrabban alkalmazott 

módszer, amelyet az az utóbbi három példa esetén használtam. Az immersed 

boundary módszeren alapuló szimulációkban a fő tudományos eredményt a 

konkrét vegyipari művelet-elemekre alkalmazhatóság körülményeinek 

megteremtése jelenti. Ezekben a példákban olyan szimulátorokat hoztam létre, 

amelyek alkalmasak a bemutatott gáz-szilárd és folyadék-szilárd kétfázisú 

áramlást tartalmazó rendszerekhez hasonló más rendszerek modellalapú 

tanulmányozására is. 

Kulcsszavak: kétfázisú modellezés, fáziskölcsönhatás, hidrodinamika, 

numerikus áramlástan, folyamatintenzifikálás 
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Abstract 

Application and developement of two-phase models and simulators 

In the doctoral dissertation I approach  the modeling and simulation 

challenges of two-phase systems and present my scientific results. Gas-solid and 

liquid-solid systems are a part of  many operations in the chemical industry, such 

as mixing, separation or fluidization. A wide range of modeling options is 

available to the researchers, which can be selected and applied to the solution of a 

chemical technology development problem. 

My dissertation will begin with the theoretical introduction where I describe 

the methods and tools required for experiments and simulation calculations. Next, 

I will continue with the practical side where I present the newly developed models 

that also calculates the phase interaction of two-phase systems through case 

studies. I provide a representative sample of models for cases where I developed 

reliable tools (Including, but not limited to: studying the hydrodynamics of a 

biomass gasification reactor, characterizing the mixing performance of a multi-

bore jet mixer, modeling laboratory-scaled fluidization equipment and describing 

the adsorption and sedimentation process in detail). Along with direct numerical 

simulations, my most commonly used tool was the immersed boundry method. 

My last three examples utilize this method resulting in the creation of conditions 

for the applicability to other cases. In the examples provided, I have created 

simulators that are also suitable for model-based studies of other systems similar 

to the presented gas-solid and liquid-solid two-phase flow systems. 

Keywords: two-phase modeling, phase interaction, hydrodynamics, 

computational fluid dynamics, process intensification 
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Auszug 

Anwendung und Entwicklung von Zweiphasenmodellen und Simulatoren 

In der Dissertation beschäftige ich mich mit den Modellierungs- und 

Simulationsherausforderungen von Zweiphasensystemen und ich präsentiere 

meine wissenschaftlichen Ergebnisse. Gas-Feststoff- und Flüssigkeit-Feststoff-

Systeme treten in vielen Bereichen der Chemieindustrie auf, zum Beispiel beim 

Mischen, bei der Zertrennung oder Fluidisieren. Dem Forscher steht eine breite 

Palette von Modellierungsoptionen zur Verfügung, die nach der richtigen 

Auswahl und Anwendung zur Lösung eines Entwicklungsproblems der 

chemischen Technologie eingesetzt werden können. In der Dissertation beschreibe 

ich nach der theoretischen Einführung die Methoden und Werkzeuge, die für 

Experimente und Simulationsberechnungen erforderlich sind, dann stelle ich als 

praktischen Teil die Modelle vor, die auch die Phasenwechselwirkung von neu 

entwickelten Zweiphasensystemen anhand aufgrund der Fallstudien. Die Direkten 

numerischen Simulationen, innerhalb die Immersed Boundary-Methode waren 

meine am häufigsten verwendete Methode, die ich bei den letzten drei Beispiele 

verwendet habe. In diesen Beispielen habe ich solche Simulatoren erstellt, die 

auch für modellbasierte Studien anderer Systeme geeignet sind, die zu den 

vorgestellten Zweiphasenströmungssystemen Gas-Feststoff und Flüssigkeit-

Feststoff Systeme (also den Verschränkung) ähnlich sind. 

Schlüsselwörter: Zweiphasenmodellierung, Phasenwechselwirkung, 

Hydrodynamik, Numerische Fluiddynamik, Prozessintensivierung 
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1. Bevezetés 

Kétfázisú áramlás számos vegyipari folyamatban előfordul. Ha a gáz-szilárd 

kétfázisú áramlásokat tekintjük, akkor a szemcsetechnológiai műveletek (pl. 

fluidizáció, pneumatikus szállítás) mind olyan folyamatok, amelyek megértését 

segítheti a modellezés és szimuláció. A megismerés útja lehet méréseken 

keresztüli vagy szimulációs vizsgálatokból nyert információ, melyekből az 

utóbbinak nagy előnye a rugalmasság. A részletes szimulációs vizsgálatokon 

keresztüli jobb megértés számos területen hozhat gazdasági, és közvetve vagy 

közvetlenül környezetvédelmi hasznot. A kétfázisú rendszerekben meglehetősen 

nehéz az áramlás megzavarása nélkül végezni olyan méréseket, amelyek részletes 

információval látnának el a rendszer működéséről. Modellalapú megismeréshez 

vezet az is, ha empirikus modellekkel dolgozunk. Azonban a korunkra jellemző 

ugrásszerű számítástechnikai fejlődés lehetővé teszi, hogy belátható időn belül 

eredményt kapjunk a részletes, fázis szintű modellek megoldására is, mivel 

numerikus megoldásukra hatékony módszerek, a számítási műveletek 

elvégzéséhez pedig nagy teljesítményű számítógépek állnak rendelkezésre. A 

numerikus áramlástan (Computational Fluid Dynamics, CFD) módszereit 

alkalmaztam a modellfejlesztésben és a szimulációs vizsgálatokban. Egyes 

esetekben olyan programcsomagot használtam, ahol a megoldómódszereket ki 

lehet választani az adott modell és probléma megoldására, más esetekben a 

modellegyenletek diszkretizálásának és megoldásának lépéseit saját fejlesztésű 

programmal oldottam meg. 

Dolgozatomban először az aktuális szakirodalmat ismertetem a fluid-szilárd 

kétfázisú rendszerek modellezési módszereire fókuszálva, a dolgozat második fele 

pedig esettanulmányokon keresztül mutatja be a korábban említett módszerek 

alkalmazását különböző problémákra, és az azokkal elért eredményeket. Egy 

többfuratos multijet keverő példáján szemcsekövetési vizsgálaton alapuló 

homogenitásmérték számítását mutatom be, valamint egy biomassza elgázosító 

reaktor példáján CFD és cellás modellezés alkalmazásával nyert 

következtetéseimet ismertetem. Ehhez a két példához egyfázisú modelleket 

alkalmaztam, a szilárd fázis a modellben közvetlenül nem jelenik meg. Szilárd 

szemcse folyadékban való ülepedését vizsgáló esettanulmányomban a folyadék-
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szilárd rendszer leírására az Immersed Boundary módszert használtam, és a 

vizsgált eset a közeg összenyomhatatlanságában (ebből fakadóan a megoldandó 

egyenletekben és megoldómódszerekben) tér el a gáz-szilárd rendszereket 

vizsgáló további két példámtól. Gáz-szilárd fluidizáció modellezésére 

fejlesztettem részletes, direkt numerikus módszeren alapuló szimulátort, és ennek 

kiterjesztéseként egy gáz- és szilárd fázis közötti komponensátadással bővített 

modellt fejlesztettem adszorpciós gáztisztító oszlop működésének vizsgálatára. Az 

új tudományos eredményeket a dolgozat végén tézispontokba szedve ismertetem. 
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Rövidítések jegyzéke 

Rövidítés Angol kifejezés Magyar kifejezés 

av average átlag 

CFD Computational Fluid Dynamics numerikus áramlástan 

CFL Courant-Friedrich-Lewy  

CM compartment modeling cellás modellezés 

DEM Discrete Element Method diszkrételem módszer 

DNS Direct Numerical Simulations közvetlen számításos módszer 

vagy direkt numerikus 

szimulációk 

FCC fluid catalytic cracking fluidágyas katalitikus krakkolás 

(olyan katalitikus krakkolás, 

amelyben a katalizátor 

fluidizált állapotban van) 

FDM Finite Difference Method véges differenciák módszere 

FEM Finite Element Method végeselem módszer 

fps frame per second képkocka másodpercenként 

FSI fluid-structure interaction fluid-szilárd kölcsönhatás 

FVM Finite Volume Method véges térfogatok módszere 

IBM Immersed Boundary Method  

KTGF kinetic theory of granular flow szemcsés közegek áramlásának 

kinetikai elmélete 

PEPT positron emission particle 

tracking 

szemcsekövetés pozitron 

kibocsátásos technikával  

PIMPLE  SIMPLE és PISO keveréke 

PISO Pressure-Implicit with Splitting 

of Operators 

 

PIV particle image velocimetry optikai sebességmérés 

PSO particle swarm optimization  
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ROI region of interest kiemelt képtartomány 

RTD residence time distribution tartózkodási idő eloszlás 

SIMPLE Semi-Implicit Method for 

Pressure-Linked Equations 

a legismertebb 

nyomáskorrekciós módszer 

neve 

TDMA Tridiagonal Matrix Algorithm tridiagonális mátrix algoritmus 

TFM Two-Fluid Modell két-folyadék elméleten alapuló 

modell 

TKE  tökéletesen kevert egység 

TVD Total Variation Diminishing numerikus hibát kiküszöbölő 

módszer neve 

VOC Volatile Organic Components illékony szerves anyagok 
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Jelölésjegyzék 

u a sebesség x irányú komponense 

v  a sebesség y irányú komponense 

w  a sebesség z irányú komponense 

t idő 

pf a fluid fázis nyomása 

ps a szilárd fázis nyomása 

𝜏𝑓̿ a fluid fázis viszkózus feszültségtenzora 

𝜏𝑠̿ a szilárd fázis viszkózus feszültségtenzora 

β a közegellenállási együttható 

𝑔⃗ pedig a gravitációs gyorsulásvektor 

µ  dinamikai viszkozitás 

ρ  sűrűség 

L karakterisztikus hossz 

e belső energia 

E  belső- és mozgási energia összege 

γ  hőkapacitási hányados 

Re Reynolds szám 

f body force 

x az euleri pontok koordinátái 

X  a lagrange-i pontok koordinátái 

h az euleri rácspontok közötti távolság (rácsszélesség)  

Δs a lagrange-i rácspontok közötti távolság (rácsszélesség) 

δ interpolációs függvény 

g gravitációs gyorsulás 

Ub  a sebességvektor a lagrange-i pontban 

RHS összefoglaló jelölése egy egyenlet jobboldolára rendezett tagjainak 

𝜏̅ átlagos tartózkodási idő 

C koncentráció 

F térfogatáram 

V térfogat 
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2. Irodalmi áttekintés 

Ebben a fejezetben a kétfázisú áramlások modellezésének elméleti 

megközelítési módjait mutatom be, melyek az általam is alkalmazott vagy 

továbbfejlesztett módszerek alapjai. A kétfázisú rendszerek áramlási 

modellezésében háromféle fő megközelítési irány terjedt el, melyek a fluid és a 

szilárd fázist a 2.1. táblázatban található módon kezelik. 

2.1. táblázat. Alap modellezési megközelítések kétfázisú áramlások számítására. 

Modellezési módszer Fluid fázis Szilárd fázis 

Két-folyadék módszer 

(Euler-Euler) 

térfogatátlagolt 

áramlási egyenletek 

térfogatátlagolt 

áramlási egyenletek 

CFD-Diszkrét elem módszer 

(Euler-Lagrangian) 

térfogatátlagolt 

áramlási egyenletek 

egyedi részecskékre 

felírt mozgásegyenlet 

Direkt numerikus szimuláció 

(Euler-Lagrangian) 
áramlási egyenletek 

egyedi részecskékre 

felírt mozgásegyenlet 

Az áramlási egyenletek numerikus megoldásában azok a módszerek, 

amelyek térfogatátlagolt áramlási egyenleteket alkalmaznak, számítási hálóként a 

diszpergált fáziselemek méreténél egy vagy több nagyságrenddel nagyobb 

számítási cellaméretet használnak. A két-folyadék módszer a szilárd fázist is egy 

folytonos fázisnak tekinti és a két fázis sebességének és térfogati hányadának 

időbeli és helybeli változásának meghatározására alkalmas. A CFD-Diszkrét elem 

módszer alkalmazása során a szilárd fázist alkotó szemcséket különállóan 

kezeljük, ezért az alkalmazott számítási cellákban ki tudjuk számítani az adott 

időpillanatban érvényes átlagos térfogati hányadukat. Így ez a módszer amellett, 

hogy számítja a részecskék mozgását, a gázfázis sebességének meghatározására a 

térfogatátlagolt áramlási egyenleteket használja, amely során felhasználjuk a 

szilárd részecskék pozíciója és mérete alapján számított, a gázfázisra érvényes 

átlagos ürestérfogati hányad értékeit az egyes számítási cellákban. A 

térfogatátlagolt áramlási egyenletek esetében az egyenletekben a gázfázisra 

érvényes ürestérfogati hányad pontváltozóként jelenik meg, amelynek értéke a 

numerikus megoldás során az előbbiekben említett átlagos ürestérfogati 

hányadként adható meg. A számítási cellákban érvényes átlagos szilárd térfogati 
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hányad és egyben a gázfázis ürestérfogati hányadának meghatározása 

megköveteli, hogy a számítási cella mérete a szilárd részecskék méreténél 

legalább egy nagyságrenddel nagyobb legyen. A harmadik modellezési módszer, 

a direkt numerikus szimuláció, a legrészletesebb eredményt nyújtó módszer, 

amely az egyedi szilárd részecskék sebességének számítására, valamint a fluid 

fázis részecskék közötti részletes áramlásának meghatározására alkalmas a normál 

áramlási egyenletek felhasználásával. Ezen módszer esetén az áramlási térben 

elhelyezkedő részecskék falként, peremként jelennek meg. Ennél fogva a direkt 

numerikus szimuláció esetében a szilárd részecskéknél nagyságrendileg kisebb 

méretű cellákat használó számítási hálót alkalmazunk. 

A két-folyadék módszer nem nyújt részletes eredményt a szilárd fázist 

tekintve, a második és harmadik módszer a részecske mozgását tekintve részletes 

eredményt ad, a harmadik módszer pedig a gázfázis áramlását tekintve is részletes 

eredményt nyújt, számítva a részecskék közötti részletes áramlási mezőt. 

Értelemszerűen a módszerek alapján készített szimuláció számítási igénye az 

egyre részletesebb eredményt nyújtó módszerek esetében egyre nagyobb. A 

következő alfejezetekben a fenti három modellezési megközelítést mutatom be 

részletesebben. A modellegyenletek numerikus megoldásához diszkretizálni kell 

azokat mind térben, mind időben. Számos numerikus módszer létezik a különféle 

osztályba sorolt parciális differenciálegyenletek megoldására, amelyek közül a 

fejezet negyedik alfejezetében bemutatom az általam alkalmazott numerikus 

módszereket. 

2.1. Két-folyadék módszer 

A két-folyadék módszer (Two-Fluid Method, TFM), ahogy a neve is 

mutatja, fluidumnak, folytonos fázisnak tekinti mindkét áramló fázist. Az elvet, 

hogy a szilárd részecskék áramlását is az ismert áramlási egyenletekkel (Navier-

Stokes egyenletek) írjuk le, először Anderson és Jackson mutatta be 1967-ben egy 

fluidágy modellezésének példáján keresztül [1]. Ők vezették be a térfogatátlagolt 

áramlási egyenleteket, amely a számítási cellán belül átlagos térfogathányadhoz 

rendelt változókat használnak. Az ebben a módszerben alkalmazott számítási cella 

mérete a részecskék átlagos méreténél egy vagy több nagyságrenddel nagyobb. A 
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módszer kezdetben nem számolt a fázisok viszkozitásával. Később a két-folyadék 

módszert a Chapman és Cowling által bevezetett szemcsés közegek áramlásának 

kinetikai elméletével (kinetic theory of granular flow, KTGF) kapcsolták össze 

[2], és így kerültek az egyenletekbe a fáziskölcsönhatást leíró tagok. Ding és 

Gidaspow 1990-ben már ezt a kiegészített modellt alkalmazta fluidizáció 

modellezésére [3], majd ezt követően az 1990-es években számos publikáció 

jelent meg, amelyekben ezt a modellt alkalmazták. Boemer és Renz [4] csakúgy, 

mint Banaei és munkatársai [5] és még sokan mások az alábbi 2.1-2.2. 

egyenletekkel megadott modellt alkalmazták. A 2.1-2.2. folytonossági egyenletek 

a fluid- és a szilárd fázis tömegmegmaradását fejezik ki. 

𝜕

𝜕𝑡
(𝜀𝑓𝜌𝑓) + ∇ ∙ (𝜀𝑓𝜌𝑓 𝑢⃗⃗𝑓) = 0 (2.1) 

𝜕

𝜕𝑡
(𝜀𝑠𝜌𝑠) + ∇ ∙ (𝜀𝑠𝜌𝑠𝑢⃗⃗𝑠) = 0 (2.2) 

ahol t az idő, εf, ρf és 𝑢⃗⃗𝑓 a fluid fázis, εs, ρs és 𝑢⃗⃗𝑠  pedig a szilárd fázis térfogati 

hányada, sűrűsége és sebességvektora. A térfogati hányadokra teljesülnie kell az  

εf + εs = 1 összefüggésnek. 

Mindkét momentumegyenlet tartalmazza a két fázis kölcsönhatását leíró 

tagot, amely a két fázis sebesség-különbségének a függvénye (2.3. és 2.4. 

egyenletek). 

𝜕

𝜕𝑡
(𝜀𝑓𝜌𝑓 𝑢⃗⃗𝑓) + ∇ ∙ (𝜀𝑓𝜌𝑓 𝑢⃗⃗𝑓 𝑢⃗⃗𝑓) = −𝜀𝑓∇𝑝𝑓 − ∇ ∙ (𝜀𝑓𝜏𝑓̿) − β(𝑢⃗⃗𝑓 − 𝑢⃗⃗𝑠) + 𝜀𝑓𝜌𝑓𝑔⃗ (2.3) 

𝜕

𝜕𝑡
(𝜀𝑠𝜌𝑠𝑢⃗⃗𝑠) + ∇ ∙ (𝜀𝑠𝜌𝑠𝑢⃗⃗𝑠 𝑢⃗⃗𝑠) = −𝜀𝑠∇𝑝𝑠 − ∇ ∙ (𝜀𝑠𝜏𝑠̿) + β(𝑢⃗⃗𝑓 − 𝑢⃗⃗𝑠) + 𝜀𝑠𝜌𝑠𝑔⃗ (2.4) 

ahol pf és 𝜏𝑓̿ a fluid fázis, ps és 𝜏𝑠̿ pedig a szilárd fázis nyomása és a viszkózus 

feszültségtenzora, β a közegellenállási együttható, 𝑔⃗ pedig a gravitációs 

gyorsulásvektor. 

Az egyenletek megoldásával minden számítási cellában megkaphatjuk az 

egyes fázisok által elfoglalt térfogati hányadot, valamint a fázisok 

sebességmezőjét. A TFM-en alapuló szimulációk eredményét úgy vizualizálják, 

hogy a gáz- vagy szilárd fázis térfogathányadának térbeli vagy síkbeli értékeit egy 

színskála alapján ábrázolják. A 2.1. ábrán például a gázfázis térfogati hányadához 
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rendelt színskála alapján vizualizálták egy fluidágy működésének szimulációs 

eredményeit. 

 

2.1. ábra. Fluidizáció szimulációja TFM modellezési megközelítést 

alkalmazva [5]. 

A TFM módszer alkalmazására számos irodalmi példa található. Banaei és 

munkatársai fluidizációs keverőt vizsgálatak [5], Issa és Kempf buborékoszlopos 

áramlást szimuláltak vízszintes csövekben [6], Boemer és Renz egy fluidágy 

kétdimenziós modelljét és annak szimulációs eredményeit mutatták be [4], 

Noetinger pedig ülepedés modellezéséhez alkalmazta a két-folyadék módszert [7]. 

A TFM alkalmazása kétfázisú rendszerek áramlási modellezésére még 

napjainkban is népszerű modellezési módszer olyan esetekben, amikor nem cél a 

szilárd fázist alkotó részecskék mozgásának részletes meghatározása. Nagy előnye 

a TFM módszernek, hogy lényegesen kisebb a számítási igénye a részletesebb 

eredményt biztosító másik két módszerhez képest. 

2.2.  CFD-Diszkrét elem módszer 

A CFD-Diszkrét elem módszer alkalmazása során a gázfázis 

tulajdonságainak számítását a térfogatátlagolt áramlási egyenletek megoldásával 

végezzük, a szilárd fázist alkotó szemcsék tulajdonságait pedig egyedileg 

számítjuk. A diszkrét elem módszer (Discrete Element Method, DEM) egyik 

lényeges jellemzője, hogy az egyes részecskékről részletes információt biztosít, 

azok pozíciójának és méretének ismeretében kiszámíthatjuk a számítási cellában 

elfoglalt átlagos térfogati hányadukat, amelyet a gázfázis térfogatátlagolt áramlási 

egyenleteiben már ismert paraméterként használhatunk fel. A térfogatátlagolt 
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kifejezés itt is azt jelenti, hogy az áramlási egyenletek pontváltozóként 

tartalmazzák az átlagos ürestérfogati hányadot. Az áramlási egyenletek numerikus 

megoldása során a számítási cella méretét úgy határozzuk meg, hogy a szilárd 

szemcsék méretétől egy vagy több nagyságrenddel nagyobb legyen (2.2. ábra). 

 

2.2. ábra: A térfogatátlagolt áramlási egyenleteket használó módszerek jellemző 

részecske-cellaméret aránya. 

A CFD-Diszkrét elem módszert nevezik még Euler-Lagrangian, Euler-DEM 

vagy CFD-DEM módszernek is. Zhong és munkatársai nemrég megjelent 

cikkükben kiemelik a CFD-DEM alkalmazhatóságát olyan szemcsés rendszerek 

esetében is, ahol a szemcsék nem szabályos gömb alakúak [8]. A módszer 

használata az egyedileg kezelt részecskék miatt nagyon számításigényes, a 

jelenlegi számítási kapacitások mellett, nem párhuzamosított számítás esetén 

néhány százezer részecske szimulációjára alkalmas elfogadható idő alatt. A CFD-

DEM módszer gyakran alkalmazott eszköz fluidizációs berendezések 

modellezésére. He és munkatársai CFD-DEM módszert alkalmaztak fluid-szilárd 

kölcsönhatás modellezésére, melyet fluidizációs berendezések példáján keresztül 

mutattak be [9]. Luo és munkatársai buborékoló fluidágyban létrejövő keveredést 

modellezték CFD-DEM módszerrel [10]. 

A diszkrét elem módszer alkalmazásában egyedileg számítjuk a szilárd 

szemcsék mozgását. A részecskék kétféle mozgással rendelkezhetnek, forgó- és 

haladómozgással. Az egyes részecskék forgó- és haladómozgását leíró modell 

alapjait Cundall dolgozta ki az 1970-es években szemcsés rendszerek részletes 

modellezésére [11]. A diszkrét elem módszer (Discrete Element Method, DEM) a 
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részecskék mozgásának leírásához rugalmas vagy rugalmatlan ütközési 

modelleket is alkalmazhat. A rugalmas ütközési modellek a rugalmas ütközést 

egyszerű mechanikai elemekkel valósítják meg. A rugalmas ütközést egy rugóval, 

az ütközés energiaveszteségét lengéscsillapítóval, a szemcsék közötti súrlódást 

pedig csúszkával modellezik (2.3. ábra). A szemcsére hathatnak az érintőirányú 

(tangenciális) erők, amelyek a forgómozgást okozzák, és a normál irányú erők, 

amelyek a haladó mozgást okozzák. A modell paraméterei a kn és kt normál- és 

tangenciális irányra vonatkozó rugóállandók, valamint ηn és ηt normál- és 

tangenciális irányra vonatkozó csillapítási tényezők. A csúszka elemmel a két 

szemcse közötti felületi súrlódást modellezzük, paramétere a µ súrlódási 

együttható. 

 

2.3. ábra. Két szemcse közötti rugalmas ütközés modellje [12]. 

Az ütközés és az ütközésekből származó ütközési erők számítása akkor 

történik, ha a két részecske középpontjainak távolsága kisebb vagy egyenlő a 

sugaraik összegénél. A fallal történő ütközést is szemcse-szemcse ütközésre 

vezetjük vissza, ekkor a fal „mögött” egy úgynevezett tükörrészecskét képzelünk 

el. A rugó elem által kifejtett erő mértéke azzal arányos, hogy a részecskék között 

elképzelt rugót mennyire nyomjuk össze, azaz a modell szerint a változatlan alak 

mellett mennyire fednek át. Az átfedés a két részecske sugarainak összege és a 

középpontjai közötti távolság különbségéből adódik. A diszkrét elem módszerhez 

használható ütközési modellek különböző változatait és a modell paraméterek 

számítási módjait mutatja be Horabik és Molenda összefoglaló cikke [13]. 

A DEM alkalmazható olyan, gravitáción alapuló szemcsés műveletek 

modellezésére is, ahol mozgó falperemet kell definiálni, de a gázfázis hatása 
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elhanyagolható. Shen és munkatársai a diszkrét elem módszert szemcsék 

mozgásának modellezésére alkalmazták szállítószalagon [14], Gallego és 

munkatársai bordázott falú silók esetében ürítési szimulációkhoz alkalmazták 

[15], Yazdani és Hashemabadi pedig keveredés modellezésére forgódobban [16]. 

Ma és Zhao szintén forgódobban vizsgálta ellipszoid alakú szemcsék mozgását 

[17] DEM-mel. Gyenis és munkatársai keveredés vizsgálatához alkalmazták a 

diszkrét elem módszert statikus keverőelemeket tartalmazó csövekben [18], You 

és Zhao pedig speciális alakú granulátumok térkitöltési tulajdonságainak 

vizsgálatához használta a DEM-et [19]. 

A DEM önállóan is alkalmazható módszer, ekkor csak a szilárd fázis 

elemeinek mozgását írjuk le. Ha a fluid fázist is számítjuk, és figyelembe vesszük 

a szilárd részecskékre gyakorolt hatását, akkor már a CFD-DEM módszerről 

beszélünk, amely fluid-szilárd kétfázisú áramlás számítására alkalmas. 

2.3.  Direkt numerikus szimulációs módszerek 

Az Euler-Lagrange típusú modelleknek a CFD-DEM módszeren kívül egy 

másik csoportja is létezik, ahol a fluid fázist a hagyományos Euler vagy 

Navier-Stokes egyenletekkel számítjuk, és a szilárd részecskéket egyedileg 

kezeljük, azonban a fluid fázis számításában a szilárd részecskék az áramlási 

térben falakként (peremként) jelennek meg. Direkt numerikus szimulációnak 

(Direct Numerical Simulation, DNS) nevezik ezt a módszert, amelynek legfőbb 

jellemzője, hogy ezzel a módszerrel meghatározhatjuk a részecskék közötti 

részletes áramlási mezőt, a részecskék mozgását pedig a közvetlenül vele 

érintkező gáz sebessége és nyomása alapján számítjuk. Ebből következik, hogy az 

ebben az esetben alkalmazott számítási háló cellaméretének a szilárd részecskék 

méreténél egy vagy több nagyságrenddel kisebbnek kell lennie. A direkt 

numerikus szimulációk között két módszer terjedt el a fluid fázis számítását 

illetően. Az első módszerben a fluidum áramlási jellemzőit a mozgó szilárd 

részecskék felületéhez illeszkedő, úgynevezett body-fitted számítási háló 

alkalmazásával számítjuk (2.4.a ábra). A második módszer viszont egy szabályos 

és időben változatlan számítási hálót használ, a részecske fázishatárát pedig 

virtuális peremként definiáljuk (2.4.b ábra). A virtuális perem alkalmazása azt 
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jelenti, hogy a részecske nem jelenik meg fizikai falként, peremként, hanem ebben 

a módszerben a momentumegyenlethez hozzáadunk egy olyan erőtagot (body 

force), amely úgy módosítja az áramlást, mintha ott valóban egy részecske lenne. 

Habár a direkt numerikus szimulációs módszerek a nagy felbontású 

számítási hálópontok miatt rendkívül számításigényesek, a számítástechnika 

vívmányai (pl. párhuzamos számítás) egyre inkább lehetővé teszik a nagyszámú 

részecskét tartalmazó rendszerek szimulációját. 

 

2.4. ábra. A fluid fázis számítási hálója a) body-fitted, b) szabályos, időfüggetlen. 

Body-fitted módszerek 

A direkt numerikus szimulációs módszerek egyik csoportja, a body-fitted 

módszer onnan kapta a nevét, hogy a számítási háló a szilárd részecskékhez 

illeszkedik (2.4.a ábra). A részecskék valós fizikai peremként jelennek meg, és az 

áramlási változók számításához a hagyományos Euler egyenleteket használjuk. Az 

egymással kölcsönhatásban lévő szilárd és folyadék fázis esetében azonban nem 

csak a szilárd fázis változtatja meg a fluid fázis áramlási képét, hanem a fluid fázis 

áramlásának hatására a részecskék is helyet változtatnak, ezáltal a számítási hálót 

is újra kell generálni, a fluid fázis változóit pedig a régi rácspontokról az újra kell 

projektálni [20], azaz interpolációval meghatározni. Ezeket a műveleteket minden 

időlépésben el kell végezni, rendkívül számításigényessé és lassúvá téve ezzel a 

megoldást. A body-fitted módszer lépéseit az alábbiakban foglalhatjuk össze. 

1. Számítási háló generálása; 

2. Áramlási mező számítása; 

3. Részecske mozgás számítása; 

4. Új számítási háló generálása; 
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5. Projekció; 

6. Vissza a 2. lépéshez, amíg a szimulációs időlépések végére nem érünk. 

További nehézséget okoz, hogy ahol az egyik időlépésben még szilárd 

részecske helyezkedett el, ott az elmozdulás miatt a következő időlépésben már a 

fluidfázis veheti át a helyet, azonban azon a helyen még előtte nem volt 

semmilyen értéke az áramlási változóknak (nem volt a számítási domain része), 

ezért azokra a számítási cellákra extrapolálni kell az adatokat. Ehhez hasonló 

problémával foglalkozik például Dixon és munkatársainak [21] vagy Rebughini és 

munkatársainak [22] cikke, ahol az áthidalást, az úgynevezett bridge-ek számítását 

vizsgálják két szemcse ütközése esetén. Ilyen esetben az áthidaló területet 

egységes áramlási tulajdonságokkal töltik ki, elhanyagolva ezzel a szemcsék 

közvetlen közelében lévő áramlási mező egyedi tulajdonságait. Amennyiben 

nagyon közel vannak egymáshoz a szemcsék, és nem alkalmaznak hidat, akkor a 

végtelenségig kellene finomítani a számítási hálót, és ez jelentősen megnövelné a 

számítási igényt. 

Immersed Boundary módszer 

Immersed Boundary módszernek (Immersed Boundary Method, IBM) 

nevezzük a direkt numerikus szimulációs módszerek másik nagy csoportját. 

Ebben a módszerben két számítási hálót használunk, egy euleri számítási hálót a 

gázfázis számítására, és egy lagrange-i hálót a részecske peremének 

reprezentációjára. A két számítási háló egymástól független, tehát ha változik a 

részecske helye, az nem fogja megváltoztatni az euleri hálót. Ebből a 

tulajdonságból kifolyólag a body-fitted számítási hálókat alkalmazó módszerek 

hátrányait kiküszöböljük, a számítás jelentősen hatékonyabb és gyorsabb lesz, 

azonban a virtuális perem kezelésével kapcsolatban számos modellezési 

kihívással kell szembenéznünk. 

Ha egy részecske mozgását a fluidumban IBM módszerrel szeretnénk 

modellezni és szimulálni, akkor a következő lépéseket kell végrehajtani. 

Részecskemozgás számítása immersed boundary módszerrel 

1. A dimenziók megválasztása (2D vagy 3D); 
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2. A modellegyenletek diszkretizált alakjának felírása; 

3. Az áramlási tér geometriájának kialakítása vagy importálása; 

4. Számítási háló létrehozása; 

5. A modellegyenletekben szereplő paraméterek definiálása; 

6. Kezdeti értékek és a kezdeti peremfeltételek definiálása; 

7. A szimuláció időtartamának megadása; 

8. Az időlépések számítása; 

I. Az időlépés nagyságának számítása a stabilitási kritérium alapján; 

II. Az áramlási változók számítása a diszkretizált egyenletek és az 

alkalmazott numerikus módszer alapján; 

III. Új peremértékek kiszámítása; 

IV. A szilárd szemcse és a fluidum kölcsönhatásának számítása; 

9. Végül az eredmények értékelése, ábrázolás. 

Az immersed boundary módszer használata esetén a fluid fázis számítási 

hálója egy strukturált számítási háló, amelyet a szilárd részecskék virtuális 

peremének változása nem változtat meg. Ennek a fix számítási hálónak a 

rácspontjait euleri pontoknak nevezzük. A szilárd részecskének a pereme mentén 

is kijelölünk számítási rácspontokat, ezeket lagrange-i pontoknak nevezzük (2.5. 

ábra). Az euleri és lagrange-i rácsszélességeket a megfelelő számítási pontosság 

biztosítása érdekében általában azonos nagyságrendben vesszük fel. 

 

2.5. ábra. Az immersed boundary módszer során alkalmazott számítási hálók 

rácspontjai a rácsszélességek jelölésével (h az euleri rácsszélesség, Δs a lagrange-i 

rácsszélesség) 
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Az immersed boundary módszert, az ötletet, hogy a fluid fázis számítási 

hálója időtől független legyen, elsőként Peskin vezette be szívbillentyűk 

mozgásának modellezésére véráramban [23]. Azóta a módszernek számos 

változata született, és napjainkra a leggyakoribb direkt numerikus szimulációs 

módszer lett, háttérbe szorítva a korábban használt body-fitted számítási hálót 

alkalmazó módszert [24]. 

Az IBM kihívásai elsősorban a két fázis egymásra hatásának számításában 

rejlenek. Először is a mozgó szemcse fizikai határának megállapítása és kezelése 

sem egyszerű feladat, ugyanis ebben a módszerben a részecskék nem jelennek 

meg konkrétan falként, hanem csak úgynevezett virtuális peremként. Másodszor 

pedig a testet körüláramló fluid fázis sebessége befolyással van a szilárd test 

sebességére. Ezt az oda-vissza hatást fluid-structure interaction-nek (FSI), azaz a 

fluid-szilárd fázisok közötti kölcsönhatásnak is nevezik [25]. A kihívást az euleri 

pontokban számított változó értékek felhasználása a lagrange-i pontokban, és 

fordítva, a lagrange-i pontokban számított értékek euleri pontokban való 

felhasználása jelenti. Az általam alkalmazott módszer szerint egy interpolációs 

függvény (δ) segítségével valósíthatjuk meg a kapcsolatot a kétféle számítási 

rácspont értékei között. Interpolációs függvényekként különféle súlyfüggvényeket 

használhatunk (2.6. ábra). A függvény tartója adja meg a hatókör szélességét. 

 

2.6. ábra. Néhány példa az euleri és lagrange-i rácspontokon számított változók 

értékei közötti interpolációhoz használható súlyfüggvényekre [26] [23] [27]. 
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A szilárd és gázfázis közötti kölcsönhatás formális leírását nyújtja 

diszkretizált alakban az alábbi két egyenlet (2.5-2.6. egyenletek) két-dimenziós 

esetben. Ezekre azért van szükség, mert az euleri pontokban nem ismerjük a body 

force tagot, amelyet a momentumegyenlethez adva az áramlás irányát úgy 

változtatja meg, hogy a virtuális peremet létrehozza, a lagrange-i pontokban pedig 

nem ismerjük a fluid fázis sebességét, amely a szilárd részecske sebességére is 

befolyással van. 

𝐟𝑛(𝐱) =∑𝐅𝑛
𝑀

𝑗=1

(𝐗𝑗)𝛿(𝐱 − 𝐗𝑗)∆𝑠 minden x-re (2.5) 

𝐔𝑏
𝑛(𝐗𝑘) =∑𝐮𝑛

𝐱

(𝐱)𝛿(𝐱− 𝐗𝑘)ℎ
2
 k=1,2,…M (2.6) 

ahol x az euleri pontok koordinátáit, X pedig az M db lagrange-i pont koordinátáit 

jelöli. A lagrange-i rácspontok közötti távolság Δs, az euleri rácsszélesség h 

minden dimenzióban, f
n
 és F

n
 az egységtérfogatra vonatkoztatott erővektorok az 

adott euleri és lagrange-i pontban az n. időlépésben, u és Ub a sebességvektorok 

az euleri és lagrange-i pontokban (b a boundary-t (peremet) rövidíti), δ az 

interpolációs függvény. 

A virtuális perem kialakítása érdekében a lagrange-i rácspontok közelében 

elhelyezkedő euleri számítási cellákban bevezetünk a momentumegyenletbe egy 

body force erőt (f), amelynek a hatására a fluidum áramlási iránya úgy változik a 

virtuális peremnek megfelelően mintha ott egy valós peremmel rendelkező 

részecske helyezkedne el. Ezt a térfogategységre vonatkoztatott erőt 

(mértékegysége N/m
3
) úgy határozzuk meg, hogy segítségével az áramlás 

sebessége a szemcse falánál a szemcse sebességét érje el. A body force 

számítására több módszert fejlesztettek ki, a merev szilárd részecskék esetében 

más megközelítést kell alkalmazni, mint az elasztikusaknál. Mivel alkalmazási 

példáimban csak merev szilárd részecskékkel foglalkoztam, így a modelljeimben 

a merev szilárd részecskék esetében alkalmazható direct forcing módszert 

alkalmaztam, melyet először Mohd-Yusof vezetett be [28], majd Fadlun és 

munkatársai [29], Lima E Silva és munkatársai [30], valamint Uhlmann [31] 

további fejlesztéseket végeztek rajta. A módszer lényege, hogy a body force 
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értékét úgy számítja ki, hogy az áramlási változó értéke a peremhez közeli euler-i 

pontokban felvegye a lagrange-i pontok sebességét. Példaképpen tekintsük a 2.7. 

egyenletet, amely egy nem-kompresszibilis közeg áramlását írja le a primitív 

változókra rendezett alakban. 

𝜌 (
𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ ∇)𝒖) = −∇𝑝 + 𝜇∇2𝒖 + 𝒇 + 𝑔 (2.7) 

ahol u a sebességvektor, p a nyomás, μ a közeg dinamikai viszkozitása, f a body 

force vektor, g pedig a gravitációs gyorsulás. 

A body force az idő és a hely függvénye, csak azokban a számítási 

cellákban kap értéket, amelyek a szemcse peremének közelében helyezkednek el. 

Ha differenciáljuk a 2.7. egyenlet időbeli differenciálhányados tagját és rendezzük 

az egyenletet, akkor a 2.8. egyenletet az alábbi módon írhatjuk. 

𝒖−𝒖𝟎

∆𝑡
= 𝑅𝐻𝑆 + 𝒇 (2.8) 

ahol u a fluidum aktuális sebességvektora, u
0
 az előző időpillanatbeli 

sebességvektora, az RHS tartalmazza a 2.7. egyenlet szerinti konvektív és 

viszkózus tagokat valamint a nyomásgradienst. 

A fluidum sebessége egy adott euler-i pontban akkor lesz a szemcse 

felületének sebességével megegyező, ha a body force értékét az adott pontban a 

2.9. egyenlettel számítjuk ki. 

𝒇 = −𝑅𝐻𝑆 +
𝑼𝒃−𝒖

𝟎

∆𝑡
 (2.9) 

ahol Ub a virtuális perem sebességvektora a lagrange-i pontban (b a boundary-t 

(peremet) rövidíti). 

Az immersed boundary módszer és a többi direkt numerikus szimulációs 

módszer lehetőséget nyújt a többfázisú rendszerek részletes modellezésére, 

amellyel a kétfázisú áramlás során lejátszódó folyamatok pontosabban 

határozhatók meg, mint a térfogatátlagolt áramlási egyenleteket használó 

módszerekkel. Ugyanakkor ez a megközelítés a finom számítási háló miatt 

rendkívül számításigényes, így azok a kutatások, amelyek a számítási 
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hatékonyság javítását célozzák meg, jelentősen hozzájárulhatnak ennek a 

módszernek a szélesebbkörű alkalmazásához. 

2.4.  A modellegyenletek diszkretizálásának és numerikus 

megoldásának módszerei 

Az áramlási egyenletek parciális differenciálegyenletek formájában adják 

meg az áramlási változók idő- és helyfüggését. Az áramló közeg teljes 

jellemzéséhez szükséges mérlegegyenletek olyan parciális differenciálegyenlet-

rendszert alkotnak, melyeknek analitikus megoldása csak speciális esetekben 

ismert. 

Az áramlási egyenleteket formáját tekintve a későbbiekben előforduló 

megmaradási alak kifejezés azt jelenti, hogy az áramlás leírásához használt 

modell a megmaradási mennyiségek (tömeg, momentum, energia), pontosabban 

az intenzív megfelelőjük időbeli és helybeli megváltozását írják le. Ezzel szemben 

primitív alaknak nevezzük az áramlási egyenleteknek azt a formáját, amelyekben 

a helybeli és időbeli differenciálhányados tagok az úgynevezett primitív változók, 

mint a , u, v, w és e változásait írják le. 

A modellegyenletek numerikus megoldásához számos módszer áll 

rendelkezésre, amelyek közül a leggyakoribbak a végeselem módszer, a véges 

térfogatok és a véges differenciák módszere. A végeselem módszer (Finite 

Element Method, FEM) alkalmazásában a számítási tartományt véges sok 

résztartományra osztjuk, és a résztartományokon polinomok lineáris 

kombinációjával közelítjük a parciális differenciálegyenlet megoldását. A 

résztartományok általában sokszögek vagy poliéderek (ezen belül síkon 

háromszögek vagy téglalapok, térben tetraéderek vagy téglatestek). A 

kutatómunka során fejlesztett programokban az áramlási egyenletek 

megoldásához a véges differenciák módszerét (Finite Difference Method, FDM) 

és a véges térfogatok módszerét (Finite Volume Method, FVM) használtam, ezért 

az alábbiakban röviden ismertetem ezeket a módszereket. 
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A véges differenciák módszere 

A véges differenciák módszere azon alapul, hogy a parciális 

differenciálegyenletet lineáris algebrai egyenletrendszerre vezetjük vissza [32]. 

Ennek során az egyenletben szereplő differenciálhányadosokat differencia 

hányadosokkal (ezek az úgynevezett véges differenciák) közelítjük, és így a 

megoldást a számítási tartomány diszkrét pontjaiban kapjuk meg. Az áramlási 

tulajdonságok egyenletei parciális differenciálegyenletek, tekintsük példaként egy 

kompresszibilis közeg áramlási egyenleteit egydimenziós áramlást feltételezve 

(2.10-12. egyenlet). 

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢)

𝜕𝑥
= 0 (2.10) 

𝜕(𝜌𝑢)

𝜕𝑡
+
𝜕(𝑢𝜌𝑢)

𝜕𝑥
+
𝜕𝑝

𝜕𝑥
= 0 (2.11) 

𝜕 [𝜌 (𝑒 +
𝑢2

2
)]

𝜕𝑡
+
𝜕 [𝑢𝜌 (𝑒 +

𝑢2

2
)]

𝜕𝑥
+
𝜕(𝑢𝑝)

𝜕𝑥
= 0 

(2.12) 

ahol ρ a gáz sűrűsége, u a sebessége, p a nyomása, e a belső energiája, t és x pedig 

az idő- és térkoordináták. 

Példaként tekintsük valamely (a fenti példában az egyetlen) térkoordináta 

szerinti differencia képzésének alapvető, legegyszerűbb lehetőségeit. Ezek az 

előrelépéses, a hátralépéses és a centrális differenciák (2.7. ábra). 

 

2.7. ábra. A fix lépésközű differenciaképzés alapesetei: a) előrelépéses, b) 

hátralépéses, c) centrális 

Az előrelépéses differenciahányados képzése esetén az adott koordináta 

mentén az egy lépéssel előbbi és az aktuális helybeli áramlási változó értékek 

különbségét vesszük, és elosztjuk a koordináta lépésközével (2.13. egyenlet). A 

hátralépéses esetben az aktuális pozíciótól egy lépéssel előbbi értéket vonjuk ki az 

aktuálisból (2.14. egyenlet), a centrális esetében pedig az eggyel előbbiből az 
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eggyel hátrábbit vonjuk ki, és mivel ez két egységnyi lépés volt az adott 

koordinátatengelyen, ezért a lépésköz kétszeresével osztjuk el (2.15. egyenlet). 

(
𝜕𝑢

𝜕𝑥
)
𝑖

=

{
 
 

 
    
𝑢𝑖+1 − 𝑢𝑖
∆𝑥

                   

   
𝑢𝑖 − 𝑢𝑖−1
∆𝑥

                   

   
𝑢𝑖+1 − 𝑢𝑖−1

2∆𝑥
               

 

előrelépéses differencia (2.13) 

hátralépéses differencia (2.14) 

centrális differencia (2.15) 

A magasabb rendű közelítések abban különböznek egymástól, hogy a 

vizsgált pontra felírt Taylor sor hányadik eleméig vesszük figyelembe, és 

honnantól vágjuk le a magasabb rendű tagokat. Az FDM jellemző numerikus 

hibája emiatt az úgynevezett truncation error (csonkolási hiba). 

A véges térfogatok módszere 

A véges térfogatok módszerének alkalmazása esetében a számítási 

tartományt véges számú térfogatelemre (2D-ben síkidomokra, 1D-ben 

szakaszokra) osztjuk, és a térfogatelemre jellemző átlagos változó értéket 

határozunk meg úgy, hogy integráljuk az áramlási egyenletet a véges térfogaton. 

Az egyenletek matematikai megfogalmazásához használt térfogatelemet kontroll 

térfogatnak nevezzük. A módszert McDonald publikálta először 1971-ben [33], és 

mivel a gázturbinákon átáramló gázáramra felírt modellje kétdimenziós volt, a 

módszert finite area methodnak (véges területek módszerének) nevezte el. A 

véges térfogatok módszere – szemben a véges differenciák módszerével – olyan 

számítási hálók esetén is hatékonyan működik, amelyek nem szabályosan 

strukturáltak. 

A módszer bemutatásához vegyük példaként a stacionárius, egydimenziós 

hővezetés egyenletét (2.16. egyenlet). 

𝑑

𝑑𝑥
(𝑘

𝑑𝑇

𝑑𝑥
) + 𝑆 = 0 (2.16) 

ahol k a hőátadási együttható, T a hőmérséklet, S a forrástag. 

A fenti egyenlet megoldását keressük az x tengely menti pontokban. 
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2.8. ábra. A véges térfogatok módszeréhez létrehozott számítási háló 1D-s 

esetben. 

A 2.8. ábra szerinti felosztásban a megoldást a P pontban keressük, melynek 

szomszédai balról a W pont (west, nyugati szomszéd), jobbról az E pont (east, 

keleti szomszéd). A vizsgálandó véges térfogat ebben az esetben a szaggatott 

vonalak közötti szakasz, mely a P pont körül helyezkedik el. A szakasz határait a 

w és e pontok jelölik. A 2.17. egyenlettel írhatjuk fel a kiemelt szakaszon integrált 

2.16. egyenletet. 

(𝑘
𝑑𝑇

𝑑𝑥
)
𝑒

− (𝑘
𝑑𝑇

𝑑𝑥
)
𝑤

+∫ 𝑆
𝑒

𝑤
𝑑𝑥 = 0 (2.17) 

A hőmérséklet x-tengely menti változását feltételezhetjük lépcsőzetesnek, 

melynek során a számítási cellában a változó értékét konstansnak tekintjük, vagy 

feltételezhetjük azt is, hogy lineáris összefüggés szerint változik a szomszédos 

értékeknek megfelelően (2.9. ábra). A példában a hőmérséklet lineáris közelítését 

alkalmazzuk. 

 

2.9. ábra. A változó értékének alakulása a kontroll térfogaton. a) lépcsőzetes 

profil, b) pontonként lineáris profil. 
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Szakaszonkénti lineáris profilt feltételezve a változó értékeiben, a 2.17. 

egyenletet az alábbi alakban írhatjuk fel (2.18. egyenlet). 

𝑘𝑒(𝑇𝐸−𝑇𝑃)

(𝛿𝑥)𝑒
−
𝑘𝑤(𝑇𝑃−𝑇𝑊)

(𝛿𝑥)𝑤
+ S̅∆𝑥 = 0 (2.18) 

ahol S̅ az S forrástag átlagos értéke a kontroll térfogatban. 

Új jelölések bevezetésével a 2.18. egyenlet felírható egyszerűbb alakban 

(2.19. egyenlet). 

𝑎𝑃𝑇𝑃 = 𝑎𝐸𝑇𝐸 + 𝑎𝑊𝑇𝑊 + 𝑏 (2.19) 

ahol 𝑎𝐸 =
𝑘𝑒

(𝛿𝑥)𝑒
, 𝑎𝑊 =

𝑘𝑤

(𝛿𝑥)𝑤
, 𝑎𝑃 = 𝑎𝐸 + 𝑎𝑊 és 𝑏 = S̅∆𝑥. 

A dimenziók növelésével a szomszédok száma is növekszik, ezért 

általánosabban érdemes a 2.20. egyenlet alakjában felírni az összefüggést. 

𝑎𝑃𝑇𝑃 = ∑𝑎𝑛𝑏𝑇𝑛𝑏 + 𝑏 (2.20) 

ahol nb az adott szomszéd (neighbor) indexe. 

Ha az összes pontra felírjuk a 2.19. egyenletet, akkor az egyenletek egy 

tridiagonális lineáis egyenletrendszer formába rendezhetők, melyet például a 

TDMA (TriDiagonal Matrix Algorithm) algoritmussal lehet megoldani. 

Euler egyenletek összenyomható közegekre 

Összenyomható közegek (gázok) esetében a közeg sűrűsége a nyomás vagy 

hőmérsékletváltozás hatására megváltozhat. Az áramló gázfázis leírására szolgáló 

háromdimenziós Euler egyenletek a folytonossági egyenletből (2.21. egyenlet), a 

momentumegyenletekből (2.22-2.24. egyenletek), és az energiaegyenletből (2.25. 

egyenlet) állnak. 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝐕) = 0 (2.21) 

𝜕(𝜌𝑢)

𝜕𝑡
+ ∇ ∙ (𝜌𝑢𝐕) = −

𝜕𝑝

𝜕𝑥
+ 𝜌𝑓𝑥 (2.22) 

𝜕(𝜌𝑣)

𝜕𝑡
+ ∇ ∙ (𝜌𝑣𝐕) = −

𝜕𝑝

𝜕𝑦
+ 𝜌𝑓𝑦 (2.23) 
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𝜕(𝜌𝑤)

𝜕𝑡
+ ∇ ∙ (𝜌𝑤𝐕) = −

𝜕𝑝

𝜕𝑧
+ 𝜌𝑓𝑧 (2.24) 

𝜕

𝜕𝑡
[𝜌 (𝑒 +

𝑉2

2
)] + ∇ ∙ [𝜌 (𝑒 +

𝑉2

2
)𝐕] = −

𝜕(𝑢𝑝)

𝜕𝑥
−
𝜕(𝑣𝑝)

𝜕𝑦
−
𝜕(𝑤𝑝)

𝜕𝑧
+ 𝜌𝒇 ∙ 𝐕 (2.25) 

ahol ρ a közeg sűrűsége, t az idő, ∇ a nabla operátor, V a háromdimenziós 

sebességvektor, u, v és w az x, y és z irányú sebességkomponensek, p a nyomás, f 

a body force, e a belső energia. 

A 2.21-2.25. egyenletek 6 ismeretlen változót tartalmaznak (ρ, p, u, v, w, e), 

ha a body force számításától egyelőre eltekintünk. A 2.26. összefüggés a nyomás 

és belső energia kapcsolatát írja le, amellyel a rendszert zárttá tehetjük. 

𝑝 = (𝛾 − 1)𝜌𝑒 (2.26) 

ahol γ az állandó térfogaton és állandó hőmérsékleten érvényes hőkapacitások 

hányadosa (cp/cV). 

Gázoknál a viszkozitás hatása nem számottevő, így a kutatómunkámban 

eltekintettem a viszkozitási tagok alkalmazásától az áramlási egyenletekben. A 

2.21-2.26 egyenletrendszer analitikus megoldása nem ismert, ezért numerikus 

módszereket kell alkalmaznunk a megoldásukra. A viszkozitási (és egyéb 

másodrendű) tagok, azaz másodrendű differenciálhányadosok nélküli parciális 

differenciálegyenletek matematikailag a hiperbolikus egyenletek közé sorolhatók. 

A következőkben azt a hiperbolikus egyenletek megoldására alkalmas véges 

differenciák módszerét használó módszert mutatom be, amelyet a 

kutatómunkámban használtam az áramlási egyenletek megoldására. 

MacCormack módszer 

A MacCormack módszer egy kétlépéses, véges differenciák módszerén 

alapuló numerikus módszer, amely egy prediktor és egy korrektor lépésből áll. A 

MacCormack módszer pontossága térben és időben is másodrendű, ugyanis a 

prediktor lépésben elsőrendű módszer eredménye a korrektor lépésben 

felhasználásra kerül, így a végeredmény másodrendű lesz. A másod- és 

magasabbrendű pontosságú módszerek esetében azonban numerikus hibaként 

oszcilláció léphet fel a megoldás nagy gradiensekkel rendelkező helyeinél, 
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amelynek egy kezelési lehetőségét a Módszerek és eszközök fejezetben fogom 

ismertetni. A MacCormack módszert 1969-ben publikálták [34] a Lax-Wendroff 

módszer [35] továbbfejlesztéseként. 

Tekintsük példaként a folytonossági egyenlet megoldását kétdimenziós 

áramlás esetében. A MacCormack módszer prediktor lépésében a differencia 

hányadosokat egyszerű előrelépéses (forward) alakban írjuk fel. A 2.27. 

egyenlettel a sűrűség időbeli változásának sebességét, az időbeli deriváltjának 

értékét számítjuk ki. 

(
𝜕𝜌

𝜕𝑡
)
𝑖,𝑗

𝑛

= −(𝜌𝑖,𝑗
𝑛 𝑢𝑖+1,𝑗

𝑛 −𝑢𝑖,𝑗
𝑛

∆𝑥
+ 𝑢𝑖,𝑗

𝑛 𝜌𝑖+1,𝑗
𝑛 −𝜌𝑖,𝑗

𝑛

∆𝑥
+ 𝜌𝑖,𝑗

𝑛 𝑣𝑖,𝑗+1
𝑛 −𝑣𝑖,𝑗

𝑛

∆𝑦
+ 𝑣𝑖,𝑗

𝑛 𝜌𝑖,𝑗+1
𝑛 −𝜌𝑖,𝑗

𝑛

∆𝑦
) (2.27) 

ahol ρ a közeg sűrűsége, n az időkoordináta, i és j a számítási cellák sorszámai, u 

és v az x és y irányú sebességkomponensek, Δx és Δy a térkoordináták menti 

lépésköz. 

A prediktor lépésben a következő időpillanatbeli értéket az előző (ismert) 

időpillanatbeli értékből képzett Taylor sor első két elemével közelítjük. A 

predikált változót felülvonással jelöljük (2.28. egyenlet). 

(𝜌̅)𝑖,𝑗
(1)
= 𝜌𝑖,𝑗

𝑛 + (
𝜕𝜌

𝜕𝑡
)
𝑖,𝑗

𝑛

∆𝑡 (2.28) 

Ez így önmagában csak elsőrendű pontosságot jelent, mivel a Taylor sornak 

csak az elsőrendű tagját vesszük figyelembe. A korrekciós lépésben a predikált 

változókkal hátralépéses (backward) differenciát alkalmazunk az idő szerinti 

differenciál-hányados számítására (2.29. egyenlet). 

(
𝜕𝜌

𝜕𝑡

̅̅̅̅
)
𝑖,𝑗

(1)

= 

−(𝜌̅𝑖,𝑗
(1) 𝑢𝑖,𝑗

(1)
−𝑢𝑖−1,𝑗

(1)

∆𝑥
+ 𝑢̅𝑖,𝑗

(1) 𝜌̅𝑖,𝑗
(1)
−𝜌̅𝑖−1,𝑗

(1)

∆𝑥
+ 𝜌𝑖,𝑗

(1) 𝑣̅𝑖,𝑗
(1)
−𝑣̅𝑖,𝑗−1

(1)

∆𝑦
+ 𝑣̅𝑖,𝑗

(1) 𝜌̅𝑖,𝑗
(1)
−𝜌̅𝑖,𝑗−1

(1)

∆𝑦
) (2.29) 

A következő lépésben képezzük az időbeli deriváltak (2.27. és 2.29. 

egyenlet) átlagát (2.30. egyenlet). Az av az average (átlag) rövidítése. 
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(
𝜕𝜌

𝜕𝑡
)
𝑎𝑣
=

1

2
[(
𝜕𝜌

𝜕𝑡
)
𝑖,𝑗

𝑛

+ (
𝜕𝜌

𝜕𝑡

̅
)
𝑖,𝑗

(1)

] (2.30) 

A következő időlépésbeli korrigált értéket pedig ennek felhasználásával 

kapjuk (2.31. egyenlet). 

𝜌𝑖,𝑗
𝑛+1 = 𝜌𝑖,𝑗

𝑛 + (
𝜕𝜌

𝜕𝑡
)
𝑎𝑣
∆𝑡 (2.31) 

Ez is egy elsőrendű közelítés, mivel a Taylor sor magasabbrendű tagjait 

elhagyjuk. Viszont ebben a második lépésben már felhasználtunk egy elsőrendű 

pontosságú közelítést, így a végeredmény másodrendű pontosságú lesz mind 

térben, mind időben. 

Mindkét lépésben explicit Euler módszert alkalmaztunk, emiatt az időbeli 

lépésköz nagyságától függ a megoldás stabilitása. A stabilitáshoz teljesíteni kell a 

lépésközre vonatkozó stabilitási kritériumot, amelyet Courant-Friedrich-Lewy 

(CFL) feltételnek [36] is szokás nevezni (2.32. egyenlet). 

𝑢𝑚𝑎𝑥
Δ𝑡

Δ𝑥
≤ 1 (2.32) 

ahol az umax a számítási tartomány legnagyobb sebességét jelenti, Δt és Δx pedig 

az idő- és térbeli lépésközt jelöli. 

Tehát a maximális időlépés a közeg maximális áramlási sebességétől 

fordított arányossággal függ. Nagy sebességek esetén ezért a Δt igen kicsi lehet, 

ebből kifolyólag nagy szimulációs idő eléréséhez sok számítási ciklust kell 

végrehajtani, így hosszú számítási idővel kell számolnunk. Összefoglalásképpen, 

a MacCormack módszer szerinti megoldás lépései az alábbiak. 

A parciális differenciál egyenlet megoldásának lépései 

1. A számítási tartomány kijelölése; 

2. A számítási háló kialakítása; 

3. A modellegyenletekben szereplő paraméterek definiálása; 

4. A kezdeti feltételek és kezdeti peremfeltételek definiálása; 

5. A szimulációs iterációszám megadása; 

6. Az iteráció lépései: 
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I. Az időbeli lépésköz meghatározása; 

II. Az előző időpillanatbeli értékekkel az időbeli differenciálhányadosok, 

majd a predikált értékek számítása; 

III. A predikált értékekkel az időbeli differenciálhányadosok, majd az átlagos 

derivált értékekkel az új időpontbeli változó értékeinek számítása; 

IV. Az új időpontbeli értékek felhasználásával az új peremértékek megadása; 

7. A megoldás a következő iterációs lépéssel folytatódik tovább a szükséges 

szimulációs idő eléréséig. 

Navier-Stokes egyenletek összenyomhatatlan közegekre 

A nem-kompresszibilis közegek esetében az Euler egyenletet további 

tagokkal egészítjük ki, amelyekkel figyelembe vesszük a közeg viszkozitását is, 

mivel a folyadékok esetében már nem elhanyagolható a súrlódás hatása. Ezek 

másodrendű differenciál tagokat hoznak be a momentum- és energia egyenletbe, 

így a parciális differenciálegyenletek jellege hiperbolikus helyett parabolikus lesz. 

A viszkozitási tagokat tartalmazó áramlási egyenleteket Navier-Stokes 

egyenleteknek nevezzük. Összenyomhatatlan közegek esetében a folytonossági 

egyenlet egyszerűbbé válik, hiszen a fluidum sűrűsége nem változik ha állandó 

hőmérsékletet feltételezünk. Ha nincs jelentős hőmérsékletváltozás (például nincs 

exoterm reakció vagy nem fűtjük a rendszert kívülről), akkor az energiaegyenlet 

felírása szükségtelen, így ezzel is egyszerűsödik a modellegyenlet-rendszer. 

Példaként nézzük a Navier-Stokes egyenleteket kétdimenziós esetre felírva, 

primitív változókkal kifejezve (2.33-2.35. egyenletek). 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (2.33) 

𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌𝑢

𝜕𝑢

𝜕𝑥
+ 𝜌𝑣

𝜕𝑢

𝜕𝑦
+
𝜕𝑝

𝜕𝑥
−
𝜕𝜏𝑥𝑥

𝜕𝑥
−
𝜕𝜏𝑥𝑦

𝜕𝑦
− 𝜌𝑓𝑥 = 0 (2.34) 

𝜌
𝜕𝑣

𝜕𝑡
+ 𝜌𝑢

𝜕𝑣

𝜕𝑥
+ 𝜌𝑣

𝜕𝑣

𝜕𝑦
+
𝜕𝑝

𝜕𝑥
−
𝜕𝜏𝑦𝑥

𝜕𝑥
−
𝜕𝜏𝑦𝑦

𝜕𝑦
− 𝜌𝑓𝑦 = 0 (2.35) 

A viszkozitási tagokat a 2.36-2.38. összefüggésekkel adhatjuk meg. 

𝜏𝑥𝑥 =
4

3
𝜇
𝜕𝑢

𝜕𝑥
−
2

3
𝜇
𝜕𝑣

𝜕𝑦
 (2.36) 
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𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 𝜇
𝜕𝑣

𝜕𝑥
+ 𝜇

𝜕𝑢

𝜕𝑦
 (2.37) 

𝜏𝑦𝑦 =
2

3
𝜇
𝜕𝑢

𝜕𝑥
−
4

3
𝜇
𝜕𝑣

𝜕𝑦
 (2.38) 

ahol µ a közeg dinamikai viszkozitása. 

A viszkózus, nem-kompresszibilis közegek áramlási egyenleteinek 

megoldására gyakran alkalmazott módszer a nyomáskorrekciós módszer. A 

nyomáskorrekciós módszerből többféle változatot is kifejlesztettek, amelyek 

közül néhányat röviden a következő alfejezetben mutatok be, valamint egy 

kiválasztott módszert részletesen is ismertetek. 

A nyomáskorrekciós módszer 

Nem-kompresszibilis közegek esetében a közeg nyomását nem számíthatjuk 

gáztörvény alkalmazásával, helyette a sebesség- és nyomásértékek között kell 

kapcsolatot létrehozni és egy olyan nyomásmezőt meghatározni, amely 

divergenciamentes sebességmezőt biztosít a 2.33. egyenletnek megfelelően. Egy 

ilyen módszert először Patankar és Spalding mutatott be [37], amely később a 

SIMPLE nevet kapta (a betűszó a Semi-Implicit Method for Pressure-Linked 

Equations-ből ered). A SIMPLE módszernek több továbbfejlesztett változata is 

létezik (pl. SIMPLER – SIMPLE Revised [38], SIMPLEC – SIMPLE Consistent 

[39]). Később Issa is publikált egy algoritmust a probléma megoldására [40], 

amely PISO rövidítéssel lett ismert (Pressure-Implicit with Splitting of Operators). 

A két módszer jellemzőit egyesíti a PIMPLE módszer, amelyet az OpenFOAM 

nevű nyílt forráskódú CFD szoftver használ [41]. A felsorolt módszerek 

mindegyikének lényege a sebesség és a nyomás közötti kapcsolat kialakítása. 

A folyadék-szilárd kétfázisú rendszerek áramlástani modellezéséhez a 

SIMPLE módszert implementáltam kétdimenziós áramlási esetre. A SIMPLE 

algoritmus lényege, hogy egy becsült nyomásmezőből kiindulva kiszámítjuk a 

becsült sebességmezőt a momentumegyenlet felhasználásával. A becsült 

sebességmezőből a folytonossági egyenlet felhasználásával kiszámítjuk a 

nyomáskorrekciót, amely alapján korrigáljuk a nyomás- és a sebességmezőt is. A 

korrekciós lépéseket addig folytatjuk, míg a folytonossági egyenletnek eleget nem 

tesz a megoldás. A modellegyenletek diszkretizálásához praktikus a véges 
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térfogatok módszerét alkalmazni. A diszkretizált egyeneletrendszer átalakítható 

úgy, hogy egy adott dimenzió mentén az ismeretlen áramlási sebességekre nézve 

egy tridiagonális mátrix alakot öltsön, amely lehetővé teszi az áramlási egyenletek 

implicit megoldását. A tridiagonális egyenletrendszerek egy bevált megoldási 

algoritmusa a Llewellyn Thomas által kidolgozott TDMA (TriDiagonal Matrix 

Algorithm) [42]. A korábbi alfejezetekhez hasonlóan a módszer összefoglalását 

ezúttal is az algoritmus lépéseinek leírásával adom meg. 

A nem-kompresszibilis közegre felírt Navier-Stokes egyenletek megoldási 

lépései SIMPLE módszerrel 

1. A számítási tartomány kijelölése; 

2. A számítási háló kialakítása; 

3. Az időlépés lépésközének megadása; 

4. Az időlépések számának megadása; 

5. A modellegyenletekben szereplő paraméterek definiálása; 

6. Módszerspecifikus paraméterek megadása (pl. az iterációból kilépés 

kritériumához küszöbérték megadása); 

7. A kezdeti feltételek és kezdeti peremfeltételek definiálása; 

8. Becsült nyomásmező megadása; 

9. Az iteráció lépései az egyes szimulációs időpillanatokban: 

I. A nyomáskorrekció iterációs lépései: 

a. A sebességek kiszámítása a momentumegyenletek megoldásával 

(véges térfogatok módszere, TDMA); 

b. Nyomáskorrekció számítása; 

c. Korrigált nyomás kiszámítása a becsült nyomásból és a 

nyomáskorrekcióból; 

d. Korrigált áramlási változók kiszámítása a nyomáskorrekció 

felhasználásával; 

e. Peremértékek újraszámítása; 

f. Hibaellenőrzés: ha a küszöbértéken belül van a hibaérték, akkor 

kilépés az iterációból és folytatás a következő időpillanat 

iterációjával. Ha küszöbértéken kívül van a hibaérték, akkor a 

nyomáskorrekciós iteráció folytatása. 



Irodalmi áttekintés 

 

40 

 

II. Eredmények megjelenítése (opcionális); 

10. Végül az eredmények értékelése, ábrázolás. 

Az implicit megoldási módszer biztosítja a numerikus megoldás stabilitását, 

az időlépés lépésközét az észszerűség keretein belül tetszőlegesen 

megválaszthatjuk. 
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3. Módszerek és eszközök 

Ebben a fejezetben röviden bemutatom a kutatómunkám során alkalmazott 

módszereket, számítógépes eszközöket és laboratóriumi berendezéseket. Bővebb, 

alkalmazásorientált részletek az esettanulmányok kapcsán kerülnek elő. 

3.1.  COMSOL Multiphysics szoftver 

Kutatásaim egy részéhez a kereskedelmi CFD szoftverek közül a COMSOL 

Multiphysics programot választottam. A programcsomag rendkívül széles körű 

mérnöki problémamegoldásra alkalmas, köztük például elektromágneses 

jelenségek szimulációjára vagy akusztikai rendszerek modellezésére. Az általam 

is használt modul elsősorban áramlástani és hőátadási szimulációk készítésére 

használható. Az áramlástani szimuláció lépései COMSOL Multiphysics 

segítségével a következőképpen adhatók meg. 

Áramlástani szimuláció lépései COMSOL Multiphysics segítségével 

1. A dimenziók megválasztása (1D, 2D, tengelyszimmetrikus 2D vagy 3D); 

2. A modellegyenletek kiválasztása (pl. lamináris áramlás egyenletei); 

3. A geometria kialakítása vagy importálása; 

4. A modellegyenletekben szereplő paraméterek definiálása; 

5. A peremfeltételek rögzítése; 

6. A számítási háló kialakítása; 

7. A modell megoldása (a program által megválasztott beépített 

módszerekkel); 

8. Végül az eredmények értékelése, ábrázolás. 

Az eredmények értékelésére és ábrázolásukra számos lehetőséget kínál a 

program, köztük 3D-s modellekben metszeteket jeleníthetünk meg, egy-egy 

kiválasztott változó értékeinek térbeli eloszlását is ábrázolhatjuk, dinamikus 

szimuláció esetén pedig a szimulált berendezésben végbemenő változásokat akár 

videóként is rögzíthetjük vagy elmenthetjük későbbi feldolgozásra. Az ábrázolt 

eredmények sok esetben interaktívan manipulálhatók (térben forgatás, nagyítás 

stb.), ezzel szemléletesen bemutatható a kapott megoldás. A nyers eredmények 

alapján összetett lekérdezéseket is végezhetünk, például felületi (peremre történő) 
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vagy térfogati integrálással vagy átlagolással, primitív változókból matematikai 

művelettel meghatározhatunk egy összetett változót és annak tetszés és lehetőség 

szerinti ábrázolásával élhetünk stb. A COMSOL Multiphysics rendelkezik 

alkalmazás programozói interfésszel is, azaz azon eljárásainak dokumentációjával, 

amelyeket más szoftverek használhatnak. Ezáltal lehetséges a kidolgozott 

modellek iteratív célú futtatása, amelyben valamilyen optimálizálási célt 

fogalmazunk meg, mint például az optimális geometria paraméterek vagy 

peremfeltételek meghatározása. Kutatómunkám során főként a MATLAB 

szoftverrel összekapcsolva használtam a COMSOL Multiphysics programozói 

interfészét. Az alkalmazás programozói interfész használatának előnye, hogy az 

elkészült CFD modelleket kevesebb interakcióval tudjuk futtani és az 

eredményeket is automatikusan elmenthetjük. A COMSOL Multiphysics 

programcsomagnak sok előnye mellett egy hátránya, hogy a modellegyenleteken 

és megoldási módszereiken nem, vagy csak nagyon korlátozott mértékben lehet 

módosítani. A COMSOL Multiphysics alkalmazása a többfázisú áramlások CFD-

DEM és direkt numerikus szimulációjában limitált (részben az imént említett 

okok miatt), leginkább a térfogatátlagolt áramlási egyenleteket használó two-fluid 

módszer esetében lehet hatékonyan alkalmazni. A direkt numerikus 

szimulációban történő alkalmazására ad lehetőséget a program Moving Mesh 

funkciója, amely az irodalmi bevezetésben bemutatott body-fitted direkt 

numerikus szimuláció esetében lehet hasznos a mozgó részecskék elhelyezkedését 

követő számítási háló generálásában. A Level Set funkcióval a kétfázisú 

rendszerben a fázishatár helyét egy függvény segítségével adhatjuk meg. A 

következő alfejezetekben a COMSOL Multiphysics azon elemeit és lehetőségeit 

mutatom be, amelyek a kutatómunkám szempontjából kiemelt jelentőséggel 

bírnak. Először az előbb említett Level Set módszert ismertetem, ezt követően a 

program szemcsekövetésre alkalmas modulját mutatom be, végül szót ejtek 

röviden a turbulenciamodellekről, mivel a vizsgált esettanulmányok 

szempontjából ezek fontosak. 
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Level Set módszer 

A kétfázisú rendszerek fázishatárának megadására és követésére szolgáló 

módszer a level set függvényt alkalmazó módszer, melynek matematikai alapjait 

Osher és Sethian dolgozta ki [43]. A módszer lényege, hogy a fázishatár 

követésére definiált folytonos függvény (Φ) a kétfázisú rendszer geometriájának 

számítási celláiban 0 és 1 közötti értéket vehet fel az egyik kitüntetett fázis 

térfogati hányadának megfelelően. Foley a COMSOL Multiphysics szakmai 

blogjában egy felfelé mozgó olajcsepp vízben való mozgásának modellezésével 

mutatta be a programelem alkalmazhatóságát [44]. Ez a példa a program 

alkalmazási galériájában is elérhető [45]. A Level Set módszert szilárd részecske 

folyadékban való ülepítésének szimulációjára alkalmaztam úgy, hogy a szilárd 

részecskét nagy viszkozitású folyadék gömbnek tekintettem. A módszer alapelveit 

a következőkben mutatom be. 

A level set függvényt jelöljük Φ-vel. Háromdimenziós esetben a teljes 

számítási tartományon értelmezett folytonos függvényt a 3.1. egyenlet írja le. 

𝛷(𝑥, 𝑦, 𝑧) = 𝑎 (3.1) 

ahol a egy konstans. A fázishatár a függvény értékében egy ugrásfüggvényként 

jelenik meg, például ahol Φ < 0,5 ott többségében az egyik fázis, Φ > 0,5 esetén a 

másik fázis van jelen. A level set módszer nagy előnye, hogy az alkalmazásával 

alakváltozások, például buborékok szétválása és összeolvadása jól követhető [46]. 

A fázishatár helyváltozását az őt körülvevő közeg sebessége határozza meg a 3.2. 

egyenlet alapján [47]. 

𝜕𝛷

𝜕𝑡
+ 𝐮 ∙ ∇𝛷 = 𝛾∇ ∙ (𝜀∇𝛷 − 𝛷(1 − 𝛷)

∇𝛷

|∇𝛷|
) (3.2) 

ahol u a közeg sebességvektora, γ az újraszámítási (reinicializációs) paraméter 

[m/s], és ε a fázishatár szélessége (vastagsága) [m]. 

Az egyenlet baloldalán lévő tagok írják le a határfelület mozgását, a 

jobboldalon lévő tagok pedig a numerikus stabilitáshoz szükségesek [47]. A γ a 

frissítés sebességét adja meg, stabilitási kérdések miatt javasolt a közeg 

sebességének maximumával definiálni. Az ε fázishatár szélességét, a Φ függvény 
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átmeneti tartományát jelöli ki. Ezt általában a maximális hálóelem méret felére 

állítják. A sűrűséget (ρ) és a dinamikai viszkozitást (µ) az egyes r számítási 

pontokban a 3.3. és 3.4. egyenletekkel kapjuk meg. 

𝜌(𝑟) = 𝜌1 + (𝜌2 − 𝜌1)𝛷(𝑟) (3.3) 

𝜇(𝑟) = 𝜇1 + (𝜇2 − 𝜇1)𝛷(𝑟) (3.4) 

ahol az 1 és 2 indexek a különböző fázisokat jelölik. 

Mivel a szilárd testeknek nincs viszkozitásuk, a módszer inkább a nem 

elegyedő fluidfázisok fázishatár követésére alkalmas. Az egyik esettanulmány 

kapcsán a szilárd merülő testet nagy viszkozitású folyadék gömbnek tekintettem, 

de ahogy a 4.5. fejezet eredményeiben látható lesz, a részecske merevségének 

kritériuma nem teljesült megfelelő mértékben. Az ezzel kapcsolatos 

eredményeimet a szilárd test ülepítését bemutató szimulációs esettanulmányban 

ismertetem. 

Szemcsekövetés (Particle Tracing) 

A COMSOL Multiphysics Particle Tracing modulja egy széleskörű 

használatra tervezett eszköz, amellyel részecskék mozgásának szimulációját lehet 

létrehozni különféle környezetben és közegben, például egy áramlási térben, egy 

töltéssel rendelkező térben vagy mágneses térben is. A Particle Tracing modulban 

megadhatjuk paraméterként a szemcsék méretét, tömegét, hőmérsékletét, 

darabszámát, kezdeti pozíciójukat. A program a közeg és a szemcsék 

tulajdonságainak felhasználásával kiszámítja a szemcsékre ható gravitációs erőt és 

a közegellenállási erőt. Egy korábbi munkám eredményét mutatja a 3.1. ábra, ahol 

különböző sűrűségű részecskék leválasztásához terveztem ciklont. A részecskék 

trajektóriáját az előzetesen kiszámított sebességi mezőt felhasználva és a 

szemcsék tulajdonságai alapján a közegellenállási erő és gravitációs erő határozza 

meg. 



Módszerek és eszközök 

 

45 

 

 
3.1. ábra. 20 db 1 µm átmérőjű részecske mozgásának szimulációja egy 

porleválasztó ciklonban. A részecskék sűrűsége: a) 1100 kg/m
3
, b) 3700 kg/m

3
. 

A szemcsekövetés arra is alkalmas, hogy a fluidum egy fáziselemének 

mozgását kövessük, így a pozíciójáról, más fáziselemekkel történő keveredéséről 

információt nyerhetünk. Ebben az esetben a szemcsét pontszerűnek tekintjük és 

anyaga a közegével megegyező. Kutatásaimban szemcsekövetési szimulációt a 

4.2. fejezetben bemutatásra kerülő esettanulmányban használtam, amelyben egy 

jetkeverő keverési teljesítményét vizsgáltam. A vizsgálatban nem volt szükség 

sem gravitációs erő, sem közegellenállási erő figyelembe vételére. A Particle 

Tracing modul az általam használt beállításokkal az áramlási vonalakat 

felhasználva, arra szuperponálva végig tudja követni az áramlási vonalakat a 

részecskékkel, ezáltal hatékonyan lehet használni keveredési vizsgálatok céljára. 

A Particle Tracing módszer nem alkalmas kétfázisú áramlás pontos 

szimulációjára, mivel a felhasznált sebességmező stacionárius, a valóságban pedig 

mind a sebességmező mind a részecskék pozíciója dinamikusan változik. 

Turbulenciamodellek 

Az áramlás jellege lehet lamináris vagy turbulens. Laminárisnak nevezzük 

az áramlást, ha a közeg rétegesen áramlik, és a fluidum részecskéinek mozgási 

iránya az áramlással párhuzamos. Ezzel szemben turbulens az az áramlás, amely 
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esetében az áramló közeg fizikai jellemzői (például a nyomás, a sebesség) 

gyorsan, kaotikusan változnak, és az áramló közegben örvények képződnek. Az 

áramlási tartomány meghatározására alkalmas dimenziómentes mérőszám a 

Reynolds szám, amely az inerciális (tehetetlenségi) és a viszkózus (súrlódási) erők 

arányából származtatható, egyszerűsített formájában a 3.5. egyenlet alapján 

számítható. 

𝑅𝑒 =
𝑣𝐿𝜌

𝜇
 (3.5) 

ahol v a sebesség, L a karakterisztikus hossz, ρ a közeg sűrűsége, μ pedig a 

dinamikai viszkozitása. Körülbelül 2300 fölötti Re szám esetén beszélhetünk 

turbulens áramlásról [48], de a tisztán lamináris áramlás már 90 körüli Re szám 

esetén módosul, ha gömböt vagy kör keresztmetszetű testet helyezünk az 

áramlásba, Kármán örvényeket képezve a test mögött (3.2. ábra). 

 

3.2. ábra. Áramlási tartományok henger (2D, 1-essel jelzett görbe) és gömb (3D, 

2-essel jelzett görbe) esetén. A vízszintes tengelyen a közegellenállási állandó 

(CD), a függőlegesen a Reynolds szám (Re) szerepel. [49] 
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A turbulencia modellezésére számos módszert dolgoztak ki, melyeknek két 

nagy csoportja a Reynolds-átlagolt Navier-Stokes (RANS) egyenleteket 

alkalmazó módszerek és a Nagy örvények szimulációja (Large Eddy Simulation, 

LES). Az első csoportba tartozó modell például az egy egyenletes Spalart-

Allmaras  modell, vagy a kétegyenletes k-ε és a k-ɷ módszerek. A LES 

módszerek esetében az áramlási egyenletekből egy aluláteresztő szűrő 

alkalmazásával a kis örvényeket, melyek hatásának számítása sok erőforrást 

venne igénybe, elhanyagolják. Itt kell megemlíteni, hogy a direkt numerikus 

szimulációs (DNS) módszerek esetében nincs szükség turbulenciamodellre, mert a 

részletes számítás miatt a turbulencia hatása már belekerül az eredménybe. 

A stabilitása és kis memóriaigénye miatt legnépszerűbb turbulenciamodell a 

k-ε modell [50], amely a turbulencia intenzitásának jellemzésére a 

sebességingadozásoktól függő k turbulens kinetikus energiát, és ennek ε 

disszipációját használja. A COMSOL Multiphysics-ben rendelkezésre álló 

turbulenciamodellek közül számításaimhoz a k-ε modellt használtam. 

3.2.  Hálófüggetlenségi vizsgálat 

A numerikus áramlástani szimulációk esetén a számítási háló kialakítása, 

annak felbontása jelentősen befolyásolhatja a megoldás pontosságát és számítás 

időigényét, ezért gyakran a modell validáció része a hálófüggetlenségi vizsgálat. 

A hálófüggetlenségi vizsgálat során valamely modellegyenlet mérleghibáját 

vizsgáljuk a hálófelbontás függvényében. A vizsgálat végeredményeként azt a 

legdurvább felbontású számítási hálót kell alkalmaznunk, amelyet ha tovább 

finomítanánk, már nem javítana jelentősen a mérleghibán. A háló finomsága 

abból a szempontból is fontos, hogy a számítási idő a hálóelemek számának 

növekedésével arányosan nő. A hálófüggetlenségi vizsgálat során azt bizonyítjuk, 

hogy a megoldás már nem függ a felosztástól, a kellően finom felosztású háló 

esetén közel azonos megoldást ad. Célszerű a hálófüggetlenség állapotát elérő első 

felosztást alkalmazni, hiszen ha a mérleghibát nem tudjuk a finomabb 

diszkretizálással csökkenteni, akkor miért növelnénk fölöslegesen a számítási 

időt. A hálófüggetlenségi vizsgálat egy olyan validációs módszer, melyben a 

megoldást önmagával, annak változataival validáljuk. Önmagában az eredmény 
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érvényességéhez ez nem elegendő, a modelleknek és megoldásaiknak fizikai 

berendezésen végzett kísérletek során nyert mérési eredményekkel való 

összehasonlítás próbáján is át kell esniük. 

3.3. Tartózkodási idő analízis 

A tartózkodási idő eloszlás (residence time distribution, RTD) koncepciója 

még az ötvenes évekből, Danckwerts-től ered [51]. Berendezések hidrodinamikai 

vizsgálatához gyakran alkalmaznak tartózkodási idő analízist. Folyamatos 

üstreaktor esetében Gamba és munkatársai végeztek RTD-n alapuló tanumányokat 

[52], vagy például Adeosun és Lawal is a tartózkodási idő analízis módszerét 

alkalmazták mikroméretű T-alakú csatorna keveredési jellemzőinek 

meghatározásához [53]. 

Az RTD görbe kísérleti úton úgy határozható meg, hogy mérjük vagy 

számítjuk a rendszer válaszát egy vizsgálójelre. A vizsgálójel lehet impulzusszerű, 

egységugrás, valamilyen peroidikus vagy pszeudo-random vizsgálójel. Fizikai 

kísérletek során nemreaktív jelölőanyag bevezetésével valósítjuk meg a 

vizsgálójelet. A leggyakrabban az impulzusszerű és az egységugrás vizsgáló jelet 

használják, ezeket kísérletileg is egyszerűbb megvalósítani, és a válaszuk 

értelmezése is könnyebb. Az impulzusszerű jel ideálisan a Dirac delta 

függvénnyel egyezik meg (0 szélesség, végtelen magasság), azonban a 

gyakorlatban ez inkább téglalapfüggvény-szerűen valamilyen rövid időtartamban 

injektált adott mennyiségű jelölőanyag bevezetését jelenti. A vizsgáló jelre adott 

válaszfüggvényt a kimeneten időpillanatonként mért vagy számított jelzőanyag 

koncentrációból kapjuk meg. Ebből transzformáció segítségével RTD görbét 

kaphatunk, ha a koncentrációértékeket elosztjuk a koncentráció görbe (Cpulse) 

alatti területtel (3.6-3.7. egyenletek) [54]. 

𝐴 = ∫ 𝐶 𝑑𝑡
∞

0

≅∑𝐶𝑖∆𝑡𝑖
𝑖

 (3.6) 

𝑅𝑇𝐷 =
𝐶𝑝𝑢𝑙𝑠𝑒

𝐴
 (3.7) 
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Ezzel azt érjük el, hogy a görbe alatti terület 1 legyen. Az átlagos 

tartózkodási időt a 3.8. összefüggés alapján számíthatjuk. 

𝜏̅ =
∫ 𝑡𝐶 𝑑𝑡
∞

0

∫ 𝐶 𝑑𝑡
∞

0

≅
∑ 𝑡𝑖𝐶𝑖∆𝑡𝑖𝑖

∑ 𝐶𝑖∆𝑡𝑖𝑖
 

(3.8) 

Az RTD kísérleti meghatározására is mutatok majd példát az 

esettanulmányok ismertetése során. A többfuratos jetkeverő esetében a tanszék 

saját laboratóriumában került sor festékanyag befecskendezését követően 

videofelvételre, majd azt felhasználva az RTD görbét videofeldolgozási 

módszereket alkalmazva határoztuk meg. 

Szimulációs vizsgálatokban is alkalmaztam RTD analízist berendezések 

hidrodinamikájának jellemzésére vagy az átlagos tartózkodási idő 

megállapítására. A szimulált esetekben először ki kell számítani a stacionárius 

áramlási állapotot, majd ezt felhasználva egy komponensmérleg megoldásával 

számíthatjuk a jelzőanyag koncentrációjának időbeli változását az elvétel helyén. 

A vizsgálójel a szimulációban is különféle függvénnyel adható meg. 

Számításaimban impulzusszerű vizsgálójelet alkalmaztam. 

Az átlagos tartózkodási idő ismerete nagy jelentőséggel bír a műveleti 

egységek tervezésében. A tartózkodási idő eloszlás (RTD) és az átlagos 

tartózkodási idő (𝜏̅) modell alapján nyert, és mérés során kapott értékeinek 

összehasonlítása a modellvalidáció egyik lehetséges és gyakran alkalmazott 

módszere. 

3.4.  Cellás modellezés 

A valós berendezések hidrodinamikája legtöbbször nem közelíthető ideális 

áramlású egységek, mint a dugóáramlású cső és a tökéletesen kevert egység 

modelljével, ezért ezeknek valamilyen kombinációját használhatjuk. Az ilyen 

kombinált modelleket cellás modelleknek (compartment model, CM) hívjuk. A 

cellás modellek építőelemeként a két ideális hidrodinamikai egység mellett 

definiálhatunk még elosztó és keverő egységeket is. A cellás modellek 

komplexitás tekintetében átmenetet képeznek az ideális hidrodinamikai modellek 

és a CFD modellek között. A cellás modellen alapuló szimulációk kevésbé 
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számításigényesek, mint a CFD szimulációk, ugyanakkor a CM is alkalmas 

összetettebb geometriájú készülékek hidrodinamikájának leírására, mint például 

az ebben a dolgozatban is bemutatott biomassza elgázosító reaktor modellezésére 

[55]. Cellás modellt alkalmaztak például Znad és munkatársai biológiai 

rendszerek (pl. fermentorok) modellezésére [56], Arora és munkatársai 

fluidizációs berendezés modellezéséhez [57], vagy Kong és munkatársai 

elgázosító reaktorok vizsgálatához [58]. 

A tökéletesen kevert egység (TKE) modelljét a 3.9-3.11. egyenletek 

mutatják, amelyben a jelzőanyag koncentrációjának változását írjuk le. 

𝐹𝑘𝑖 = 𝐹𝑏𝑒 (3.9) 

𝑑𝑐

𝑑𝑡
=

𝐹

𝑉
∙ (𝑐𝑏𝑒 − 𝑐) (3.10) 

𝑐(𝑡 = 0) = 0 (3.11) 

ahol F a térfogatáram, V az üst térfogata, c a jelzőanyag koncentrációja. 

A V térfogatú dugóáramú egység (ideális cső) modellje N db TKE 

kaszkádjából adódik a 3.12-3.15. egyenletek szerint. A kaszkád egységek 

térfogata Vn=V/N, n=1...N. 

𝐹𝑏𝑒
𝑛 = 𝐹𝑘𝑖

𝑛   n=1…N (3.12) 

𝑑𝑐1

𝑑𝑡
=

𝐹

𝑉𝑛
∙ (𝑐𝑏𝑒 − 𝑐

1) (3.13) 

𝑑𝑐𝑛

𝑑𝑡
=

𝐹

𝑉𝑛
∙ (𝑐𝑛−1 − 𝑐𝑛) n=2…N (3.14) 

𝑐𝑛(0) = 𝑐0
𝑛 n=1…N (3.15) 

ahol n a kaszkád egység sorszáma, t az idő, cbe az első egységbe belépő 

jelzőanyag koncentrációja. 

Minél több kaszkád elemre bontjuk fel az eredeti V térfogatot, annál jobban 

közelítjük az ideális cső áramlási modelljét. 

Az áramosztó (E) modelljében a térfogat nem szerepel paraméterként, a 

szétosztott áramok térfogatának összege megegyezik a belépő térfogattal. Az egy 
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bemenettel és két kimenettel rendelkező áramosztó kimeneti térfogatáramait és 

koncentrációját a 3.16-3.18. egyenletek írják le. 

𝐹𝑘𝑖,1 = 𝛼 ∙ 𝐹𝑏𝑒 (3.16) 

𝐹𝑘𝑖,2 = (1 − 𝛼) ∙ 𝐹𝑏𝑒 (3.17) 

𝑐𝑘𝑖,1 = 𝑐𝑘𝑖,2 = 𝑐𝑏𝑒 (3.18) 

ahol F a térfogatáram, α az elosztási arány (0 és 1 között változhat), c a 

koncentráció. 

Az áramkeverő (K) modelljében sem szerepel a térfogat paraméterként, a 

bejövő áramok térfogatának összege megegyezik a kimenő térfogattal. Működését 

a 3.19-3.20. egyeneletek írják le a két bemenet és egy kimenetes esetben. 

𝐹𝑘𝑖 = 𝐹𝑏𝑒,1 + 𝐹𝑏𝑒,2 (3.19) 

𝑐𝑘𝑖 =
𝐹𝑏𝑒,1∙𝑐𝑏𝑒,1+𝐹𝑏𝑒,2∙𝑐𝑏𝑒,2

𝐹𝑏𝑒,1+𝐹𝑏𝑒,2
 (3.20) 

A cellás modellek algebrai differenciálegyenlet-rendszerek, megoldásukhoz 

explicit módszert alkalmazunk. A cellás modell numerikus megoldásában ezért 

fontos paraméter a numerikus lépésköz (t), amelyet minél kisebbre állítunk annál 

pontosabb eredményt kapunk. 

A cellák közötti kapcsolatot egy úgynevezett kapcsolati mátrix-szal 

adhatjuk meg, amelyben az oszlopok a cellákat, a sorok az áramokat jelentik, és 0, 

1 vagy -1-gyel vannak feltöltve aszerint, hogy az adott áram az adott eszközbe be- 

(ezt 1-gyel jelölük) vagy kimegy-e (ezt -1-gyel), vagy nem érinti (ezt pedig 0-val). 

Egy példát a cellás modellre az egyik esettanulmányom kapcsán, a 4.1. fejezetben 

mutatok be. 

Összefoglalva, a cellás modellek kompromisszumos megoldást jelentenek 

az ideális hidrodinamikai modellek és a CFD modellek között. Az ideális 

hidrodinamikai modellek önmagukban nem elegendőek egy valós, bonyolultabb 

geometriával rendelkező berendezés áramlási viszonyainak vizsgálatára, a CFD 

modellek viszont sok esetben szükségtelenül részletesek és számításigényesek. A 

kétfázisú rendszerek áramlási modellezéséhez a cellás modellezési megközelítés 



Módszerek és eszközök 

 

52 

 

önmagában nem elegendő, az csak a folytonos fázis áramlásának leírására ad 

lehetőséget. 

3.5. A numerikus módszerek verifikálása 

Az áramló rendszerek makroszkopikus leírására szolgáló modellegyenletek, 

ahogy a 2.4. fejezetben is láthattuk, legtöbbször parciális differenciálegyenlet-

rendszert alkotnak. Ezeknek a különféle osztályokba sorolható egyenlettípusoknak 

a megoldására számos numerikus, tér- és időbeli diszkretizáláson alapuló módszer 

született. A numerikus módszereknek nagy a számítási igényük, és a számítások 

végrehajtása során numerikus hibák adódhatnak. 

A numerikus módszer validálása során a numerikus módszerrel nyert 

megoldást összehasonlítjuk az ismert analitikus megoldással. Mivel az áramlási 

egyenletek numerikus megoldása is a kutatómunkám részét képezte, ezért 

ellenőriztem az általam használt numerikus módszer pontosságát olyan áramlási 

példát alapul véve, amelyre található analitikus megoldás is. Egy ilyen áramlási 

példa a két különböző nyomású térrészt elválasztó lemez (diafragma) eltávolítása 

után bekövetkező áramlási jelenség, amelyet az angol nyelvű szakirodalomban 

legtöbbször „shock tube” problémának neveznek. Az első validálási eredmények 

ezzel a példával Sod nevéhez köthetők [59]. Munkám során az áramlási 

egyenletek megoldásában a 2.4.4. alfejezetben ismertetett MacCormack módszert 

használtam. A shock tube probléma MacCormack módszerrel történő megoldás 

eredményét hasonlítottam a probléma analitikus megoldásához. A numerikus 

eredmények validálása azt az eredményt mutatja, hogy az áramlási változók idő- 

és helybeli változása hasonlított az analitikus megoldáséhoz, azonban a nagy 

gradiensek (éles frontok) mentén oszcilláció lépett fel, amely a valós fizikai 

esetekben nem figyelhető meg (3.3.a ábra). 
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3.3. ábra. A „shock tube” probléma analitikus és MacCormack módszerrel nyert 

megoldása a sűrűség esetében a) TVD nélkül, b) TVD-vel. 

Az oszcillációk megjelenése az éles frontoknál jellemző minden olyan 

numerikus módszerre, amely másod- vagy magasabb rendű. Ezt a jelenséget 

Godunov bizonyította először [60]. Az oszcillációk kiküszöbölésére több 

módszert is kifejlesztettek. A következőkben a Total Variation Diminishing 

(TVD) technikát mutatom be, amelyet Harten dolgozott ki [61]. A technika 

ismertetéséhez vegyünk példaként a 3.21. egyenlettel leírt nemlineáris 

megmaradási egyenletet. 

𝜕𝑢

𝜕𝑡
+
𝜕𝑓(𝑢)

𝜕𝑥
= 0 (3.21) 

ahol u egy változó, f(u) ennek a változónak valamilyen függvénye, t és x rendre az 

idő- és térváltozók. 

Egy adott időpillanatbeli total variation-nek (TV), vagy magyarul összes 

változásnak nevezzük a 3.22. egyenletben definiált integrált. 



Módszerek és eszközök 

 

54 

 

TV = ∫ |
𝜕𝑢

𝜕𝑥
| 𝑑𝑥 (3.22) 

Fizikailag akkor elfogadható a numerikus megoldás, ha a TV nem 

növekszik az idővel [62]. A 3.22. egyenlet diszkretizált alakját a 3.23. egyenlettel 

adhatjuk meg. 

TV(𝑢) =∑|𝑢𝑖+1 − 𝑢𝑖|

𝑖

 (3.23) 

ahol ui+1 és ui az u változó értékei az i+1. és az i. helykoordinátában. 

Az összes változás tehát nem növekedhet az idővel, ezt fejezi ki a 3.24. 

egyenlet. 

TV(𝑢𝑛+1) ≤ TV(𝑢𝑛) (3.24) 

A 3.24. egyenletbeli kritériumot teljesítő megoldásokat nevezi Harten 

TVNI-nek, azaz Total Variation Non-Increasing-nek [61], és ezt a tulajdonságot 

biztosító módszereket TVD-nek, azaz Total Variation Diminishingnek hívjuk. A 

másodrendű és afölötti pontosságú numerikus módszerek esetében a TVD feltétel 

teljesülése érdekében az alap numerikus módszerbe egy korrekciós lépést kell 

beépíteni. 

Egy másik gyakori numerikus hiba akkor lép fel az áramlási szimulációk 

esetében, ha a kilépő peremfeltételeket nem megfelelően definiáljuk. Gázok 

esetében a konstans nyomásperem alkalmazása kompressziós és expanziós 

hullámok visszverődését okozza, amelyek fizikailag nem realisztikusak. Az ezeket 

a jelenségeket elkerülő peremfeltételeket non-reflektív peremfeltételnek nevezik, 

melynek elméleti módszertanát Thompson írta le [63]. A kompresszibilis áramlás 

számítása esetén a fix nyomás kilépő peremfeltételnek köszönhetően az áramlási 

térben képződő hullámok visszaverődnek a peremről és emiatt nem tud kialakulni 

stacionárius áramlás a számítás során. A non-refelektív perem segít a hullámok 

kivezetésében a peremeken keresztül megszüntetve ezáltal a visszaverődést és 

ezek hatását. Ez történik a gyakorlatban fizikailag is amikor egy a keresztmetszet 

mentén nem homogén áramlás elhagyja pl. a csövet. Ez fizikailag a nagy átmérőjű 

csövek kilépő felületén figyelhető meg jól, hogy a teljes keresztmetszetben nem 

nulla vagy konstans a nyomás értéke, hanem pontonként változik. 
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Esettanulmányaim egy részében a numerikus módszert kiegészítettük a 

TVD tulajdonságot biztosító taggal, valamint a kilépő peremfeltételt non-reflektív 

peremként definiáltuk, adaptálva Thompson módszerét. Az adszorpciós gáztisztító 

esetében például a megoldás stabilitása nagyrészben ezeknek a speciális 

kiegészítéseknek köszönhető. 

3.6. Biomassza elgázosító reaktor 

Az egyik esettanulmányban egy laboratóriumi méretű, kétlépéses, cellulózt 

pirolizáló és elgázosító reaktorral foglalkoztam. A kísérleti berendezés a vuhani 

Huazhong University of Science and Technology (Kína) „State Key Laboratory of 

Coal Combustion” laboratóriumában működik. A reaktor szerkezeti rajza alapján 

készítettem el a berendezés CFD modelljének geometriáját COMSOL 

Multiphysics-ben, amellyel tartózkodási idő analízisen alapuló hidrodinamikai 

vizsgálatokat végeztem. Az esettanulmány eredményeit és részletesebb leírását a 

4.1. fejezet ismerteti. 

3.7. Többfuratos jetkeverő 

A jetkeverő esettanulmányához készített laboratóriumi eszköz egy 30 cm 

hosszú és 3,44 cm átmérőjű, valamint benne egy 7 cm-rel rövidebb, 1,78 cm 

átmerőjű átlátszó műanyag csőből áll. A fizikai eszköz alapján, a keveredés 

vizsgálatához készített CFD modell geometriáját a 3.4. ábra mutatja. 

 

3.4. ábra. A jetkeverő eszköz geometriai modellje a funkcionális részek 

feltüntetésével [64]. 

A belső cső végére illeszthető a 2 cm hosszúságú többfuratos szórófej, 

amelyet többféle konstrukcióban készítettünk el 3D nyomtató segítségével. A 

jetkeverő eszköz célja, hogy a két bemeneten (külső és belső csövön) bevezetett 



Módszerek és eszközök 

 

56 

 

áram a többfuratos szórófejen átjutva minél nagyobb mértékben összekeveredjen. 

A mérőberendezés átlátszó fala lehetőséget teremt tartózkodási idő vizsgálat 

elvégzésére videofelvétel alapján.  

3.8. Fluidizációs cella 

A szimulációs eredmények kísérleti validálásához egy fluidizációs 

berendezést építettünk. A kvázi-kétdimenziós laboratóriumi méretű fluidágy 

légterének befoglaló méretei 15 cm x 95 cm x 1,5 cm. A berendezés előlapja és 

falai átlátszó plexi panelekből állnak, benne 11000 db 3,5 mm átmérőjű, 

egyenként 0,067 g tömegű alumínium golyót helyeztünk el. A gázeloszlást segítő 

fémrácsot a légbefúvó bevezetése fölött 20 cm-re építettük be. A berendezés 

oldalán 5-10 cm-enként, összesen 14 db relatív és abszolút Freescale 

MPX2010-es típusú nyomásszenzornak alakítottunk ki csatlakozási helyet. A 

fluidágyat egy frekvenciaváltós fúvó által biztosított gázáram hozza mozgásba, 

amely után egy Hönzsch TA-Di/U10a típusú áramlásmérőt csatlakoztattunk. A 

belépő csonk a fluidágy szélességének középső harmadában helyezkedik el. A 

sebesség- és nyomásadatokat egy Advantech gyártmányú ADAM-5000L/TCP 

típusú adatgyűjtő és irányító egység segítségével nyerjük ki. A berendezés a 

Pannon Egyetem Folyamatmérnöki Intézeti Tanszék laborjában található (3.5. 

ábra). 
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3.5. ábra. Laboratóriumi méretű kvázi-kétdimenziós fluidizációs berendezés. a) 

fluidágy töltettel és a nyomásszenzorokkal, b) légbefúvó az áramlásmérővel, c) 

adatgyűjtő és irányító egységek, d) adatgyűjtő számítógép 

A mérőberendezés célja a fluidizáció leírására használt modellek validálása. 

A cél eléréséhez a berendezés része egy nagysebességű kamera is. Az alkalmazott 

Optronics CL600x2 kamerának többféle beállítása lehetséges. A fluidizációs 

folyamat validációja kapcsán másodpercenként 500 db 1280x1024 képpontból 

álló felvételt rögzítettünk. A felvételeket a kamera egy adatgyűjtő számítógép felé 

továbbítja. 

A mérőrendszer használatával a fluidizációs ágy szemcséinek helyzetéről és 

a nyomásviszonyairól nyerhetünk információt. A nagysebességű kamera 

felvételek alapján a szemcsék mozgását lehet elemezni, amely adatot szolgáltat a 

matematikai modell által nyert szimulációs eredményekkel való összehasonlításra. 

A szemcsék mozgási útvonalának detektálásához a felvételeket felhasználva 

képfeldolgozási utómunkálatokat kell végezni, amelyhez bármilyen alkalmas 

szoftvert (pl. MATLAB-ot) alkalmazhatunk. 

A képfeldolgozáshoz a MATLAB-ban először be kell tölteni az elemzendő 

képet, majd alakfelismerő függvény segítségével detektálni a vizsgált 



Módszerek és eszközök 

 

58 

 

részecskéket. A részecskék középpontját egy újabb függvény segítségével lehet 

kinyerni. Ezeket a lépéseket a többi képkockával hasonlóképpen megismételjük. 

Olyan képsorozatot kell választani, amelyen egy kiválasztott szemcse jól 

követhető. A kinyert pozícióadatokból elmozdulást és sebességet is számíthatunk 

a képrögzítések között eltelt idő ismeretében, amely adatokat a szimulációs 

eredményekkel össze lehet hasonlítani. 

3.9.  Szedimentációs oszlop 

A szilárd részecske folyadékban való ülepedését leíró modell kísérleti 

validálásához használt berendezés egy 1 m magas, 10 cm átmérőjű átlátszó 

műanyag cső vízzel vagy más newtoni folyadékkal töltve. Körülbelül 3 mm 

átmérőjű szilárd szemcséket a folyadékoszlop felszínének közepére helyezve, és 

egyesével elengedve, ülepedésüket kamerával rögzítve képfeldolgozáson alapuló 

mozgáselemzés válik lehetővé. A sebességfluktuációk mérési adatai jó alapot 

szolgáltatnak a szimulációs kísérlet validálásához. A mérések a University 

College Cork Folyamat- és Vegyészmérnöki Tanszékének laboratóriumában 

készültek. Az ülepedéssel kapcsolatos modellezési és szimulációs 

eredményeimről a 4.5. fejezet esettanulmányában számolok be. 
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4. Esettanulmányok és eredmények 

Ebben a fejezetben a korábban részletezett módszerek alkalmazását, és az 

eredményeket mutatom be. Az alfejezetek a témában megjelent publikációim 

gondolatmenetét követik. Az esettanulmányok bemutatása egy rövid 

összefoglalóval kezdődik, amelyben elhelyezem a témát és áttekintést adok a 

konkrét esethez szorosan kapcsolódó tudományos eredményekről, elkerülve 

azokat az általános ismertetéseket, amelyekkel a 2. és 3. fejezetben már 

foglalkoztam. Az esettanulmányok mindegyike rövid összefoglalással zárul, 

melyekben sok esetben további tervek, ötletek is szerepelnek. 

Az első esettanulmányban a hagyományos CFD modellezést, és ennek 

kevésbé számításigényes alternatívájaként a cellás modellek használatát mutatom 

be. A vizsgált berendezés ebben az esetben egy összetett geometriával rendelkező 

biomassza elgázosító reaktor. A cellás modell segítségével egy tartózkodási idő 

analízist végeztem a reaktor hidrodinamikai tulajdonságainak megismerése 

céljából. A második esettanulmány keverő berendezések teljesítményének 

értékelésére kidolgozott módszertant ismertet egy többfuratos jetkeverő példáján 

keresztül. A bemutatott módszer szemcsekövetéses vizsgálatok adatainak 

elemzésén alapszik. Az utolsó három esettanulmány a direkt numerikus 

szimulációs módszer alkalmazására mutat példákat. A módszert a fluidizáció, 

adszorpció és szedimentáció részecske szintű folyamatainak modellezésére és 

szimulációjára használtam. 
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4.1. Biomassza elgázosító reaktor hidrodinamikai modellezése 

A biomassza hasznosítás környezetvédelmileg fontos művelet, mivel 

megújuló energiát vagy új termékeket állít elő. Napjainkban a fosszilis 

előforrások kiapadóban vannak, így az alternatív megoldások kutatása népszerű és 

fontos tématerület. Biomassza alatt számos különféle természetes anyagot értünk, 

például fáradt olaj vagy vízi növények. A biomassza eredete lehet faipari, 

mezőgazdasági, vízi és állati hulladék. A fás szárúak alkotta biomassza főként 

cellulózból, hemicellulózból és ligninből épül fel. Ezek közül is a cellulóz a fő 

komponens, amely egy D-glükóz egységeket tartalmazó poliszacharid. A 

biomassza konverziója végbemehet biokémiai, fiziko-kémiai és termokémiai 

utakon. Biokémiai konverzió során a biomassza molekuláit enzimek vagy 

baktériumok bontják le kisebb molekulákra. Ez a folyamat lassabb, mint a 

termokémiai konverzió, ellenben nem igényel annyi energia-befektetést. A fiziko-

kémiai út alkalmazása során bizonyos biomasszákból, például napraforgó vagy 

repcemagokból növényi olajat sajtolnak, vagy a biomasszát pelletálják 

sűrűségnövelés, alak- és méretegységesítés érdekében [65]. A pelletálás 

előkészítője lehet a további, termokémai úton történő biomassza-hasznosításnak 

is. A biokémiai, fiziko-kémiai és termokémiai feldolgozási módok közül az 

esettanulmányban egy termokémiai folyamatoknak helyet adó reaktorral végzett 

vizsgálataimat mutatom be. A fő termokémiai folyamatok a pirolízis, az égés, ez 

elgázosítás, a hidrotermális cseppfolyósítás és a hidrotermális karbonizálás [66]. 

Ezek közül a pirolízis és az elgázosítás folyamán lehet hatékonyan jóminőségű 

szintézisgázt vagy folyékony üzemanyagot előállítani [67]. 

A biomassza elgázosítás magas hőmérsékleten egy összetett folyamat, 

amely két gyakran átlapoló szakaszból áll. A pirolízis szakasz során relatíve 

alacsony hőmérsékleten felszabadulnak az illékony komponensek, amelyek a 

magasabb hőmérsékleten végbemenő elgázosítás szakasza során átalakulnak [68]. 

Kétlépéses pirolizáló/elgázosító rendszereket, melyben a felső szakaszban a 

pirolízis, alsó szakaszában az elgázosítás megy végbe, könnyebb tanulmányozni, 

szimulálni, valamint a gázfejlődést és a gázkomponensek összetételét és arányát 

számítani [69]. Az elgázosítás során a széntartalmú alapanyag termikus lebomlása 

megy végbe egy kívülről biztosított oxidáló ágens jelenlétében. A levegő, az 
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oxigén és a vízgőz a leggyakoribb ágensek, mindnek megvan a maga előnye. A 

vizsgált reaktorban használt vízgőz ágens alkalmazásának az az előnye, hogy 

oxidálás mellett a gázátalakító folyamatokat is elősegíti [70]. A katalizátor is 

fontos szerepet játszik az elgázosítás folyamatában, segítségével a folyamat 

gyorsabban átjut az energiagáton. Az esettanulmányban vizsgált kétlépéses 

állóágyas reaktorban Ni/Al2O3 a katalizátor. 

A reaktorban lejátszódó reakciók mechanizmusát kísérletek és mérések által 

fel lehet tárni, azonban a reaktor áramlási, hidrodinamikai viszonyai mérésekkel 

nehezen követhetők nyomon. A reaktor hidrodinamikai tulajdonságainak 

megismerése szükséges és fontos követelmény a berendezés geometriájának 

tervezésekor. Elgázosító rektorok esetében is gyakran használják a numerikus 

áramlástani (CFD) módszereket az áramlási tulajdonságok meghatározására. 

Gómez-Barea és Leckner [71] csakúgy mint Sharma és munkatársai [72] 

tanulmányaikban CFD szimulációt használtak biomassza elgázosító reaktorok 

vizsgálata esetében. Kiemelték, hogy a számítógépes szimulációk használatának 

egyik fő előnye, hogy a berendezések általuk költséghatékonyan vizsgálhatók és 

optimalizálhatók. A reaktortér hidrodinamikájának megismeréséhez segítséget 

nyújthat a rendszer tartózkodási idő eloszlásának a meghatározása is. A 

berendezések RTD görbéjét szimulációs úton is meghatározhatjuk úgy, hogy a 

bemeneten vagy bemeneteken beinjektált jelzőanyag áramlásának modellezésére 

és szimulációjára a szokásos áramlási egyenleteket kiegészítjük a jelzőanyag 

koncentráció idő- és térbeli változását leíró mérlegegyenlettel, majd a modell 

alkalmazásával nyomon követjük, hogy a jelzőanyag időben hogyan távozik a 

kilépő peremen keresztül. A 3.3. alfejezetben bemutatott tartózkodási idő analízis 

gyakori vizsgálati módszer, és jelentős szerepet kap a jelen tanulmányban is. 

A bonyolultabb geometriájú berendezések nem írhatók le ideális áramlási 

modellekkel (tökéletesen kevert üst és dugóáramú cső modelljei), azonban ezek 

kombinációjával, az úgynevezett cellás modellek alkalmazásával modellezhetjük 

a hidrodinmaikai viselkedést. A cellás modellezésen alapuló szimulációk előnye a 

CFD szimulációkhoz képest a kisebb számítási igény. Kong és munkatársai 

elgázosító reaktor modellezésére használtak cellás modellt [58].  
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Az esettanulmányban bemutatott elgázosító reaktor cellás modelljét is 

elkészítettük MATLAB környezetben, és a COMSOL Multiphysics 

programcsomaggal készített CFD modellből nyert eredményekkel hasonlítottam 

össze. Az eredmények azt mutatják, hogy a létrehozott modellekkel egy eszközt 

tudunk nyújtani a bonyolultabb reaktorterek belső áramlási viszonyainak 

vizsgálatához. Az ismertetett módszerek a konkrét eseten túl más reaktorok 

tervezéséhez is alkalmazhatóak. 

Módszerek és eszközök 

Az esettanulmányban a 3.9. alfejezetben bemutatott laboratóriumi méretű, 

felülről lefelé áramlású, állóágyas katalizátorral rendelkező kétlépéses pirolizáló 

és elgázosító reaktort modelleztem a reaktortér hidrodinamikájának feltárása 

érdekében. A reaktortérben végbemenő kémiai reakciókkal nem foglalkoztam, 

azokról Zou és munkatársainak cikkében található részletes információ [73]. A 

4.1. ábra mutatja a reaktor geometriai modelljét a bemenetek, a kimenet, a 

cellulóztároló edény, a katalizátor ágy és az egyes funkciós szakaszok 

megjelölésével. 

 

4.1. ábra. A reaktor szerkezeti rajza. 
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A nitrogént mint inert gázt a reaktor felső részének oldalán vezetjük be 

9,16·10
-6

 m
3
/s térfogatárammal. A nyersanyag – esetünkben vegytiszta, Sigma-

Aldrich gyártmányú, 20 m-es kristályporból álló cellulóz – az ábrán jelölt 

tartóban van elhelyezve. A pirolízis folyamata a reaktortest felső szakaszában 

megy végbe. Az elgázosításhoz szükséges oxidáló ágens, esetünkben vízgőz 

8,15·10
-6

 m
3
/s térfogatárammal egy bemerülő cső segítségével a reaktortest alsó 

felében kerül bevezetésre. A vízgőz így az elgázosító szakasz kezdetén tud 

reakcióba lépni a pirolízistermékekkel. A CFD modellben a reaktor teljes 

térfogatára 800 °C hőmérsékletet definiáltam a kísérleti berendezés valós 

működésének megfelelően. Az izoterm körülmény miatt a modellegyenletekhez 

nem szükséges energiaegyenletet adni. 15 w/w %-os Ni tartalmú Ni/Al2O3 

katalizátor a jelölt helyen fixágyban van elhelyezve. A reaktorból távozó gáz 

összetétele a vízgőz térfogatáramának változtatásával befolyásolható [73]. 

A reaktor CFD modelljét COMSOL Multiphysics-ben készítettem el. Az 

összes vizsgált esetben a Reynolds szám a turbulens határérték alatt maradt, ezért 

a 4.1-4.2. egyenletekkel megadott staiconárius lamináris áramlási modellt 

használatam. 

(𝐮) = 0 (4.1) 

𝜌(𝐮)𝐮 = ˗𝑝𝐥 + (𝐮 + (𝐮)T) −
2

3
( ∙ 𝐮)𝐈+ 𝐅 (4.2) 

ahol ρ a sűrűség, u a sebességvektor, p a nyomás, μ a dinamikai viszkozitás és F 

az áramlást befolyásoló egyéb erők. 

A bemeneteken peremfeltételként a nitrogén és a vízgőz térfogatáramát 

adtam meg, a kimeneti peremen pedig konstans nyomást definiáltam a 

visszaáramlás megakadályozásával. Az összes többi peremen a nem-csúszó fal 

peremfeltételt állítottam be. 

A tanulmányban az elgázosító reaktor hidrodinamikai viselkedését 

tartózkodási idő eloszlásfüggvény analízissel vizsgáltam. Ehhez szükség volt az 

eddig megadott egyenletek mellé a jelzőanyagra vonatkozó komponensmérleget is 

felvenni (4.3. egyenlet). 
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(-Dici) + uci = Ri (4.3) 

ahol Di az i komponens diffúziós állandója, ci az i komponens koncentráció 

gradiense és Ri az i komponens forrása, amely esetünkben jelenleg 0, de a későbbi 

alkalmazásokban akár a kémiai reakció vagy más forrás beilleszthető. 

A falak mentén a megadott peremfeltétel nem enged meg komponens 

áramlást. Impulzusszerű jelzőanyag injektálást alkalmaztam mindkét bemeneten. 

A berendezés kimenetén számítottam a felületre átlagolt kilépő koncentrációt az 

idő függvényében, ennek eredménye lett a tartózkodási idő eloszlás görbe. 

Eredmények és értékelés 

A 3.2. fejezetben ismertetett hálófüggetlenségi vizsgálatot alkalmaztam a 

CFD szimuláció számára megfelelő számítási háló kiválasztása érdekében. A 

reaktor 3D-s geometriájához három különböző felbontású számítási hálót 

generáltam. A hálógenerálás alapjául a megadott maximális hálóelem méret 

szolgált, amelyet a legdurvább felbontás esetében 11,9 mm-nek, a közepesen 

durva felbontás esetében 7,74 mm-nek, míg a legfinomabb felbontás esetében 

5,96 mm-nek adtam meg. Mérleghibát számítottam mind az impulzusmérleg, 

mind a komponensmérleg esetében (4.2. ábra) a belépő és kilépő áramokat 

figyelembe véve. 

 

4.2. ábra. A hálóelemszám hatása a futási időre (kék) és a mérleghibákra (piros) 

a) impulzusmérleg és b) komponensmérleg esetében. 

A számításokat Dell Optiplex 790-es, 16 GB memóriával rendelkező 

személyi számítógépen futtattam. Mindkét mérleg esetében a várakozásnak 

megfelelően látszik, hogy egyre finomabb számítási hálót alkalmazva egyre 

kisebb a mérleghiba, ugyanakkor egyre nő a számítási idő. A későbbiekben a 
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vizsgálatban alkalmazott háromféle számítási háló közül a legfinomabbat 

használtam, mert ez elfogadható számítási időigény mellett megfelelően alacsony 

hibaértéket generál. A számításaimhoz használandó háló tehát 220121 elemből 

áll, amely finomabb felosztású perem rétegeket (boundary layers) is tartalmaz 

(4.3. ábra). 

 

4.3. ábra. Az elgázosító reaktor modellezéséhez használt számítási háló. a) a 

teljes geometria, b) az első bemenet (Inlet 1) és környéke, c) a második bemenet 

(Inlet 2) és környéke, d) a kimenet és környéke. 

Az áramlási mezőt különböző vízgőz tömegáramok (Inlet 2: 0,01 g/perc, 

0,02 g/perc, 0,05 g/perc, 0,1 g/perc, 0,2 g/perc) beállításával számítottam. A 

stacionárius megoldások a 4.4. ábrán lévő sebességi mezőket eredményezték. A 

sebességi mezőn alapul az áramvonalakat mutató 4.5. ábra, amely az áramlás fő 

irányát mutatja, és a holttereket is szemlélteti. 

a)

c)

d)b)
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4.4. ábra. Az elgázosító reaktor sebességmezője [m/s] hosszanti 

keresztmetszetben a különböző tömegáramű vízgőz bemenet (Inlet 2) esetén. a) 

0,01 g/perc, b) 0,02 g/perc, c) 0,05 g/perc, d) 0,1 g/perc, e) 0,2 g/perc 

 

4.5. ábra. Az elgázosító reaktorban kialakuló áramvonalak 0,1 g/perc 

vízgőzbemenet esetében. A rózsaszín vonalak a nitrogéngáz áramvonalait jelölik, 

a zöldek a vízgőzét. a) az 1. betáplálás és környéke, b) a 2. betáplálás és környéke, 

c) a kimenet és környéke. 

a) b) c) d) e)
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Az előzetesen kiszámított stacionárius impulzusmérleget felhasználva a 

modell segítségével komponensmérleget számítottam a bemeneteken injektált 

jelzőanyag áramlásának követésére. Az impulzusszerű Dirac delta függvényt a 

szimulációs programban téglalap függvénnyel valósítottam meg, melynek során 

100 mol/m
3
 koncentrációjú jelölőanyagot injektáltam 1 s-on keresztül mindkét 

bemeneten (4.6.a ábrán fekete pontokkal jelölve), csak az 1. betápláláson (piros 

vonal), vagy csak a 2. betápláláson (zöld vonal). A 4.6. ábra a) részében a 

jellemző változások időpontjában (13 s, 18 s, 73 s és 260 s-nál) a reaktor hossz 

menti koncentrációprofilját is beszúrtam. 

 

4.6. ábra. A vizsgált rendszer válaszfüggvénye az impulzus bemenetre a) 0,1 

g/perc vízgőz bemenet esetén, b) különbőző vízgőz (2. betáplálás) tömegáramok 

esetében. 
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Az első csúcs mutatja, hogy a 2. betáplálásból (bemerülő cső, lásd 4.1. ábra) 

származó jelölőanyag nagy koncentrációban rövid idő alatt eléri a kimenetet és 

távozik a rendszerből, míg az 1. betáplálásból (a reaktortest felső részén lévő) 

származó jelölőanyag lassabban éri el a kimenetet, és később távozik a 

rendszerből. A H2 termelést befolyásolja az elgázosító ágens mennyisége a reaktor 

elgázosító részében [73], ezért különböző vízgőz tömegáramokkal is lefuttattam a 

jelzőanyag numerikus bevezetésével végzett szimulációs kísérleteket. A 4.6.b 

ábrán a különböző vízgőzáramok melletti, kimeneten detektált 

koncentrációgörbéket láthatjuk. Az első koncentrációcsúcs a vízgőz 

tömegáramának növelésével egyenes arányban növekszik, a második 

koncentrációcsúcs pedig fordítottan arányos vele (4.6.b ábra). A 3.3. fejezetben 

ismertetett 3.8. egyenlet alapján kiszámítottam minden esethez az átlagos 

tartózkodási időt, amely a vízgőzáram növelésével fordítottan arányos (4.1. 

táblázat). 

4.1. táblázat. Átlagos tartózkodási idők az elgázosító ágens különböző sebességű 

betáplálása esetén. 

A reaktortest 

teljes 

térfogata 

A nitrogén  

(1. betáplálás) 

térfogatárama 

A vízgőz  

(2. betáplálás) 

tömegárama 

A vízgőz  

(2. betáplálás) 

térfogatárama 

(tömegáramból 

átszámítva) 

Átlagos 

tartózkodási 

idő 

[m
3
] [m

3
/s] [g/perc] [m

3
/s] [s] 

1,02E-03 9,16E-06 

0,01 8,15E-07 102,06 

0,02 1,63E-06 95,17 

0,05 4,07E-06 79,19 

0,1 8,15E-06 64,00 

0,2 1,63E-05 43,83 

A cellás modellezési megközelítés szerint egy tetszőleges hidrodinamikájú 

berendezés modellje felírható dugóáramú cső (Cső), tökéletesen kevert egységek 

(TKE), keverők (K) és elosztók (E) kombinációjával. Az utóbbi kettő elemnek 

funkcionális szerepe van, de térfogatot nem foglal. A cellák közötti kapcsolatot 

kapcsolati mátrix-szal adjuk meg, melyben az oszlopok a cellák, a sorok az 
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áramok. -1 a kimenő áramot, 1 a bemenő áramot jelzi, 0 pedig, hogy az adott 

cellát nem érinti az adott áram. Az elgázosító reaktor cellás modelljét a 4.7. ábra 

mutatja, jelölve a CFD modellnek való megfeleltetéseket. A kapcsolati mátrixot a 

4.2. táblázatban adtam meg. 

 

4.7. ábra. A reaktor cellás modellje az u1-u5 cellák és s1-s7 áramok feltüntetésével. 

4.2. táblázat. Az elgázosító reaktorra felírt cellás modell kapcsolati mátrixa. 

 u1 u2 u3 u4 u5 

s1 1 0 0 0 0 

s2 -1 1 0 0 0 

s3 0 1 0 0 0 

s4 0 -1 1 0 0 

s5 0 0 -1 1 0 

s6 0 0 0 -1 1 

s7 0 0 0 0 -1 

Az ideális áramlású csöveket tökéletesen kevert egységek kaszkádjaként 

modelleztem, a kaszkádba kötött tökéletesen kevert egységek száma tehát egy 

modellezési paraméter. Kevés kaszkádelem nem közelíti megfelelő mértékben az 

ideális áramlású csőre jellemző hidrodinamikát. A vizsgálatokban kezdetben 10 

kaszkád elemet használtam, és nem tapasztaltam minőségi javulást a 
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kaszkádelemszám növelésével sem, így az elemszám paramétert a továbbiakban 

nem változtattam. 

A reaktor pirolizáló szakaszát ideális áramlású csőként modelleztem. A 

vízgőz bemenet miatt szükség volt egy keverőcellára. A katalizátorágyat 

tökéletesen kevert egységnek tekintettem, a reaktor többi részét pedig ideális 

áramlású cső cellás modelljeivel közelítettem. A térfogattal rendelkező cellákhoz 

a valós geometriának megfelelő értékeket rendeltem, amelyek a teljes térfogathoz 

vett arányokat tekintve 53,26%, 22%, 0,28%, 24,46%-nak adódtak rendre. A 

cellás modell kevert egységeit leíró közönséges differenciálegyenleteket explicit 

Euler módszerrel oldottam meg 0,2 s-os lépésközt alkalmazva. A 4.8. ábra mutatja 

az impulzus bemenetre adott koncentráció válaszgörbéket a CFD és cellás modell 

alkalmazása esetében, 0,1 g/perces vízgőzáram mellett. Az egyezést jónak 

találtuk, de a különbség számszerűsítése érdekében abszolút és négyzetes hibát is 

számítottunk a kétféle modellből kapott eredményből az alábbi 4.4. és 4.5. 

egyenletek alapján. 

Errabs = ∑ abs(ccellás,  i − cCFD, i)
t
i=1  (4.4) 

Errnégyzetes = ∑ (ccellás,  i − cCFD, i)
2t

i=1  (4.5) 

Kísérletképpen egy optimalizáló algoritmus, a Particle Swarm Optimization 

(PSO, [74]) segítségével meghatároztam azokat a térfogati paramétereket, 

amellyel a 4.6. egyenlettel leírt célfüggvény eléri a minimumát. 

min ∑(ccellás modell(t) – cCFD(t))
2
 (4.6) 

A célfüggvény a rendelkezésre álló időpillanatokban kiszámítja a két modell 

és szimuláció által kapott értékek négyzetes különbségét, majd az értékeket 

összegzi, hogy a teljes időskálára kapjunk egyetlen olyan számot, amely a két 

görbe egymástól való eltérését fejezi ki, és amelyet tekintve a célunk az, hogy ez 

minél kisebb legyen. A 4.8. ábra az optimalizált cellás modellből (kék vonal) és és 

az eredeti CFD modellből (fekete csillag) nyert koncentrációgörbéket mutatja. 
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4.8. ábra. A CFD és cellás modell felhasználásával nyert koncentrációgörbék.  

a) a cellák térfogatparaméterét a valós geometria alapján határoztam meg,  

b) a térfogatparaméretek optimalizálási algoritmus alapján lettek meghatározva. 

A kétféle paraméterválasztási stratégiával futtatott szimulációk eredményeit 

a 4.3. táblázatban foglaltam össze. A térfogatarányok változását szemlélteti a 4.9. 

ábra. Habár a hibaértékek csökkentek valamelyest, mivel az optimalizált modell 
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geometriai paraméterei jelentősen eltérnek a valóstól, ezért az optimalizált cellás 

modell további használatát elvetettem. 

4.3. táblázat. Modellparaméterek és eredmények. 

 

A reaktor geometriai 

szekcióinak 

térfogathányadai 

Optimalizált 

térfogathányadok 

u1-re eső térfogathányad 53,26% 60,08% 

u3-ra eső térfogathányad 22,00% 17,74% 

u4-re eső térfogathányad 0,28% 4,44% 

u5-re eső térfogathányad 24,46% 17,74% 

Abszolút hiba 46,45 33,40 

Négyzetes hiba 27,96 10,69 

 

 

4.9. ábra. Az optimalizált paraméterek szerint az u3, u4 és u5 egységek térfogata 

közel egyforma (2.), amely nagyban eltér a valós reaktor geometriai szekcióinak 

térfogathányadaitól (1.). 

A valós geometriát követő térfogati paramétereket alkalmazó cellás modell 

eredményét összehasonlítottam a CFD szimulációval kapott eredményekkel a 

többi vízgőz tömegáram mellett is, ezeket mutatja a 4.10. ábra. Ebben a négy 

esetben is láthatóan jó egyezést kaptunk, a számszerű összehasonlíthatóság 

érdekében az eltérést mutató hibaértékeket a 4.4. táblázatban foglalom össze. 
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4.10. ábra. A CFD modellel kapott koncentrációgörbék és a reaktor 

geometriájának megfelelő térfogati paramétereket használó cellás modellből nyert 

koncentrációgörbék a többi vizsgált vízgőz tömegáram esetében. a) 0,01 g/perc, b) 

0,02 g/perc, c) 0,05 g/perc, d) 0,2 g/perc. 

4.4. táblázat. Modellparaméterek és hibaértékek a további négy vízgőz áram 

esetében. 

u1-re eső térfogathányad 53,26% 

u3-ra eső térfogathányad 22% 

u4-re eső térfogathányad 0,28% 

u5-re eső térfogathányad 24,46% 

A vízgőz tömegárama 0,01 g/perc 0,02 g/perc 0,05 g/perc 0,2 g/perc 

Abszolút hiba 45,19 43,76 40,80 42,14 

Négyzetes hiba 17,59 15,38 14,44 36,67 

Összefoglalás 

Ebben az esettanulmányban egy biomassza elgázosító reaktor 

hidrodinamikai viszonyait tártam fel. A készülékben kialakuló áramlási viszonyok 

meghatározásához egy CFD szoftvert használtam. A szimulációs vizsgálatokban a 
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kísérleti berendezésnek megfelelő geometriai és működtetési paramétereket 

alkalmaztam. A reaktor hidrodinamikai jellemzőit CFD szimuláció segítségével, 

tartózkodási idő eloszlás függvény analízissel vizsgáltam. Abból a célból, hogy 

meghatározzam a reaktor egyes szekcióinak jellemző hidrodinamikai 

karakterisztikáját, egy ideális áramlású egységekből és keverőcellákból felépített 

cellás modellel is közelítettem a reaktor működését. Az első lépésben az egyes 

cellák térfogatparaméterét a reaktor geometriájának megfelelően választottam 

meg, az álló katalizátorágyat tökéletesen kevert egységnek, a reaktor többi részét 

pedig ideális csőnek tekintettem. A kimeneten számított koncentrációértékeket 

összehasonlítottam a CFD szimuláció által nyert eredményekkel, és jó egyezést 

találtam. Az egyezést tovább javíthatjuk a cellás modell térfogati paramétereinek 

optimalizált megválasztásával, azonban a valóságtól nagyban eltérő térfogati 

arányokat kaptunk, emiatt az optimalizálást és az optimalizált paraméterek 

későbbi használatát elvetettük. Mind a CFD, mind a cellás modellel többféle 

vízgőz térfogatáram mellett vizsgáltam a reaktort. Ezek a különböző feltételek a 

gyakorlatban a termelt gázösszetételre is hatással vannak. Kínai partnereink 

ugyanezeket a paramétereket alkalmazták a valós rendszeren végzett mérésekben, 

ezért a hidrodinamikai esettanulmány gyakorlati jelentősséggel is bír. A 

kidolgozott modellek és az ismertetett módszerek alkalmasak a bemutatott 

biomassza elgázosító reaktor további vizsgálatára. 
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4.2.  Többfuratos jetkeverő keverőteljesítményének jellemzése 

szemcsekövetésen alapuló kevertségi mérték alapján 

Intenzív folyadék-folyadék keverésre gyakran van szükség a vegyiparban, 

például nagysebességű reakciók esetében a betáplált áramok összekeverésekor, 

hogy növeljük a konverziót és csökkentsük a mellékreakciók esélyét. A 

homogenizálás hatékonyságának jellemzésére kidolgoztam egy eljárást, amelyet 

ebben az esettanulmányban mutatok be. A vizsgált berendezés egy cső a csőben 

elrendezésű kétbemenetű eszköz, amely egy folyamatos üzemű reaktor betáplálási 

áramát készíti elő. A többfuratos szórófejet a belső cső végére helyezve az 

átáramló folyadék elkeveredik. Szemcsekövetéses vizsgálattal a két bemenetről 

indított, és a közös kimenetre érkező szemcsék pozíciója és eredete alapján 

állapítottam meg a keveredés fokát. A tanulmány célja néhány, fizikailag könnyen 

létrehozható furatos keverőfej-konstrukció összehasonlítása a keverési 

teljesítményük alapján, és a leghatékonyabban működő szórófej kiválasztása. A 

keveredés vizsgálatához egy CFD modellt hoztam létre, amelyet kísérletileg 

validáltunk. 

Irodalmi bevezetés 

Jet keverőknek nevezzük az olyan elvű keverőket, amelyek esetében egy 

szűkebb keresztmetszeten átkényszerítve a fluidum nagy sebességgel, 

sugárszerűen áramlik egy álló vagy mozgó közegbe, és ezzel keveredést idéz elő. 

Abban az esetben, ha a két fázis nem elegyedő, diszperzernek is nevezhető a 

szórófejes keverő. Diszperzereket gyakran alkalmaznak a vegyiparban, főleg 

erősen exoterm reakciók esetében. Bauer és Eigenberger gáz-folyadék 

buborékoztató oszlopreaktorban használt [12], Dautzenberg és Mukherjee pedig 

többféle reaktor folyamat intenzifikálásához alkalmazott diszperzert [76]. A 

többfuratos jet keverőket multijet keverőknek nevezzük. Ezek tovább fokozzák a 

sugáráram keverőhatását azáltal, hogy a sugáráram több helyről is érkezik. Egy 

reagens reaktortérbe injektálása jó módszer lehet a reakció szabályozására, így a 

termékminőségre is hatással lehetünk, valamint biztonsági szempontból is 

lényeges lehet. Kevert reaktorokban termikus elfutás megakadályozására is 

használnak jet keverőt az inhibitor reaktortérbe juttatásához. Ilyen rendszert 
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vizsgáltak Junchen-jiang és munkatársai [77]. Rahimi és Parvareh tartályokban 

tárolt nyersolaj keveréséhez használtak jet keverőt keverőlapátok alkalmazása 

mellett [78]. Vite-Martínez és munkatársai tanulmányukban egy kevert 

üstreaktorokban reagens injektáláshoz keresték az optimális helyet [79], Xue és 

munkatársai pedig dízel befecskendezéshez alkalmaztak sugárszerű betáplálást 

[80]. A diszperzereket hagyományos, kísérleti adatokon alapuló módszerekkel 

nehéz vizsgálni, mivel kísérleti adatok nem nagyon állnak rendelkezésre a 

vonatkozó irodalomban. A lehetséges mérési eljárásokhoz költséges 

mérőberendezés szükséges, például röntgen radiográfia, mint amelyet Nguyen és 

munkatársai használtak [81] vagy optikai sebességmérésre (particle image 

velocimetry, PIV) alkalmas lézeres mérőberendezés [82], amelyet például Zhang 

és munkatársai alkalmaztak. Egy megfelelően létrehozott, kísérletileg validált 

CFD modell is alkalmas lehet azonban keveredési vizsgálatokra. Előnyük a 

költséghatékonyság, hiszen fizikai eszközök nem szükségesek hozzá. Szerkezeti 

és működtetési paraméterek hatásának vizsgálatára is alkalmasak lehetnek, 

például a multijet keverőfejek kialakítását, a befecskendezés optimális 

pozíciójának meghatározását vagy optimális térfogatáramokat is 

meghatározhatunk segítségükkel, mint ahogy Torré és munkatársai mutatják be 

tanulmányukban [83]. T-keverők esetében a Reynolds szám és a keverőgeometria 

nagy hatással van a keveredésre, amint az Sultan és munkatársai megmutatták 

[84], és a keveredés hatékonysága meghatározható CFD módszerekkel, mint 

például egy speciális geometriába illesztett statikus keverőelem esetében, amelyet 

Zhou és munkatársai mutattak be [85]. A szimulációs vizsgálatok új keverőfej 

kialakításának tervezésében is hatékony segítség lehetnek, ahogy például Vasilev 

és Abiev a tanulmányukban bemutatták [86]. A folyamatfejlesztés területén a 

modellalapú vizsgálatok elterjedtek, így alkalmazásukra a keveredés 

vizsgálatában is sok példa található. A CFD szimulátorok alkalmazásával a 

vegyipari reaktorok működését, belső áramlási viszonyait jobban megérthetjük, a 

kevert zónák és a holtterek meghatározására is alkalmasak, ahogyan Wang és 

munkatársai munkájában is láthatjuk [87]. A CFD-n alapuló szimulátorok 

előnyösen alkalmazhatók új konstrukciók tesztelésére azok megépítése nélkül, 
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viszont ahogy már említettem, a modell validálás a megbízhatóság érdekében 

minden esetben elengedhetetlen. 

Amikor egy berendezés modelljét hidrodinamikai szempontból validáljuk 

sok esetben egy összetett folyamattal van dolgunk. Több úton is történhet a 

hidrodinamikai validálás, a leggyakoribb esetben egy jelzőanyag injektálásán, és 

annak követésén, mérésén alapul. Folyamatos üzemű egységek esetében a 

tartózkodási idő vizsgálat egy gyakran alkalmazott vizsgálati módszer. 

Konduktometriával és videofeldolgozáson alapuló koncentrációméréssel is 

végrehajtható ez a feladat. Átlátszó falú üstreaktorokban általában keveredési idő 

méréseket alkalmaznak festékanyag injektálásával vagy sav-bázis reakciók 

alkalmazásával [88]. A keveredési idő – definíció szerint – az az idő, amelyre a 

rendszernek szüksége van ahhoz, hogy egy előre definiált homogenitás szintet 

elérjen. A jelzőanyag koncentrációján alapuló homogenitás szint definíciókra 

láthatunk példákat Gillian és Kirwan cikkében [89], valamint Krupa és 

munkatársai cikkében [90]. Egy rendszer homogenitását opálosságának mérésével 

is lehet jellemezni videofelvétel segítségével, ahogyan az Rahimi és Paraveh 

tanulmányában is látható [91]. A videofeldolgozáson alapuló módszerek nagy 

előnye a megismételhetőség. A kihívást a képsorozat feldolgozása jelenti, amely 

után nyomon követhető a homogenitás időbele változása a reaktoron belül. A 

homogenitás fogalmához legtöbbször egy küszöbértéket rendelnek, amely felett 

homogénnek tekintjük a rendszert. Leggyakrabban küszöbértékként a 95-99%-os 

homogenitást alkalmazzák. 

A fentebb említett klasszikus validálási módszerek mellett egy másik 

lehetőség a CFD modell validálására a szemcsekövetéses vizsgálatok alkalmazása. 

Szemcsék áramlásba helyezésével a szemcsék útvonala meghatározható például 

videofelvételen való rögzítésével és képfeldolgozással, ahogyan Egedy és 

munkatársai mutatták be [92], vagy pozitronemissziós technikával (positron 

emission particle tracking, PEPT), mint Pasha és munkatársai munkájából látható, 

amelynek során az egyes radioaktívan megjelölt szemcséket a kisugárzásuk 

helyének detektálásával nyomon lehet követni [93]. Egyes CFD szoftverekkel 

szemcsekövetéses szimulációk is végezhetők, amely lehetővé teszi azt is, hogy az 

eredményeket a mért szemcsetrajektóriákkal validáljuk. A szimulált szemcsék 
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reprezentálhatnak jelölt fáziselemeket is, megfelelő beállítások mellett. Egy 

gyakori vizualizálási módja a szemcsetrajektóriáknak a Poincaré metszetek 

alkalmazása, amely egy keresztmetszeti síkon jelöli az áthaladó szemcsék helyét.  

Kutatásomban egy folyamatos üzemű multijet keverő optimális kialakítását 

határoztam meg a különböző keverőfejekkel nyert kevertségi szint számszerű 

jellemzése alapján. A cél, hogy jól kevert kimenetet kapjunk két elegyedő 

folyadékáramból, mivel a reaktortestben lejátszódó gyors reakció minősége 

nagyban függ a belépő áram kevertségének mértékétől. A kidolgozott CFD 

modellt jelzőanyag injektálását követő videofelvétel feldolgozásán alapuló 

tartózkodási idő kísérletekkel validáltam. A szemcsekövetéses szimulációból 

nyert Poincaré metszet szolgált a kidolgozott számítási módszer alapjául 

különböző szórófejek keveredési teljesítményének meghatározásához. 

Keverőfejek kialakításának optimálásával, a furatok számának vizsgálatával 

foglalkoztak Huang és munkatársai egy ásványolaj-ipari alkalmazás példáján 

keresztül [94]. Patkar és Patwardhan a szórófej furatainak dőlésszögének hatását 

vizsgálták gáz-gáz keverők esetében [95]. Az általam végzett vizsgálatokban 

azonban a furatok számának és dőlésszögének hatását is vizsgáltam. A 

lefedettség, ahogy a későbbiekben látni fogjuk, egy fontos kevertségi mutató, 

amelyet a kilépő felület Poincaré metszetén elhelyezkedő szemcsék pozíciójából 

számíthatunk, és akkor a legjobb, ha ezek a pozíciók a felületen egyenletesen 

oszlanak el, „lefedik” a síkot. A keverés hatékonyságát két különválasztható cél, a 

lefedettség és a lokális kevertség együttes figyelembevételével határoztam meg. A 

lokálisan jó kevertség a Poincaré metszeten úgy figyelhető meg, hogy a metszet 

egyes lokális pontjainak környezetében a metszeten áthaladó összekeverendő 

komponensek pontjai közel egyenlő számban jelennek meg. Az optimális 

keverőfej-kialakítás kiválasztása azon alapult, hogy mely esetben nyerhető a 

legmagasabb kevertségi fok ezen együttes célok figyelembevételével. Az 

eredmény jelenleg elsősorban az esettanulmányban vizsgált eszköz tervezéséhez 

nyújt támpontot, azonban a kifejlesztett módszer más hasonló rendszerek 

keveredési teljesítményének jellemzésére is alkalmazható. 
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Modell-leírás és módszertan 

A cső a csőben elrendezésű multijet keverő modelljét COMSOL 

Multiphysics-ben készítettem el. A készülék szerkezeti rajzát és a kísérleti 

eszközök esetében is alkalmazott nyolcféle szórófejet a 4.11. ábra mutatja. 

 

4.11. ábra. a) A modellezett berendezés szerkezeti rajza, és a mérési kísérletekben 

is alkalmazott b) egyenes és c) döntött furatú szórófejek modellje. A tízfuratos, 

20°-kal döntött eset d) felülnézeti és e) oldalnézeti rajza. 

A szórófejek formatervezésénél a megmunkálás egyszerűségére is 

tekintettel voltunk. A szórófejek 4, 6, 8 vagy 10 furattal vannak ellátva, a furatok 

egyenesek (4.11.b ábra) vagy érintőirányban, a tengelyiránnyal merőlegesen 

20°-kal döntöttek (4.11.c ábra). A furatok összesített keresztmetszeti felülete 

47,8 mm
2
 minden szórófej esetében. A következőkben a szórófejekre úgy fogok 

hivatkozni, hogy „furatszám_dőlésszög”, tehát például a négyfuratos, egyenes 

furatú szórófejet a 4_0-s esetnek nevezem. 

A bemeneti peremeken 0,0983 m/s sebességet definiáltam, ez megfelel a 

kísérletben alkalmazott 90 l/h-s térfogatáramnak. A falak mentén nem-csúszó 

peremfeltételt, a kimeneti peremen konstans 1 atm nyomást definiáltam. A teljes 

geometriában konstans 20 °C hőmérsékletű víz van jelen. A folytonossági 



Esettanulmányok és eredmények 

 

80 

 

egyenletettel és a háromdimenziós, k-ε turbulenciamodellt is tartalmazó áramlási 

modellel (4.7-4.12. egyenletek) végzett stacionárius szimuláció eredményét 

használtam fel a sebességi mező meghatározására, és további, dinamikus 

szimulációk végzésére. 

ρ∇ ∙ 𝐮 = 0   (4.7) 

ρ(𝐮 ∙ ∇)𝐮 = ∇ ∙ [−p𝐥 + (μ + μT)(∇𝐮 + (∇𝐮)
T)] + 𝐅 (4.8) 

ρ(𝐮 ∙ ∇)k = ∇ ∙ [(μ +
μT

σk
) ∇k] + Pk − ρε (4.9) 

ρ(𝐮 ∙ ∇)ε = ∇ ∙ [(μ +
μT

σe
) ∇ε] + ce1

ε

k
Pk − ce2ρ

ε2

k
  (4.10) 

μT = ρcμ
k2

ε
 (4.11) 

Pk = μT[∇𝐮: (∇𝐮 + (∇𝐮)
T)] (4.12) 

ahol μ a közeg dinamikai viszkozitása (20 °C-os víz, 10
-3

 Pa·s), a turbulencia 

modellparaméterek ce1 1,44, ce2 1,92, cμ 0,09, σk 1, σe 1,3. A turbulencia mozgási 

(kinetikus) energiája (k) 0,005 m
2
/s

2
 és a disszipációs ráta (ε) 0,005 m

2
/s

3
. 

A turbulenciamodell használatát mind a nyolc szórófej esetében 2000 feletti 

Reynolds szám indokolta. 

A szórófejek keverési teljesítményének értékeléséhez a stacionárius 

sebességmező felhasználásával dinamikus szemcsekövetéses szimulációkat 

futtattam, amelyhez a COMSOL Multiphysics Particle Tracing modulját 

használtam. A szemcsék tulajdonságainak meghatározásakor figyelembe vettem a 

turbulens áramlás és a fluktuáló sebességmező okozta diszperziót, ezért a discrete 

random walk diszperziós modellt is alkalmaztam [96]. Ez a sztochasztikus modell 

diszkrét szakaszonként konstans időbeli függvényekkel határozza meg a fluktuáló 

sebességkomponenseket, amelyek random értéke az örvények karakterisztikus 

életideje alatt konstans marad. A két (belső és külső) bemeneten egyenletesen 

elosztott 5000-5000 szemcsét definiáltam, amelyek pozícióját a szimuláció alatt 

követtem. A szemcsék nagy száma biztosítja a folyadékáramlás realisztikus 
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vizualizációját. A szemcsék mozgása az előre kiszámított stacionárius 

sebességmezőn alapszik, és a kimeneti peremen a freeze (odafagyasztó) 

peremfeltételnek köszönhetően a pozíciójuk rögzítve marad. Az időfüggő 

szimulációkat mind a nyolc szórófej alkalmazása esetén 30 s-ig futtattam, amely 

kellő időt biztosított ahhoz, hogy az összes szemcse beérkezzen a kimeneti 

peremre. 

A részecskekövetéses szimulációk futtatása során bizonyos 

időintervallumokban a szemcsék pozícióját a program automatikusan mentette. A 

keveredés hatékonyságának számításához ezeket a rögzített pozícióadatokat 

használtam, az adatfeldolgozást MATLAB környezetben végeztem. A kezdeti 

állapot jól definiált szemcsepozíciói lehetőséget adtak arra, hogy a szemcséket 

megjelöljem az eredetük (külső vagy belső bemenet) alapján. Ez a jelölés 

változatlanul a szemcsékhez rendelve marad a szimuláció teljes ideje alatt. A 

megjelenítéshez piros színt használtam azokra a szemcsékre, amelyek a belső 

bemenetről indultak, és a 0 azonosítót rendeltem hozzájuk. A külső bemenetről 

származó szemcséket fekete pontokként jelenítettem meg, és 1-es azonosítót 

rendeltem hozzájuk. A különféle szórófejek keverési teljesítményének 

jellemzésére a kimeneti síkon generált Poincaré metszeteket vettem alapul. A 

szimulációs adatok kiértékeléséhez a Poincaré metszetek teljes területét kis 

négyzetekre osztottam fel, a tanulmányban 276 darab mintavételezési mezőre. 

Ennél finomabb felosztás nem biztosította volna a kiértékeléshez szükséges 

elegendő számú szemcsét egy adott mintavételezési mezőn belül, ennél durvább 

felosztás pedig nem adott volna kellő információt a térbeli eloszlásról. A jelen 

tanulmányban ismertetendő kevertségi mérték meghatározásához először a 

mintavételezési mezők szintjén értelmezett lefedettséget definiálom a 4.13. 

egyenletnek megfelelően. 

𝐶 = {
0, ℎ𝑎 𝑎 𝑚𝑖𝑛𝑡𝑎𝑣é𝑡𝑒𝑙𝑒𝑧é𝑠𝑖 𝑚𝑒𝑧ő𝑛 𝑛𝑖𝑛𝑐𝑠 𝑠𝑧𝑒𝑚𝑐𝑠𝑒                        
1, ℎ𝑎 𝑎 𝑚𝑖𝑛𝑡𝑎𝑣é𝑡𝑒𝑙𝑒𝑧é𝑠𝑖 𝑚𝑒𝑧ő𝑛 𝑙𝑒𝑔𝑎𝑙á𝑏𝑏 𝑒𝑔𝑦 𝑠𝑧𝑒𝑚𝑐𝑠𝑒 𝑣𝑎𝑛

 (4.13) 

Bevezetem a p=(xp,yp) jelölést a szemcsék kétdimenziós descartes-i 

koordinátáinak jelölésére, és az s=(xs,ys) jelölést a mintavételezési mezők 

középponti koordinátáinak jelölésére. A mintavételezési mezők számát N-nel 
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jelölöm. A lokális (mintavételezési mezőnkénti) lefedettségtől függően a lokális 

kevertséget minden i mező esetében a 4.14. egyenletnek megfelelően számítottam. 

𝑀𝑖 =

{
 

 
0                                        ℎ𝑎 𝐶𝑖 = 0

∑ 𝑤𝑗𝐼𝑗

𝑗=𝑘𝑖

𝑗=1

∑ 𝑤𝑗

𝑗=𝑘𝑖

𝑗=1

⁄ , ℎ𝑎  𝐶𝑖 > 0
 (4.14) 

ahol i=1,…,N, ki az i-edik mintavételezési mező területén elhelyezkedő szemcsék 

darabszáma, Ij a j szemcse identitását (melyik bemenetről érkezett) jelöli. 0, ha a 

belső bemenetről érkezett, 1, ha a külsőről. A j szemcséhez tartozó wj súlyt a 4.15. 

egyenlet alapján számoljuk a szemcse és a referenciapont (i-edik mintavételezési 

mező középpontja) koordinátái közötti euklideszi távolság (dj) szerint: 

𝑤𝑗 =
1

𝑑𝑗
2 =

1

(𝑥𝑝,𝑗−𝑥𝑠,𝑖)
2
+(𝑦𝑝,𝑗−𝑦𝑠,𝑖)

2 (4.15) 

Egy adott mintavételezési mezőt akkor tekintünk jól kevertnek, ha a lokális 

kevertségi mérték 0,2 és 0,8 közé esik. Az ideális, legjobban kevert esetben 

Mi=0,5, amely azt jelenti, hogy a két bemenetről érkező jelölőrészecskék 

darabszámukat tekintve fele-fele arányban vannak, és eloszlásuk a lokális 

referenciapont körül egyenletes. A teljes metszeti síkra vonatkoztatott keveredés 

jellemzésére az alábbiakban négy metrikát vezettem be. 

A teljes lefedettség (Coverage) a lefedett mezők száma osztva az összes 

mező számával a 4.16. egyenlet szerint. 

N

C

Coverage

Ni

i

i


 1100  (4.16) 

Az abszolút kevertséget a jól kevert mezők és az összes mező számának 

hányadosaként definiáltam (4.17. egyenlet). 

𝑀𝑖𝑥𝑎𝑏𝑠 = 100
|{𝑀𝑖,𝑖=1,…,𝑁|0,2<𝑀𝑖<0,8}|

𝑁
 (4.17) 

A relatív kevertség a jól kevert mező száma osztva a lefedett mezők 

számával, formálisan a 4.18. egyenlettel leírva. 
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𝑀𝑖𝑥𝑟𝑒𝑙 = {

0                                                                           ℎ𝑎 |{𝐶𝑖, 𝑖 = 1, … ,𝑁|𝐶𝑖 = 1}| = 0

100
|{𝑀𝑖 , 𝑖 = 1, … , 𝑁|0,2 < 𝑀𝑖 < 0,8}|

|{𝐶𝑖 , 𝑖 = 1, … , 𝑁|𝐶𝑖 = 1}|
     ℎ𝑎 |{𝐶𝑖 , 𝑖 = 1, … , 𝑁|𝐶𝑖 = 1}| > 0

 (4.18) 

A homogenitás céljának eléréséhez mind a lefedettséget, mind a relatív 

kevertséget maximalizálni szeretnénk. A negyedik, a teljes metszeti síkot jellemző 

metrikát a 4.19. egyenlet fejezi ki egy olyan célfüggvény formájában, amely a két 

célt egyforma súllyal veszi figyelembe. 

𝑍 = 0,5 ∙ 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 + 0,5 ∙ 𝑀𝑖𝑥𝑟𝑒𝑙 (4.19) 

A helyi, mintavételezési mező szintű kevertségi mértékek kiszámítása 

lehetővé teszi, hogy vizualizáljuk a kevertség eloszlását a kilépő felületen, 

valamint felhasználásukkal a teljes metszeti síkra vonatkozó metrikákat is 

meghatározhatunk. A tanulmányban arra voltam kíváncsi, hogy a relatív kevertség 

és a lefedettség hogyan alakul a szórófej kialakításának (furatszámának és a 

furatok dőlésszögének) függvényében. A különböző konstrukciók keverési 

teljesítményének kiértékeléséhez a fent leírt metrikákat alkalmaztam. 

Hálófüggetlenségi vizsgálat 

Hálófüggetlenségi vizsgálatot végeztem, hogy a CFD modell megoldásának 

megbízhatóságáról meggyőződjek. Öt különböző számítási háló használata mellett 

mérleghibát számítottam, valamint a futáshoz szükséges időt is feljegyeztem. A 

szimulációk Intel Xeon 2,4 GHz CPU-val és 80 GB RAM-mal rendelkező 

személyi számítógépen futottak. A 4.12. ábra a 10_20-as konstrukció esetében az 

impulzusmérlegre lefuttatott hálófüggetlenségi vizsgálat eredményeit mutatja. 
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4.12. ábra. A hálófüggetlenségi vizsgálat eredménye impulzusmérlegre. 

Számításaimhoz a legfinomabb, körülbelül 1,2·10
6
 elemszámú számítási 

hálót alkalmaztam, mert azzal kellően alacsony a hibaérték, a számítási időt 

tekintve még éppen elfogadható, és a tendencia alapján további finomítástól 

feltehetően nem várhatunk jelentős javulást a mérleghibát illetően. A számítási 

háló alapvetően tetraéderes elemekből áll. A határfelületeken és a sarkokban 

kisebbek a hálóelemek ahogy az a berendezés felülnézeti ábráján is látszik (4.13. 

ábra) 

  

4.13. ábra. A számításokhoz alkalmazott háló a 4_0-s konstrukció esetében. 

Kísérleti berendezés és tartózkodási idő analízis 

A modell kísérleti validálásához létrehoztuk a multijet keverő fizikai 

modelljét, amely a CFD modellel azonos geometriai paraméterekkel rendelkezik. 

A cső a csőben elrendezésű eszközhöz tartozó szórófejek Mendelmax 2.0 3D 

nyomtatóval lettek elkészítve CAD rajzok alapján. A szórófejek a belső cső 
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végéhez lettek illesztve. A 4.11. ábrán is bemutatott nyolc alap konstrukció a 4, 6, 

8 és 10 furatos kialakítás, mindegyik egyenes furatos és érintőirányban 20°-kal 

döntött szöges változatban. 

A fizikai kísérlet során mértük a tartózkodási idő eloszlást piros indikátor 

használatával. A belső és a külső bemeneten is víz áramot vezettünk be 90 l/h 

térfogatárammal. A 4 g/l piros színű indikátort Dirac delta függvényhez 

közelítően, impulzusszerűen juttattuk a rendszerbe. Minden konstrukcióval három 

mérést végeztünk el, ezek értékeit átlagoltuk. A tartózkodási idő eloszlás 

meghatározásának első lépésében az indikátor koncentrációval arányos 

színintenzitás időbeli változását rögzítettük a keverési zónában egy Sony CX115E 

HD kamerával. A kiemelt képtartomány (Region of Interest, ROI) a közvetlenül a 

kimenet előtti térrész volt. A 4.13.a ábra a videofelvételek feldolgozásának 

folyamatát ismerteti. A rögzített képkockák piros, zöld és kék (R, G, B) 

színkomponensekből álló pixelekből tevődnek össze. A rögzített képkockák 

színintenzitása arányos az indikátoranyag koncentrációjával. A képkockák 

színintenzitásának számításához a pixeleinek átlagolt színkomponens értékeit 

használtuk ((R+G+B)/3). A háttérintenzitást ugyanígy számítottuk azokból a 

képkockákból, amelyekben még nem tűnik fel az indikátor (minden felvétel első 

25 képkockája). Az így kapott háttérintenzitás értéket kivontuk az összes 

képkocka intenzitásértékéből, hogy a jelzőanyagot nem tartalmazó képkockák 

intenzitása 0 legyen. A tartózkodási idő eloszlásfüggvény az egymást követő 

pillanatok rögzített képeinek színintenzitás-értékeiből áll össze. Utolsó lépésként 

kiszámítottuk az átlagos tartózkodási időt. A kísérletekből adódó átlagos 

tartózkodási időket az egyes szórófej-konstrukciók esetében a 4.14.b ábrán lévő 

kék oszlopok mutatják. 

A fent részletezett módon végzett kísérletek eredményeihez hasonlítottuk a 

CFD modell eredményeit. A CFD modell alkalmazásával úgy nyertünk RTD 

görbét, hogy a jelzőanyagot impulzusszerűen (0,2 s-on keresztül) vezettük be a 

belső bemeneten keresztül, és ezt követően időpillanatonként rögzítettük a 

kimeneti peremen jelentkező jelzőanyag koncentrációt. A görbék alapján átlagos 

tartózkodási időt számítottam minden esetre a 3.8. egyenlet szerint. Ezek értékét a 

4.14.b ábrán lévő piros oszlopok jelölik. 
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4.14. ábra. a) A videofeldolgozás folyamatábrája. b) Modell validáció a kísérleti 

és szimulációs átlagos tartózkodási idők összehasonlításával.  

c) Koncentrációgörbék hatfuratos, különböző dőlésszögű szórófejet alkalmazó 

szimulációk esetében. 

A 4.14. ábra b) részében oszlopgrafikonon ábrázoltam a méréssel és a 

szimulációval nyert átlagos tartózkodási időket. Habár a tökéletesen kevert 

egységek átlagos tartózkodási időknek azonos térfogatáramok és térfogatok 

mellett azonosnak kell lenni a 4.20. egyenlet alapján, a mi esetünkben nem 

beszélhetünk tökéletes kevertségről, és a holtterek kialakulása miatt a valódi 

térfogat a geometriai térfogatnál kisebb. 

𝑉

𝑄
=

1.4∙10−4𝑚3

90
𝑙

ℎ

= 0.0015̇ ℎ = 5.6 𝑠 (4.20) 

ahol V a térfogat és Q a térfogatáram. 

A valódi, hasznos térfogatot úgy számítottam, hogy csak azoknak a 

hálóelemeknek a térfogatát adtam hozzá a teljes bejárt térfogathoz, amelyben a 

sebesség nagyobb volt, mint 0,01 m/s. Ezt elosztva a geometriai térfogattal, a 

4.5. táblázat értékeit kaptam az egyes szórófej-alapesetekre. 
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4.5. táblázat. Az alapesetek szimulációból számított átlagos tartózkodási idők és 

a holtterek leszámításából adódó hasznos térfogatok. 

Eset Átlagos tartózkodási idő [s] Hasznos térfogat 

4_0 5,60 96,26% 

4_20 5,69 98,67% 

6_0 5,44 95,53% 

6_20 5,51 99,92% 

8_0 5,41 94,69% 

8_20 5,45 94,93% 

10_0 5,38 93,24% 

10_20 5,65 95,73% 

 

A táblázat adatait pontdiagramon megjelenítve a 4.15. ábrát kapjuk. Ezen 

piros négyzettel jelöltem az ideális, tökéletesen kevert esetet. 

 

4.15. ábra. A nyolc alapesetre számított hasznos térfogatok és az átlagos 

tartózkodási idők alakulása (kék rombusz) és a tökéletesen kever egységtől várt 

eredmény (piros négyzet).  

A holtterek jelenléte csak csökkentené az átlagos tartózkodási időket, de a 

vizsgált esetekben visszakeveredés is történhetett (ahogy majd a 4.16. ábrán az 

áramvonalakból látszik is), amelynek a hatása viszont megnöveli a tartózkodási 

időt. 

A mért és a szimulációból számított átlagos tartózkodási idő értékek között 

az egyezést a legtöbb esetben elfogadhatónak találtuk, ezen eredmények alapján 
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validáltnak tekintjük a CFD modellt. Jól látszik a dőlésszög hatása a tartózkodási 

időre. Minden típusnál igaz, hogy a döntött furatos konstrukciók esetében 

nagyobb az átlagos tartózkodási idő. Ez a tény a keveredésre jó hatással lehet, 

ahogy azt majd később látni fogjuk. A jelenséget vizsgálva a 6 furatos 

kialakítással több szimulációt is futtatunk, melyekben a furatok dőlésszögét 

változtattuk. A dőlésszög növekedésével jobbra tolódó koncentrációgörbéket 

mutatja a 4.14.c ábra. 

Eredmények és értékelésük 

A jelen esettanulmány célja, hogy a korábban bemutatott multijet keverő 

készülék számára a legmegfelelőbb szórófejet kiválasszuk. A kiválasztás legfőbb 

szempontja, hogy a lehető leghatékonyabb keveredést biztosítsa és ezzel a keverőt 

követő reaktorban a gyors reakciók során a mellékreakciók esélyét csökkentsük. 

A vizsgálat első lépéseként a validált CFD modellel szimuláltam a jetkeverő 

működését. A 4.16. ábra a nyolc alapesetből nyert sebességmező hossz menti 

keresztmetszetét mutatja a keverési zóna helyén. A sebesség magnitúdója helyileg 

megnövekszik a szűk keresztmetszetű furatokban. Mivel a furatok 

összkeresztmetszeti területe megegyezik, ezért minél több furat van, annál 

szűkebbek az egyes furatok, ezáltal a jet hatás is fokozottan érvényesül. A 

sebességprofilok mellett az áramlási kép szemléletesebb megjelenítése érdekében 

áramvonalakat is ábrázoltam a belső és a külső bemenetről indítva 25-25-öt. Piros 

vonalak jelzik a belső bemenetről induló áramvonalakat, fekete vonalak a külsőről 

indulókat. Az egyenes furatos szórófejek esetében a fáziselemek a cső közepe felé 

terelődnek (4.16. ábra a-d), míg a döntött furatosok esetében az áramvonalak a cső 

fala felé helyezkednek el (4.16. ábra e-h), feltehetően holt teret alakítva ki a belső 

térrészekben. Az áramvonalak alapján azt is megfigyelhetjük, hogy a döntött 

furatos szórófejek esetében hatásosabb a keveredés. 
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4.16. ábra. Hosszmenti sebességprofilok és áramvonalak a keveredési zónában a 

nyolc szórófej-konstrukció esetében. a-d) rendre 4_0, 6_0, 8_0, 10_0, és e-h) 

4_20, 6_20, 8_20, 10_20 esetek. 

A 4.16. ábrán a sebességi mezők és az áramvonalak a különböző szórófejek 

keverőteljesítményének csak vizuális kiértékelését teszik lehetővé. A keverési 

hatékonyság számszerű jellemzéséhez kidolgoztam egy szemcsekövetéses 

szimuláción alapuló kiértékelési módszert. A módszer bemutatásához a validált 

CFD modellt és az előzőekben ismertetett keverési mértékeket használom fel. 

A CFD modell által számított stacionárius áramlási mező felhasználásával 

időfüggő szemcsekövetési szimulációkat futtattam, melyek során a fáziselemet 

jelölő, belső és külső bemenetről egyforma darabszámú, a bemeneti felületen 

egyenletes kezdeti eloszlású szemcsék pozícióadatait rögzítettem további 

feldolgozás céljából. A kimeneti síkon áthaladó szemcsék identitása és felületi 

pozíciója szolgáltatja az alapot a konstrukciók keverési teljesítményének 

értékeléséhez, ezeket Poincaré metszetek formájában a 4.17. ábrán mutatom be. A 

jól kevert rendszerek esetében a piros és fekete pontok egyenletes eloszlással 

helyezkednek el a sík teljes területén. A hossz menti áramvonalas ábrák alapján 

sejtett jelenséget a Poincaré metszetek is megerősítik: az egyenes furatos 

szórófejek a cső középső régiójában tartják a követett szemcséket, míg a döntött 

furatos konstrukciók a cső fala felé terelik. 
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4.17. ábra. Poincaré metszetek és kevertségi térképek a kimeneti síkon a nyolc 

szórófej-konstrukció esetében. a-d) rendre 4_0, 6_0, 8_0, 10_0, és e-h) 4_20, 

6_20, 8_20, 10_20 esetek. 

Ahhoz hogy jól kevert rendszerünk legyen, két célt kell egyszerre elérni. 

Először is a pontoknak a Poincaré metszeten minél egyenletesebben kellene 

elhelyezkedniük, tehát a holttereket minimalizálni kell. Másodszor a piros és 

fekete jelölők száma lokálisan a mintavételezési mezőkben közel egyenlőknek 

kellene lenniük. A Poincaré metszetek adatai, a részecskék pozíciója és identitása 

(piros vagy fekete) jól használhatóak a lokális és a teljes kilépő felületre 

vonatkozó kevertségi mértékek meghatározásához, így számszerűen, kvantitatíve 

kifejezhetjük a keverési hatékonyságot. 

A Poincaré metszet adatait felhasználva kevertségi térképeket hoztam létre 

mind a nyolc szórófej használata esetén, melyek egy első benyomást adnak a 

rendszer kevertségi állapotáról (4.17. ábra). Minden egyes mintavételezési 

mezőben lokális kevertségi mértéket számítottunk a 4.14. egyenlet alapján, és a 

kapott számértéknek megfelelően a mezőhöz egy színt rendeltünk. Fehéren 

maradt a mező, ha a Poincaré metszet alapján egyetlen szemcse sem érkezett az 

adott mintavételezési területre. Ezek a fehér területek a holttereket jelölik, ahol az 

áramlás sebessége alacsony. A mintavételezési mezőt szürkére színeztem, ha a 

lokális kevertség 0,2 alá vagy 0,8 fölé esett. Ez azt jelenti, hogy vagy a piros 
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szemcsék vagy a feketék voltak túlsúlyban. A kevertség szempontjából az 

identitás mindegy, ezeket a területeket gyengén kevert régióknak tekinthetjük. A 

legjobban kevert mezőket világoszölddel jelöltem, ezek azok a mezők, ahol az Mi 

értéke 0,4 és 0,6 közöttinek adódott. Sötétzölddel a közepesen jól kevert mezőket 

jelöltem. Ahogy a 4.17. ábrán is látszik, azok a szórófejek, amelyek több furattal 

rendelkeznek, jobb keverési teljesítményt nyújtanak, különösen is a döntött 

furatosak, igaz esetükben a jól kevert régiók az eszköz fala körül alakulnak ki. 

A szórófejek keverési teljesítményét a korábban bevezetett metrikák 

számításával is értékeltem. A teljes kilépő felületre négy metrikát definiáltam: a 

lefedettséget, a relatív kevertséget, az abszolút kevertséget és a Z célfüggvényt. 

Ezek mindegyikét a nyolc esetre kiszámítottam, és a kapott értékeket grafikonon a 

4.18. ábrán ábrázoltam. Az egyenes furatú szórófejek esetében mind a négy 

metrika vagy stagnált, vagy csökkent, a relatív és abszolút kevertség esetében 

minimálisan növekedett 6-tól 10 furatig. A döntött furatú szórófejek 

ígéretesebbnek mutatkoztak, a 6_20-as konstrukció érte el a maximumot a 

lefedettség és a Z függvény érték esetében, a 8_20-as konstrukció pedig az 

abszolút és relatív kevertség esetében (4.18. ábra). A mindkét (lefedettség és 

kevertség) célt egyforma súllyal figyelembe vevő Z célfüggvény értékének 

maximumát vettem mérvadónak, ezzel a nyolc vizsgált szórófej közül a 6_20-as 

konstrukciót találtam a leghatékonyabb keverést biztosító kialakításnak, amelyet 

egyébként a 4.17. ábra vizuális keveredési térképe is megerősít. A pontdiagramon 

az összekötő egyenesek csak a szem vezetését segítik, értékek csak a pontok 

helyén vannak. 

 

4.18. ábra. A teljes kilépő felületre számított keveredési metrikák a) az egyenes 

furatú szórófejek, és b) a döntött furatú szórófejek esetében. 
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A következőkben azt vizsgáltam, hogy a hatékonyság növelhető-e a 

dőlésszög változtatásával, ezért a legeredményesebbnek adódott hatfuratos esetre 

dőlésszög vizsgálatot végeztem 0°-tól 25°-ig 1°-os lépésközzel. A lefedettség 

vizuális értékelésére alkalmas Poincaré metszeteket néhány dőlésszög esetében a 

4.19. ábra mutatja. Jól megfigyelhető rajtuk, hogy a dőlésszög növelésével hogyan 

alakul ki a cső közepén egyre jobban a holttér, ahogy a fáziselemek a cső fala felé 

terelődnek. Megfigyelhető azonban az a jelenség is, hogy meredek dőlésszög 

esetén habár a falhoz terelődnek a jelölőszemcsék, onnan vissza is verődnek, ezzel 

viszont csökkentik a cső közepén kialakuló holtteret. 

 

4.19. ábra. Poincaré metszetek a hatfuratú, különböző dőlésszögű szórófejek 

esetében. A dőlésszög az a)-i) ábrákon rendre 1°, 4°, 7°, 10°, 13°, 16°, 19°, 22°, 

25°. 

Az összes vizsgált eset metrikáinak értéke a 4.20. ábrán látható. Ahogy a 

görbékből látszik, a lefedettség a 11°-os dőlésszögű furatnál éri el maximumát, az 

erősebben döntött furatok fal felé terelő hatása már hátráltatja a holtterek 

csökkentését. A dőlésszög további növelése 18° fölött azonban a visszaverődő 

falhatás miatt újból növeli a lefedettséget. Mind az abszolút kevertség, mind a Z 

célfüggvény értéke a 23°-os dőlésszögnél éri el maximumát. 
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4.20. ábra. A teljes síkra számított metrikák alakulása a 6 furatos konstrukcióban 

különböző (0-25°) dőlésszögek esetében. 

A számszerű eredmények alapján az esettanulmányban vizsgált cső a csőben 

elrendezésű többfuratos jetkeverő számára a 6_23-as szórófej-konstrukciót 

javasoltuk. Ez 95,3%-os lefedettséget, 51,1%-os abszolút kevertséget és 74,5%-os 

kombinált kevertségi értéket eredményez a Z célfüggvény szerint. 

Összefoglalás 

Az esettanulmányban létrehoztam egy cső a csőben elrendezésű többfuratos 

jetkeverő CFD modelljét. A modellt fizikai rendszeren végzett mérésekkel 

validáltuk a tartózkodási idő analízis módszerével. A kísérletben videokamerával 

rögzítettük a befecskendezett festékanyag kimosódását, és ebből meghatároztuk a 

jellemző tartózkodási idő eloszlás függvényt, majd kiszámítottuk az átlagos 

tartózkodási időt. A szimulációban komponensmérleg alkalmazásával az 

impulzusjelre adott válaszfüggvény alapján számítottam az átlagos tartózkodási 

időt. A különböző szórófejek keverési teljesítményének számszerű értékeléséhez 

szemcsekövetési szimulációkat futtattam. A homogenitás magas fokának elérése a 

keverőegységet követő reaktor megfelelő működéséhez elengedhetetlen. Poincaré 

metszetek formájában rögzítettem a jelölőszemcsék pozícióját abban a 
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pillanatban, amikor a berendezést elhagyják. A pozíció és az identitásadatok 

felhasználásával keveredési metrikákat definiáltam és számítottam. A módszer 

legnagyobb előnye a hagyományos, komponensmérleg számításán alapuló 

szimulációs vizsgálatokkal szemben, hogy az itt bemutatott számításokhoz csak a 

stacionárius sebességmezőt használjuk fel, emiatt számításhatékonyabb. A teljes 

kilépő felületre definiált kevertségi metrikák lehetővé teszik a különböző szórófej-

konstrukciók keverőteljesítményének számszerű összehasonlítását. A nyolc alap 

kialakításból a 6 furatos, 20°-kal döntött furatú szórófej nyújtotta a legjobb 

keveredési eredményt a lefedettséget és kevertséget egyformán figyelembevevő Z 

célfüggvény alapján. További vizsgálatokat végeztem a dőlésszögekkel, 

amelyekből a 6_23-as konstrukció adódott legjobbnak. Fontos megjegyezni, hogy 

a szórófejek kialakításánál figyelemmel voltunk az egyszerű fizikai 

megvalósíthatóságára is. 

További tervek közt szerepel a keverőfej konstrukció még jobb eredményt 

nyújtó fejlesztése, és a működtetési paraméterek beállítása a multijet keverő lehető 

leghatékonyabb működése érdekében. A szemcsekövetési kísérleteket ki lehetne 

egészíteni háromdimenziósra, mely során a teljes keverési zónában található 

pozícióadatok felhasználásával a tanulmányban ismertetett módon számítanánk a 

keveredés mértékét egy adott időpillanatban. Érdekes lehetne még az is, hogy a 

kilépő peremre érkező jelölőszemcsék időbeliségét figyelembe vesszük, vagy 

mondjuk szomszédos jelölőszemcsék esetén a trajektória szétválásokat vagy 

megmaradásokat figyeljük. A tanulmányban bemutatott módszer a keverési 

teljesítmény értékeléséhez alkalmas lehet hasonló rendszerek vizsgálatához is, 

ennek további példákon való bemutatása is lehet egy jövőbeli feladat. 
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4.3.  Laboratóriumi méretű fluidizációs berendezés CFD 

modellezése direkt numerikus módszerrel 

A fluidizáció művelete olyan vegyipari folyamatokban fordul elő, 

amelyekben szilárd szemcsetömeget szeretnénk érintkeztetni gázzal. A fluidizáció 

lényege, hogy a kezdetben nyugvó fluidágy gázzal történő befúvás hatására a 

szemcsetömegnek bizonyos szempontból folyadékokra jellemző tulajdonságai 

lesznek. A cél lehet kémiai folyamatok intenzifikálása (például 

katalizátorszemcsék esetében) vagy fizikai művelet, például szárítás, keverés 

hatékonyabbá tétele. A szilárd szemcsékből álló töltet fluidizált állapotában 

intenzívebben megy végre komponens- vagy hőátadás, ezért a vegyiparban a 

fluidizációs műveletek kutatása érdekes és fontos területet jelent. Fluidizációt 

alkalmaznak az ásványolaj-iparban a fluidágyas katalitikus krakkolás (fluid 

catalytic cracking, FCC) során, amelynek modellezésével és szimulációjával 

foglalkoznak John és munkatársai [98], statisztikai elemzésükkel és 

optimalizációval pedig Ebrahimi és Ghazvini [99]. Forgóágyas fluidizációs 

berendezéssel a szemcsék válogatását lehet elvégezni [100]. Idakiev és 

munkatársai a fluidágyak induktív fűtésének vizsgálatával foglalkoztak, azon 

belül is azzal, hogy a hőátadás hogyan hat a magára a fluidizációra [101], a szilárd 

szemcsék szárítására [102], és bevonásukra [103]. A legtöbb kísérleti fluidizációs 

berendezés egy hengerből áll, benne a szilárd szemcsés töltettel. Ilyen 

berendezésekben végezték a méréseket az utóbb felsorolt tanulmányokban is. 

Gyakori kialakítás az úgynevezett kvázi kétdimenziós kísérleti fluidizációs ágy is. 

Ez egy olyan háromdimenziós berendezés, amelynek mélység paramétere nem 

számottevő a szélességhez és magassághoz képest, és tulajdonképpen egy 

hengeres berendezés keresztmetszetét utánozza. Az ilyen kísérleti berendezések 

előnye, hogy segítségével láthatóvá válnak a részecskeágy belsejében lezajló 

fluidizációs folyamatok, a részecskék mozgása, és tanulmányozhatók a különböző 

fluidizációs sebességek mellett kialakuló szilárd-gáz kétfázisú áramlás. 

A fluidizációs folyamatra is igaz az az általános megállapítás, hogy a 

részletes, szemcseszintű modellek alkalmazásával részletes képet kaphatunk a 

fluidágyban kialakuló gáz-szilárd kétfázisú áramlásről. Az irodalmi áttekintés 

fejezetében már ismertettem a leggyakrabban alkalmazott modellezési 
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módszereket, azok közül esettanulmányomban a direkt numerikus szimuláció 

módszerét alkalmaztam. 

Gáz-szilárd rendszerek esetében a fluid fázis összenyomható, ezért az 

áramlás dinamikáját leíró parciális differenciálegyenletek hiperbolikus jellegűek 

lesznek, ennek megfelelően a megoldásukra alkalmazható például a bevezetőben 

bemutatott MacCormack véges differenciák módszerén alapuló kétlépéses, térben 

és időben is másodrendű pontosságú algoritmus. Mivel a fluidizációs folyamat 

során a gáz betáplálás kezdetekor vagy időközben nagy sebességgradiensek 

alakulhatnak ki a fluidágyban, a megoldómódszer sajátosságából eredő esetleges 

numerikus oszcillációkat a megoldásban fontos lenne elkerülni TVD-

MacCormack módszer alkalmazásával. Erre ebben az esettanulmányban még nem 

került sor. A modell validálásához a kétdimenziós szimulációs eredményeket 

össze lehet hasonlítani a kvázi kétdimenziós fluidággyal történő kísérletek 

nagysebességű kamerával készült videofelvételek képfeldolgozás során nyert 

részecske pozíció adatokkal. 

Modellegyenletek 

A fluidizációs folyamat, a gáz-szilárd kétfázisú áramlás modellezésére a 

diszkrét numerikus szimulációk közé tartozó immersed boundary módszert 

választottam. A gázfázisra felírt 2D-s momentummérlegben a viszkozitást 

elhanyagoltam, mert annak hatása nem befolyásolja számottevően az áramlási 

változók értékét. Az Euler egyenletek megmaradási alakja szolgált alapul a 

számításaimhoz (4.21-4.24. egyenletek). 

𝜕𝜌

𝜕𝑡
+
𝜕𝑚

𝜕𝑥
+
𝜕𝑛

𝜕𝑧
= 0 (4.21) 

𝜕𝑚

𝜕𝑡
+
𝜕(

𝑚2

𝜌
+𝑝)

𝜕𝑥
+
𝜕(

𝑛∙𝑚

𝜌
)

𝜕𝑧
= 𝑓𝑥 (4.22) 

𝜕𝑛

𝜕𝑡
+
𝜕(

𝑚∙𝑛

𝜌
)

𝜕𝑥
+
𝜕(

𝑛2

𝜌
+𝑝)

𝜕𝑧
= 𝑓𝑧 (4.23) 
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𝑚
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𝜕𝑥
+
𝜕(

𝑛

𝜌
∙(𝜌𝐸+𝑝))

𝜕𝑧
= 0 (4.24) 
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ahol ρ az áramló közeg sűrűsége, m és n az x és a z irányú sebesség és a sűrűség 

szorzata rendre (a momentumok intenzív megfelelői), E a belső és a mozgási 

energia összege, p a nyomás, t, x és z az idő- és helykoordináták rendre. fx és fz a 

body force tagok, melyek a hely és az idő függvényei. 

A fenti egyenletek megoldásához a MacCormack módszert alkalmaztam. A 

szimulációs vizsgálatokban nem a teljes berendezés és az összes részecske 

áramlását számítottam, hanem egyetlen részecske mozgását tekintettem a 

tényleges berendezésnél kisebb számítási tartományon. A kísérleti berendezést és 

a számított tartomány nagyságát a 4.21. ábra reprezentálja. 

 

4.21. ábra. A kvázi kétdimenziós fluidágy megjelölve a kiemelt, modellezett 

térrészt és egy, a videofeldolgozás alapján felismert és követett golyót. 

A kétdimenziós áramlási modellben a 4.21. ábrán jelölt téglalap alsó éle a 

bemeneti perem. Itt a beáramló gáz sebességére a 3,33 m/s értéket vettem fel, 

mivel a perem szélessége a fluidágy teljes szélességének harmada, a bevezető 

csonkon pedig szabályozottan 10 m/s a sebesség. A kimeneti peremen (a téglalap 

felső éle) konstans, légköri (10
5
 Pa) nyomást, az oldalsó falakon pedig nem-

csúszó (no-slip) peremfeltételt definiáltam. Kezdeti feltételként a teljes 

geometrián a momentumokat illetően x és z irányban is 0 kg/m
3
·m/s-ot adtam 

meg, a sűrűséget az egyetemes gáztörvény alapján a megadott kezdeti légköri 

nyomásból, a levegő átlagos móltömegéből (28,8 g/mol), az egyetemes 

gázállandóból (R=8,314 J/(mol·K)) és a hőméréskletből (a szimuláció teljes ideje 
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alatt konstans 298 K (25 °C)) számítottam. A peremeken és kezdeti feltételként az 

egész térrészben a belső és mozgási energiát a 4.25. egyenlet alapján számítottam. 

𝜌𝐸 =
𝑝

𝛾−1
+
(𝑚2+𝑛2)

2𝜌
 (4.25) 

ahol γ=1,4 a 20 °C-os levegőnek megfelelően. 

Fáziskölcsönhatás 

Az immersed boundary módszernek megfelelően a virtuális peremek 

kialakulása a momentumegyenletek jobb oldalához adott térfogategységre 

vonatkoztatott fajlagos erőkkel, ún. body force tagok segítségével valósul meg. 

Ezek értékét a direct forcing módszer szerint számítottam (lásd 2.3.2. alfejezet). A 

body force tagok alkalmazásának köszönhetően a gázfázis sebessége úgy kerül 

meghatározásra, hogy a részecske közvetlen környezetében az megegyezik a 

részecske sebességével. A lagrange-i rácspontok közelében elhelyezkedő euleri 

pontokat egy távolságalapú feltétel szerint detektáljuk, és a lagrange-i pontoktól 

való távolságuk szabja meg, hogy milyen mértékben vannak egymásra hatással. A 

2.3.2. alfejezetben bemutatott interpolációs függvények közül 

esettanulmányomban a háromszögfüggvényt alkalmaztam a 4.26. egyenletnek 

megfelelően. 

𝑤(𝑑) = {
ℎ − |𝑑|

ℎ
, 0 ≤ |𝑑| ≤ ℎ

        0, ℎ < |𝑑|     
 (4.26) 

ahol w a súly ([0,1]), h az euleri háló rácsszélessége, d az adott euleri és 

lagrange-i rácspontok közötti euklideszi távolság. 

A másik irányban is hat a kölcsönhatás, a szilárd test pozíciójának változása 

az azt körülölelő gázáram tulajdonságaitól függ. A testre ható erőket lagrange-i 

pontonként számítjuk a környezetében található euleri pontok súlyozott 

nyomásértékéből, majd ezek szummájából számítjuk a test középpontjára ható 

erőt, ennek alapján pedig a pozícióváltozásukat. Az áttekinthetőség érdekében 
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egyetlen szemcsére ható erő számítási algoritmusát az alábbi felsorolással adom 

meg. 

Egyetlen szemcsére ható erő számítási algoritmusa 

1. Sorba vesszük az euleri rácspontokat; 

2. Minden euleri ponthoz sorba vesszük a szemcse határát reprezentáló lagrange-

i rácspontokat, ahol 

I. kiszámítjuk az i, j euleri rácspont és az adott lagrange-i rácspont (X) 

euklideszi távolságát, 

II. a távolságot felhasználva az interpolációs függvény segítségével 0 és 1 

közötti súlyt (w) rendelünk az adott euleri-lagrange-i rácspont párhoz, 

III. dimenziónként kiszámítjuk az adott lagrange-i pontra az adott euleri 

pontban számított tulajdonságok alapján az erőt: 

a. 𝑭 = −𝑝 ∙ 𝑤 ∙ 𝑑𝑠 ∙ 𝒏 − 𝑮 

ahol p a nyomás, w a súly, ds a felületelem hossza, n a normálvektor, 

G a gravitációs erővektor; 

3. Összegezzük a lokálisan számított erőket; 

4. Kiszámítjuk a gyorsulást a részecskére ható erőből (a=F/m); 

5. Kiszámítjuk a részecske sebességváltozását a gyorsulásból; 

6. A sebesség alapján kiszámítjuk az időlépés alatt bekövetkező pozícióváltozást; 

7. A szemcse pozícióját frissítjük az előző időlépésbeli pozíciója és a számított 

elmozdulás alapján. 

A fenti lépések az általam alkalmazott módszert mutatják be a szemcsére 

ható erő kiszámításához. 

Eredmények 

A kísérleti validáláshoz a 3.8. alfejezetben bemutatott eszközöket 

használtam. A nagysebességű Optronics CL600x2 kamerával készített 500 fps-os 

nyers videofelvételt MATLAB környezetben dolgoztuk fel. A szimulációt 

négyféle hálófinomsággal is lefuttattam. A sebességvektorokat kirajzoló ábrán jól 

látható, hogy az áramlás kikerüli a részecskét a virtuális peremének megfelelően 

(4.22. ábra). 
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4.22. ábra. Sebesség-vektormező a különböző finomságú euleri hálók esetén. A 

rácsszélesség a) 0,001 m, b) 0,0008 m, c) 0,0006 m, d) 0,0004 m volt. 

Számításaimat egy 16 GB memóriával rendelkező Dell Optiplex 790 PC-n 

végeztem. A direkt numerikus szimulációk esetében ajánlott az euleri 

rácsszélességnek a szemcse méretétől legalább egy nagyságrenddel kisebbnek 

lenni, ezért egyes vizsgált eseteket eleve kizárhattam volna, de azért azokkal is 

elvégeztem a hálófüggetlenségi vizsgálatot (4.23 ábra), melynek alapján a 1672 

elemszámot eredményező 0,0004 m-es rácsszélességű hálót választottam a 

további számításaimhoz. 

 

4.23 ábra. Tömegmérlegre számított hálófüggetlenségi vizsgálat eredménye 

különböző rácsszélességek alkalmazása mellett. 

Az időbeli lépésköz (dt) 7·10
-7

 s körül változik a CFL stabilitási 

kritériumnak megfelelően, emiatt nagyszámú időlépés szükséges ahhoz, hogy a 

szimulációs (valós) időben néhány század másodpercig is eljussunk. 

A videofeldolgozás során a nagysebességű kamera által rögzített képsorból 

kiválasztottunk egy olyan szemcsét, amely éppen fölfelé mozgott (a fluidágyban 
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képződő gázbuborékokban a gázáram felhajtó hatása és a gravitáció hatása 

egyaránt érvényesül). A kiválasztott szemcse trajektóriáját a képkockákon 

keresztül követtük. Minden 0,002. másodpercben rögzített a kamera egy 

képkockát. Kiválasztottam a 0 s, a 0,008 s és a 0,014 s-ban rögzített képkockákat 

(4.24. ábra), és a kiválasztott szemcsét megjelölve pozícióváltozásból sebességet 

számoltam, ezt tekintettem mérési értéknek (4.6. táblázat). 

 

4.24. ábra. A kísérlet képfelvételei nyomán követett szemcsemozgás három 

kiemelt időpillanatban. 

4.6. táblázat. A mérésből nyert pozícióváltozások és az ebből számított 

sebességértékek. 

Időintervallum Pozícióváltozás Számított sebesség 

0-0,008 s 0,0039 m 0,49 m/s 

0,008-0,014 s 0,0029 m 0,48 m/s 

0-0,014 s 0,0068 m 0,49 m/s 

A szimulációs eredmények a jelenlegi szimulátor használatával még 

jelentősen eltérnek a mért értékektől, amely többek között a TVD és a 

non-reflektív peremfeltétel hiánya, valamint a szimulációban jelenlévő egyetlen 

szemcse (szemben a mérésben jelen lévő 11000 db-bal) az oka. A modellben 

definiált bemeneti gázsebesség értékadása sem volt pontos, ugyanis egy 

feltételezésen, és nem mérésen alapult, ez pedig nagyban befolyásolta a számított 

áramlási mező tulajdonságait, ebből következően a szemcse pozícióváltozását. A 

szemcse mozgását befolyásoló erők számításán is fejleszteni kell még, ezért a 

szimulációs eredményeket nem tartottam érdemesnek bemutatni. 
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Összefoglalás 

Az esettanulmányban bemutatott modell alkalmas hasonló rendszerek 

részletes áramlástani vizsgálatára. Fontos fejlesztési feladatok a modell 

megoldómódszerét kiegészíteni TVD-vel és a kimeneten non-reflektív 

peremfeltételt definiálni. A további modellvalidálást támogathatják a 

nyomásszenzorokból gyűjtött mérési adatok és a szimulációból nyert értékek 

összehasonlítása. A modellben mindenképpen szükség lenne több szemcse 

együttes mozgását kezelni, ezzel együtt egymással és a berendezés falával történő 

ütközéseiket is modellezni. Erre a fejlesztésre leginkább a diszkrét elem módszer 

ütközési modelljeit lehetne felhasználni. 
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4.4.  Adszorpciós gáztisztító rendszer modellezése  

Környezetre és egészségre ártalmas szennyezett gázok kerülnek ki számos 

vegyipari technológiából, amelyeket a légszennyezés elkerülése érdekében 

tisztítani kell. Szerves oldószereket használó eljárások során felmerülhet ez a 

probléma, például ioncserélő gyanta duzzasztásakor a folyadékkal történő kezelés 

során klórozott szénhidrogének szabadulhatnak fel [104], hasonlóan szennyező 

gáz termelődik szintézis gáz pirolízissel történő előállítása során [105]. Minden 

érintett technológia esetében szükség van a káros szennyezőanyagok megkötésére 

legfőképp az üvegházhatású gázok kibocsátásának csökkentése érdekében. 

Gyakori gáztisztítási technika a fixágyas adszorber, amellyel a nemkívánatos 

komponenseket egy porózus anyag (pl. aktív szén) megköti. A fixágyas 

adszorberek töltetei azonban egy idő után telítődnek, ezért regenerálni kell őket, 

ez pedig időszakos üzemleállással, egyúttal gazdasági veszteséggel jár. Egy 

gyakran alkalmazott megoldás, hogy párhuzamos fixágyas oszlopokat helyeznek 

egymás mellé, és amíg az egyiket regenerálják, a másik oszlop tovább tud 

működni, de ehhez kétszer annyi berendezés kell. Egy másik megoldás, ha 

mozgóágyas adszorberágyat használunk, ahol a friss adszorberszemcséket 

folyamatosan táplálják a rendszerbe. Ez utóbbi a leghatékonyabb a felsorolt három 

megoldás közül, de modellezési szempontból a legtöbb kihívást is ez jelenti. Az 

adszorpciós gáztisztító rendszer modellezési esettanulmányom célja az 

adszorberszemcsén létrejövő fizikai folyamatok részletes modellezése, amely 

támogathatja a teljes berendezés technológiafejlesztését például az optimális 

működtetési paraméterek megválasztásában. 

Adszorbensként sokféle termék áll rendelkezésre, melyek anyagi 

tulajdonságaiban valamelyest eltérnek egymástól, de közös bennük, hogy 

átmérőjük 0,5-10 mm közötti, hőmérsékletre stabilak, és kis átmérőjű pórusaik 

vannak, amelyek a nagy összterületű aktív felületet biztosítják. Néhányat ezek 

közül a 4.7. táblázat ismertet [97]. Egy csoportosítás szerint az adszorbensek nagy 

része három csoportba sorolható: az oxigéntartalmú vegyületekébe, amelyek 

tipikusan hidrofilek (vízmegkötők) és polárosak, például a szilikagél és a zeolitok; 

a szénalapú vegyületekébe, amelyek tipikusan hidrofóbok (víztaszítók) és 

apolárosak, például az aktív szén és a grafit; végül a polimeralapú vegyületek 
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csoportjába, amelyeknek lehet poláros vagy apoláros funkcionális csoportjuk is a 

porózus polimer mátrixban [106]. Adszorbens anyag alkothatja az egész szemcsét, 

vagy csak adszorbens rétegként beboríthatja egy hordozószemcse felületét. 

4.7. táblázat. Adszorbens anyagok és tulajdonságaik [97] 

Adszor-

bens 

Adszorbens 

max. 
regenerálási 

hőmérséklete 
 [°C] 

Aktív 
felület  

ap [m
2/g] 

Szemcse-
átmérő 

d [mm] 

Átl. 

pórus-

átmérő 
dp [nm] 

Belső 
porozitás 

φ [%] 

Látszólagos 
sűrűség 

ρ[kg/m3] 

Hővezetési 
tényező 

λ [W/(m.K)] 

Fajhő 
cp 

[kJ/(kg.K)] 

Aktív 

Al2O3 
500 300...360 2...10 2...5 25 ...35 800 0,09...0,1 0,88...0,92 

Szilika-gél 400 300...800 1...5 2...4 35...50 700 0,09...0,1 0,92...0,95 

Molekula-
szita 

600 600...1100 1...5 0,3...1,2 30 ...55 700...1000 0,04...0,05 0,8...0,92 

Aktív szén 150 600...1500 1...4 0,5...7 50...70 300...600 0,175...0,28 0,84 

Az adszorpciós gáztisztító oszlopot vizsgálhatjuk mikro- és makroszinten. 

Technológiafejlesztés szempontjából érdekesebb a makroszint (a teljes ágy, 

berendezés) vizsgálata, ám ahhoz ismernünk kell az adszorberszemcsék szintjén 

végbemenő folyamatokat. Ezek ismeretében lehet például optimális 

oszlopmagasságot vagy gázáramot megadni. 

Módszerek és eszközök 

A következőkben bemutatandó esettanulmányban egyetlen, nem-mozgó 

szemcsére alkalmaztam a részletes adszorpciós modellt a folyamat részletesebb 

megértése érdekében. Az IBM módszernek megfelelően egy nagyságrenddel 

kisebb hálóméretet használtam a gáz tulajdonságainak számításához, mint 

amekkora a szemcse. Mivel gáz-szilárd rendszerről van szó, a modellegyenletek a 

folytonossági, a komponens-, a momentum-, valamint az energiaegyenletekből 

állnak. Az egyenletek parciális differenciálegyenlet-rendszert alkotnak, amelyet a 

2.4.4. alfejezetben ismertetett MacCormack módszerrel oldottam meg. A 

megoldásban TVD technikát is alkalmaztam, és a kilépő peremen non-reflektív 

peremfeltételt definiáltam. A gáz-szilárd kölcsönhatás modellezéséhez a direkt 

numerikus szimulációs módszerek közül az immersed boundary módszert 

alkalmaztam, amelynek általános bemutatása a 2.3.2. alfejezetben található. 

A részecske felületén létrejövő adszorpciós folyamatok vizsgálatához egy 

kétdimenziós modellt alkalmaztam, amely egy téglalap alakú számítási 
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tartományból áll oldalsó bemenettel és a tetején lévő kimenettel. Az adszorbens 

szemcse az immersed boundary modellezési megközelítés szerint egy 

nagyságrenddel nagyobb, mint a gáz számítási hálója. A szemcse 3,2 mm 

átmérőjű, a gáz számítási hálójának rácsszélessége 0,4 mm. A modellezett 

áramlási tartomány, valamint a lagrange-i és euleri számítási pontok közötti 

interpolációhoz használt függvény a 4.25. ábra látható. 

 

4.25. ábra. a) A gáztisztító oszlop oldalsó bemenettel. b) A szemcsét leíró 

lagrange-i pontok és a fluid euleri pontjai a rácsszélességgel, ds=2,61·10
-4

 m, 

dx=dz=4·10
-4

 m. c) Interpolációs függvény, mely a távolság alapján súlyt (egy 0 

és 1 közötti szorzót) rendel az egyes értékeknek. 

Az alábbi áramlási egyenletekkel írtam le a vizsgált rendszert (4.27-4.31. 

egyenletek). 

𝜕𝜌𝑔

𝜕𝑡
+
𝜕(

𝑚

𝜌
∙𝜌𝑔)

𝜕𝑥
+
𝜕(

𝑛

𝜌
∙𝜌𝑔)

𝜕𝑧
= 0 (4.27) 

𝜕𝑐

𝜕𝑡
+
𝜕(

𝑚

𝜌
∙𝑐)

𝜕𝑥
+
𝜕(

𝑛

𝜌
∙𝑐)

𝜕𝑧
= R (4.28) 

𝜕𝑚

𝜕𝑡
+
𝜕(

𝑚2

𝜌
+𝑝)

𝜕𝑥
+
𝜕(

𝑛∙𝑚

𝜌
)

𝜕𝑧
= 𝐹𝑥 (4.29) 

𝜕𝑛

𝜕𝑡
+
𝜕(

𝑚∙𝑛

𝜌
)

𝜕𝑥
+
𝜕(

𝑛2

𝜌
+𝑝)

𝜕𝑧
= 𝐹𝑧 (4.30) 

𝜕𝜌𝐸

𝜕𝑡
+
𝜕(

𝑚

𝜌
∙(𝜌𝐸+𝑝))

𝜕𝑥
+
𝜕(

𝑛

𝜌
∙(𝜌𝐸+𝑝))

𝜕𝑧
= 0 (4.31) 

ahol ρg a nemszennyező gázelegy sűrűsége, c a szennyező gázkomponens 

tömegkoncentrációja, ρ a teljes tömegkoncentráció (ρ=ρg +c). m és n a momentum 

intenzív megfelelőjének x és z irányú összetevője. R a szennyező komponensre 

vonatkozó nyelőtag, amely a komponens adszorpciójának köszönhető, p a 
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nyomás, amelyet az ideális gáztörvényből számítunk, Fx és Fz a body force x és z 

irányú összetevője, amelyek az immersed boundary alapján a virtuális peremet 

kialakítják, és E a belső- és a mozgási energia összege. 

A szennyező gázösszetevő megkötési folyamatát egyetlen szemcsén 

mutatom be. A szemcse felületét diszkretizáltam, és a 4.32. egyenlettel leírt 

elsőrendű kinetika alapján számítottam a komponensátadást a felületi elemre és a 

felületi elem telítettségi fokát (cS). Feltételezem, hogy egyenletes 

koncentrációmező jön létre a szemcse adszorberrétegén belül a gyors diffúziónak 

köszönhetően. 

𝜕𝑐𝑆

𝜕𝑡
= 𝑘 ∙ 𝑑𝑠 ∙ (𝑐 − 𝑐0) (4.32) 

ahol cs [kg/m
3
] a szennyező gázösszetevő koncentrációja a szemcse felületelemén, 

k [m
-2

·s
-1

] a komponens átadási együttható, ds [m
2
] a felületi elem területe, c 

[kg/m
3
] a szennyező gázösszetevő koncentrációja a gázfázisban és c0 [kg/m

3
] a 

szennyező gázösszetevő egyensúlyi koncentrációja a szilárd felületen, amely a 

következő összefüggés alapján számítható: c0=bcs [107], ahol b egy konstans. 

A 4.28. egyenletben lévő R forrástagot a 4.33. egyenlet alapján számítom. 

𝑅𝑖,𝑗 = −∑ 𝑘 ∙ 𝑑𝑠 ∙ (𝑐𝑖,𝑗 − 𝑐0,𝑛)

𝑛=𝑁

𝑛=1

 (4.33) 

ahol N az i,j számítási rácspont közelében lévő felülei elemek száma, n ezek 

indexe. 

A 4.27-4.31. egyenletek megoldásához a másodrendű pontosságú TVD-

MacCormack módszert [108] alkalmazva írtam programot. A TVD technika 

alkalmazása során a kétlépéses MacCormack módszer egy harmadik lépéssel 

egészül ki, amelyben egy disszipációs tag segítségével a numerikus megoldásban 

jelentkező oszcilláció kerülhető el. A kilépő peremnél non-reflektív numerikus 

peremfeltételt alkalmaztam. A számításhoz a programkódot MATLAB 

környezetben írtam és futtattam. 

A gáz-szilárd kétfázisú rendszer fáziskölcsönhatásainak leírására az 

immersed boundary módszert használtam. Ennek megfelelően a 4.27-4.31. 
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egyenleteket a gázfázishoz tartozó, időben állandó, 0,0004 m-nkénti rácspontokon 

számítom, a szilárd fázis pedig virtuális peremként jelenik meg. Az alkalmazott 

hálófinomság választását hálófüggetlenségi vizsgálattal támasztom alá (4.26. 

ábra), amelyben a tömegmérlegre mérleghibát számítottam. 

 

4.26. ábra. Hálófüggetlenségi vizsgálat. 

A megadott geometriában (amely a gáztisztító berendezés egy kiválasztott, 

szűkített tartománya, amelyben csak az egyetlen szemcse, és annak közvetlen 

környezete szerepel) 2916 hálóelemet jelentő 0,0002 m-es rácsszélességű háló 

nem ad sokkal pontosabb eredményt, mint az 1089 hálóelemet eredményező 

0,0004 m-es rácsszélességű számítási háló alkalmazása, ezért az utóbbi használata 

mellett maradtam. A szemcse méretét egy átlagos aktívszén adszorber részecskét 

alapul véve 3,8 mm átmérőjűre vettem [97]. 

A fáziskölcsönhatás a különböző (euleri és lagrange-i) rácspontokon 

számított változók értékének átadásával is jár, amelyhez interpolációs függvényt 

kell használni. Esettanulmányomban egyszerű háromszögfüggvényt alkalmaztam 

interpolációs függvényként (4.25.c ábra). Ennek használata során a távolság 

függvényében lineárisan csökken az a súly, amellyel a másik fázis rácspontjánál 

lévő értéket figyelembe veszem. A számítási algoritmus minden időlépésben sorra 

veszi a lagrange-i pontokat, és kiválasztja azokat az euleri pontokat, amelyek egy 

bizonyos távolságon belül helyezkednek el (lásd 4.25.b ábrán a narancssárga 

körön belüli pontok). A momentumegyenletbe beépített direct forcing tag a 

gázfázist a szemcse kikerülésére kényszeríti. A fáziskölcsönhatás az 
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impulzusátadáson kívül ebben a tanulmányban komponensátadást is magában 

foglal. 

Eredmények és értékelés 

A 4.27-4.31. egyenletekkel megadott dinamikus modellt TVD-MacCormack 

módszerrel oldottam meg egy MATLAB környezetben fejlesztett kóddal. A 

kilépő felületen non-reflektív numerikus peremfeltételt alkalmaztam. A szennyező 

gázkomponens sűrűségét a bemeneten 2 kg/m
3
-re állítottam. A beáramló gáz többi 

komponensét átlagos összetételű levegőnek tekintjük. A gáz sebességét a 

bemeneten 10 m/s-ra állítottam. A tömegátadási állandó k=1·10
8
 m

-2
·s

-1
, a b 

szorzó pedig 1,1. A számítás időlépése a CFL kritériumnak megfelelően 2·10
-7

 s 

körül változott. Az 5·10
-3

 s-os szimulációs időpillanatban a szemcse körüli 

sebességi mezőt mutatja a 4.27.a ábra, a szennyező komponens koncentrációját 

pedig a 4.27.b ábra. Az ábra c részében a szemcse felszínének telítődését mutatom 

be. A d ábrán kijelöltem hat pontot a szemcse felületén, és azok telítődési görbéjét 

ábrázoltam, amelyen jól látszik, hogy a különböző felületi pontokon eltérő 

ütemben megy végbe az adszorpció. 

 

4.27. ábra. a) Sebességi mező az adszorberszemcse körül. b) A szennyező 

gázösszetevő sűrűsége az áramlási mezőben. c) Az adszorberszemcse felületének 

telítettsége 50 000 időlépés elteltével. d) A szemcse bizonyos pontjainak 

szaturációs görbéi. 
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A szimulációs eredményekből látható, hogy a modell alkalmas a szemcse 

felületi pontjain az adszorpciós folyamat számítására, ezáltal kiszámíthatjuk az 

adszorberszemcse aktív életidejét. Ez a módszer több részecske számítása esetén 

hozzájárulhat a gáztisztító oszlop optimális működési paramétereinek 

meghatározásához. 

Összefoglalás 

Direkt numerikus szimulációt alkalmaztam egyetlen adszorberszemcsén 

végbemenő adszorpciós folyamat szimulációjára, melyben a szennyező 

komponens megkötését egy elsőrendű kinetikával írtam le, valamint a teljes 

áramlási mezőt dinamikusan számítottam. A gáz-szilárd fáziskölcsönhatást 

immersed boundary és direct forcing módszerekkel modelleztem. 

Feltételeztem, hogy az adszorbens anyag a hordozószemcse felületén egy 

réteget alkot, amelyben a diffúzió gyors. A tanulmány eredménye, hogy a 

kifejlesztett modell felületelemenként számítja a komponensátadást, így a 

kétdimenziós modellben a szemcse körvonala mentén nyomon tudjuk követni a 

telítődés mértékét. A részletes telítettségi adatok felhasználásával pontosabban 

meg tudjuk határozni a teljes szemcsére vonatkozó szaturációs időt, amely 

folyamatfejlesztési kérdésekben adhat iránymutatást. 

További modellfejlesztési feladat e témakörben az adszorberoszlopot több 

szemcsével feltölteni, valamint szimulálni a szemcsék mozgását, és ütközéseiket 

egymással és a berendezés falával. Ez a diszkrételem módszer egyidejű 

alkalmazásával érhető el. A kibővített modell alkalmas lehet egy adszorpciós 

töltet működésének szimulációjára, és ennek segítségével az optimális 

működtetési paraméterek beállítására.  
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4.5.  Szilárd szemcse ülepedési trajektóriájának meghatározása 

newtoni folyadékokban 

Szedimentációnak nevezzük azt a jelenséget, amely során a közeg 

sűrűségénél nagyobb sűrűségű szilárd testek a folyadékkal teli edény aljára 

ülepednek. Ez a folyamat az ipar és a természettudomány számos területén 

előfordul, például geológiai-biológiai rendszerek esetén [109], 

szennyvíztisztításnál [110], vagy tejtermékek előállítása során [111]. Az ülepítést 

leggyakrabban elválasztáshoz használják egy feldolgozó folyamat részeként. A 

klasszikus szedimentáció kizárólag a gravitációs erőt használja fel a 

szétválasztódáshoz, ezt a folyamatot azonban különféle technikákkal (pl. 

centrifugálással [112], mágneses erővel [113], kémiai úton [114], ultrahanggal 

[115] stb.) gyorsítani is lehet. Ellenerőként hat a felhajtóerő és a közegellenállási 

erő, a szilárd testek pozícióváltozását, ülepedését a ráható erők eredője határozza 

meg. Az ülepedés során a test kezdeti sebessége folyamatosan csökken, majd egy 

idő után a test megszűnik gyorsulni, amikor a rá ható erők kiegyenlítik egymást. 

A testek süllyedésének leírása, pontosabban a közegellenállás számításához 

használt összefüggés kiválasztásához az áramlás Reynolds számát (lásd 3.1.3. 

alfejezet, 3.5. egyenlet) meg kell határoznunk, ez alapján két fő tartományt 

különíthetünk el. Abban az esetben ha Re<<1, a Stokes törvény (4.34. egyenlet) 

érvényes, magasabb Re számú rendszerek esetén pedig a Rayleigh-féle 

közegellenállási erő számítására használatos képletet (4.35. egyenlet) kell 

alkalmaznunk. 

𝐹𝐷 = −6𝜋𝜇𝑟v (4.34) 

𝐹𝐷 =
1

2
𝜌v2𝐶𝐷𝐴 (4.35) 

ahol FD a közegellenállási erő, μ a közeg dinamikai viszkozitása, ρ a közeg 

sűrűsége, v a közeg sebessége a testhez viszonyítva (tulajdonképpen a test 

sebessége), A a test vetületének területe, CD a dimenziómentes közegellenállási 

együttható, amely főleg a test alakjától függ, gömb esetében 0,47. 

Fontos megjegyezni, hogy az esettanulmányomban newtoni közegekben 

vizsgáltam a szilárd szemcsék ülepedését. Egy közeg akkor nevezhető newtoni 
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folyadéknak, ha igaz rá, hogy a sebességgradiens egyenesen arányos a 

nyírófeszültséggel, ahol az arányossági tényező a dinamikai viszkozitás. 

Ülepedés közben a szilárd szemcsékre ható erők eredője főként a süllyedés 

irányába mutat, azonban kisebb mértékben oldalirányba is hatnak, ezzel 

eltéríthetik az ülepedő testet. A mésések a University College Cork Folyamat- és 

Vegyészmérnöki Tanszékének laboratóriumában készültek. A mérési adatokból 

látszik, hogy az ülepedés nem egyenes vonalú (4.28. ábra, [116]). 

 
4.28. ábra. Öt, egyenként 5,6 mm átmérőjű nylon golyó ülepedési trajektóriája 

vízben. Az x tengelyen a cső szélessége, az y tengelyen a magassága szerinti 

pozíció látható. A berendezés egy 10 cm átmérőjű, 50 cm magas cső volt. 

A kétfázisú rendszer részletes áramlási modellje segítségével nyomon 

követhető a test mozgása. A kétfázisú rendszerek modellezési lehetőségei közül a 

két-folyadék módszer (másnéven Euler-Euler megközelítés, TFM) alkalmazásával 

is lehetséges a szedimentációs folyadék-szilárd rendszert modellezni, például 

Noetinger munkájában a szedimentációs edény alakjának hatását vizsgálta TFM-

mel [7]. Ezt a megközelítést akkor szokták használni, ha egy szemcsesokaság 

ülepedését akarják modellezni, de a szemcsesokaság modellezéséhez használató 

az Euler-Lagrangian megközelítés is [117]. Az Euler-Euler megközelítés előnye a 

kisebb számítási igény mellett, hogy az ülepedő testek alakja lehet szabálytalan is, 

például tojáshéj törmelékek [118], mivel a módszer csak az egyes számítási cellák 

kitöltöttségi hányadát veszi figyelembe (lásd 2.1. alfejezet). A diszkrételem 

módszer is alkalmazható a szedimentáció modellezéséhez, de sokkal 
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időigényesebb mint a TFM. Ebben az esetben egyenként számítjuk a szemcsék 

mozgását és kölcsönhatásukat az őket körülvevő közeggel, a fallal és egymással a 

rájuk ható erők alapján [119]. Az előbbi két térfogatátlagolt áramlási egyenletet 

használó módszer mellett a szedimentációt is lehet direkt numerikus szimulációs 

módszerrel modellezni. CFD szoftverekkel megadott body-fitted modellek is 

lehetséges eszközök lehetnek, ám az elmozdulás után üresen maradt térrész 

kitöltése miatt is problémás a módszer a nagy számításigény mellett. Ez a 

nehézség áthidalható az Arbitrary Lagrangian-Eulerian (ALE, önkényes lagrange-

i/euleri) technika alkalmazásával [120] (ezen az elven működik az úgynevezett 

moving mesh (mozgó számítási háló) módszere is), de kutatási tevékenységem 

nem ebben az irányvonalban haladt, hanem inkább az időben állandó euleri 

számítási hálót alkalmazó direkt numerikus módszer alkalmazása mellett 

döntöttem. Az immersed boundary módszer használata előnyös, mert a számítási 

hálót nem kell minden időlépésben, minden geometriaváltozásnál újradefiniálni, 

és üres terek sem maradnak a virtuális peremkezelésnek köszönhetően (2.3.2. 

alfejezet), azaz a szimuláció teljes ideje alatt minden számítási tartomány értéket 

kap. Egy speciális fajtája az Immersed Boundary modellezési megközelítésnek a 

Level Set módszer (3.1.1. alfejezet), és az ehhez hasnoló Phase Field módszer. 

Ezek lényege, hogy a teljes geometria minden számítási pontjában értelmezett egy 

0 és 1 vagy -1 és 1 közötti értékkészletű függvény, amely az adott számítási 

cellának a fluid/szilárd kitöltöttségi arányát adja meg. Ez hasonlít a 

térfogatátlagolt módszerek térfogati hányadához (ε), de itt nagyságrendnyi 

különbségek vannak, egy számítási cellában nem hogy egynél több szemcse esik, 

de egy szemcse lefed több számítási cellát is, míg némelyeknek csak egy részét 

(ezek adják a köztes értékeket). A logika itt is ugyanaz, viszont mivel a számítási 

háló Level Set módszer esetén a szemcsétől egy nagyságrenddel kisebb, lesznek 

olyan cellák, amelyekben a függvény a szélső értékeit veszi föl, jelezve, hogy az 

egyik vagy a másik fázis van jelen a számítási cellában, továbbá lesznek a 

fázishatár számítása szempontjából olyan cellák, amelyekben mindkét fázis jelen 

van. 

Ebben az esettanulmányban newtoni folyadékban ülepedő egyetlen szilárd 

merev szemcse szedimentációjának modellezését mutatom be. Célom volt 
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fehérdoboz (a priori) modellel nyert szimulációs vizsgálatok alapján jobban 

megérteni a fizikai mérésekben tapasztalható sebességfluktuáció okait. 

Modellezés Level-Set módszerrel 

A szedimentációs rendszert először Level Set módszerrel kezdtem 

modellezni COMSOL Multiphysics programcsomag segítségével, ezért a 

bemutatandó eset kapcsán is ezt a tanulmányt ismertetem először. A módszer 

általános elméleti bevezetője a 3.1.1. fejezetben található. 

Különálló testek mozgásának modellezésére fluidumban jobban 

alkalmazható a Level Set módszer az Euler-Euler típusú módszerekhez képest, 

mivel azok inkább szemcsetömegek mozgásának modellezésére alkalmasak. A 

Level Set módszer további előnye, hogy könnyen kezelhetők az alakváltozások, 

az egyesülések és a szétválások [121]. Ez nyilvánvalóvá teszi, hogy valójában 

inkább olyan kétfázisú rendszerek modellezésére alkalmas, ahol a diszpergált 

fázis nem szilárd, tehát buborékos rendszerek, emulziók stb. esetében. A Level 

Set és Phase Field módszereket interface tracking (azaz érintkező felület 

követéses) módszereknek is nevezik. COMSOL Multiphysics-ben létrehoztam 

egy 2D-tengelyszimmetrikus modellt egy egyszerű, henger alakú ülepítő 

berendezés leképezéséhez (4.29. ábra). A Level Set modellegyenletek 

hozzáadásakor egy mintapéldát vettem alapul, amellyel egy vízben lévő olajcsepp 

mozgását lehet szimulálni. A modellben meg kell adni mindkét fázis 

viszkozitását, tehát a szilárd szemcsét is folyadékként tudtam csak értelmezni, 

nagy viszkozitással közelítve a szilárd tulajdonsághoz. 

 

4.29. ábra. a) A szedimentációs beredezés 2D-tengelyszimmetrikus geometriai 

modellje [mm]. b) A lecsökkentett méretű számítási tér. c) A háromszögekből álló 

hálózás egy részlete (metszet). 
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A program a fázishatár dinamikus változását a 4.36. egyenlettel írja le. 

𝜕𝛷

𝜕𝑡
+ 𝑢 ∙ ∇𝛷 = 𝛾∇ ∙ (𝜖𝑙𝑠∇𝛷 − 𝛷(1 − 𝛷)

∇𝛷

|∇𝛷|
) (4.36) 

ahol Φ a Level Set függvény, u a sebesség, γ a reinicializációs paraméter, εls a 

fázishatár vastagságát megadó paraméter. 

A reinicializációs paramétert tanácsos u-val egy nagyságrendben megadni, 

hogy a frissítés ne maradjon le a közeg mozgásától, ebben az esetben 0,1 m/s volt. 

A fázishatár vastagságát a maximális számítási hálóméret felére állítottam. A 

maximális hálóelem mérete a szemcse átmérőjének tized része (4.29. ábra). A 

4.29. ábra b részében egy szűkített geometria látszik (a számítási idő csökkentése 

érdekében az átmérőt a negyedére szűkítettem), ezzel a hálóbeállítással 18279 

domain hálóelemet és 999 peremelemet kaptam. Ez jóval kevesebb az eredeti 

150246+1542 db hálóelemnél. A rendelkezésemre álló mérési adatok alapján 

választottam az anyagokat, melyek néhány jellemző tulajdonságát a 4.8. 

táblázatban foglaltam össze. 

4.8. táblázat. Az alkalmazott anyagok anyagi tulajdonságai. 

 Sűrűség  

[kg/m
3
] 

Dinamikai viszkozitás 

[Pa·s] 

Térfogat 

[m
3
] 

Hőmérséklet 

[°C] 

nylon 1114 “10” 1,08·10
-7

 25 

víz 1000 0,0009 0,04 25 

szilikon 

olaj 
1000 0,6 0,04 25 

paraffin 

olaj 1 
827 0,11 0,04 25 

paraffin 

olaj 2 
890 0,23 0,04 25 

gépolaj 850 0,32 0,04 25 

A 4.8. táblázatban felsorolt anyagokkal szimulációkat futtattam, melyekben 

az egyik fázis mindig a nylon volt, a közeg pedig a táblázatban felsorolt öt 

newtoni folyadék volt. Ha a golyó sűrűségét körülbelül 2700 kg/m
3
-re vennénk, 

akkor a mérési értéket kapnánk a modellből (4.30. ábra). A sűrűség változtatása 
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azonban nem jó irány, hiszen ezzel csak azt érjük el, hogy más anyagból készült 

golyók ülepedését szimuláljuk, de a keresett rendszer modellpontosításához nem 

járulunk hozzá. A felületi feszültséget a két fázis határán elhanyagolhatónak 

vettem, mert néhány értéket kipróbálva a mérési adattól egyre inkább eltérő 

sebességértékeket kaptam (4.30. ábra). 

 

4.30. ábra. a) Kísérletek különböző sűrűségű kvázi-folyadékokkal, b) A felületi 

feszültség hatása a mért és a számolt ülepedési sebesség különbségére. 

A szimulációt 6 s-ig futtattam 0,2 s-os időlépéssel. A kapott 

sebességprofilokat a 4.31. ábra mutatja. 

 

4.31. ábra. Sebességprofilok 6 s elteltével a szűkített tengelyszimmetrikus 

geometriában. Az első fázis a nylon golyó minden esetben, a második (a közeg) 

pedig a) víz, b) szilikon olaj, c) paraffin olaj 1, d) paraffin olaj 2, e) gépolaj. 
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A 4.9. táblázatban a számított sebességeredmények és a számításhoz 

szükséges idő szerepel. A szimulációk futtatásához egy 16 GB RAM-os személyi 

számítógépet használtam 2.66 GHz órajelű Intel Core i5 CPU-val. 

4.9. táblázat. A számításhoz szükséges idő és a kapott szemcsesebességek a 

különböző közegekben. 

 Számítási idő [s] u [m/s] 

víz 5236 0,0463 

szilikon olaj 318 0,0043 

paraffin olaj 1 3073 0,0175 

paraffin olaj 2 2181 0,0086 

gépolaj 1846 0,008 

Folyadék-szilárd rendszer modellezésére nem vált be a módszer, mert ahogy 

a 4.32. ábraán is látszik, a gömbként definiált szemcse különösen is a nagyobb 

sűrűségű közegekben alakját változtatta, egyes esetekben szét is vált. 

 

4.32. ábra: Kváziszilárd szemcse ülepedése newtoni folyadékokban 2 s elteltével  

a) vízben, b) szilikon olajban, c) és d) különböző parafin olajokban, e) gépolajban. 

A deformáció, ahogy a sebesség is, függ a közeg viszkozitásától és a 

sűrűségétől. A 4.8. táblázat és a 4.9. táblázat adatai alapján két diagramot lehet 

felrajzolni (4.33. ábra). 

 

4.33. ábra: Ülepedési sebesség a) a sűrűség és b) a dinamikai viszkozitás 

függvényében. 



Esettanulmányok és eredmények 

 

117 

 

A pontokra illesztett görbék alapján meghatároztunk egy olyan 

sebességösszefüggést, amely a sűrűséget és a viszkozitást is tartalmazza (4.37. 

egyenlet). Paramétereit (par(1)-par(5)) egy globális nemlineáris optimalizáló 

algoritmussal, a NOMAD-dal határoztuk meg [122]. 

u = par(1) ∙ ρ2 + par(2) ∙ ρ + par(3) ∙ 𝜇par(4) + par(5) (4.37) 

A szélsőértékkereső algoritmus célfüggvénye a számított értékektől való 

eltérés minimalizálása volt. Eredményül a paraméterekre rendre a következőket 

kaptuk: 1e-7, -2e-4, 1e-3, -0,5, 0,1. A 4.33. ábra a és b részét egy felülettel is 

ábrázolhatjuk (4.34. ábra). 

 

4.34. ábra. Az ülepedési sebesség a sűrűség és a viszkozitás függvényében. 

Alacsonyabb viszkozitásértékeknél nagyobb sebesség tud kialakulni, valamint 

kisebb mértékben, de a sűrűség növelése is csökkenti a sebességet. 

Modellezés szemcsekövetéssel 

A szemcse szedimentációjának modellezésére a COMSOL Multiphysics 

Particle Tracing (szemcsekövető) modellje is szóba került, mint lehetséges 

módszer. Létrehoztam a szedimentációs rendszer háromdimenziós CFD modelljét, 

és hat szimulációs kísérlet során különböző értékű, a közegellenállási erőt 

szimuláló tagot adtam a modellegyenletekhez. Illesztés során a 8,28·10
-5

 N 

közegellenállási erő adódott megfelelőnek ahhoz, hogy a modellel számított 

ülepedési sebesség legjobban közelítse a mérésből származó értéket (4.35. ábra). 



Esettanulmányok és eredmények 

 

118 

 

A számítási idő 21 óra volt, ezt a hosszú időt főként a 3D geometria miatti 

nagyszámú hálóelem okozta. 

 

4.35. ábra. a) A szemcse pozíciója az idő függvényében a különböző beállított 

közegellenállási erőt imitáló erők (FD [N]) hatására, b) A különböző nagyságú FD 

erők hatása a sebességre. 

A COMSOL Multiphysics segítségével végzett szedimentációs vizsgálatok 

hátránya az volt, hogy az alkalmazott módszereket nem igazán folyadék-szilárd 

kétfázisú rendszerek modellezésére találták ki. Kutatásomat ezért más irányban 

folytattam, saját fejlesztésű direkt numerikus szimulációs modellezési 

megközelítésen alapuló modellt fejlesztettem, amelyet a következőkben mutatok 

be. Az áramlási egyenletek és a fáziskölcsönhatás modellezése specifikusan 

összenyomhatatlan közegek és szilárd merev testek rendszerének modell leírására 

alkalmas, ezért a megoldástól jobb eredményt várhatunk. 

Modellezés Immersed Boundary módszerrel 

Az ülepítő berendezés kétdimenziós modellegyenleteinek megoldására egy 

MATLAB programkódot hoztam létre, melyben a 2.4.6. alfejezetben ismertetett 

SIMPLE módszert használtam. A fáziskölcsönhatás modellezését Immersed 

Boundary módszeren alapuló direct forcing módszerrel végeztem háromszög 

alakú interpolációs függvényt használva. Az euleri rácsszélesség (hálóelemméret) 

0,0005 m volt, amely az immersed boundary módszernek megfelelően egy 

nagyságrenddel kisebb az 5,9 mm-es golyótól. Egyetlen nylon golyóból és a 

vízoszlopból álló kétfázisú rendszer szimulációját 20000 időlépésig futtattam, 

ahol egy időlépés 2,5·10
-5

 s volt. A testre ható erők körülbelül 16000 időlépés 

után egyenlítették ki egymást (4.36. ábra) körülbelül 0,145 m/s-os ülepedési 
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sebességet eredményezve, amely jó egyezést mutat az átlagosan 0,143 m/s-nak 

mért ülepedési sebességgel. 

 

4.36. ábra. a-d) A közeg sebességének x (oldalirányú) és z (függőleges) irányú 

összetevője az első és az utolsó szimulált időlépésben (2,5·10
-5

 s és 0,5 s), e) az 

ülepedési sebesség változása az idő előrehaladtával a szimuláció szerint. 

A 4.36. ábrán látható eredményeket izoterm inkompresszibilis közegre felírt 

áramlási egyenletek alaján kaptuk (4.38-4.40. egyenletek). 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑧
= 0 (4.38) 

𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌𝑢

𝜕𝑢

𝜕𝑥
− 𝜌𝑣

𝜕𝑢

𝜕𝑧
+
𝜕𝑝

𝜕𝑥
+ 𝑓𝑥 = 0 (4.39) 

𝜌
𝜕𝑣

𝜕𝑡
+ 𝜌𝑢

𝜕𝑣

𝜕𝑥
+ 𝜌𝑣

𝜕𝑣

𝜕𝑧
+
𝜕𝑝

𝜕𝑧
+ 𝑓𝑧 = 0 (4.40) 

ahol u és v az x és z irányú sebességkomponensek, t az idő, p a nyomás, ρ a közeg 

sűrűsége, fx és fz pedig a virtuális peremhez szükséges body force x és z irányú 

összetevője. 

Később a momentumegyenleteket pontosítottam a viszkózus tag 

hozzáadásával, így a 4.39-4.40. egyenletek a 4.41-4.42. egyenletekre módosultak. 

𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌𝑢

𝜕𝑢

𝜕𝑥
+ 𝜌𝑣

𝜕𝑢

𝜕𝑧
= −

𝜕𝑝

𝜕𝑥
+
𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑥𝑧
𝜕𝑧

+ 𝑓𝑥 (4.41) 

𝜌
𝜕𝑣

𝜕𝑡
+ 𝜌𝑢

𝜕𝑣

𝜕𝑥
+ 𝜌𝑣

𝜕𝑣

𝜕𝑧
= −

𝜕𝑝

𝜕𝑥
+
𝜕𝜏𝑧𝑥
𝜕𝑥

+
𝜕𝜏𝑧𝑧
𝜕𝑧

+ 𝑓𝑧 (4.42) 

ahol τ a nyírófeszültség. 
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Összefoglalás 

Ebben az esettanulmányban szilárd merev szemcse ülepedését modelleztem 

newtoni folyadékokban. A modellezés és szimuláció célja, hogy az ülepedési 

sebességben mutatkozó fluktuációt meg tudjuk jósolni. COMSOL Multiphysics 

segítségével és egy MATLAB környezetben fejlesztett programmal is 

megpróbáltam leírni. A tanulmány fő eredménye, hogy létrehoztam 

szilárd-folyadék ülepedési rendszer szimulációjához egy olyan programkódot, 

melyet a továbbiakban a célok elérése érdekében szükséges továbbfejleszteni. 
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5. Összefoglalás 

Dolgozatomban a kétfázisú rendszerek áramlásával foglalkoztam 

modellezési és szimulációs szempontból. Az irodalmi áttekintés fejezetében a 

tudomány ezen területének jelenlegi állását mutattam be. Törekedtem arra, hogy a 

már meglévő, felhasznált eredmények és módszerek jól elkülöníthetők legyenek 

az új, általam bevezetett módszerektől és eredményektől. A többfázisú rendszerek 

áramlásának modellezésében alapvető kérdés, hogy az egyes fázisok mozgását 

milyen részletességgel írjuk le. Az áttekintésben a modellezési megközelítések 

három alap típusát mutattam be, a két-folyadék módszert, a CFD-Diszkrét elem 

módszert és a direkt numerikus szimulációs módszereket. A modellegyenletek 

alkotta parciális differenciálegyenlet-rendszer megoldásához alkalmazható 

numerikus módszerek bemutatását követően a kutatásaimban alkalmazott 

módszereket és eszközöket ismertettem. A gyakorlati kutatómunkámat és az elért 

új tudományos eredményeket négy esettanulmányon keresztül mutattam be. 

Elsőként egy kétlépéses biomassza elgázosító reaktort vizsgáltam az 

áramlási viszonyainak szempontjából. Az összetett geometriájú berendezés két 

bemenettel és egy kimenettel rendelkezik, és hidrodinamikai jellemzését 

tartózkodási idő analízis módszerével végeztem. COMSOL Multiphysics CFD 

szoftver segítségével háromdimenziós áramlási modellt készítettem, mellyel 

jelölőanyag impulzusszerű bevezetésére adott válaszból tartózkodási idő eloszlás 

görbéket nyertem. Vizsgáltam a bemeneti tömegáramok hatását a tartózkodási idő 

eloszlásfüggvényre. A számításigényes 3D-s CFD modell mellett létrehoztam a 

berendezés cellás modelljét is, amely az ideális áramlási modellek 

kombinációjából és a megfelelően megválasztott paraméterekből áll. A CFD és a 

cellás modell alapján nyert RTD görbék jellegükben megegyeztek. 

A második esettanulmányban egy többfuratos jetkeverő példáján mutattam 

be egy új módszert a keverőteljesítmény értékelésére. Fáziselemeket jelölő 

szemcsék trajektóriáját követtettem, amelyek az előzetesen kiszámított 

stacionárius sebességmező szerint haladtak. A keverő eszköz két bemeneti 

pereméről induló jelölőszemcséket megkülönböztető jelöléssel láttam el, amely a 

szimuláció végéig megmaradt. A berendezés kimeneti peremén Poincaré 

metszetként elmentettem a szemcsék pozícióját, és a felületet kisebb mezőkre 
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osztva lokális lefedettségi és kevertségi mértékeket definiáltam. A berendezés 

keverési teljesítményét a teljes kilépő felületre összegzett metrikákkal 

jellemeztem. 

A harmadik alkalmazási példában egy laboratóriumi méretű, kvázi-

kétdimenziós fluidizációs berendezés modelljét és szimulátorát mutattam be. 

Immersed boundary módszerrel modelleztem a gáz- és a szilárd fázis 

kölcsönhatását, melynek segítségével egy szilárd szemcse mozgását szimuláltam. 

A szimulációs eredményeket mérésekkel validáltam, azonban a modell még 

fejlesztésre szorul annak érdekében, hogy egy teljes szemcsesokaságot legyen 

képes kezelni, melyben a szemcsék egymással és a berendezés falával történő 

ütközését (szilárd-szilárd kölcsönhatás) is számítjuk a gáz-szilárd kölcsönhatás 

számítása mellett. 

Adszorpciós gáztisztító berendezés szemcse szintű modelljét ismertettem a 

negyedik esettanulmányban. A folytonossági, momentum- és energiamegmaradási 

egyenletek mellett ebben az esetben komponensmérleget is számítottam, amellyel 

a szennyező gáz koncentrációjának változását egy elsőrendű kinetika szerint 

számítja a modell. A tanulmány fő eredménye, hogy az adszorbens szemcse 

telítettségi állapotának részletes, felületi elemenkénti jellemzése lehetővé vált. 

Végül egy szilárd szemcse newtoni folyadékban történő ülepedésének 

modell-felépítését és szimulátorát mutattam be, mellyel a szemcse ülepedési 

trajektóriája és a terminális sebesség írható le. A folyadék-szilárd kétfázisú 

rendszert COMSOL Multiphysics-ben level set módszerrel és MATLAB-ban 

SIMPLE módszerrel megvalósított immersed boundary módszerrel modelleztem. 

A modellegyenletekben a gáz-szilárd rendszerek esetében még elhanyagolható 

viszkozitási tagokat ebben a folyadék-szilárd rendszert modellező 

esettanulmányban meghagytam és számítottam. 

A dolgozatban kifejtett eredmények tömör, lényegre törő megfogalmazását 

az Új tudományos eredmények (tézisek) fejezetben mutatom be. 
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Új tudományos eredmények (tézisek) 

1. Numerikus áramlástani és cellás modellen alapuló tartózkodási idő 

eloszlás analízist alkalmazó vizsgálati módszert fejlesztettem ki összetett 

geometriájú berendezések hidrodinamikai viselkedésének feltárásához. A 

módszer által meghatározott heurisztikus cellás modellel generált 

tartózkodási idő eloszlás függvény jól közelíti a részletes CFD modellel 

kapott tartózkodási idő eloszlás függvényt. 

a) Biomassza elgázosító reaktor háromdimenziós CFD modelljének 

megalkotásával szimulációs eszközt készítettem, amely alkalmas több-

bemenetű rendszerek tartózkodási idő vizsgálataira. 

b) Megmutattam, hogy az ideális áramlású egységek kombinációjával 

létrehozott cellás modell alkalmazásával a részletes CFD modellel kapott 

hidrodinamikai viselkedés reprodukálható, ezáltal jelentősen kisebb 

számítás igényű eszközt kapunk a tartózkodási idő eloszlás analízisen 

alapuló vizsgálatokhoz. 

Kapcsolódó publikációk: 6., 10., 18. 

2. Folyamatos üzemű keverők teljesítményének értékeléséhez egy 

többszempontú kevertségi mértéket definiáltam, és ennek felhasználásával 

egy értékelési módszert dolgoztam ki. A kifejlesztett módszer előnye, hogy 

a hagyományos, komponensmérleg számításán alapuló szimulációs 

vizsgálatokkal szemben a számításokhoz csak a stacionárius 

sebességmezőt kell felhasználni. 

a) Keveredési metrikákat dolgoztam ki a kevertség meghatározására, amelyek 

alkalmasak statikus és jet keverők minősítésére. 

b) Definiáltam a lokális lefedettségi érték fogalmát, amelyet a teljes kilépő 

felületre értelmezve minősíthetővé válik a keverő. 

c) Olyan számítási eljárást dolgoztam ki, amely alkalmas a fáziselem 

jelölőszemcsék pozícióadatai alapján a keverési teljesítmény 
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meghatározására az áramlástani szimulációval kapott stacionárius 

sebességmező felhasználásával. 

Kapcsolódó publikációk: 1., 13. 

3. Kétfázisú rendszerek részecske szintű áramlási modellezéséhez a direkt 

numerikus szimulációs modellezési megközelítésen alapuló immersed 

boundary módszert alkalmazva modelleket fejlesztettem ki, amelyekkel a 

fázisok közötti kölcsönhatásokat írtam le különböző kétfázisú műveletek 

esetében, mint a fluidizáció, az adszorpció és az ülepedés. 

a) Létrehoztam egy fluidizált szemcsét tartalmazó kétfázisú rendszer 

szimulátorát, amelyben a gáz- és szilárd fázis kölcsönhatását immersed 

boundary módszerrel számítottam. A számítási algoritmus alkalmas a 

szilárd szemcse mozgásának számítására a részecskét körülvevő áramlási 

mező tulajdonságait felhasználva. 

b) Egy részecske szintű számítási modellt fejlesztettem ki az adszorbens 

szemcse felületén végbemenő adszorpciós folyamat szimulációjára. Az 

adszorbens részecskét és a megkötendő komponenst tartalmazó kétfázisú 

rendszer áramlástani modelljét készítettem el az immersed boundary 

módszeren alapulva. Az áramlástani modellt kiegészítettem a megkötendő 

komponensre vonatkozó komponensmérleggel és az adszorpció folyamatát 

leíró elsőrendű kinetikával. A kidolgozott módszer lehetővé teszi a 

szennyező komponensekkel való telítődés mértékének meghatározását a 

szemcse különböző felületi elemein. 

c) Szilárd merev szemcse newtoni folyadékban történő ülepedésének 

vizsgálatára egy részecske szintű számítási modellt hoztam létre, amelyben 

az immersed boundary módszert alkalmaztam. A létrehozott szimulátor 

alkalmas a szilárd szemcse álló folyadékban való mozgásának számítására a 

részecskét körülvevő áramlási mező tulajdonságait felhasználva. 

Kapcsolódó publikációk: 3., 7., 8., 9., 11., 12., 14., 15., 16., 17., 19., 20. 
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New scientific results (theses) 

1. I developed a new method based on residence time distribution analysis 

using computational fluid dynamics and a compartmental model to study 

the hydrodynamic behavior of the equipment with complex geometry. The 

residence time distribution curve obtained by using the heuristic 

compartmental model is in good agreement with the curve obtained by the 

detailed CFD model. 

a) A three-dimensional CFD simulator of a biomass gasification device is 

developed, which is suitable for studying residence time distribution of 

systems with multiple inlets. 

b) Using a compartmental model which is based on ideal flow units I showed 

that the hydrodynamic behavior of the detailed CFD model can be 

reproduced. With the application of the compartmental model we got a tool 

for the calculation of the residence time analysis with significantly less 

computational cost. 

Related publications: 6., 10., 18. 

2. To evaluate the performance of continuous mixers, I defined a multi-

aspect mixing measure and used it to develop an evaluation method. The 

advantage of the developed method is that in contrary to the traditional 

simulations based on the solution of the component balance equation, only 

the stationary velocity field has to be used for the calculations. 

a) I developed metrics of mixing to define the mixedness. These metrics are 

applicable to qualify static and jet mixers. 

b) I defined the concept of local coverage, which can be used to qualify the 

mixer by interpreting the local coverage to the whole outlet boundary. 

c) I developed a calculation method that is suitable for determining the mixing 

performance of mixers based on the position data of the marked phase 

elements using the stationary velocity field obtained by the flow simulation. 

Related publications: 1., 13. 



Függelék 

 

127 

 

3. Models using the immersed boundary method based on the direct 

numerical simulation modeling approach are developed for particle level 

modelling of two-phase flow including the phase interactions for different 

processes such as fluidization, adsorption and sedimentation. 

a) A simulator of a two-phase system, including a fluidized particle is 

developed in which the gas-solid interaction is calculated by the immersed 

boundary method. The algorithm of the calculation is usable to calculate the 

moving of a solid particle considering the properties of the surrounding flow 

field. 

b) I developed a particle level model to simulate the adsorption process on the 

surface of an adsorbent particle. I constructed a flow model of a two-phase 

system containing the adsorbent particle based on the immersed boundary 

method. The flow model is completed with a component balance for the 

component to be adsorbed and first-order kinetics describing the adsorption 

process. The developed method makes it possible to determine the degree of 

saturation of the adsorbed components on different surface elements of the 

particle. 

c) I also developed a particle level model based on the immersed boundary 

method that can calculate the sedimentation of a solid particle in Newtonian 

fluid. The simulator is suitable to calculate the moving of the solid particle 

in still fluid based on the properties of the surrounding flow field. 

Related publications: 3., 7., 8., 9., 11., 12., 14., 15., 16., 17., 19., 20. 
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