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Kivonat

Kétfazisu aramlasokat leiro modellek és szimulaciok alkalmazasa és

fejlesztése

A doktori dolgozatban a kétfazisu rendszerek modellezési €s szimulacios
kihivasaival foglalkozom, és az azon beliil végzett tudomanyos eredményeimet
mutatom be. Gaz-szilard és folyadék-szilard rendszerek a vegyipar szamos
miiveletében el6fordulnak, példaul keverésnél, szétvalasztasnal vagy fluidizacid
esetében. A modellezési lehetéségeknek széles valasztéka all a kutatok
rendelkezésére, melyeket megfeleléen kivalasztva ¢és alkalmazva egy-egy
vegyipari  technoldgiafejlesztési  probléma  megolddsdban  hatékonyan
felhasznalhatunk. A dolgozatban az elméleti bevezetdt kovetden a kisérletekhez és
a szimulacids szamitdsokhoz sziikséges modszereket és eszkozoket ismertetem,
majd gyakorlati részként az Ujonnan Kialakitott, kétfazisi rendszerek
faziskdlcsonhatasaval is szdmold modelleket mutatom be esettanulmanyokon
keresztiil. A biomassza elgazositd reaktor hidrodinamikéjat vizsgalo, tobbfuratos
jetkeverd keverdteljesitményét jellemz0, laboratériumi fluidizécids berendezést
modellez6, adszorpcids, valamint szedimentacidés folyamatot részletesen leird
modellek reprezentativ mintajat adjak azon esetek kezelésének, amelyekhez jol
hasznalhato implementaciokat fejlesztettem. A direkt numerikus szimulaciok,
ezen beliil az immersed boundary modszer volt a leggyakrabban alkalmazott
modszer, amelyet az az utobbi harom példa esetén hasznaltam. Az immersed
boundary modszeren alapuld szimulaciokban a f6 tudomanyos eredményt a
konkrét  vegyipari  miivelet-elemekre  alkalmazhatésag  koriilményeinek
megteremtése jelenti. Ezekben a példdkban olyan szimuldtorokat hoztam létre,
amelyek alkalmasak a bemutatott gaz-szilard ¢€s folyadék-szilard kétfazisa
aramlést tartalmazd rendszerekhez hasonld mas rendszerek modellalapti

tanulmanyozésara is.

Kulcsszavak: kétfazisi modellezés, faziskolcsonhatas, hidrodinamika,

numerikus aramlastan, folyamatintenzifikalas



Abstract

Application and developement of two-phase models and simulators

In the doctoral dissertation | approach the modeling and simulation
challenges of two-phase systems and present my scientific results. Gas-solid and
liquid-solid systems are a part of many operations in the chemical industry, such
as mixing, separation or fluidization. A wide range of modeling options is
available to the researchers, which can be selected and applied to the solution of a
chemical technology development problem.

My dissertation will begin with the theoretical introduction where | describe
the methods and tools required for experiments and simulation calculations. Next,
I will continue with the practical side where | present the newly developed models
that also calculates the phase interaction of two-phase systems through case
studies. | provide a representative sample of models for cases where | developed
reliable tools (Including, but not limited to: studying the hydrodynamics of a
biomass gasification reactor, characterizing the mixing performance of a multi-
bore jet mixer, modeling laboratory-scaled fluidization equipment and describing
the adsorption and sedimentation process in detail). Along with direct numerical
simulations, my most commonly used tool was the immersed boundry method.
My last three examples utilize this method resulting in the creation of conditions
for the applicability to other cases. In the examples provided, | have created
simulators that are also suitable for model-based studies of other systems similar

to the presented gas-solid and liquid-solid two-phase flow systems.

Keywords: two-phase modeling, phase interaction, hydrodynamics,

computational fluid dynamics, process intensification



Auszug

Anwendung und Entwicklung von Zweiphasenmodellen und Simulatoren

In der Dissertation beschiftige ich mich mit den Modellierungs- und
Simulationsherausforderungen von Zweiphasensystemen und ich prisentiere
meine wissenschaftlichen Ergebnisse. Gas-Feststoff- und Fliissigkeit-Feststoff-
Systeme treten in vielen Bereichen der Chemieindustrie auf, zum Beispiel beim
Mischen, bei der Zertrennung oder Fluidisieren. Dem Forscher steht eine breite
Palette von Modellierungsoptionen zur Verfiigung, die nach der richtigen
Auswahl und Anwendung zur Losung eines Entwicklungsproblems der
chemischen Technologie eingesetzt werden konnen. In der Dissertation beschreibe
ich nach der theoretischen Einfithrung die Methoden und Werkzeuge, die fiir
Experimente und Simulationsberechnungen erforderlich sind, dann stelle ich als
praktischen Teil die Modelle vor, die auch die Phasenwechselwirkung von neu
entwickelten Zweiphasensystemen anhand aufgrund der Fallstudien. Die Direkten
numerischen Simulationen, innerhalb die Immersed Boundary-Methode waren
meine am haufigsten verwendete Methode, die ich bei den letzten drei Beispiele
verwendet habe. In diesen Beispielen habe ich solche Simulatoren erstellt, die
auch fiir modellbasierte Studien anderer Systeme geeignet sind, die zu den
vorgestellten Zweiphasenstromungssystemen Gas-Feststoff und Fliissigkeit-

Feststoff Systeme (also den Verschriankung) dhnlich sind.

Schliisselworter: Zweiphasenmodellierung, Phasenwechselwirkung,

Hydrodynamik, Numerische Fluiddynamik, Prozessintensivierung
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Bevezetés

1. Bevezetés

Kétfazisu aramlas szamos vegyipari folyamatban eléfordul. Ha a gaz-szilard
kétfazisi aramlasokat tekintjilk, akkor a szemcsetechnologiai miveletek (pl.
fluidizacio, pneumatikus szallitds) mind olyan folyamatok, amelyek megértését
segitheti a modellezés ¢és szimulacio. A megismerés utja lehet méréseken
keresztiili vagy szimulacios vizsgalatokbol nyert informacio, melyekbdl az
utobbinak nagy elénye a rugalmassag. A részletes szimulacids vizsgalatokon
keresztiili jobb megértés szamos teriileten hozhat gazdasagi, és kozvetve vagy
kozvetleniil kornyezetvédelmi hasznot. A kétfazisu rendszerekben meglehetésen
nehéz az dramlas megzavarasa nélkiil végezni olyan méréseket, amelyek részletes
informécioval latnanak el a rendszer miikodésérdl. Modellalapti megismeréshez
vezet az is, ha empirikus modellekkel dolgozunk. Azonban a korunkra jellemzé
ugrasszerli szamitastechnikai fejlodés lehetové teszi, hogy belathatd idon beliil
eredményt kapjunk a részletes, fazis szinti modellek megoldasara is, mivel
numerikus megoldasukra hatékony modszerek, a szamitasi miveletek
elvégzéséhez pedig nagy teljesitményli szamitogépek allnak rendelkezésre. A
numerikus aramlastan (Computational Fluid Dynamics, CFD) maddszereit
alkalmaztam a modellfejlesztésben és a szimulacios vizsgalatokban. Egyes
esetekben olyan programcsomagot hasznaltam, ahol a megoldémodszereket ki
lehet valasztani az adott modell és probléma megoldasara, mas esetekben a
modellegyenletek diszkretizdlasanak €s megoldasanak lépéseit sajat fejlesztésli
programmal oldottam meg.

Dolgozatomban eldszor az aktualis szakirodalmat ismertetem a fluid-szilard
kétfazisu rendszerek modellezési modszereire fokuszalva, a dolgozat mésodik fele
pedig esettanulmanyokon keresztiil mutatja be a korabban emlitett modszerek
alkalmazasat kiilonb6z6 problémakra, és az azokkal elért eredményeket. Egy
tobbfuratos multijet keverd példdjan szemcsekdvetési vizsgalaton alapuld
homogenitasmérték szamitasat mutatom be, valamint egy biomassza elgazositd
reaktor példdjan CFD és cellas modellezés alkalmazasaval nyert
kovetkeztetéseimet ismertetem. Ehhez a két példahoz egyfazisi modelleket
alkalmaztam, a szilard fazis a modellben kozvetleniil nem jelenik meg. Szilard

szemcse folyadékban valo iilepedését vizsgald esettanulmanyomban a folyadék-
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Bevezetés

szilard rendszer leirasara az Immersed Boundary modszert hasznaltam, és a
vizsgalt eset a kdzeg Osszenyomhatatlansagaban (ebbdl fakadéan a megoldando
egyenletekben ¢és megoldomodszerekben) tér el a gaz-szilard rendszereket
vizsgaldo tovabbi két példamtol. Gaz-szilard fluidizaci6 modellezésére
fejlesztettem részletes, direkt numerikus modszeren alapuld szimulatort, és ennek
kiterjesztéseként egy gaz- és szilard fazis kozotti komponensatadassal bovitett
modellt fejlesztettem adszorpcids gaztisztitd oszlop mitkkddésének vizsgalatara. Az

1j tudomanyos eredményeket a dolgozat végén tézispontokba szedve ismertetem.
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Roviditések jegyzéke

Rovidités Angol kifejezés Magyar kifejezés

av average atlag

CFD Computational Fluid Dynamics | numerikus aramlastan

CFL Courant-Friedrich-Lewy

CM compartment modeling cellas modellezés

DEM Discrete Element Method diszkrételem modszer

DNS Direct Numerical Simulations | k6zvetlen szamitasos modszer
vagy direkt numerikus
szimulaciok

FCC fluid catalytic cracking fluidagyas katalitikus krakkolas
(olyan katalitikus krakkolds,
amelyben a katalizator
fluidizalt allapotban van)

FDM Finite Difference Method véges differenciadk modszere

FEM Finite Element Method végeselem modszer

fps frame per second képkocka masodpercenként

FSI fluid-structure interaction fluid-szilard kolcsonhatas

FVM Finite Volume Method véges térfogatok modszere

IBM Immersed Boundary Method

KTGF Kinetic theory of granular flow | szemcsés kozegek aramlasanak
kinetikai elmélete

PEPT positron emission particle szemcsekovetés pozitron

tracking kibocsatasos technikaval
PIMPLE SIMPLE és PISO keveréke
PISO Pressure-Implicit with Splitting
of Operators
PIV particle image velocimetry optikai sebességmérés
PSO particle swarm optimization
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ROI region of interest kiemelt képtartomany

RTD residence time distribution tartozkodasi id6 eloszlas

SIMPLE Semi-Implicit Method for a legismertebb

Pressure-Linked Equations nyomaskorrekciés modszer

neve

TDMA Tridiagonal Matrix Algorithm | tridiagonalis matrix algoritmus

TFM Two-Fluid Modell két-folyadék elméleten alapulod
modell

TKE tokéletesen kevert egység

TVD Total Variation Diminishing numerikus hibat kikiisz6bo616
modszer neve

VOC Volatile Organic Components | illékony szerves anyagok
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Jelolésjegyzék
u a sebesség x iranyt komponense
Vv a sebesség y iranyt komponense
W a sebesség z iranyl komponense
t id6
P a fluid fazis nyomasa
Ps a szilard fazis nyomasa
Tr a fluid fazis viszkozus fesziiltségtenzora
T a szilard fazis viszkozus fesziiltségtenzora
S a kozegellenallasi egyiitthato
gJ pedig a gravitacios gyorsuldsvektor
u dinamikai viszkozités
p stiriség
L karakterisztikus hossz
belsd energia
E bels6- és mozgasi energia 0sszege
y hokapacitasi hanyados
Re Reynolds szam
f body force
X az euleri pontok koordinatai
X a lagrange-i pontok koordinatai
h az euleri racspontok kozotti tavolsag (racsszélesség)
As a lagrange-i racspontok kozotti tavolsag (racsszélesség)
0 interpoléciods fliggvény
g gravitacids gyorsulas
Uy a sebességvektor a lagrange-i pontban
RHS Osszefoglalo jelolése egy egyenlet jobboldoldra rendezett tagjainak
T atlagos tartozkodasi 1d6
C koncentracio
F térfogataram
Vv térfogat
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Irodalmi attekintés

2. Irodalmi attekintés

Ebben a fejezetben a kétfazisu aramladsok modellezésének elméleti
megkozelitési modjait mutatom be, melyek az altalam is alkalmazott vagy

tovabbfejlesztett moddszerek alapjai. A kétfazisi rendszerek aramlési

rrrrr

szilard fazist a 2.1. tablazatban talalhaté modon kezelik.

2.1. tablazat. Alap modellezési megkozelitések kétfazist dramlasok szamitdsara.

Modellezési modszer Fluid fazis Szilard fazis
Két-folyadék modszer térfogatatlagolt térfogatatlagolt
(Euler-Euler) aramlési egyenletek aramlasi egyenletek
CFD-Diszkrét elem modszer térfogatatlagolt egyedi részecskékre
(Euler-Lagrangian) aramlasi egyenletek felirt mozgasegyenlet
Direkt numerikus szimulacio sramlasi eovenletek egyedi részecskékre
(Euler-Lagrangian) gy felirt mozgasegyenlet

Az 4ramlési egyenletek numerikus megoldasaban azok a modszerek,
amelyek térfogatatlagolt aramlési egyenleteket alkalmaznak, szamitdsi haloként a
diszpergalt faziselemek méreténél egy vagy tobb nagysagrenddel nagyobb
szadmitasi cellaméretet hasznalnak. A két-folyadék modszer a szilard fazist is egy
folytonos fazisnak tekinti és a két fazis sebességének és térfogati hanyadanak
idébeli és helybeli valtozasanak meghatarozasara alkalmas. A CFD-Diszkrét elem
modszer alkalmazasa sordn a szilard féazist alkotd szemcséket kiilonalldan
kezeljiik, ezért az alkalmazott szamitasi celldkban ki tudjuk szdmitani az adott
idépillanatban érvényes atlagos térfogati hanyadukat. Igy ez a modszer amellett,
hogy szamitja a részecskék mozgasat, a gazfazis sebességének meghatarozasara a
térfogatatlagolt aramlasi egyenleteket hasznalja, amely soran felhasznaljuk a
szilard részecskék pozicidja és mérete alapjan szamitott, a gazfazisra érvényes
atlagos TUrestérfogati hdnyad értékeit az egyes szamitdsi celldkban. A
térfogatatlagolt aramlasi egyenletek esetében az egyenletekben a gazfazisra
érvényes trestérfogati hanyad pontvaltozoként jelenik meg, amelynek értéke a
numerikus megoldas sordn az elobbiekben emlitett atlagos iirestérfogati

hanyadként adhaté meg. A szadmitési celldkban érvényes atlagos szilard térfogati
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Irodalmi attekintés

hanyad és egyben a gazfazis {restérfogati hanyaddnak meghatdrozasa
megkoveteli, hogy a szamitdsi cella mérete a szilard részecskék méreténél
legalabb egy nagysagrenddel nagyobb legyen. A harmadik modellezési modszer,
a direkt numerikus szimulacio, a legrészletesebb eredményt nyujté modszer,
amely az egyedi szilard részecskék sebességének szamitdsara, valamint a fluid
fazis részecskék kozotti részletes aramlasanak meghatarozasara alkalmas a normal
aramlasi egyenletek felhaszndldsaval. Ezen modszer esetén az aramlasi térben
elhelyezkedd részecskék falként, peremként jelennek meg. Ennél fogva a direkt
numerikus szimuldci6é esetében a szilard részecskéknél nagysagrendileg kisebb
méretl cellakat hasznald szamitési halot alkalmazunk.

A két-folyadék modszer nem nyljt részletes eredményt a szilard fazist
tekintve, a masodik ¢és harmadik modszer a részecske mozgasat tekintve részletes
eredményt ad, a harmadik mddszer pedig a gazfazis aramlasat tekintve is részletes
eredményt nyujt, szdmitva a részecskék kozotti részletes aramlasi mezot.
Ertelemszertien a modszerek alapjan készitett szimulacio szamitasi igénye az
egyre részletesebb eredményt nyljté modszerek esetében egyre nagyobb. A
kovetkezd alfejezetekben a fenti hdrom modellezési megkdzelitést mutatom be
részletesebben. A modellegyenletek numerikus megoldasdhoz diszkretizélni kell
azokat mind térben, mind id6ében. Szamos numerikus modszer 1étezik a kilonféle
osztalyba sorolt parcidlis differencidlegyenletek megoldasara, amelyek koziil a
fejezet negyedik alfejezetében bemutatom az 4ltalam alkalmazott numerikus

modszereket.

2.1.Két-folyadék modszer

A két-folyadék modszer (Two-Fluid Method, TFM), ahogy a neve is
mutatja, fluidumnak, folytonos fazisnak tekinti mindkét aramlo fazist. Az elvet,
hogy a szilard részecskék aramlasat is az ismert aramlasi egyenletekkel (Navier-
Stokes egyenletek) irjuk le, eldszor Anderson és Jackson mutatta be 1967-ben egy
fluidagy modellezésének példajan keresztiil [1]. Ok vezették be a térfogatatlagolt
aramlasi egyenleteket, amely a szamitdsi cellan beliil atlagos térfogathanyadhoz
rendelt valtozokat hasznalnak. Az ebben a modszerben alkalmazott szamitasi cella

mérete a részecskék atlagos méreténél egy vagy tobb nagysagrenddel nagyobb. A
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modszer kezdetben nem szamolt a fazisok viszkozitasaval. Késobb a két-folyadék
modszert a Chapman és Cowling altal bevezetett szemcsés kdzegek dramlasanak
kinetikai elméletével (kinetic theory of granular flow, KTGF) kapcsoltak Ossze
[2], és igy keriiltek az egyenletekbe a faziskolcsOnhatast leird tagok. Ding és
Gidaspow 1990-ben mar ezt a kiegészitett modellt alkalmazta fluidizacio
modellezésére [3], majd ezt kdvetéen az 1990-es években szamos publikacio
jelent meg, amelyekben ezt a modellt alkalmaztak. Boemer és Renz [4] csakagy,
mint Banaei és munkatarsai [5] és még sokan masok az alabbi 2.1-2.2.
egyenletekkel megadott modellt alkalmaztak. A 2.1-2.2. folytonossagi egyenletek

a fluid- és a szilard fazis tomegmegmaradasat fejezik ki.

52 (erpp) + V (erpytly) = 0 (2.1)

d —
Py (&sps) + V- (espstis) = 0 (2.2)

ahol t az id6, &1, pr és Uf a fluid fazis, &, ps és Us pedig a szilard fazis térfogati
hanyada, slirlisége és sebességvektora. A térfogati hanyadokra teljesiilnie kell az
& + &s= 1 Osszefiiggésnek.

Mindkét momentumegyenlet tartalmazza a két fazis kolcsonhatasat leird
tagot, amely a két fazis sebesség-kiilonbségének a fiiggvénye (2.3. és 2.4.
egyenletek).

52 (erppily) + V- (rpsiisly) = =7 Vi = V- (&%) — Bty — Us) + 707 (2.3)

0 — - — = — — -
ot (gspsus) +V- (Sspsusus) = —&Vps— V- (SSTS) + B(uf - us) + &p59 (2-4)

ahol ps és 7 a fluid fazis, ps és T, pedig a szilard fazis nyomasa és a viszkozus
fesziiltségtenzora, S a kozegellenallasi egyiitthatd, § pedig a gravitacids
gyorsulasvektor.

Az egyenletek megoldasaval minden szadmitasi cellaban megkaphatjuk az
egyes fazisok altal elfoglalt térfogati hdnyadot, valamint a fazisok
sebességmezdjét. A TFM-en alapuld szimulaciok eredményét Ggy vizualizaljak,
hogy a gaz- vagy szilard fazis térfogathanyadanak térbeli vagy sikbeli értékeit egy

szinskala alapjan abrazoljak. A 2.1. abran példaul a gazfazis térfogati hanyadahoz
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rendelt szinskala alapjan vizualizaltdk egy fluidagy miikodésének szimulacios

eredményeit.

0.79
L 0.63

I 0.47
0.37

2.1. abra. Fluidizacié szimulacigja TFM modellezési megkdzelitést
alkalmazva [5].

A TFM modszer alkalmazésara szamos irodalmi példa talalhat6. Banaei és
munkatarsai fluidizacios kevero6t vizsgalatak [5], Issa és Kempf buborékoszlopos
aramlast szimulaltak vizszintes csovekben [6], Boemer és Renz egy fluidagy
kétdimenziés modelljét és annak szimulaciés eredményeit mutattak be [4],
Noetinger pedig lilepedés modellezéséhez alkalmazta a két-folyadék modszert [7].
A TFM alkalmazédsa kétfazisi rendszerek 4&ramlasi modellezésére még
napjainkban is népszerli modellezési modszer olyan esetekben, amikor nem cél a
szilard fazist alkoto részecskék mozgéasanak részletes meghatarozasa. Nagy eldnye
a TFM modszernek, hogy lényegesen kisebb a szamitasi igénye a részletesebb

eredményt biztosité masik két modszerhez képest.

2.2. CFD-Diszkrét elem modszer

A CFD-Diszkrét elem moddszer alkalmazasa soran a gazfazis
tulajdonsdgainak szamitasat a térfogatatlagolt aramlasi egyenletek megoldasaval
végezzik, a szilard fazist alkotd szemcsék tulajdonsagait pedig egyedileg
szamitjuk. A diszkrét elem modszer (Discrete Element Method, DEM) egyik
Iényeges jellemzdje, hogy az egyes részecskékrol részletes informaciot biztosit,
elfoglalt atlagos térfogati hanyadukat, amelyet a gazfazis térfogatatlagolt aramlasi

egyenleteiben mar ismert paraméterként hasznalhatunk fel. A térfogatatlagolt
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kifejezés itt is azt jelenti, hogy az aramldsi egyenletek pontvaltozoként
tartalmazzak az atlagos tirestérfogati hanyadot. Az aramlasi egyenletek numerikus
megoldasa sordn a szamitasi cella méretét gy hatdrozzuk meg, hogy a szilard

szemcs€k méretétdl egy vagy tobb nagysagrenddel nagyobb legyen (2.2. abra).

sZzemcse

szamitasi
cella

2.2. abra: A térfogatatlagolt aramlasi egyenleteket hasznaldo modszerek jellemzd
részecske-cellaméret aranya.

A CFD-Diszkrét elem modszert nevezik még Euler-Lagrangian, Euler-DEM
vagy CFD-DEM modszernek is. Zhong ¢és munkatarsai nemrég megjelent
cikkiikben kiemelik a CFD-DEM alkalmazhatdsagat olyan szemcsés rendszerek
esetében is, ahol a szemcsék nem szabalyos gomb alakuak [8]. A moddszer
hasznalata az egyedileg kezelt részecskék miatt nagyon szamitasigényes, a
jelenlegi szamitasi kapacitasok mellett, nem parhuzamositott szamitds esetén
DEM modszer gyakran alkalmazott eszkdéz fluidizdcids berendezések
modellezésére. He és munkatdrsai CFD-DEM modszert alkalmaztak fluid-szilard
kolcsonhatas modellezésére, melyet fluidizacios berendezések példajan keresztiil
mutattak be [9]. Luo és munkatarsai buborékolo fluidagyban 1étrejové keveredést
modellezték CFD-DEM modszerrel [10].

A diszkrét elem moddszer alkalmazéasdban egyedileg szamitjuk a szilard
szemcseék mozgasat. A részecskék kétféle mozgassal rendelkezhetnek, forgd- €s
haladoémozgassal. Az egyes részecskék forgd- €s haladomozgasat leird modell
alapjait Cundall dolgozta ki az 1970-es években szemcsés rendszerek részletes
modellezésére [11]. A diszkrét elem modszer (Discrete Element Method, DEM) a
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részecskék mozgasanak leirasdhoz rugalmas vagy rugalmatlan {itkozési
modelleket is alkalmazhat. A rugalmas iitkdzési modellek a rugalmas iitkdzést
egyszerti mechanikai elemekkel valositjak meg. A rugalmas iitk6zést egy rugoval,
az 1itkozés energiaveszteségét lengéscsillapitoval, a szemcsék kozotti surlodast
pedig csuszkaval modellezik (2.3. abra). A szemcsére hathatnak az érintéirdnyt
(tangencialis) erdk, amelyek a forgdbmozgast okozzak, és a normal iranya erdk,
amelyek a halado mozgast okozzak. A modell paraméterei a K, és ki normal- és
tangencialis iranyra vonatkoz6 rugoallandok, valamint 7, és #; normal- és
tangencialis irdnyra vonatkozd csillapitasi tényezok. A csuszka elemmel a két
szemcse kozotti feliileti surlodast modellezziik, paramétere a u surlodasi

egylitthato.

dugattyd
Ne ke

N, Ccsuszka

U

p részecske g részecske

2.3. abra. Két szemcse kozotti rugalmas iitk6zés modellje [12].

Az tkozés és az ltkozésekbdl szarmazod iitkozési erdk szamitdsa akkor
torténik, ha a két részecske koézéppontjainak tdvolsdga kisebb vagy egyenld a
sugaraik Osszegénél. A fallal torténd {itkozést is szemcse-szemcse iitkdzésre
vezetjiik vissza, ekkor a fal ,,mogott” egy ugynevezett tiikorrészecskét képzeliink
el. A rugo6 elem altal kifejtett erd mértéke azzal aranyos, hogy a részecskék kozott
elképzelt rugdt mennyire nyomjuk 6ssze, azaz a modell szerint a valtozatlan alak
mellett mennyire fednek at. Az atfedés a két részecske sugarainak O0sszege és a
kozéppontjai kozotti tavolsag kiilonbségébdl adodik. A diszkrét elem modszerhez
hasznalhato iitkozési modellek kiilonbozd valtozatait és a modell paraméterek
szamitasi modjait mutatja be Horabik és Molenda 6sszefoglalo cikke [13].

A DEM alkalmazhatd olyan, graviticion alapuld szemcsés miiveletek

modellezésére is, ahol mozgd falperemet kell definidlni, de a gazfazis hatdsa

21



Irodalmi attekintés

elhanyagolhat6. Shen ¢és munkatdrsai a diszkrét elem modszert szemcsék
mozgasanak modellezésére alkalmaztak szallitoszalagon [14], Gallego ¢és
munkatarsai bordazott falu silok esetében {liritési szimulacidkhoz alkalmaztak
[15], Yazdani és Hashemabadi pedig keveredés modellezésére forgdbdobban [16].
Ma és Zhao szintén forgodobban vizsgalta ellipszoid alaki szemcsék mozgasat
[17] DEM-mel. Gyenis és munkatarsai keveredés vizsgalatahoz alkalmaztdk a
diszkrét elem modszert statikus keveréelemeket tartalmazd csévekben [18], You
¢és Zhao pedig specialis alaki granulatumok térkitoltési tulajdonsdgainak
vizsgalatahoz hasznalta a DEM-et [19].

A DEM o6nalldéan is alkalmazhaté modszer, ekkor csak a szilard fazis
elemeinek mozgésat irjuk le. Ha a fluid fazist is szamitjuk, és figyelembe vessziik
a szilard részecskékre gyakorolt hatasat, akkor mar a CFD-DEM modszerrdl

beszElink, amely fluid-szilard kétfazist aramlas szamitasara alkalmas.

2.3. Direkt numerikus szimulacios modszerek

Az Euler-Lagrange tipust modelleknek a CFD-DEM modszeren kiviil egy
masik csoportja is 1étezik, ahol a fluid fazist a hagyomanyos Euler vagy
Navier-Stokes egyenletekkel szamitjuk, és a szilard részecskéket egyedileg
kezeljiik, azonban a fluid fazis szamitdsaban a szilard részecskék az aramlasi
térben falakként (peremként) jelennek meg. Direkt numerikus szimuldcionak
(Direct Numerical Simulation, DNS) nevezik ezt a mddszert, amelynek legfébb
jellemzdje, hogy ezzel a modszerrel meghatarozhatjuk a részecskék kozotti
részletes aramlasi mezdt, a részecskék mozgasat pedig a kozvetleniil vele
érintkezd gaz sebessége és nyomadsa alapjan szamitjuk. Ebbdl kovetkezik, hogy az
ebben az esetben alkalmazott szamitasi halo cellaméretének a szilard részecskék
méreténél egy vagy tobb nagysagrenddel kisebbnek kell lennie. A direkt
numerikus szimulacidk kozott két modszer terjedt el a fluid fazis szamitasat
illetéen. Az els6 modszerben a fluidum aramlasi jellemzdit a mozgd szilard
részecskeék feliiletéhez illeszkedd, tgynevezett body-fitted szamitasi halo
alkalmazasaval szamitjuk (2.4.a abra). A masodik modszer viszont egy szabalyos
¢s idében valtozatlan szamitasi halot hasznal, a részecske fazishatarat pedig

virtualis peremként definialjuk (2.4.b abra). A virtualis perem alkalmazasa azt
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jelenti, hogy a részecske nem jelenik meg fizikai falként, peremként, hanem ebben
a modszerben a momentumegyenlethez hozzdadunk egy olyan erétagot (body
force), amely tigy modositja az aramlast, mintha ott valdban egy részecske lenne.
Habar a direkt numerikus szimuldcidos moddszerek a nagy felbontist
szamitasi halopontok miatt rendkiviil szédmitasigényesek, a szamitastechnika

vivmanyai (pl. parhuzamos szamitas) egyre inkabb lehetdvé teszik a nagyszamu

2.4. abra. A fluid fazis szamitéasi haloja a) body-fitted, b) szabalyos, id6fiiggetlen.

Body-fitted modszerek

A direkt numerikus szimulaciés modszerek egyik csoportja, a body-fitted
modszer onnan kapta a nevét, hogy a szamitasi halo a szilard részecskékhez
illeszkedik (2.4.a 4bra). A részecskék valods fizikai peremként jelennek meg, és az
aramlasi valtozok szamitasahoz a hagyoméanyos Euler egyenleteket hasznaljuk. Az
egymassal kolcsonhatasban 1évo szilard és folyadék fazis esetében azonban nem
csak a szilard fazis valtoztatja meg a fluid fazis dramlasi képét, hanem a fluid fazis
aramlasanak hatdsara a részecskék is helyet valtoztatnak, ezaltal a szamitasi halot
is ujra kell generalni, a fluid fazis valtozoéit pedig a régi racspontokrol az ujra kell
projektalni [20], azaz interpolaciéval meghatarozni. Ezeket a miiveleteket minden
idblépésben el kell végezni, rendkiviil szamitasigényessé és lassuva téve ezzel a

megoldast. A body-fitted modszer 1épéseit az alabbiakban foglalhatjuk dssze.
1. Széamitési halé generalésa;
2. Aramlasi mezd szamitasa;
3. Részecske mozgés szamitésa;
4

Uj szamitasi halé generalasa;
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5. Projekcio;

6. Visszaa 2. Iépéshez, amig a szimulacios id6lépések végére nem ériink.

Tovabbi nehézséget okoz, hogy ahol az egyik idélépésben még szilard
részecske helyezkedett el, ott az elmozdulds miatt a kdvetkezd 1d6lépésben mar a
fluidfazis veheti 4t a helyet, azonban azon a helyen még elétte nem volt
semmilyen értéke az aramlasi valtozoknak (nem volt a szamitasi domain része),
ezért azokra a szamitasi cellakra extrapolalni kell az adatokat. Ehhez hasonld
problémaval foglalkozik példaul Dixon és munkatarsainak [21] vagy Rebughini és
munkatarsainak [22] cikke, ahol az athidalast, az Ggynevezett bridge-ek szamitasat
vizsgéljak két szemcse litkozése esetén. Ilyen esetben az athidald teriiletet
egységes dramlasi tulajdonsagokkal toltik ki, elhanyagolva ezzel a szemcsék
kozvetlen kozelében 1év0 aramlasi mezd egyedi tulajdonsigait. Amennyiben
nagyon kozel vannak egymashoz a szemcsék, és nem alkalmaznak hidat, akkor a
végtelenségig kellene finomitani a szamitasi halot, €s ez jelentdsen megndvelné a

szamitasi igényt.
Immersed Boundary modszer

Immersed Boundary modszernek (Immersed Boundary Method, IBM)
nevezziik a direkt numerikus szimuldciés modszerek masik nagy csoportjat.
Ebben a modszerben két szamitasi halot hasznalunk, egy euleri szdmitasi halot a
gazfazis szamitdsara, ¢és egy lagrange-i halét a részecske peremének
részecske helye, az nem fogja megvaltoztatni az euleri haloét. Ebbdl a
tulajdonsagbol kifolydlag a body-fitted szdmitasi haldkat alkalmaz6é modszerek
hatranyait kikiiszoboljiik, a szamitds jelentésen hatékonyabb és gyorsabb lesz,
azonban a virtudlis perem kezelésével kapcsolatban szdmos modellezési
kihivassal kell szembenézniink.

Ha egy részecske mozgasat a fluidumban IBM modszerrel szeretnénk

modellezni és szimulalni, akkor a kdvetkezd 1épéseket kell végrehajtani.

Részecskemozgds szamitdsa immersed boundary médszerrel

1. A dimenziok megvalasztasa (2D vagy 3D);
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A modellegyenletek diszkretizalt alakjanak felirasa;

Az aramlési tér geometridjanak kialakitdsa vagy importalésa;
Szamitasi halo 1étrehozasa;

A modellegyenletekben szereplé paraméterek definialasa;
Kezdeti értékek ¢és a kezdeti peremfeltételek definidlasa;

A szimulaci6 idétartamanak megadasa;

L N o g B~ WD

Az idOlépések szamitasa;
l. Az 1d06lépés nagysaganak szamitasa a stabilitasi kritérium alapjan;
Il. Az é4ramlasi valtozok szamitdsa a diszkretizalt egyenletek ¢és az
alkalmazott numerikus mddszer alapjan;
M. Uj peremértékek kiszamitasa;
V. A szilard szemcse és a fluidum kolcsonhatasanak szamitasa;

9. Végiil az eredmények értékelése, abrazolas.

Az immersed boundary mddszer hasznélata esetén a fluid fazis szamitasi
haldja egy strukturdlt szamitidsi halo, amelyet a szildrd részecskék virtudlis
peremének valtozdsa nem véltoztat meg. Ennek a fix szdmitdsi halonak a
racspontjait euleri pontoknak nevezziik. A szilard részecskének a pereme mentén
is kijeloliink szamitasi racspontokat, ezeket lagrange-i pontoknak nevezziik (2.5.
abra). Az euleri és lagrange-i racsszélességeket a megfeleld szamitasi pontossag

biztositasa érdekében altaldban azonos nagysagrendben vessziik fel.

® Euleri racspont

® Lagrange-i racspont

0000s T vE00n00
L 2 6646040600604

2.5. abra. Az immersed boundary médszer soran alkalmazott szamitasi halok
racspontjai a racsszélességek jeldlésével (h az euleri racsszélesség, As a lagrange-i
racsszelesség)
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Az immersed boundary modszert, az Otletet, hogy a fluid fazis szadmitasi
haloja 1dotol fiiggetlen legyen, els6ként Peskin vezette be szivbillentyiik
mozgasanak modellezésére véraramban [23]. AzOta a moddszernek szamos
valtozata sziiletett, és napjainkra a leggyakoribb direkt numerikus szimulécios
modszer lett, hattérbe szoritva a korabban hasznalt body-fitted szdmitasi halot
alkalmaz6é modszert [24].

Az IBM kihivasai els6sorban a két fazis egymasra hatasanak szamitasaban
rejlenek. El0szor is a mozgo szemcse fizikai hatdranak megallapitasa és kezelése
sem egyszerti feladat, ugyanis ebben a modszerben a részecskék nem jelennek
meg konkrétan falként, hanem csak tigynevezett virtualis peremként. Masodszor
pedig a testet koriilaramlo fluid fazis sebessége befolyassal van a szilard test
sebességére. Ezt az oda-vissza hatast fluid-structure interaction-nek (FSI), azaz a
fluid-szilard fazisok kozotti kdlesonhatasnak is nevezik [25]. A kihivast az euleri
pontokban szamitott valtoz6 értékek felhasznalasa a lagrange-i pontokban, és
forditva, a lagrange-i pontokban szamitott értékek euleri pontokban vald
felhasznalasa jelenti. Az altalam alkalmazott moddszer szerint egy interpolacids
figgvény (8) segitségével valosithatjuk meg a kapcsolatot a kétféle szamitasi
racspont értekei kozott. Interpolacios fliggvényekként kiilonféle sulyfiiggvényeket

hasznalhatunk (2.6. abra). A fiiggvény tartoja adja meg a hatokor szélességét.

I T
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2.6. abra. Néhany példa az euleri €s lagrange-i racspontokon szamitott valtozok
értékei kozotti interpolacidhoz hasznalhato sulyfiiggvényekre [26] [23] [27].
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A szilard és gazfazis kozotti kolcsonhatds formalis leirdsat nyujtja
diszkretizalt alakban az alabbi két egyenlet (2.5-2.6. egyenletek) két-dimenzios
esetben. Ezekre azért van sziikség, mert az euleri pontokban nem ismerjiik a body
force tagot, amelyet a momentumegyenlethez adva az éaramléds iranyat ugy
valtoztatja meg, hogy a virtualis peremet 1étrehozza, a lagrange-i pontokban pedig
nem ismerjiik a fluid fazis sebességét, amely a szilard részecske sebességére is

befolyassal van.

M

'(x) = Z F" (X;)6(x — X,)As minden x-re (2.5)
j=1

UpX) = ) " (0)5(x — X’ k=1.2,..M (2.6)

X

ahol x az euleri pontok koordinatait, X pedig az M db lagrange-i pont koordinatait
jeloli. A lagrange-i racspontok kozotti tavolsag As, az euleri racsszélesség h
minden dimenzidban, f" és F" az egységtérfogatra vonatkoztatott erdvektorok az
adott euleri és lagrange-i pontban az n. id6lépésben, u és Uy a sebességvektorok
az euleri és lagrange-i pontokban (b a boundary-t (peremet) roviditi), o az
interpolécios fliggvény.

A virtualis perem kialakitdsa érdekében a lagrange-i rdcspontok kozelében
elhelyezked6 euleri szamitasi cellakban bevezetiink a momentumegyenletbe egy
body force erdt (f), amelynek a hatdsara a fluidum aramlasi iranya ugy valtozik a
virtualis peremnek megfelelden mintha ott egy valés peremmel rendelkezd
részecske helyezkedne el. Ezt a térfogategységre vonatkoztatott erdt
(mértékegysége N/m®) ugy hatirozzuk meg, hogy segitségével az aramlés
sebessége a szemcse falanal a szemcse sebességét érje el. A body force
szamitasara tobb modszert fejlesztettek ki, a merev sziladrd részecskék esetében
mas megkdozelitést kell alkalmazni, mint az elasztikusakndl. Mivel alkalmazasi
példdimban csak merev szilard részecskékkel foglalkoztam, igy a modelljeimben
a merev szilard részecskék esetében alkalmazhatd direct forcing modszert
alkalmaztam, melyet el6szor Mohd-Yusof vezetett be [28], majd Fadlun és
munkatarsai [29], Lima E Silva és munkatarsai [30], valamint Uhlmann [31]

tovabbi fejlesztéseket végeztek rajta. A modszer lényege, hogy a body force
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értékét ugy szamitja ki, hogy az aramlasi valtozo értéke a peremhez kozeli euler-i
pontokban felvegye a lagrange-i pontok sebességét. Példaképpen tekintsiik a 2.7.
egyenletet, amely egy nem-kompresszibilis kézeg aramlasat irja le a primitiv

valtozokra rendezett alakban.
u _ 2
p(E+(u-V)u)——Vp+,uVu+f+g (2.7)

ahol u a sebességvektor, p a nyomas, 1 a kdzeg dinamikai viszkozitasa, f a body
force vektor, g pedig a gravitacios gyorsulas.

A body force az id6 és a hely fiiggvénye, csak azokban a szamitasi
cellakban kap értéket, amelyek a szemcse peremének kozelében helyezkednek el.
Ha differencidljuk a 2.7. egyenlet id6beli differencidlhanyados tagjat €s rendezziik

az egyenletet, akkor a 2.8. egyenletet az alabbi mddon irhatjuk.

_10
% =RHS +f (2.8)

ahol u a fluidum aktualis sebességvektora, u® az eldézé id6pillanatbeli
sebességvektora, az RHS tartalmazza a 2.7. egyenlet szerinti konvektiv és
viszkozus tagokat valamint a nyomasgradienst.

A fluidum sebessége egy adott culer-i pontban akkor lesz a szemcse
feliiletének sebességével megegyezd, ha a body force értékét az adott pontban a

2.9. egyenlettel szamitjuk ki.
_0
f=—RHS + 2% 2.9)

ahol Uy, a virtualis perem sebességvektora a lagrange-i pontban (b a boundary-t
(peremet) roviditi).

Az immersed boundary mddszer és a tobbi direkt numerikus szimulacids
modszer lehetdséget nyljt a tobbfazisi rendszerek részletes modellezésére,
amellyel a kétfazisi dramlas soran lejatszodd folyamatok pontosabban
hatarozhatok meg, mint a térfogatatlagolt aramldsi egyenleteket hasznalo
modszerekkel. Ugyanakkor ez a megkdzelités a finom szamitdsi halé miatt

rendkiviil szadmitasigényes, igy azok a kutatdsok, amelyek a szamitasi
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hatékonysag javitasat célozzdk meg, jelentdsen hozzajarulhatnak ennek a

modszernek a szélesebbkora alkalmazasahoz.

2.4. A modellegyenletek diszkretizalasanak és numerikus

megoldasanak modszerei

Az aramlési egyenletek parcialis differencidlegyenletek forméjaban adjak
meg az aramlasi valtozok id6- és helyfiiggését. Az éaramlé kozeg teljes
jellemzéséhez sziikséges mérlegegyenletek olyan parcidlis differencidlegyenlet-
rendszert alkotnak, melyeknek analitikus megoldasa csak specialis esetekben
ismert.

Az aramlasi egyenleteket formajat tekintve a késdbbiekben eléforduld
megmaradasi alak kifejezés azt jelenti, hogy az aramléas leirasahoz hasznalt
modell a megmaradasi mennyiségek (tdmeg, momentum, energia), pontosabban
az intenziv megfeleldjiik idébeli és helybeli megvaltozasat irjak le. Ezzel szemben
primitiv alaknak nevezziik az aramlasi egyenleteknek azt a formajat, amelyekben
a helybeli és iddébeli differencialhanyados tagok az igynevezett primitiv valtozok,
mint a p, u, v, w és e valtozasait irjak le.

A modellegyenletek numerikus megolddsahoz szdmos moddszer 4ll
rendelkezésre, amelyek koziil a leggyakoribbak a végeselem modszer, a véges
térfogatok ¢és a véges differencidk modszere. A végeselem moddszer (Finite
Element Method, FEM) alkalmazasdban a szamitasi tartomanyt véges sok
résztartomanyra osztjuk, ¢és a résztartomanyokon polinomok linearis
kombinacidjaval kozelitjik a parcialis differencidlegyenlet megoldasat. A
résztartomanyok altaldban sokszogek vagy poliéderek (ezen belill sikon
haromszogek vagy téglalapok, térben tetraéderek vagy téglatestek). A
kutatbomunka sordn fejlesztett programokban az 4ramldsi egyenletek
megoldasahoz a véges differencidk modszerét (Finite Difference Method, FDM)
¢és a véges térfogatok modszerét (Finite Volume Method, FVM) haszndltam, ezért

az alabbiakban roviden ismertetem ezeket a mdodszereket.
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A véges differenciak modszere

A véges differencidk modszere azon alapul, hogy a parcidlis
differencialegyenletet linearis algebrai egyenletrendszerre vezetjik vissza [32].
Ennek soran az egyenletben szerepld differencialhanyadosokat differencia
hanyadosokkal (ezek az tgynevezett véges differencidk) kozelitjiik, és igy a
megoldast a szamitdsi tartomany diszkrét pontjaiban kapjuk meg. Az aramlasi
tulajdonsagok egyenletei parcialis differencialegyenletek, tekintsiik példaként egy
kompresszibilis kozeg aramlasi egyenleteit egydimenzids aramlast feltételezve

(2.10-12. egyenlet).

dp  d(pu)

ot Tox O (210)
d(pu) d(upu) 0Jp

ot T Tax tax O (2.11)

2

2
e, oo+ 5] s

(2.12)

0

ahol p a gaz siiriisége, U a sebessége, p a nyomasa, € a bels6 energidja, t és X pedig
az 1dd- és térkoordinatak.

Pé¢ldaként tekintsiik valamely (a fenti példaban az egyetlen) térkoordinata
szerinti differencia képzésének alapvetd, legegyszeriibb lehetdségeit. Ezek az

elérelépéses, a hatralépéses és a centralis differenciak (2.7. abra).

a b c

A As A
—2 o o2 o —o— o

i i+l i—1 i i—1 i i+1

2.7. abra. A fix 1épéskozl differenciaképzés alapesetei: a) elérelépéses, b)
hatralépéses, c) centralis

Az elérelépéses differenciahdnyados képzése esetén az adott koordinata
mentén az egy lépéssel eldbbi és az aktualis helybeli aramlasi valtozo értékek
kiilonbségét vessziik, és elosztjuk a koordinata 1épéskozével (2.13. egyenlet). A
hatralépéses esetben az aktudlis poziciotdl egy 1épéssel eldbbi értéket vonjuk ki az

aktualisbol (2.14. egyenlet), a centralis esetében pedig az eggyel eldbbibdl az
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eggyel hatrabbit vonjuk ki, és mivel ez két egységnyi 1épés volt az adott

koordinatatengelyen, ezért a 1épéskoz kétszeresével osztjuk el (2.15. egyenlet).

((Yir1 — W elérelépéses differencia (2.13)
5 Ax
u U — Ui R . :
— ] ={ —— hatralépéses differencia (2.14)
<ax>i Ax
Uir1 — Ui
2Ax centralis differencia (2.15)

A magasabb rendii kozelitések abban kiilonboznek egymastol, hogy a
vizsgalt pontra felirt Taylor sor héanyadik eleméig vessziik figyelembe, és
honnant6l vagjuk le a magasabb rendi tagokat. Az FDM jellemzd numerikus

hib4ja emiatt az ugynevezett truncation error (csonkolasi hiba).

A véges térfogatok modszere

A véges térfogatok moddszerének alkalmazasa esetében a szamitasi
tartomanyt véges szamu térfogatelemre (2D-ben sikidomokra, 1D-ben
szakaszokra) osztjuk, ¢s a térfogatelemre jellemzd atlagos valtozd értéket
hatdrozunk meg ugy, hogy integraljuk az adramlasi egyenletet a véges térfogaton.
Az egyenletek matematikai megfogalmazasahoz hasznalt térfogatelemet kontroll
térfogatnak nevezziik. A modszert McDonald publikalta el6szor 1971-ben [33], és
mivel a gazturbindkon 4taramld gazaramra felirt modellje kétdimenzios volt, a
modszert finite area methodnak (véges teriiletek modszerének) nevezte el. A
véges térfogatok modszere — szemben a véges differenciak modszerével — olyan
szamitasi halok esetén 1s hatékonyan milkddik, amelyek nem szabalyosan
strukturaltak.

A moédszer bemutatasahoz vegylik példaként a staciondrius, egydimenzios

hévezetés egyenletét (2.16. egyenlet).

d
dx

(k) +5=0 (2.16)

ahol k a h6atadasi egyiitthato, T a hémérséklet, S a forrastag.
A fenti egyenlet megoldasat keressiik az x tengely menti pontokban.
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‘ (6x),, \ (6x), \

o—¥ —o0——¢ o

w ! P ! E ?
i A:{ L

2.8. abra. A véges térfogatok modszeréhez 1étrehozott szamitasi halé 1D-s
esetben.

A 2.8. abra szerinti felosztasban a megoldast a P pontban keressiik, melynek
szomszédai balrol a W pont (west, nyugati szomszéd), jobbrol az E pont (east,
keleti szomszéd). A vizsgalandd véges térfogat ebben az esetben a szaggatott
vonalak kozotti szakasz, mely a P pont kortil helyezkedik el. A szakasz hatérait a
w és e pontok jeldlik. A 2.17. egyenlettel irhatjuk fel a kiemelt szakaszon integralt
2.16. egyenletet.

dT ar\ (e
) - (K +j5dx=0 2.17)
dx dx w
e w

A homérséklet x-tengely menti valtozasat feltételezhetjiik 1épcsdzetesnek,
melynek soran a szamitasi cellaban a valtozo értékét konstansnak tekintjlik, vagy
feltételezhetjiik azt is, hogy linearis Osszefiiggés szerint valtozik a szomszédos
értekeknek megfelelden (2.9. dbra). A példaban a hdmérséklet linearis kozelitését

alkalmazzuk.

[ R

W e ¢ E % W op fE X

2.9. abra. A valtozo értékének alakulédsa a kontroll térfogaton. a) 1épcsdzetes
profil, b) pontonként linearis profil.
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Szakaszonkénti linedris profilt feltételezve a valtozo értékeiben, a 2.17.

egyenletet az alabbi alakban irhatjuk fel (2.18. egyenlet).

ke(TE_TP) _ kw(TP_TW) IN _
= oo~ +SMx =0 (2.18)

ahol S az S forrastag atlagos értéke a kontroll térfogatban.
Uj jelolések bevezetésével a 2.18. egyenlet felirhato egyszeriibb alakban
(2.19. egyenlet).

apr = aETE + awTW + b (219)
ahol ap = —% a, = —2 q, = ag +ay és b = SA
ag = (Sx)e' Ay = (5X)W’ ap = Qg ay €S = X.

A dimenzidok novelésével a szomszédok szama is novekszik, ezért

altalanosabban érdemes a 2.20. egyenlet alakjaban felirni az 6sszefiiggést.
apr = Z aannb + b (220)

ahol nb az adott szomszéd (neighbor) indexe.
Ha az Gsszes pontra felirjuk a 2.19. egyenletet, akkor az egyenletek egy
tridiagonadlis linedis egyenletrendszer formdba rendezhetOk, melyet példaul a

TDMA (TriDiagonal Matrix Algorithm) algoritmussal lehet megoldani.

Euler egyenletek dsszenyomhato kozegekre

Osszenyomhat6 kozegek (gazok) esetében a kdzeg siirlisége a nyomds vagy
hémérsékletvaltozas hatasara megvaltozhat. Az aramlo gazfazis leirdsara szolgalo
haromdimenzios Euler egyenletek a folytonossagi egyenletbdl (2.21. egyenlet), a
momentumegyenletekbdl (2.22-2.24. egyenletek), és az energiaegyenletbdl (2.25.

egyenlet) allnak.

24V (pV) =0 (2.21)
d(pu) . _ _Op

— TV (puv) = 5. T Pl (2.22)
d(pv) . _ _op

— TtV (pvV) = 3y + pfy (2.23)
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a(pw) ) _ _op
v +V-(pwV) = 22 + pf, (2.24)

wle(e+ DN +v-[p(e+ DIV = -2 -2 =P v or v 229
ahol p a kozeg stirisége, t az id6, V a nabla operator, V a haromdimenzios
sebességvektor, U, V és W az X, Y €s Z iranyu sebességkomponensek, p a nyomas, f
a body force, e a bels6 energia.

A 2.21-2.25. egyenletek 6 ismeretlen valtozot tartalmaznak (p, p, u, v, w, e),
ha a body force szamitasatol egyeldre eltekintiink. A 2.26. dsszefiiggés a nyomas

¢s belso energia kapcsolatat irja le, amellyel a rendszert zartta tehetjik.

p=(y—1pe (2.26)

ahol y az allando6 térfogaton és allandd hémérsékleten érvényes hokapacitasok
hanyadosa (cp/Cy).

Gazoknal a viszkozitds hatdsa nem szadmottevd, igy a kutatdbmunkamban
eltekintettem a viszkozitasi tagok alkalmazasatol az aramlasi egyenletekben. A
2.21-2.26 egyenletrendszer analitikus megoldasa nem ismert, ezért numerikus
modszereket kell alkalmaznunk a megoldasukra. A viszkozitdsi (és egyéb
masodrendll) tagok, azaz masodrendli differencidlhanyadosok nélkiili parcialis
differencidlegyenletek matematikailag a hiperbolikus egyenletek kozé sorolhatok.
A kovetkezokben azt a hiperbolikus egyenletek megoldasara alkalmas véges
differencidk  modszerét haszndld6 modszert mutatom be, amelyet a

kutatomunkédmban hasznaltam az dramlasi egyenletek megoldéasara.

MacCormack modszer

A MacCormack modszer egy kétlépéses, véges differenciak moddszerén
alapulé numerikus modszer, amely egy prediktor és egy korrektor 1épésbdl all. A
MacCormack moddszer pontossdga térben és idében is mdasodrendli, ugyanis a
prediktor Iépésben elsérendli modszer eredménye a korrektor 1épésben
felhasznalasra keriil, igy a végeredmény masodrendli lesz. A masod- ¢és
magasabbrendi pontossagi modszerek esetében azonban numerikus hibaként

oszcillacio 1éphet fel a megoldas nagy gradiensekkel rendelkezé helyeinél,
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amelynek egy kezelési lehet6ségét a Mddszerek ¢€s eszkdzok fejezetben fogom
ismertetni. A MacCormack modszert 1969-ben publikaltak [34] a Lax-Wendroff
modszer [35] tovabbfejlesztéseként.

Tekintsiik példaként a folytonossagi egyenlet megoldasat kétdimenzios

aramlas esetében. A MacCormack moddszer prediktor 1épésében a differencia
hanyadosokat egyszerli eldrelépéses (forward) alakban irjuk fel. A 2.27.
egyenlettel a shriiség idébeli valtozasanak sebességét, az idobeli derivaltjanak
értékét szamitjuk ki.
(5, = = (piy ety PPl gy Ml gy PP 2.2
ahol p a kozeg siiriisége, n az idékoordinata, i és j a szamitasi cellak sorszamai, u
€s V az x és y iranyu sebességkomponensek, Ax és Ay a térkoordinatak menti
1épéskoz.

A prediktor 1épésben a kovetkezd idOpillanatbeli értéket az el6z6 (ismert)
idopillanatbeli értékbdl képzett Taylor sor elsd két elemével kozelitjiik. A
predikalt valtozot feliilvonassal jeloljik (2.28. egyenlet).

n

—~1) _ n dp
@) = ol + (5),, At (2.28)

Ez igy dnmagaban csak elsérendli pontossagot jelent, mivel a Taylor sornak
csak az elsérendil tagjat vessziik figyelembe. A korrekcios 1épésben a predikalt
valtozokkal hatralépéses (backward) differenciat alkalmazunk az 1d6 szerinti

differencidl-hanyados szamitasara (2.29. egyenlet).

% (1) ~
ot B

iLj
2 _g @ S0 _5) s _pD S0 _5)
™% T iy ) Py Py (D) Yy T (1) Pij P
(Pi,j e T T e TPy Ty T Ty (2.29)

A kovetkezd 1épésben képezziik az idébeli derivaltak (2.27. és 2.29.
egyenlet) atlagat (2.30. egyenlet). Az av az average (atlag) roviditése.
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558 (D
ap\  _1f(oe\" L (%
(at)av T2 l(at)i’j + (at)i,j l (230)

A kovetkezd iddlépésbeli korrigalt értéket pedig ennek felhasznalasaval

kapjuk (2.31. egyenlet).
]
Pl = pl + (a—‘t’)av At (2.31)

Ez is egy elsérendii kozelités, mivel a Taylor sor magasabbrendii tagjait
elhagyjuk. Viszont ebben a masodik 1épésben mar felhasznaltunk egy elsérendii
pontossagi kozelitést, igy a végeredmény masodrendii pontossagu lesz mind
térben, mind id6ben.

Mindkét 1épésben explicit Euler modszert alkalmaztunk, emiatt az id6beli
1épéskdz nagysagatol fligg a megoldas stabilitasa. A stabilitashoz teljesiteni kell a
1épéskozre vonatkozo stabilitasi kritériumot, amelyet Courant-Friedrich-Lewy

(CFL) feltételnek [36] is szokas nevezni (2.32. egyenlet).

Umax 2—; =1 (2.32)
ahol az umax a szamitasi tartomany legnagyobb sebességét jelenti, At és Ax pedig
az 1d6- és térbeli 1épéskozt jeldli.

Tehat a maximalis i1d6lépés a koézeg maximalis 4ramlési sebességétdl
forditott aranyossaggal fligg. Nagy sebességek esetén ezért a A¢ igen Kicsi lehet,
ebbdl kifolyolag nagy szimuldcios 1d6 eléréséhez sok szamitasi ciklust kell
végrehajtani, igy hosszi szamitasi idével kell szdmolnunk. Osszefoglalasképpen,

a MacCormack modszer szerinti megoldas 1épései az alabbiak.

A parcidlis differencidl egyenlet megolddsdanak lépései
A szamitasi tartomany kijelolése;
A szamitasi halo kialakitasa;

A modellegyenletekben szereplé paraméterek definidlasa;

1
2
3
4. A kezdeti feltételek és kezdeti peremfeltételek definidlésa;
5. A szimulécios iteracidszam megadasa;

6

Az iteracid 1épései:
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I. Az iddbeli 1épéskdz meghatdrozasa;
Il. Az eléz6 iddpillanatbeli értékekkel az idobeli differencialhanyadosok,
majd a predikalt értékek szamitasa;
I1l. A predikalt értékekkel az idobeli differencialhanyadosok, majd az atlagos
derivalt értékekkel az uj idépontbeli valtozé értékeinek szamitasa;
IV.  AzjidOpontbeli értékek felhasznalasaval az 0 peremértékek megadasa;
7. A megoldas a kovetkezd iteracids 1épéssel folytatddik tovabb a sziikséges

szimulacios 1d6 eléréséig.
Navier-Stokes egyenletek dsszenyomhatatlan kozegekre

A nem-kompresszibilis kozegek esetében az Euler egyenletet tovabbi
tagokkal egészitjiik ki, amelyekkel figyelembe vessziik a kdzeg viszkozitasat is,
mivel a folyadékok esetében mar nem elhanyagolhato a strlodas hatdsa. Ezek
masodrendl differencial tagokat hoznak be a momentum- és energia egyenletbe,
igy a parcialis differencidlegyenletek jellege hiperbolikus helyett parabolikus lesz.
A viszkozitasi tagokat tartalmazé aramlasi egyenleteket Navier-Stokes
egyenleteknek nevezziik. Osszenyomhatatlan kdzegek esetében a folytonossagi
egyenlet egyszeriibbé valik, hiszen a fluidum siirisége nem valtozik ha allandé
homérsékletet feltételeziink. Ha nincs jelentds hdmérsékletvaltozas (példaul nincs
exoterm reakcio vagy nem fiitjiikk a rendszert kiviilrdl), akkor az energiaegyenlet
felirasa sziikségtelen, igy ezzel is egyszeriisodik a modellegyenlet-rendszer.
Példaként nézzilk a Navier-Stokes egyenleteket kétdimenzios esetre felirva,
primitiv valtozokkal kifejezve (2.33-2.35. egyenletek).

N Z—; =0 (2.33)

ou ou ou  Op  Otxx  OTxy _
P + pu ax+pv 6y+6x P 3y pfy =0 (2.34)

p%+pua—z+pv—+——————pfy=0 (2.35)

4
Tax = 3H5; 3H%, (2.36)
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v ou

Ty = Tyx = -+ k3, (2.37)
2 Odu 4 Ov
Tyy=§,ua—§ﬂ£ (238)

ahol u a kozeg dinamikai viszkozitasa.

A viszkozus, nem-kompresszibilis kozegek daramlasi egyenleteinek
megoldasara gyakran alkalmazott moddszer a nyoméskorrekciés moddszer. A
nyomaskorrekcids modszerbdl tobbféle valtozatot is kifejlesztettek, amelyek
koziil néhanyat réviden a kovetkezd alfejezetben mutatok be, valamint egy

kivalasztott modszert részletesen is ismertetek.

A nyomdskorrekcios modszer

Nem-kompresszibilis kozegek esetében a kozeg nyomdasat nem szamithatjuk
gaztorvény alkalmazasaval, helyette a sebesség- és nyomadsértékek kozott kell
kapcsolatot 1étrehozni és egy olyan nyomasmez6t meghatarozni, amely
divergenciamentes sebességmezot biztosit a 2.33. egyenletnek megfeleléen. Egy
ilyen modszert el6szor Patankar és Spalding mutatott be [37], amely kés6bb a
SIMPLE nevet kapta (a betliszo a Semi-Implicit Method for Pressure-Linked
Equations-bol ered). A SIMPLE moddszernek tobb tovabbfejlesztett valtozata is
létezik (pl. SIMPLER — SIMPLE Revised [38], SIMPLEC — SIMPLE Consistent
[39]). Késobb Issa is publikalt egy algoritmust a probléma megoldasara [40],
amely PISO roviditéssel lett ismert (Pressure-Implicit with Splitting of Operators).
A két modszer jellemzdit egyesiti a PIMPLE modszer, amelyet az OpenFOAM
nevii nyilt forraskodd CFD szoftver hasznal [41]. A felsorolt moddszerek
mindegyikének 1ényege a sebesség €s a nyomas kozotti kapesolat kialakitasa.

A folyadék-szilard kétfazisu rendszerek aramlastani modellezéséhez a
SIMPLE moddszert implementaltam kétdimenzidos aramléasi esetre. A SIMPLE
algoritmus 1ényege, hogy egy becsiilt nyomasmez6bdl kiindulva kiszamitjuk a
becsiilt sebességmezdt a momentumegyenlet felhasznédldsaval. A  becsiilt
sebességmezOb6l a folytonossagi egyenlet felhasznalasaval kiszamitjuk a
nyomaskorrekciot, amely alapjan korrigéljuk a nyomas- és a sebességmezét is. A
korrekcids 1épéseket addig folytatjuk, mig a folytonossagi egyenletnek eleget nem

tesz a megoldds. A modellegyenletek diszkretizalasahoz praktikus a véges
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térfogatok modszerét alkalmazni. A diszkretizalt egyeneletrendszer atalakithato

ugy, hogy egy adott dimenzi6 mentén az ismeretlen aramlasi sebességekre nézve

egy tridiagonalis matrix alakot 6ltson, amely lehetoveé teszi az d&ramlasi egyenletek

implicit megoldéasat. A tridiagonalis egyenletrendszerek egy bevalt megoldasi

algoritmusa a Llewellyn Thomas altal kidolgozott TDMA (TriDiagonal Matrix

Algorithm) [42]. A korabbi alfejezetekhez hasonléan a modszer Osszefoglalasat

ezuttal is az algoritmus 1épéseinek leirasaval adom meg.

A nem-kompresszibilis kozegre felirt Navier-Stokes egyenletek megolddsi

lépései SIMPLE médszerrel

o a k~ w e

A szamitasi tartomdny kijelolése;

A szamitasi halo kialakitasa;

Az iddlépés 1épéskozének megadasa,

Az id6lépések szdmanak megadasa;

A modellegyenletekben szerepld paraméterek definidldsa;

Modszerspecifikus  paraméterek megadasa (pl. az iteraciobdl kilépés

kritériumahoz kiiszobérték megadasa);

A kezdeti feltételek €s kezdeti peremfeltételek definidlésa;

Becsiilt nyomasmez6 megadasa;

Az iteréacid 1épései az egyes szimulacids idopillanatokban:

A nyomaskorrekcid iteracios lépései:

A sebességek kiszamitdsa a momentumegyenletek megoldasaval
(véges térfogatok modszere, TDMA);

Nyomaskorrekcid szamitasa;

Korrigalt nyomas kiszamitdsa a becsiilt nyomdsbol és a
nyomaskorrekciobol;

Korrigdlt 4aramlasi valtozok kiszamitdsa a nyomadskorrekcid
felhasznalasaval,

Peremértékek Gjraszamitasa;

Hibaellenorzés: ha a kiiszobértéken beliill van a hibaérték, akkor
kilépés az iteraciobol és folytatas a kovetkezé idOpillanat

crer

nyomaskorrekcids iteracio folytatasa.
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Il. Eredmények megjelenitése (opcionalis);

10. Végiil az eredmények értékelése, abrazolas.

Az implicit megoldasi mddszer biztositja a numerikus megoldas stabilitasat,
az 1dolépés Iépéskozét az észszerliség keretein  beliil  tetszélegesen

megvalaszthatjuk.
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3. Modszerek és eszkozok

Ebben a fejezetben roviden bemutatom a kutatomunkam soran alkalmazott
modszereket, szamitdogépes eszkdzoket €és laboratoriumi berendezéseket. Bovebb,

alkalmazasorientalt részletek az esettanulmanyok kapcsan keriilnek eld.

3.1. COMSOL Multiphysics szoftver

Kutatasaim egy részéhez a kereskedelmi CFD szoftverek koziil a COMSOL
Multiphysics programot valasztottam. A programcsomag rendkiviil széles kora
mérndki problémamegolddsra alkalmas, koztik példaul elektromagneses
is hasznalt modul elsdsorban aramléastani és hoéatadasi szimulaciok készitésére
hasznalhat6. Az aramlastani szimulacio 1épései COMSOL Multiphysics

segitségével a kovetkezoképpen adhatok meg.

ramldstani szimuldcio lépései COMSOL Multiphysics segitségével
A dimenziok megvalasztasa (1D, 2D, tengelyszimmetrikus 2D vagy 3D);

A modellegyenletek kivalasztasa (pl. laminaris aramlas egyenletei);

A

1

2

3. Ageometria kialakitdsa vagy importalasa;

4 A modellegyenletekben szerepld paraméterek definidlasa;

5 A peremfeltételek rogzitése;

6 A szamitasi halo kialakitasa;

7 A modell megolddsa (a program altal megvalasztott beépitett
modszerekkel);

8.  Végiil az eredmények értékelése, abrazolas.

Az eredmények értékelésére és abrazoldsukra szamos lehetdséget kindl a
program, koztilkk 3D-s modellekben metszeteket jelenithetiink meg, egy-egy
kivélasztott valtozd értékeinek térbeli eloszlasat is &brazolhatjuk, dinamikus
szimulacid esetén pedig a szimulalt berendezésben végbemend valtozasokat akar
videdként is rogzithetjiilk vagy elmenthetjiik késobbi feldolgozasra. Az abrazolt
eredmények sok esetben interaktivan manipuldlhatok (térben forgatds, nagyitas
stb.), ezzel szemléletesen bemutathatd a kapott megoldds. A nyers eredmények

alapjan Osszetett lekérdezéseket is végezhetlink, példaul feliileti (peremre torténd)
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vagy térfogati integralassal vagy atlagolassal, primitiv valtozokbol matematikali
miivelettel meghatarozhatunk egy Osszetett valtozot és annak tetszés €s lehetdség
szerinti abrazolasaval élhetiink stb. A COMSOL Multiphysics rendelkezik
amelyeket mas szoftverek hasznalhatnak. Ezaltal lehetséges a kidolgozott
modellek iterativ célu futtatdsa, amelyben valamilyen optimalizalasi célt
fogalmazunk meg, mint példaul az optimalis geometria paraméterek vagy
peremfeltételek meghatarozasa. Kutatomunkdm soran foként a MATLAB
szoftverrel Osszekapcsolva hasznaltam a COMSOL Multiphysics programozoi
interfészét. Az alkalmazas programozoi interfész hasznalatanak elonye, hogy az
elkésziilt CFD modelleket kevesebb interakcidval tudjuk futtani és az
eredményeket is automatikusan elmenthetjik. A COMSOL Multiphysics
programcsomagnak sok elénye mellett egy hatranya, hogy a modellegyenleteken
¢s megoldasi modszereiken nem, vagy csak nagyon korlatozott mértékben lehet
modositani. A COMSOL Multiphysics alkalmazasa a tobbfazisu aramlasok CFD-
okok miatt), leginkabb a térfogatatlagolt aramlasi egyenleteket hasznald two-fluid
modszer esetében lehet hatékonyan alkalmazni. A  direkt numerikus
szimulacioban torténd alkalmazasara ad lehetOséget a program Moving Mesh
funkcioja, amely az irodalmi bevezetésben bemutatott body-fitted direkt
numerikus szimulacid esetében lehet hasznos a mozgd részecskék elhelyezkedését
kovetd szamitasi haldo generalasaban. A Level Set funkcioval a kétfazist
rendszerben a fazishatar helyét egy fiiggvény segitségével adhatjuk meg. A
kovetkez6 alfejezetekben a COMSOL Multiphysics azon elemeit és lehetségeit
mutatom be, amelyek a kutatdomunkdm szempontjabdl kiemelt jelentdséggel
birnak. El0szor az elobb emlitett Level Set modszert ismertetem, ezt kovetoen a
program szemcsekovetésre alkalmas moduljat mutatom be, végiil szét ejtek
roviden a turbulenciamodellekrél, mivel a vizsgalt esettanulményok

szempontjabol ezek fontosak.
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Level Set modszer

A kétfazist rendszerek fazishataranak megadasara és kovetésére szolgalod
modszer a level set fiiggvényt alkalmazé mddszer, melynek matematikai alapjait
Osher ¢és Sethian dolgozta ki [43]. A modszer lényege, hogy a fazishatar
kovetésére definialt folytonos fliggvény (@) a kétfazisu rendszer geometridjanak
szamitasi cellaiban 0 és 1 kozotti értéket vehet fel az egyik Kkitiintetett fazis
térfogati hanyadanak megfeleléen. Foley a COMSOL Multiphysics szakmai
blogjaban egy felfelé mozgd olajcsepp vizben valdé mozgasdnak modellezésével

mutatta be a programelem alkalmazhatosagat [44]. Ez a példa a program

crer

crer

részecskét nagy viszkozitasu folyadék gdmbnek tekintettem. A mddszer alapelveit
a kovetkez6kben mutatom be.
A level set fliggvényt jeloljiik @-vel. Haromdimenzids esetben a teljes

szadmitasi tartomanyon értelmezett folytonos fiiggvényt a 3.1. egyenlet irja le.
®(x,y,z) =a (3.1)

ahol a egy konstans. A fazishatar a fliggvény értékében egy ugrasfiiggvényként
jelenik meg, példaul ahol @ < 0,5 ott tobbségében az egyik fazis, @ > 0,5 esetén a
masik fazis van jelen. A level set mddszer nagy elénye, hogy az alkalmazasaval
alakvaltozasok, példaul buborékok szétvalasa és dsszeolvadasa jol kovethetd [46].
A fazishatar helyvaltozasat az 6t koriilvevo kdzeg sebessége hatarozza meg a 3.2.
egyenlet alapjan [47].
Z—‘f+u-v¢>=yv-(ev¢—q>(1—q>)l‘;—zl) (3.2)
ahol u a kozeg sebességvektora, y az Ujraszamitasi (reinicializacios) paraméter
[m/s], és ¢ a fazishatar szélessége (vastagsaga) [m].

Az egyenlet baloldalan 1évd tagok irjadk le a hatarfeliilet mozgasat, a
jobboldalon 1évé tagok pedig a numerikus stabilitashoz sziikségesek [47]. A v a
frissités sebességét adja meg, stabilitasi kérdések miatt javasolt a kozeg

sebességének maximumaval definidlni. Az € fazishatar szélességét, a @ fliggvény
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atmeneti tartomanyat jeloli ki. Ezt altaldban a maximalis haléelem méret felére
allitjak. A striiséget (p) €és a dinamikai viszkozitast () az egyes r szamitasi

pontokban a 3.3. és 3.4. egyenletekkel kapjuk meg.
p(r) = p1+ (p2 = p)@(r) (3.3)
p(r) = g + (M — u)P(r) (3.4)

ahol az 1 ¢és 2 indexek a kiilonb6z0 fazisokat jeldlik.

Mivel a szilard testeknek nincs viszkozitdsuk, a modszer inkabb a nem
elegyedd fluidfazisok fazishatar kovetésére alkalmas. Az egyik esettanulmany
kapcsan a szilard meriild testet nagy viszkozitasu folyadék gombnek tekintettem,
de ahogy a 4.5. fejezet eredményeiben lathatod lesz, a részecske merevségének
kritériuma nem teljesiilt megfeleld mértékben. Az ezzel kapcsolatos
eredményeimet a szilard test lilepitését bemutatd szimulacids esettanulmanyban

ismertetem.

Szemcsekovetés (Particle Tracing)

A COMSOL Multiphysics Particle Tracing modulja egy széleskori
létrehozni kiilonféle kornyezetben és kozegben, példaul egy aramlasi térben, egy
toltéssel rendelkezd térben vagy magneses térben is. A Particle Tracing modulban
megadhatjuk paraméterként a szemcsék méretét, tomegét, hOmérsékletét,
darabszamat, kezdeti poziciojukat. A program a kozeg és a szemcsék
tulajdonsagainak felhasznalasaval kiszamitja a szemcsékre hato gravitacios erdt és
a kozegellenallasi er6t. Egy korabbi munkam eredményét mutatja a 3.1. abra, ahol
kiilonboz6 stirliségli részecskék levalasztasahoz terveztem ciklont. A részecskék
szemcsek tulajdonsagai alapjan a kozegellenallasi erd €s gravitacios erd hatarozza

meg.
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3.1. abra. 20 db 1 pm atmérdji részecske mozgasanak szimulacidja egy
porlevélaszto ciklonban. A részecskék siirisége: a) 1100 kg/m®, b) 3700 kg/m®.

A szemcsekovetés arra is alkalmas, hogy a fluidum egy faziselemének
mozgasat kovessik, igy a pozicidjarol, mas faziselemekkel torténd keveredésérol
informaciot nyerhetiink. Ebben az esetben a szemcsét pontszeriinek tekintjiik €s
anyaga a kozegével megegyezd. Kutatdsaimban szemcsekdvetési szimulaciot a
4.2. fejezetben bemutatasra keriild esettanulmanyban hasznaltam, amelyben egy
jetkeverd keverési teljesitményét vizsgaltam. A vizsgéalatban nem volt sziikség
sem gravitacios erd, sem kozegellenallasi erd figyelembe vételére. A Particle
Tracing modul az altalam hasznalt bedllitdisokkal az &ramlédsi vonalakat
felhasznalva, arra szuperpondlva végig tudja kovetni az dramldsi vonalakat a
részecskekkel, ezaltal hatékonyan lehet hasznalni keveredési vizsgalatok céljara.
A Particle Tracing modszer nem alkalmas kétfazisu 4aramlas pontos
szimulacigjara, mivel a felhasznalt sebességmez0d stacionarius, a valosagban pedig

mind a sebességmezd mind a részecskék pozicidja dinamikusan valtozik.

Turbulenciamodellek

Az aramlés jellege lehet lamindaris vagy turbulens. Laminarisnak nevezziik
az aramlast, ha a kozeg rétegesen aramlik, €és a fluidum részecskéinek mozgasi

iranya az dramlassal parhuzamos. Ezzel szemben turbulens az az aramlés, amely
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esetében az aramld kozeg fizikai jellemzdi (példaul a nyomas, a sebesség)
gyorsan, kaotikusan valtoznak, és az aramlo kozegben orvények képzddnek. Az
aramlasi tartomany meghatarozasara alkalmas dimenziomentes mérdszam a
Reynolds szdm, amely az inercialis (tehetetlenségi) és a viszkozus (surlddasi) erdk

aranyabol szarmaztathatod, egyszertisitett formajaban a 3.5. egyenlet alapjan

szamithato.
Re = % (3.5)

ahol v a sebesség, L a karakterisztikus hossz, p a kozeg strtsége, u pedig a
dinamikai viszkozitasa. Koriilbeliil 2300 folotti Re szam esetén beszélhetiink
turbulens aramlasrol [48], de a tisztan laminaris aramlas mar 90 koriili Re szam
esetén modosul, ha gombot vagy kor keresztmetszetli testet helyeziink az

aramlasba, Karman orvényeket képezve a test mogott (3.2. abra).
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3.2. abra. Aramlasi tartomanyok henger (2D, 1-essel jelzett gorbe) és gomb (3D,
2-essel jelzett gorbe) esetén. A vizszintes tengelyen a kozegellenallasi allando
(Cp), a fiiggblegesen a Reynolds szam (Re) szerepel. [49]
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A turbulencia modellezésére szamos modszert dolgoztak ki, melyeknek két
nagy csoportja a Reynolds-atlagolt Navier-Stokes (RANS) egyenleteket
alkalmazo moédszerek és a Nagy orvények szimulacidja (Large Eddy Simulation,
LES). Az els6 csoportba tartoz6 modell példaul az egy egyenletes Spalart-
Allmaras modell, vagy a kétegyenletes k-¢ és a k-o modszerek. A LES
modszerek esetében az aramlasi egyenletekbdl egy aluldteresztd sziird
alkalmazasaval a kis oOrvényeket, melyek hatdsanak szamitdsa sok erOforrast
venne igénybe, elhanyagoljak. Itt kell megemliteni, hogy a direkt numerikus
szimulacios (DNS) modszerek esetében nincs sziikség turbulenciamodellre, mert a
részletes szamitas miatt a turbulencia hatasa mar belekeriil az eredménybe.

A stabilitasa és kis memoriaigénye miatt legnépszeriibb turbulenciamodell a
k-e modell [50], amely a turbulencia intenzitasanak jellemzésére a
sebességingadozasoktol fiiggd k turbulens kinetikus energiat, és ennek &
disszipaciojat hasznalja. A COMSOL Multiphysics-ben rendelkezésre allo

turbulenciamodellek koziil szamitasaimhoz a k-¢ modellt hasznaltam.

3.2. Halofiiggetlenségi vizsgalat

A numerikus aramlastani szimuldciok esetén a szamitdsi hald kialakitasa,
annak felbontésa jelentdsen befolyasolhatja a megoldas pontossagat és szamitas
1dbigényét, ezért gyakran a modell validacid része a halofiiggetlenségi vizsgalat.
A halofiiggetlenségi vizsgalat soran valamely modellegyenlet mérleghibéjat
vizsgaljuk a halofelbontds fiiggvényében. A vizsgalat végeredményeként azt a
legdurvabb felbontasti szamitasi halot kell alkalmaznunk, amelyet ha tovabb
finomitanank, mar nem javitana jelentdsen a mérleghiban. A halé finomsaga
abbol a szempontbdl is fontos, hogy a szamitdsi id0 a haldéelemek szdmanak
novekedésével ardnyosan nd. A halofiiggetlenségi vizsgalat soran azt bizonyitjuk,
hogy a megoldas mar nem fligg a felosztastdl, a kelléen finom felosztast hald
esetén kozel azonos megoldast ad. Célszerli a halofiiggetlenség allapotat elérd elsd
felosztast alkalmazni, hiszen ha a mérleghibdt nem tudjuk a finomabb
diszkretizalassal csokkenteni, akkor miért novelnénk foloslegesen a szamitasi
idot. A halofiiggetlenségi vizsgalat egy olyan validacios modszer, melyben a

megolddst dnmagaval, annak valtozataival validaljuk. Onmagéban az eredmény
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érvényességéhez ez nem elegendd, a modelleknek és megoldasaiknak fizikai
berendezésen végzett kisérletek soran nyert mérési eredményekkel valo

0sszehasonlitas probajan is at kell esniiik.

3.3.Tartozkodasi ido analizis

A tartézkodasi 1d6 eloszlas (residence time distribution, RTD) koncepcidja
még az 6tvenes évekbdl, Danckwerts-t6l ered [51]. Berendezések hidrodinamikai
vizsgalatdhoz gyakran alkalmaznak tartozkodasi idé analizist. Folyamatos
istreaktor esetében Gamba és munkatarsai végeztek RTD-n alapul6 tanuméanyokat
[52], vagy példaul Adeosun és Lawal is a tartozkodasi id6 analizis modszerét
alkalmaztdk  mikroméreti ~ T-alakii  csatorna  keveredési  jellemzdinek
meghatarozasahoz [53].

Az RTD gorbe kisérleti uton Ugy hatdrozhaté meg, hogy mérjiikk vagy
szamitjuk a rendszer valaszat egy vizsgalojelre. A vizsgalojel lehet impulzusszer,
egységugras, valamilyen peroidikus vagy pszeudo-random vizsgalojel. Fizikai
kisérletek soran nemreaktiv jel6léanyag bevezetésével valdsitjuk meg a
vizsgaldjelet. A leggyakrabban az impulzusszer( és az egységugras vizsgald jelet
hasznaljdk, ezeket kisérletileg is egyszeribb megvalositani, és a valaszuk
értelmezése is konnyebb. Az impulzusszeri jel idealisan a Dirac delta
figgvénnyel egyezik meg (0 szélesség, végtelen magassdg), azonban a
gyakorlatban ez inkabb téglalapfiiggvény-szeriien valamilyen révid idétartamban
injektalt adott mennyiségii jeloldanyag bevezetését jelenti. A vizsgalo jelre adott
valaszfliggvényt a kimeneten iddpillanatonként mért vagy szamitott jelzOanyag
koncentraciobol kapjuk meg. Ebbdl transzformacio segitségével RTD gorbét
kaphatunk, ha a koncentracioértékeket elosztjuk a koncentracié gorbe (Cpuise)

alatti tertilettel (3.6-3.7. egyenletek) [54].

A= f Cdt= Z C,At; (3.6)
0 i

RTD = % (3.7)
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Ezzel azt érjiik el, hogy a gorbe alatti teriilet 1 legyen. Az atlagos

tartozkodasi id6t a 3.8. Gsszefiiggés alapjan szdmithatjuk.

Jy tC dt _ ZitiC At (3.8)
fOOOCdt - LG

T=

Az RTD kisérleti meghatarozasara is mutatok majd példat az
esettanulmanyok ismertetése soran. A tobbfuratos jetkeverd esetében a tanszék
sajat laboratériumédban keriilt sor festékanyag befecskendezését kovetden
videofelvételre, majd azt felhasznalva az RTD gorbét videofeldolgozasi
modszereket alkalmazva hataroztuk meg.

Szimuléacios vizsgalatokban is alkalmaztam RTD analizist berendezések
hidrodinamikdjanak  jellemzésére vagy az  atlagos tartozkodasi id6
megallapitdsara. A szimulalt esetekben eldszor ki kell szamitani a staciondrius
aramlési allapotot, majd ezt felhaszndlva egy komponensmérleg megoldasaval
A vizsgédldjel a szimuldcidban is kiilonféle fliggvénnyel adhaté meg.
Szamitasaimban impulzusszert vizsgalojelet alkalmaztam.

Az atlagos tartozkodasi id0 ismerete nagy jelentdséggel bir a miiveleti
egységek tervezésében. A tartozkodasi i1d6 eloszlas (RTD) és az atlagos
tartdzkodasi id6 (7) modell alapjan nyert, és mérés soran kapott értékeinek
Osszehasonlitasa a modellvalidacié egyik lehetséges €s gyakran alkalmazott

modszere.

3.4. Cellas modellezés

A valos berendezések hidrodinamikéja legtobbszor nem kozelithetd idealis
aramlasu egységek, mint a dugodaramlast cs6 €és a tokéletesen kevert egység
modelljével, ezért ezeknek valamilyen kombinaciojat hasznalhatjuk. Az ilyen
kombinalt modelleket cellds modelleknek (compartment model, CM) hivjuk. A
cellas modellek épitdelemeként a két idedlis hidrodinamikai egység mellett
definidlhatunk még elosztd ¢és keverd egységeket is. A cellas modellek
komplexitas tekintetében atmenetet képeznek az idedlis hidrodinamikai modellek

¢s a CFD modellek kozott. A cellas modellen alapuld szimulaciok kevésbé
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szamitasigényesek, mint a CFD szimulaciok, ugyanakkor a CM is alkalmas
Osszetettebb geometridju késziilékek hidrodinamikéjanak leirasara, mint példaul
az ebben a dolgozatban is bemutatott biomassza elgazositoé reaktor modellezésére
[55]. Cellas modellt alkalmaztak példaul Znad és munkatarsai biologiai
rendszerek (pl. fermentorok) modellezésére [56], Arora ¢és munkatarsai
fluidizacidos berendezés modellezéséhez [57], vagy Kong ¢és munkatarsai
elgazositod reaktorok vizsgalatahoz [58].

A tokéletesen kevert egység (TKE) modelljét a 3.9-3.11. egyenletek

crer

Fi = Fpe (3.9)
S =2 (e —0) (3.10)
c(t=0)=0 (3.11)

ahol F a térfogataram, V az st térfogata, C a jelz6anyag koncentracioja.

A V térfogati dugdaramt egység (idealis cs6) modellje N db TKE
kaszkadjabol adodik a 3.12-3.15. egyenletek szerint. A kaszkad egységek
térfogata V,=V/N, n=1...N.

F., = Fg n=1...N (3.12)
dct F

d_ct = (Cpe — €1 (3.13)
ac® _F . on-1_ _

T (c™ c™) n=2...N (3.14)
c™(0) =cf n=1...N (3.15)

ahol n a kaszkad egység sorszama, t az idG, Cpe az elsé egységbe belépd
jelzéanyag koncentracioja.

Minél tobb kaszkad elemre bontjuk fel az eredeti V térfogatot, annal jobban
kozelitjlik az ideélis cs6 aramlési modelljét.

Az aramosztd (E) modelljében a térfogat nem szerepel paraméterként, a

szétosztott aramok térfogatanak Osszege megegyezik a belépd térfogattal. Az egy
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bemenettel és két kimenettel rendelkez0 dramoszté kimeneti térfogatdramait és

crer

Fria = a - Fpe (3.16)
Friz = (1—a)- Fpe (3.17)
Ckix = Ckiz = Chpe (3.18)

ahol F a térfogataram, a az eclosztasi arany (0 és 1 kozott valtozhat), ¢ a
koncentracio.

Az aramkeverd (K) modelljében sem szerepel a térfogat paraméterként, a
bejovo aramok térfogatanak 0sszege megegyezik a kimend térfogattal. Miikodését

a 3.19-3.20. egyeneletek irjak le a két bemenet ¢€s egy kimenetes esetben.

Fii = Fpeq + Fpep2 (3.19)
F C +F c
Cki — be,1'Che,1 be,2'Cbe,2 (320)
Fpe,1tFpe2

A cellas modellek algebrai differencialegyenlet-rendszerek, megoldasukhoz
explicit modszert alkalmazunk. A cellds modell numerikus megoldasédban ezért
fontos paraméter a numerikus 1épéskoz (At), amelyet minél kisebbre allitunk annal
pontosabb eredményt kapunk.

A cellak kozotti kapcesolatot egy tugynevezett kapcsolati matrix-szal
adhatjuk meg, amelyben az oszlopok a cellakat, a sorok az aramokat jelentik, és 0,
1 vagy -1-gyel vannak feltdltve aszerint, hogy az adott a&ram az adott eszkdzbe be-
(ezt 1-gyel jeloliik) vagy kimegy-e (ezt -1-gyel), vagy nem érinti (ezt pedig 0-val).
Egy példat a cellas modellre az egyik esettanulmanyom kapcsan, a 4.1. fejezetben
mutatok be.

Osszefoglalva, a cellas modellek kompromisszumos megoldast jelentenek
az ideélis hidrodinamikai modellek és a CFD modellek kozott. Az idealis
hidrodinamikai modellek 6nmagukban nem elegendéek egy valos, bonyolultabb
geometriaval rendelkezé berendezés aramlasi viszonyainak vizsgalatara, a CFD
modellek viszont sok esetben sziikségtelentiil részletesek €s szamitasigényesek. A

kétfazisu rendszerek aramlasi modellezéséhez a cellas modellezési megkozelités
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Onmagaban nem elegendd, az csak a folytonos fazis dramlasanak leirdsara ad

lehetdséget.

3.5.A numerikus modszerek verifikalasa

Az araml6 rendszerek makroszkopikus leirdsara szolgalé modellegyenletek,
ahogy a 2.4. fejezetben is lathattuk, legtobbszor parcialis differencialegyenlet-
rendszert alkotnak. Ezeknek a kiilonféle osztalyokba sorolhato egyenlettipusoknak
a megoldasara szamos numerikus, tér- €s idobeli diszkretizalason alapuldé modszer
sziiletett. A numerikus mddszereknek nagy a szamitasi igénytik, és a szamitasok
végrehajtasa soran numerikus hibak adoédhatnak.

A numerikus moédszer validdldsa soran a numerikus moédszerrel nyert
megoldast dsszehasonlitjuk az ismert analitikus megoldassal. Mivel az aramlési
egyenletek numerikus megoldasa is a kutatdomunkdm részét képezte, ezért
ellendriztem az altalam hasznalt numerikus modszer pontossagat olyan aramlasi
példat alapul véve, amelyre talalhato analitikus megoldés is. Egy ilyen aramlasi
példa a két kiilonb6zé nyomasu térrészt elvalasztd lemez (diafragma) eltavolitasa
utan bekovetkezd aramlasi jelenség, amelyet az angol nyelvii szakirodalomban
legtobbszor ,,shock tube” problémanak neveznek. Az elsd validalasi eredmények
ezzel a példaval Sod nevéhez kothetok [59]. Munkam soran az aramlasi
egyenletek megoldasaban a 2.4.4. alfejezetben ismertetett MacCormack modszert
hasznaltam. A shock tube probléma MacCormack moddszerrel torténd megoldas
eredményét hasonlitottam a probléma analitikus megolddsdhoz. A numerikus
eredmények validalasa azt az eredményt mutatja, hogy az aramlasi valtozok idd-
¢és helybeli valtozasa hasonlitott az analitikus megolddséhoz, azonban a nagy
gradiensek (€les frontok) mentén oszcillacio 1épett fel, amely a valos fizikai

esetekben nem figyelheté meg (3.3.a abra).
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analitikus
fmeeeean fooeeaaes fesee G MacComack

0.8

bt
4]

o
'S

Strtiség [kg/m7]

e
o
T

; ‘ 3 ; : analitikus
08 ; 3 A O MacCormack-TVD []

o
()]
T

o
i
T

Stiriség [kg/m?)

o
N

-0.5 -04 -03 -02 -01 0 0.1 0.2 0.3 0.4 0.5
Tavolsag [m]

3.3. abra. A ,;shock tube” probléma analitikus és MacCormack modszerrel nyert
megoldasa a sliriség esetében a) TVD nélkiil, b) TVD-vel.

Az oszcillaciok megjelenése az éles frontokndl jellemzd minden olyan
numerikus moddszerre, amely masod- vagy magasabb rendii. Ezt a jelenséget
Godunov bizonyitotta el6szor [60]. Az oszcillaciok kikiiszobolésére tobb
modszert is kifejlesztettek. A kovetkezOkben a Total Variation Diminishing
(TVD) technikat mutatom be, amelyet Harten dolgozott ki [61]. A technika
ismertetés¢hez vegyiink példaként a 3.21. egyenlettel leirt nemlinedris
megmaradasi egyenletet.

du | Of(w _
4+ =0 (3.21)

ahol u egy valtozo, f(u) ennek a valtozonak valamilyen fiiggvénye, t és X rendre az
1d6- és térvaltozok.
Egy adott iddpillanatbeli total variation-nek (TV), vagy magyarul 6sszes

valtozasnak nevezziik a 3.22. egyenletben definialt integralt.
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TV = [ |2 ax (3.22)

Fizikailag akkor elfogadhato a numerikus megoldéds, ha a TV nem
novekszik az idével [62]. A 3.22. egyenlet diszkretizalt alakjat a 3.23. egyenlettel
adhatjuk meg.

V@) = ) futien = il (3.23)

ahol uj+1 és Uj az u valtozo értékei az i+1. és az i. helykoordinataban.
Az Osszes valtozas tehat nem novekedhet az id6vel, ezt fejezi ki a 3.24.

egyenlet.
V™) < TV(u™) (3.24)

A 3.24. egyenletbeli kritériumot teljesité megoldasokat nevezi Harten
TVNI-nek, azaz Total Variation Non-Increasing-nek [61], és ezt a tulajdonsagot
biztositd modszereket TVD-nek, azaz Total Variation Diminishingnek hivjuk. A
masodrendli és af6lotti pontossagt numerikus modszerek esetében a TVD feltétel
teljesiilése érdekében az alap numerikus moddszerbe egy korrekcids 1épést kell
beépiteni.

Egy masik gyakori numerikus hiba akkor 1ép fel az aramlasi szimulaciok
esetében, ha a kilépd peremfeltételeket nem megfeleléen definidljuk. Géazok
esetében a konstans nyomdsperem alkalmazasa kompresszids €s expanzios
hullamok visszverddését okozza, amelyek fizikailag nem realisztikusak. Az ezeket
a jelenségeket elkeriild peremfeltételeket non-reflektiv peremfeltételnek nevezik,
melynek elméleti modszertanat Thompson irta le [63]. A kompresszibilis aramlas
szamitasa esetén a fix nyomas kilépd peremfeltételnek kdszonhetden az aramlasi
térben képz0dd hullamok visszaverddnek a peremrdl és emiatt nem tud kialakulni
stacionarius aramlas a szamitas soran. A non-refelektiv perem segit a hullamok
Kivezetésében a peremeken keresztil megsziintetve ezaltal a visszaverddést €s
ezek hatasat. Ez torténik a gyakorlatban fizikailag is amikor egy a keresztmetszet
mentén nem homogén dramlas elhagyja pl. a csovet. Ez fizikailag a nagy atmérdji
csovek kilépd feliiletén figyelhetd meg jol, hogy a teljes keresztmetszetben nem

nulla vagy konstans a nyomas értéke, hanem pontonként valtozik.
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Esettanulmanyaim egy részében a numerikus moddszert kiegészitettiik a
TVD tulajdonsagot biztositd taggal, valamint a kilépé peremfeltételt non-reflektiv
peremként definidltuk, adaptalva Thompson modszerét. Az adszorpcids gaztisztitd
esetében példaul a megoldéds stabilitdisa nagyrészben ezeknek a specidlis

kiegészitéseknek koszonheto.

3.6.Biomassza elgazosito reaktor

Az egyik esettanulmanyban egy laboratoriumi méretii, kétlépéses, cellulozt
pirolizald és elgdzositd reaktorral foglalkoztam. A kisérleti berendezés a vuhani
Huazhong University of Science and Technology (Kina) ,,State Key Laboratory of
Coal Combustion” laboratoriumaban miikddik. A reaktor szerkezeti rajza alapjan
készitettem el a berendezés CFD modelljének geometridgjat COMSOL
Multiphysics-ben, amellyel tartézkodasi id6 analizisen alapuld hidrodinamikai
vizsgélatokat végeztem. Az esettanulmany eredményeit és részletesebb leirasat a

4.1. fejezet ismerteti.

3.7. Tobbfuratos jetkeveré

A jetkeverd esettanulmanyahoz készitett laboratoriumi eszkdz egy 30 cm
hosszt és 3,44 cm atmérdjli, valamint benne egy 7 cm-rel révidebb, 1,78 cm
atmerdjli 4tlatsz6 milanyag csébdl all. A fizikai eszkdz alapjan, a keveredés

vizsgalatahoz készitett CFD modell geometriajat a 3.4. abra mutatja.

Bels csé betdaplalasi csonkja Kevert (vizsgalt) zéna
Kulsé csé betaplalasi csonkja Diszperzer fej

Elvétel

3.4. abra. A jetkever6 eszkoz geometriai modellje a funkcionalis részek
feltiintetésével [64].

A belsd cs6 végére illeszthetd a 2 cm hossziisagh tobbfuratos szorofej,
amelyet tobbféle konstrukcidban készitettiink el 3D nyomtatd segitségével. A

jetkeverd eszkoz célja, hogy a két bemeneten (kiils6 és belsé csovon) bevezetett

55



Modszerek és eszk6zok

aram a tobbfuratos szordfejen atjutva minél nagyobb mértékben dsszekeveredjen.
A mérdberendezés atlatszo fala lehetdséget teremt tartozkodasi idd vizsgélat

elvégzésére videofelvétel alapjan.

3.8.Fluidizacios cella

A szimuldcios eredmények kisérleti validalasahoz egy fluidizacids
berendezést épitettiink. A kvazi-kétdimenzids laboratoriumi méretti fluidagy
légterének befoglalé méretei 15 cm x 95 cm x 1,5 cm. A berendezés eldlapja és
falai atlatsz6 plexi panelekbdl allnak, benne 11000 db 3,5 mm atmérdji,
egyenként 0,067 g tomegl aluminium goly6t helyeztiink el. A gazeloszlast segitd
fémracsot a légbefuvo bevezetése folott 20 cm-re épitettiik be. A berendezés
oldalan 5-10 cm-enként, Osszesen 14 db relativ és abszolut Freescale
MPX2010-es tipusi nyomdsszenzornak alakitottunk ki csatlakozéasi helyet. A
fluidagyat egy frekvenciavaltos fuvo altal biztositott gazaram hozza mozgasba,
amely utan egy Honzsch TA-Di/U10a tipust dramldsmérdt csatlakoztattunk. A
belépd csonk a fluidagy szélességének kozépsd harmaddban helyezkedik el. A
sebesség- és nyomasadatokat egy Advantech gyartmanya ADAM-5000L/TCP
tipusu adatgyiijté és iranyitd egység segitségével nyerjik ki. A berendezés a
Pannon Egyetem Folyamatmérnoki Intézeti Tanszék laborjaban talalhato (3.5.

abra).
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g’
¢

3.5. abra. Laboratériumi méretii kvazi-kétdimenzios fluidizaciés berendezés. a)
fluidagy toltettel és a nyomasszenzorokkal, b) 1égbefivd az aramldsmérdvel, c)
adatgyiijto és iranyitd egységek, d) adatgyilijté szamitogép

A méréberendezés célja a fluidizacio leirasara hasznalt modellek validalésa.
A cél eléréséhez a berendezés része egy nagysebességli kamera is. Az alkalmazott
Optronics CL600x2 kameranak tobbféle beallitasa lehetséges. A fluidizacios
folyamat validacidja kapcsan masodpercenként 500 db 1280x1024 képpontbol
allo felvételt rogzitettiink. A felvételeket a kamera egy adatgyiijtd szamitogép felé
tovabbitja.

A mérdrendszer hasznalataval a fluidizacids 4gy szemcséinek helyzetérdl és
a nyomasviszonyairdl nyerhetiink informaciot. A nagysebességli kamera
felvételek alapjan a szemcsék mozgésat lehet elemezni, amely adatot szolgaltat a
matematikai modell altal nyert szimulacios eredményekkel vald dsszehasonlitasra.
A szemcsék mozgési utvonalanak detektilasahoz a felvételeket felhasznalva
képfeldolgozasi utomunkalatokat kell végezni, amelyhez barmilyen alkalmas
szoftvert (pl. MATLAB-ot) alkalmazhatunk.

A képfeldolgozashoz a MATLAB-ban el6szor be kell tolteni az elemzendé

képet, majd alakfelismerd fliggvény segitségével detektdlni a vizsgalt
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részecskéket. A részecskék kozéppontjat egy ujabb fiiggvény segitségével lehet
kinyerni. Ezeket a Iépéseket a tobbi képkockaval hasonloképpen megismételjiik.
Olyan képsorozatot kell valasztani, amelyen egy kivalasztott szemcse jol
kovethetd. A kinyert pozicidadatokbol elmozdulast €és sebességet is szamithatunk
a képrogzitések kozott eltelt id0 ismeretében, amely adatokat a szimuldcids

eredményekkel 6ssze lehet hasonlitani.

3.9. Szedimentacio6s oszlop

A szilard részecske folyadékban valo tilepedését leir6 modell kisérleti
validalasahoz hasznalt berendezés egy 1 m magas, 10 cm atmérdjii atlatszo
mianyag csO vizzel vagy mas newtoni folyadékkal t6ltve. Koriilbelil 3 mm
atmérdjl szilard szemcséket a folyadékoszlop felszinének kozepére helyezve, és
egyesével elengedve, iilepedésiiket kameraval rogzitve képfeldolgozason alapuld
mozgaselemzés valik lehet6vé. A sebességfluktuaciok mérési adatai jo alapot
szolgaltatnak a szimulacios kisérlet validalasdhoz. A mérések a University
College Cork Folyamat- ¢és Vegyészmérnoki Tanszékének laboratoriumaban
késziiltek. Az llepedéssel kapcsolatos modellezési ¢és  szimulacios

eredményeimrdl a 4.5. fejezet esettanulmanyaban szamolok be.
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4. Esettanulmanyok és eredmények

Ebben a fejezetben a korabban részletezett modszerek alkalmazasat, és az
eredményeket mutatom be. Az alfejezetek a témaban megjelent publikaciéim
gondolatmenetét kovetik. Az esettanulmanyok bemutatdsa egy rovid
Osszefoglaloval kezddédik, amelyben elhelyezem a témat és attekintést adok a
konkrét esethez szorosan kapcsolddd tudomanyos eredményekrol, elkertilve
azokat az A4ltalanos ismertetéseket, amelyekkel a 2. és 3. fejezetben mar
foglalkoztam. Az esettanulmanyok mindegyike rovid Osszefoglaldssal zarul,
melyekben sok esetben tovabbi tervek, otletek is szerepelnek.

Az elsd esettanulmanyban a hagyomanyos CFD modellezést, és ennek
kevésbé szamitasigényes alternativdjaként a cellds modellek hasznalatat mutatom
be. A vizsgalt berendezés ebben az esetben egy 0sszetett geometriaval rendelkezo
biomassza elgazositd reaktor. A cellas modell segitségével egy tartdzkodasi id6
analizist végeztem a reaktor hidrodinamikai tulajdonsdgainak megismerése
céljabol. A masodik esettanulmany keverd berendezések teljesitményének
értékelésére kidolgozott modszertant ismertet egy tobbfuratos jetkeverd példajan
keresztiil. A bemutatott modszer szemcsekovetéses vizsgalatok adatainak
elemzésén alapszik. Az utols6 harom esettanulmény a direkt numerikus
szimulaciés modszer alkalmazasara mutat példakat. A moédszert a fluidizacio,

adszorpcid és szedimentacid részecske szintli folyamatainak modellezésére és

cres
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4.1.Biomassza elgazosito reaktor hidrodinamikai modellezése

A biomassza hasznositas kornyezetvédelmileg fontos miivelet, mivel
megajuld energidt vagy 1Uj termékeket allit eld. Napjainkban a fosszilis
eléforrasok kiapadoban vannak, igy az alternativ megoldasok kutatasa népszerii és
fontos témateriilet. Biomassza alatt szamos kiilonféle természetes anyagot értiink,
példaul faradt olaj vagy vizi novények. A biomassza eredete lehet faipari,
mezogazdasagi, vizi €s allati hulladék. A fas szartak alkotta biomassza foként
cellulozbol, hemicellulozbol és ligninbdl épiil fel. Ezek koziil is a celluléz a 16
komponens, amely egy D-gliikoz egységeket tartalmazd poliszacharid. A
biomassza konverzidja végbemehet biokémiai, fiziko-kémiai és termokémiai
utakon. Biokémiai konverzi6 soran a biomassza molekuldit enzimek vagy
baktériumok bontjak le kisebb molekuldkra. Ez a folyamat lassabb, mint a
termokémiai konverzid, ellenben nem igényel annyi energia-befektetést. A fiziko-
kémiai ut alkalmazasa sordn bizonyos biomasszakbol, példdul napraforgd vagy
repcemagokbol ndvényi olajat sajtolnak, vagy a biomasszat pelletaljak
stiriségnovelés, alak- ¢és méretegységesités érdekében [65]. A pelletalas
eldkészitdje lehet a tovabbi, termokémai uton torténd biomassza-hasznositasnak
is. A biokémiai, fiziko-kémiai és termokémiai feldolgozasi modok koziil az
esettanulméanyban egy termokémiai folyamatoknak helyet ado reaktorral végzett
vizsgélataimat mutatom be. A f0 termokémiai folyamatok a pirolizis, az €gés, ez
elgazositas, a hidrotermalis cseppfolyositas és a hidrotermalis karbonizalas [66].
Ezek koziil a pirolizis és az elgdzositas folyaman lehet hatékonyan jomindségii
szintézisgazt vagy folyékony ilizemanyagot eléallitani [67].

A biomassza elgazositds magas homérsékleten egy Osszetett folyamat,
amely két gyakran atlapold szakaszbol all. A pirolizis szakasz soran relative
alacsony hémeérsékleten felszabadulnak az illékony komponensek, amelyek a
magasabb homérsékleten végbemend elgazositas szakasza soran atalakulnak [68].
Kétlépeses pirolizald/elgdzositd rendszereket, melyben a felsd szakaszban a
pirolizis, alsé szakaszaban az elgazositas megy végbe, konnyebb tanulmanyozni,
szimulalni, valamint a gdzfejlédést és a gazkomponensek Osszetételét és aranyat
szamitani [69]. Az elgazositas soran a széntartalmu alapanyag termikus lebomlasa

megy végbe egy kiviilrdl biztositott oxidalo 4gens jelenlétében. A levegd, az
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oxigén ¢és a vizgdz a leggyakoribb dgensek, mindnek megvan a maga elénye. A
vizsgalt reaktorban hasznélt vizgdz agens alkalmazasanak az az elénye, hogy
oxidalas mellett a gazatalakito folyamatokat is eldsegiti [70]. A katalizator is
fontos szerepet jatszik az elgdzositas folyamatdban, Segitségével a folyamat
gyorsabban atjut az energiagaton. Az esettanulmanyban vizsgalt kétlépéses
alloagyas reaktorban Ni/Al,O3 a katalizator.

A reaktorban lejatszodo reakciok mechanizmusat kisérletek ¢s mérések altal
fel lehet tarni, azonban a reaktor aramlasi, hidrodinamikai viszonyai mérésekkel
nehezen kovethetok nyomon. A reaktor hidrodinamikai tulajdonsagainak
megismerése sziikséges és fontos kovetelmény a berendezés geometridjanak
tervezésekor. Elgazositd rektorok esetében is gyakran hasznaljak a numerikus
aramléstani (CFD) modszereket az éaramlasi tulajdonsagok meghatirozasara.
Gomez-Barea ¢és Leckner [71] csakiigy mint Sharma és munkatarsai [72]
tanulmanyaikban CFD szimulaciot hasznaltak biomassza elgdzositdé reaktorok
vizsgalata esetében. Kiemelték, hogy a szamitogépes szimuldciok hasznalatanak
egyik f6 elénye, hogy a berendezések altaluk koltséghatékonyan vizsgalhatok és
optimalizalhatok. A reaktortér hidrodinamikdjanak megismeréséhez segitséget
nyujthat a rendszer tartozkodasi 1d0 eloszlasanak a meghatarozasa is. A
berendezések RTD gorbéjét szimulacios Gton is meghatarozhatjuk ugy, hogy a
bemeneten vagy bemeneteken beinjektalt jelz6anyag aramlasanak modellezésére
koncentracio 1d6- és térbeli valtozéasat leird6 mérlegegyenlettel, majd a modell
alkalmazasaval nyomon kovetjiik, hogy a jelzbéanyag id6ben hogyan tavozik a
kilépd peremen keresztiil. A 3.3. alfejezetben bemutatott tartozkodasi id6 analizis
gyakori vizsgalati modszer, és jelentds szerepet kap a jelen tanulmanyban is.

A bonyolultabb geometriaji berendezések nem irhatok le idedlis aramlési
modellekkel (tokéletesen kevert list és dugdéadramu cs6 modelljei), azonban ezek
kombinéciojaval, az tigynevezett cellas modellek alkalmazasaval modellezhetjiik
a hidrodinmaikai viselkedést. A cellds modellezésen alapuld szimulacidk elénye a
CFD szimulaciokhoz képest a kisebb szamitasi igény. Kong és munkatarsai

elgazosito reaktor modellezésére hasznaltak cellas modellt [58].
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Az esettanulményban bemutatott elgazosité reaktor cellas modelljét is
elkészitettik MATLAB kornyezetben, és a COMSOL Multiphysics
programcsomaggal készitett CFD modellbdl nyert eredményekkel hasonlitottam
Ossze. Az eredmények azt mutatjak, hogy a létrehozott modellekkel egy eszkozt
tudunk nyujtani a bonyolultabb reaktorterek belsé &ramlasi viszonyainak
vizsgalatahoz. Az ismertetett modszerek a konkrét eseten til mas reaktorok

tervezéséhez is alkalmazhatoak.

Modszerek és eszkozok

Az esettanulmanyban a 3.9. alfejezetben bemutatott laboratériumi méreti,
feliilr6l lefelé aramlasu, alloagyas katalizatorral rendelkezd kétlépéses pirolizald
¢s elgazositd reaktort modelleztem a reaktortér hidrodinamikdjanak feltardsa
érdekében. A reaktortérben végbemend kémiai reakciokkal nem foglalkoztam,
azokrél Zou és munkatarsainak cikkében talalhatd részletes informacio [73]. A
4.1. abra mutatja a reaktor geometriai modelljét a bemenetek, a kimenet, a
celluloztirolé edény, a katalizator agy ¢és az egyes funkcios szakaszok
megjeldlésével.

2. betaplalas

(vizgdz)
1 glperc (8,15-10¢ m%/s)

1. betaplalas

~ T (nitrogén)
be—"  9.16.10%mis

Pirolizalé

szakasz Celluléz

e

Katalizator agy

Elgazosito J e e— (Ni’ALO;)

szakasz

7 5 cm

Elvétel \]/

4.1. abra. A reaktor szerkezeti rajza.
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A nitrogént mint inert gazt a reaktor felsé részének oldalan vezetjiik be
9,16-10° m?/s térfogatirammal. A nyersanyag — esetiinkben vegytiszta, Sigma-
Aldrich gyartmanya, 20 um-es kristalyporbol allo celluléz — az abran jelolt
tartoban van elhelyezve. A pirolizis folyamata a reaktortest felsd szakaszaban
megy végbe. Az elgazositashoz sziikséges oxidald agens, esetiinkben vizgdz
8,15-10° m%/s térfogatdrammal egy bemeriild csé segitségével a reaktortest alséd
felében keriil bevezetésre. A vizgdz igy az elgazositd szakasz kezdetén tud
reakcioba 1épni a pirolizistermékekkel. A CFD modellben a reaktor teljes
térfogatara 800 °C hdmérsékletet definidltam a kisérleti berendezés valos
mitkodésének megfeleléen. Az izoterm koriilmény miatt a modellegyenletekhez
nem sziikséges energiaegyenletet adni. 15 w/w %-os Ni tartalmi Ni/AlQO,
katalizator a jelolt helyen fixdgyban van elhelyezve. A reaktorbol tdvozo gaz
Osszetétele a vizgdz térfogataramanak valtoztatasaval befolyasolhato [73].

A reaktor CFD modelljét COMSOL Multiphysics-ben készitettem el. Az
Osszes vizsgalt esetben a Reynolds szam a turbulens hatarérték alatt maradt, ezért

a 4.1-4.2. egyenletekkel megadott staiconarius laminaris 4ramlasi modellt

hasznalatam.
V-(pu) = 0 (4.1)
p(uV)u = V[-pl + x(Vu + (Vu)T) — g u(V-wI] +F (4.2)

ahol p a siriiség, u a sebességvektor, p a nyomas, u a dinamikai viszkozitas és F
az aramlast befolyéasolo egyéb erdk.

A bemeneteken peremfeltételként a nitrogén és a vizgdz térfogataramat
adtam meg, a kimeneti peremen pedig konstans nyomast definidltam a
visszadramlas megakadalyozasaval. Az Osszes tobbi peremen a nem-csiszo fal
peremfeltételt allitottam be.

A tanulmanyban az elgdzositd reaktor hidrodinamikai viselkedését
tartozkodasi 1d6 eloszlasfiiggvény analizissel vizsgéaltam. Ehhez sziikség volt az
eddig megadott egyenletek mellé a jelzéanyagra vonatkozd komponensmérleget is

felvenni (4.3. egyenlet).
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V-(-DiVc)) + u-Vei = R; (4.3)

ahol D; az i komponens diffiizios allanddja, Vci az i komponens koncentracio
gradiense és Rj az i komponens forrasa, amely esetiinkben jelenleg 0, de a kés6bbi
alkalmazasokban akar a kémiai reakci6 vagy mas forras beilleszthetd.

A falak mentén a megadott peremfeltétel nem enged meg komponens
aramlast. Impulzusszerii jelz6anyag injektalast alkalmaztam mindkét bemeneten.
A berendezés kimenetén szamitottam a feliiletre atlagolt kilépd koncentraciot az

1d6 fiiggvényében, ennek eredménye lett a tartdzkodasi id6 eloszlas gorbe.

Eredmények és értékelés

A 3.2. fejezetben ismertetett halofiiggetlenségi vizsgalatot alkalmaztam a
CFD szimulacidé szamara megfeleld szamitasi halo kivalasztdsa érdekében. A
reaktor 3D-s geometridjahoz harom kiilonboz6 felbontasu szamitasi halot
generaltam. A haldgenerdlas alapjaul a megadott maximalis haloelem méret
szolgalt, amelyet a legdurvabb felbontas esetében 11,9 mm-nek, a kozepesen
durva felbontas esetében 7,74 mm-nek, mig a legfinomabb felbontas esetében
5,96 mm-nek adtam meg. Mérleghibat szamitottam mind az impulzusmérleg,
mind a komponensmérleg esetében (4.2. abra) a belépd és kilépd aramokat

figyelembe véve.
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4.2. abra. A haléelemszam hatdsa a futasi idore (kék) és a mérleghibdkra (piros)
a) impulzusmérleg és b) komponensmérleg esetében.

A szamitidsokat Dell Optiplex 790-es, 16 GB memoriaval rendelkezd
személyl szamitogépen futtattam. Mindkét mérleg esetében a varakozasnak
megfelelden latszik, hogy egyre finomabb szadmitasi halot alkalmazva egyre

kisebb a mérleghiba, ugyanakkor egyre nd a szdmitasi id6. A késébbiekben a
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vizsgélatban alkalmazott haromféle szamitasi halé koziil a legfinomabbat
hasznaltam, mert ez elfogadhatd szamitasi id6igény mellett megfeleléen alacsony
hibaértéket general. A szamitdsaimhoz hasznalandod hald tehat 220121 elembdl

all, amely finomabb felosztasu perem rétegeket (boundary layers) is tartalmaz
(4.3. abra).

2620 20
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4.3. abra. Az elgazosito reaktor modellezéséhez hasznalt szamitasi halo. a) a
teljes geometria, b) az elsd bemenet (Inlet 1) és kdrnyéke, c) a masodik bemenet
(Inlet 2) és kornyéke, d) a kimenet és kornyéke.

Az aramléasi mezo6t kiillonbozd vizgdz tomegaramok (Inlet 2: 0,01 g/perc,
0,02 g/perc, 0,05 g/perc, 0,1 g/perc, 0,2 g/perc) bedllitasaval szdmitottam. A
stacionarius megoldasok a 4.4. abran 1évo sebességi mezdket eredményezték. A
sebességi mezon alapul az dramvonalakat mutatd 4.5. dbra, amely az aramlas 6

iranyat mutatja, és a holttereket is szemlélteti.
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4.4, abra. Az elgazosité reaktor sebességmezdje [m/s] hosszanti

keresztmetszetben a kiilonb6z6 tomegaramii vizgdz bemenet (Inlet 2) esetén. a)

0,01 g/perc, b) 0,02 g/perc, c) 0,05 g/perc, d) 0,1 g/perc, €) 0,2 g/perc

B 1. betaplalason 9,16-10° m?/s térfogataram

B 2. betaplalason 8,15-10° m%s térfogataram

b)

4.5, abra. Az elgazosit6 reaktorban kialakul6 d&ramvonalak 0,1 g/perc
vizgdzbemenet esetében. A rdzsaszin vonalak a nitrogéngdz aramvonalait jelolik,
a zoldek a vizgdzét. a) az 1. betaplalas és kornyéke, b) a 2. betaplalas és kornyéke,

c¢) a kimenet és kornyéke.

66



Esettanulmanyok és eredmények

Az elézetesen kiszamitott staciondrius impulzusmérleget felhaszndlva a
modell segitségével komponensmérleget szamitottam a bemeneteken injektalt
jelzéanyag aramlasanak kovetésére. Az impulzusszerti Dirac delta fliggvényt a
szimulacios programban téglalap fliggvénnyel valdsitottam meg, melynek soran
100 mol/m® koncentracioju jeldléanyagot injektaltam 1 s-on keresztiil mindkét
bemeneten (4.6.a abran fekete pontokkal jelolve), csak az 1. betaplalason (piros
vonal), vagy csak a 2. betaplalason (zold vonal). A 4.6. abra a) részében a
jellemzd valtozasok idépontjaban (13 s, 18 s, 73 s és 260 s-nal) a reaktor hossz

menti koncentracioprofiljat is beszurtam.

6 3
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4.6. abra. A vizsgalt rendszer valaszfliggvénye az impulzus bemenetre a) 0, 1

g/perc vizgdz bemenet esetén, b) kiilonb6zo vizgdz (2. betaplalas) tomegaramok
esetében.
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Az els6 csucs mutatja, hogy a 2. betaplalasbol (bemertiil6 cso, lasd 4.1. abra)
szarmazod jeloldanyag nagy koncentracidban rovid ido alatt eléri a kimenetet €S
tavozik a rendszerbdl, mig az 1. betaplalasbol (a reaktortest felsé részén 1évo)
szarmazo jeloléanyag lassabban éri el a kimenetet, ¢és késObb tavozik a
rendszerbdl. A Hj termelést befolydsolja az elgdzositd agens mennyisége a reaktor
elgazositd részében [73], ezért kiilonboz6 vizgdz tomegaramokkal is lefuttattam a

jelzéanyag numerikus bevezetésével végzett szimulacios kisérleteket. A 4.6.b

abran a  kilonbozé  vizgdézaramok — melletti,  kimeneten  detektalt
koncentraciogorbéket lathatjuk. Az elsé koncentracidcsics a  vizgdz
tomegaramanak ndvelésével egyenes aranyban noOvekszik, a masodik

koncentraciocsucs pedig forditottan aranyos vele (4.6.b abra). A 3.3. fejezetben
ismertetett 3.8. egyenlet alapjan kiszamitottam minden esethez az atlagos
tartozkodasi id6t, amely a vizgézaram novelésével forditottan aranyos (4.1.
tablazat).

4.1. tablazat. Atlagos tartozkodasi idék az elgazosito agens kiilonbozé sebességii
betaplalasa esetén.

A vizgéz )
A reaktortest | A nitrogén A vizgéz (2. betaplalas) Atlagos
teljes (1. betaplalas) | (2. betaplalas) | térfogatarama |tartozkodasi
térfogata | térfogatarama| tomegarama | (tomegarambal ido
atszamitva)
[m?] [m?/s] [g/perc] [m3/s] [s]
0,01 8,15E-07 102,06
0,02 1,63E-06 95,17
1,02E-03 9,16E-06 0,05 4,07E-06 79,19
0,1 8,15E-06 64,00
0,2 1,63E-05 43,83

A cellas modellezési megkdzelités szerint egy tetszdleges hidrodinamikajt

berendezés modellje felirhatd dugdaramu csé (Cso), tokéletesen kevert egységek
(TKE), keverdk (K) és elosztok (E) kombinacidjaval. Az utobbi kettd elemnek
funkcionalis szerepe van, de térfogatot nem foglal. A celldk kozotti kapesolatot

kapcsolati matrix-szal adjuk meg, melyben az oszlopok a celldk, a sorok az
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aramok. -1 a kimend aramot, 1 a bemend aramot jelzi, 0 pedig, hogy az adott
cellat nem érinti az adott d&ram. Az elgazositod reaktor cellas modelljét a 4.7. dbra
mutatja, jelolve a CFD modellnek valé megfeleltetéseket. A kapcsolati matrixot a

4.2. tablazatban adtam meg.

g s
Cs6 |u

/ :
o [ (0

S4
/ Cs6 | us

1l i‘f‘ / .
/ TKE | us
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‘ — Cs6 | Ys

| ‘ .
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4.7. abra. A reaktor cellas modellje az u;-Us celldk és s;-S7 aramok feltiintetésével.

4.2. tablazat. Az elgazosito reaktorra felirt cellds modell kapcsolati matrixa.

Uz u us Ug Us
S1 1 0 0 0 0
S2 -1 1 0 0 0
S3 0 1 0 0
Sy 0 -1 1 0 0
S5 0 0 -1 1 0
S6 0 0 0 -1 1
S7 0 0 0 0 -1

Az 1deadlis dramlasu csoveket tokéletesen kevert egységek kaszkadjaként
modelleztem, a kaszkadba kotott tokéletesen kevert egységek szama tehat egy
modellezési paraméter. Kevés kaszkadelem nem kozeliti megfelelé mértékben az
idedlis aramlasu csdre jellemzd hidrodinamikat. A vizsgalatokban kezdetben 10

kaszkdd elemet hasznédltam, és nem tapasztaltam mindségi javulast a
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kaszkadelemszam novelésével sem, igy az elemszdm paramétert a tovabbiakban
nem valtoztattam.

A reaktor pirolizald szakaszat idealis aramldsu csoként modelleztem. A
vizgbz bemenet miatt sziikség volt egy keverOcellara. A katalizatoragyat
tokéletesen kevert egységnek tekintettem, a reaktor tobbi részét pedig idedlis
aramlasu cs6 cellas modelljeivel kozelitettem. A térfogattal rendelkezd cellakhoz
a valos geometrianak megfelelo értékeket rendeltem, amelyek a teljes térfogathoz
vett aranyokat tekintve 53,26%, 22%, 0,28%, 24,46%-nak adodtak rendre. A
cellas modell kevert egységeit leird kdzonséges differencialegyenleteket explicit
Euler médszerrel oldottam meg 0,2 s-os 1épéskozt alkalmazva. A 4.8. abra mutatja
az impulzus bemenetre adott koncentracio valaszgorbéket a CFD és cellas modell
alkalmazdsa esetében, 0,1 g/perces vizgézaram mellett. Az egyezést jonak
talaltuk, de a kiilonbség szamszertsitése érdekében abszolut és négyzetes hibat is

szamitottunk a kétféle modellb6l kapott eredménybdl az alabbi 4.4. és 4.5.

egyenletek alapjan.
Erraps = 2'ic=1 abs(ccellés, i ~ Ccrp, i) (4.4)
Errnegyzetes = Zit=1(cce11;;s, i ~ Ccrp, 1)2 (4.5)

Kisérletképpen egy optimalizald algoritmus, a Particle Swarm Optimization
(PSO, [74]) segitségével meghataroztam azokat a térfogati paramétereket,

amellyel a 4.6. egyenlettel leirt célfiiggvény eléri a minimumat.

min ¥ (Ceettds modent(t) — Cern(t))? (4.6)

A célfiiggvény a rendelkezésre 4ll6 iddpillanatokban kiszamitja a két modell
¢és szimulacio altal kapott értékek négyzetes kiilonbségét, majd az értékeket
Osszegzi, hogy a teljes idéskalara kapjunk egyetlen olyan szamot, amely a két
gorbe egymastol valo eltérését fejezi ki, és amelyet tekintve a célunk az, hogy ez
minél kisebb legyen. A 4.8. dbra az optimalizalt cellas modellbdl (kék vonal) €s €s

az eredeti CFD modellbdl (fekete csillag) nyert koncentraciogorbéket mutatja.

70



Esettanulmanyok és eredmények

a F =0.1 g/perc, N=10, dt=0.2 s, errorab5=46.4523, errors=27.9649

vizgbz

7 Ceelias modell
s Cerp
Bl i
mg sl |
©
E
0 4 |
S x
.E X
© 3f « _
=) S
cC
xo ®
2 % 8
k2
1 |
0 | |
0 50 100 150 200 250

1d6 [s]

300

b =0.1 g/perc, N=10, dt=0.2 s, errorabs=33.3968, errors=10.6902

vizgéz

ras

()]
T

Koncentracio [molfms]

50 100 150
16 [s]

=

Ceelias modell [

CcrD

" 200

250

300

4.8. abra. A CFD és cellas modell felhasznalasaval nyert koncentraciogorbék.
a) a cellak térfogatparaméterét a valds geometria alapjan hataroztam meg,
b) a térfogatparaméretek optimalizaldsi algoritmus alapjan lettek meghatarozva.

A kétféle paramétervalasztasi stratégiaval futtatott szimulaciok eredményeit

a 4.3. tablazatban foglaltam Ossze. A térfogataranyok valtozasat szemlélteti a 4.9.

abra. Habar a hibaértékek csokkentek valamelyest, mivel az optimalizalt modell
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geometriai paraméterei jelentésen eltérnek a valostol, ezért az optimalizalt cellas

modell tovabbi hasznalatat elvetettem.

4.3. tablazat. Modellparaméterek és eredmények.

A reaktor .gfometrlal Optimalizélt
szekcioinak térfogathanyadok
térfogathanyadai g y
us-re es6 térfogathanyad 53,26% 60,08%
Us-ra eso térfogathanyad 22,00% 17,74%
Ug-re eso térfogathanyad 0,28% 4,44%
Us-re eso térfogathanyad 24,46% 17,74%
Abszolut hiba 46,45 33,40
Négyzetes hiba 27,96 10,69
] 100% -
90% -
80%
tb 70% B uj-reesd térfogathanyad
60% -
®m uj-ra es6 térfogathanyad
| 50% -
uy-re esé térfogathanyad
40% -
L 30% - B us-reesd térfogathanyad
20% -
L 10% -
i \
0%

1. 2.

4.9. abra. Az optimalizalt paraméterek szerint az us, Us €s Us egységek térfogata
kozel egyforma (2.), amely nagyban eltér a valds reaktor geometriai szekcidinak
térfogathdnyadaitol (1.).

A valoés geometriat kovetd térfogati paramétereket alkalmazo cellas modell
eredményét Osszehasonlitottam a CFD szimulacioval kapott eredményekkel a
tobbi vizgdz tomegaram mellett is, ezeket mutatja a 4.10. abra. Ebben a négy

esetben 1s lathatéan jo egyezést kaptunk, a szamszeri Osszehasonlithatdsag

érdekében az eltérést mutatd hibaértékeket a 4.4. tdblazatban foglalom ssze.
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4.10. abra. A CFD modellel kapott koncentraciogorbek és a reaktor
geometridjanak megfeleld térfogati paramétereket hasznalé cellds modellbdl nyert
koncentraciogorbék a tobbi vizsgalt vizgdz tdmegaram esetében. a) 0,01 g/perc, b)

0,02 g/perc, ¢) 0,05 g/perc, d) 0,2 g/perc.

4.4. tablazat. Modellparaméterek és hibaértékek a tovabbi négy vizgdz aram

esetében.

us-re esé térfogathanyad

53,26%

Us-ra eso térfogathanyad

22%

Us-re esé térfogathanyad

0,28%

Us-re esé térfogathanyad

24,46%

A vizg6z tomegarama

0,01 g/perc

0,02 g/perc

0,05 g/perc

0,2 g/perc

Abszolut hiba

45,19

43,76

40,80

42,14

Négyzetes hiba

17,59

15,38

14,44

36,67

Osszefoglalds

Ebben az

esettanulmanyban

egy biomassza

elgazosito

reaktor

hidrodinamikai viszonyait tartam fel. A késziilékben kialakuld dramlasi viszonyok

meghatarozasdhoz egy CFD szoftvert hasznaltam. A szimulécios vizsgalatokban a
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kisérleti berendezésnek megfeleld geometriai és mikddtetési paramétercket
alkalmaztam. A reaktor hidrodinamikai jellemzdit CFD szimulacid segitségével,
tartozkodasi 1d6 eloszlas fliggvény analizissel vizsgaltam. Abbol a célbdl, hogy
meghatarozzam a reaktor egyes szekcioinak jellemzé hidrodinamikai
karakterisztikajat, egy idedlis daramlast egységekbdl €s keverdcellakbol felépitett
cellas modellel is kozelitettem a reaktor miikodését. Az elsé 1épésben az egyes
cellak térfogatparaméterét a reaktor geometriajanak megfeleléen valasztottam
meg, az allo katalizatoragyat tokéletesen kevert egységnek, a reaktor tobbi részét
pedig idedlis csonek tekintettem. A kimeneten szadmitott koncentracidértékeket
Osszehasonlitottam a CFD szimulaci6 altal nyert eredményekkel, és jo egyezést
taladltam. Az egyezést tovabb javithatjuk a cellas modell térfogati paramétereinek
optimalizalt megvalasztasaval, azonban a valdsagtél nagyban eltér6é térfogati
aranyokat kaptunk, emiatt az optimalizalast és az optimalizalt paraméterek
késObbi hasznalatat elvetettiik. Mind a CFD, mind a cellds modellel tobbféle
vizgdz térfogatiram mellett vizsgaltam a reaktort. Ezek a kiilonbozd feltételek a
gyakorlatban a termelt gazosszetételre is hatassal vannak. Kinai partnereink
ugyanezeket a paramétereket alkalmaztdk a valos rendszeren végzett mérésekben,
ezért a hidrodinamikai esettanulmany gyakorlati jelentOsséggel is bir. A
kidolgozott modellek és az ismertetett modszerek alkalmasak a bemutatott

biomassza elgazosito reaktor tovabbi vizsgélatara.
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4.2. Tobbfuratos jetkeveré keveroételjesitményének jellemzése

szemcsekovetésen alapulo kevertségi mérték alapjan

Intenziv folyadék-folyadék keverésre gyakran van sziikség a vegyiparban,
példaul nagysebességli reakcidok esetében a betaplalt aramok Osszekeverésekor,
hogy noveljik a konverziét és csokkentsiik a mellékreakciok esélyét. A
homogenizalas hatékonysaganak jellemzésére kidolgoztam egy eljarast, amelyet
ebben az esettanulmanyban mutatok be. A vizsgalt berendezés egy csé a csdben
elrendezésti kétbemenetl eszkdz, amely egy folyamatos lizemi reaktor betaplalasi
aramat késziti eld. A tobbfuratos szorofejet a belsd csé végére helyezve az
ataramlo folyadék elkeveredik. Szemcsekovetéses vizsgalattal a két bemenetrol
inditott, és a kozos kimenetre érkezd szemcsék pozicidja és eredete alapjan
allapitottam meg a keveredés fokat. A tanulmany célja néhény, fizikailag konnyen
létrehozhatd  furatos keverdfej-konstrukcid — Osszehasonlitdsa a  keverési
teljesitményiik alapjan, és a leghatékonyabban miikodé szorofej kivalasztasa. A
keveredés vizsgalatdhoz egy CFD modellt hoztam létre, amelyet kisérletileg

validaltunk.

Irodalmi bevezetés

Jet kever6knek nevezziik az olyan elvii keverdket, amelyek esetében egy
sziilkebb keresztmetszeten 4atkényszeritve a fluidum nagy sebességgel,
sugarszertien dramlik egy allo vagy mozgd kozegbe, €s ezzel keveredést 1déz eld.
Abban az esetben, ha a két fazis nem elegyedd, diszperzernek is nevezhetd a
szorofejes keverd. Diszperzereket gyakran alkalmaznak a vegyiparban, fOleg
erésen exoterm reakciok esetében. Bauer ¢és Eigenberger gaz-folyadék
buborékoztatd oszlopreaktorban hasznalt [12], Dautzenberg és Mukherjee pedig
tobbféle reaktor folyamat intenzifikdlasahoz alkalmazott diszperzert [76]. A
tobbfuratos jet keverdket multijet keverdknek nevezziik. Ezek tovabb fokozzak a
sugararam keverOhatasat azaltal, hogy a sugararam tobb helyrdl is érkezik. Egy
reagens reaktortérbe injektalasa jo modszer lehet a reakcid szabalyozasara, igy a
termékmindségre is hatassal lehetiink, valamint biztonsadgi szempontbol is
lényeges lehet. Kevert reaktorokban termikus elfutds megakadalyozéasara is

haszndlnak jet keverdt az inhibitor reaktortérbe juttatdsdhoz. Ilyen rendszert
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vizsgaltak Junchen-jiang €s munkatarsai [77]. Rahimi és Parvareh tartalyokban
tarolt nyersolaj keveréséhez hasznaltak jet keverdt keverdlapatok alkalmazasa
mellett [78]. Vite-Martinez és munkatarsai tanulmanyukban egy Kkevert
istreaktorokban reagens injektalashoz keresték az optimalis helyet [79], Xue és
munkatarsai pedig dizel befecskendezéshez alkalmaztak sugérszeri betaplalast
[80]. A diszperzercket hagyomanyos, kisérleti adatokon alapulé modszerekkel
nehéz vizsgalni, mivel kisérleti adatok nem nagyon allnak rendelkezésre a
vonatkoz6 irodalomban. A lehetséges mérési eljarasokhoz  koltséges
mérdberendezés sziikséges, példaul rontgen radiografia, mint amelyet Nguyen ¢és
munkatarsai hasznaltak [81] vagy optikai sebességmérésre (particle image
velocimetry, PIV) alkalmas 1ézeres méréberendezés [82], amelyet példaul Zhang
¢s munkatarsai alkalmaztak. Egy megfelelden létrehozott, kisérletileg validalt
CFD modell is alkalmas lehet azonban keveredési vizsgélatokra. Elonyiik a
koltséghatékonysag, hiszen fizikai eszkdzok nem sziikségesek hozza. Szerkezeti
¢s miikodtetési paraméterek hatdsanak vizsgalatara is alkalmasak lehetnek,
példaul a multijet keverdfejek kialakitisat, a befecskendezés optimalis
pozicidjanak  meghatarozdsat  vagy  optimalis  térfogatdramokat  is
meghatarozhatunk segitségiikkel, mint ahogy Torré €s munkatdrsai mutatjdk be
tanulmanyukban [83]. T-keverdk esetében a Reynolds szam és a keverdgeometria
nagy hatassal van a keveredésre, amint az Sultan és munkatirsai megmutattak
[84], és a keveredés hatékonysidga meghatarozhatdé CFD modszerekkel, mint
példaul egy specialis geometridba illesztett statikus keverdelem esetében, amelyet
Zhou ¢és munkatarsai mutattak be [85]. A szimulacids vizsgalatok 0j keverdfej
kialakitasanak tervezésében is hatékony segitség lehetnek, ahogy példaul Vasilev
¢s Abiev a tanulmanyukban bemutattak [86]. A folyamatfejlesztés teriiletén a
modellalapu  vizsgalatok elterjedtek, igy alkalmazasukra a keveredés
vizsgalatdban is sok példa talalhat6. A CFD szimulatorok alkalmazasaval a
vegyipari reaktorok mitkodését, belsd aramlasi viszonyait jobban megérthetjiik, a
kevert zondk és a holtterek meghatdrozésara is alkalmasak, ahogyan Wang ¢és
munkatarsai munkajaban is lathatjuk [87]. A CFD-n alapulé szimulatorok

elénydsen alkalmazhatok 1) konstrukcidk tesztelésére azok megépitése nélkiil,
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viszont ahogy mar emlitettem, a modell validilds a megbizhatosag érdekében
minden esetben elengedhetetlen.

Amikor egy berendezés modelljét hidrodinamikai szempontbdl validaljuk
sok esetben egy Osszetett folyamattal van dolgunk. Tébb uton is torténhet a
hidrodinamikai validalas, a leggyakoribb esetben egy jelzOanyag injektalasan, és
annak kovetésén, mérésén alapul. Folyamatos iizemii egységek esetében a
tartozkodasi 1d0 vizsgalat egy gyakran alkalmazott vizsgalati modszer.
Konduktometridval ¢és videofeldolgozason alapuld koncentracidéméréssel is
végrehajthaté ez a feladat. Atlatszo falu iistreaktorokban altaldban keveredési id6
méréseket alkalmaznak festékanyag injektalasaval vagy sav-bazis reakciok
alkalmazasaval [88]. A keveredési id6 — definici6 szerint — az az id6, amelyre a
rendszernek sziiksége van ahhoz, hogy egy eldre definidlt homogenitds szintet
lathatunk példakat Gillian és Kirwan cikkében [89], valamint Krupa és
munkatarsai cikkében [90]. Egy rendszer homogenitasat opalossaganak mérésével
is lehet jellemezni videofelvétel segitségével, ahogyan az Rahimi és Paraveh
tanulmanyaban is lathat6 [91]. A videofeldolgozason alapulé moédszerek nagy
eldnye a megismételhetdség. A kihivast a képsorozat feldolgozésa jelenti, amely
utdn nyomon kovethetd a homogenitds idébele valtozésa a reaktoron belil. A
homogenitas fogalméhoz legtobbszor egy kiiszobértéket rendelnek, amely felett
homogénnek tekintjiik a rendszert. Leggyakrabban kiiszobértékként a 95-99%-0s
homogenitast alkalmazzak.

A fentebb emlitett klasszikus validalasi modszerek mellett egy masik
lehetdség a CFD modell validalasara a szemcsekdvetéses vizsgalatok alkalmazasa.
Szemcsék aramléasba helyezésével a szemcsék Utvonala meghatarozhat6d példaul
videofelvételen valdo rogzitésével ¢és képfeldolgozassal, ahogyan Egedy ¢és
munkatarsai mutattdk be [92], vagy pozitronemisszids technikaval (positron
emission particle tracking, PEPT), mint Pasha és munkatarsai munk4jabol lathato,
amelynek sordn az egyes radioaktivan megjel6lt szemcséket a kisugarzasuk
helyének detektalasaval nyomon lehet kovetni [93]. Egyes CFD szoftverekkel
szemcsekovetéses szimulaciok is végezhetdk, amely lehetdvé teszi azt is, hogy az

eredményeket a mért szemcsetrajektoriakkal validaljuk. A szimuldlt szemcsék
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reprezentalhatnak jelolt faziselemeket is, megfeleld bedllitisok mellett. Egy
gyakori vizualizalasi modja a szemcsetrajektoridknak a Poincaré metszetek
alkalmazasa, amely egy keresztmetszeti sikon jeloli az athalado szemcsék helyét.
Kutatdsomban egy folyamatos lizemi multijet keverd optimalis kialakitasat
hataroztam meg a kiillonb6z6 keverdfejekkel nyert kevertségi szint szamszer(i
jellemzése alapjan. A cél, hogy jol kevert kimenetet kapjunk két elegyedd
folyadékarambol, mivel a reaktortestben lejatszodd gyors reakcidé mindsége
nagyban fligg a belépd aram kevertségének mértékétdl. A kidolgozott CFD
modellt jelzéanyag injektalasat kovetd videofelvétel feldolgozasan alapuld
tartozkodasi 1d6 kisérletekkel validaltam. A szemcsekdvetéses szimulaciobol
nyert Poincaré metszet szolgalt a kidolgozott szdmitdsi modszer alapjéul
kiilonbozd  szorofejek  keveredési  teljesitményének  meghatirozasahoz.
Keveréfejek kialakitdsdnak optimalasaval, a furatok szamanak vizsgalataval
foglalkoztak Huang ¢és munkatarsai egy asvanyolaj-ipari alkalmazas példajan
keresztiil [94]. Patkar és Patwardhan a szorofej furatainak doélésszogének hatasat
vizsgaltak gaz-gaz keverdOk esetében [95]. Az altalam végzett vizsgalatokban
azonban a furatok szdmanak ¢és dolésszogének hatasat is vizsgdltam. A
lefedettség, ahogy a késObbiekben latni fogjuk, egy fontos kevertségi mutato,
szdmithatunk, és akkor a legjobb, ha ezek a poziciok a feliileten egyenletesen
oszlanak el, ,,lefedik” a sikot. A keverés hatékonysagat két kiilonvalaszthato cél, a
lefedettség €s a lokalis kevertség egyiittes figyelembevételével hatdroztam meg. A
lokalisan jo kevertség a Poincaré metszeten ugy figyelhetd meg, hogy a metszet
egyes lokalis pontjainak kornyezetében a metszeten athaladé Gsszekeverendd
komponensek pontjai kozel egyenld szdmban jelennek meg. Az optimalis
keverdfej-kialakitas kivalasztdsa azon alapult, hogy mely esetben nyerhetdé a
legmagasabb kevertségi fok ezen egyiittes célok figyelembevételével. Az
eredmény jelenleg elsdsorban az esettanulméanyban vizsgalt eszkdz tervezéséhez
nyjt tdmpontot, azonban a kifejlesztett modszer mas hasonld rendszerek

keveredési teljesitményének jellemzésére is alkalmazhato.
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Modell-leirds és modszertan

A cs6 a csében elrendezésii multijet keverd modelljét COMSOL
Multiphysics-ben készitettem el. A késziilék szerkezeti rajzat és a kisérleti

eszk6zok esetében is alkalmazott nyolcféle szorofejet a 4.11. abra mutatja.

Kimenet
Belsé bemenet

R o

Keveredési zéna

Széréfej helye
5cm

Kilsé bemenet

4.11. abra. a) A modellezett berendezés szerkezeti rajza, és a mérési kisérletekben
is alkalmazott b) egyenes és c) dontott furatu szordfejek modellje. A tizfuratos,
20°-kal dontott eset d) feliilnézeti és e) oldalnézeti rajza.

A szorofejek formatervezésénél a megmunkalas egyszeriiségére is
tekintettel voltunk. A szérofejek 4, 6, 8 vagy 10 furattal vannak ellatva, a furatok
egyenesek (4.11.b abra) vagy érintdiranyban, a tengelyirannyal merdlegesen
20°-kal dontottek (4.11.c abra). A furatok Osszesitett keresztmetszeti feliilete
47,8 mm? minden szorofej esetében. A kovetkezokben a szorofejekre tigy fogok
hivatkozni, hogy ,.furatszam doélésszog”, tehat példaul a négyfuratos, egyenes
furata szoérofejet a 4 0-s esetnek nevezem.

A bemeneti peremeken 0,0983 m/s sebességet definidltam, ez megfelel a
kisérletben alkalmazott 90 I/h-s térfogataramnak. A falak mentén nem-csiszo
peremfeltételt, a kimeneti peremen konstans 1 atm nyomast definidltam. A teljes

geometridban konstans 20 °C hdmérsékletli viz van jelen. A folytonossagi
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egyenletettel és a haromdimenzids, k-¢ turbulenciamodellt is tartalmazé aramlasi
modellel (4.7-4.12. egyenletek) végzett stacionarius szimulacié eredményét
hasznaltam fel a sebességi mez0 meghatirozasara, és tovabbi, dinamikus

szimulaciok végzésére.

pV-u=20 4.7)
p(u-V)u =V [-pl+ (u+ pp)(Vu+ (Vu)")] + F (4.8)
p(u-V)k=V- [(u + i—z) Vk] + P, — pe (4.9)
p(u-V)e=V- [(u+§—:) Vs] +ce1§Pk—ce2p% (4.10)
hr = pe, S (4.11)
P = pr[Vu: (Vu + (Vu) )] (4.12)

ahol p a kozeg dinamikai viszkozitasa (20 °C-0s viz, 10 Pa's), a turbulencia
modellparaméterek ce1 1,44, Cez 1,92, ¢, 0,09, ok 1, ce 1,3. A turbulencia mozgési
(kinetikus) energigja (k) 0,005 m?/s? és a disszipacios rata () 0,005 m%/s°.

A turbulenciamodell hasznalatat mind a nyolc szorofej esetében 2000 feletti
Reynolds szam indokolta.

A szorofejek keverési teljesitményének értékeléséhez a stacionarius
sebességmezd felhasznalasaval dinamikus szemcsekovetéses szimulacidkat
futtattam, amelyhez a COMSOL Multiphysics Particle Tracing moduljat
hasznaltam. A szemcsék tulajdonsadgainak meghatarozasakor figyelembe vettem a
turbulens aramlés és a fluktudld sebességmezd okozta diszperziot, ezért a discrete
random walk diszperzios modellt is alkalmaztam [96]. Ez a sztochasztikus modell
diszkrét szakaszonként konstans idébeli fliggvényekkel hatarozza meg a fluktudlo
sebességkomponenseket, amelyek random értéke az Orvények karakterisztikus
¢letideje alatt konstans marad. A két (bels6 ¢€s kiilsd) bemeneten egyenletesen

crer

kovettem. A szemcsék nagy szama biztositja a folyadékaramlés realisztikus
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vizualizacigjat. A szemcsék mozgdsa az eldre kiszdmitott staciondrius
sebességmezOn alapszik, ¢€s a kimeneti peremen a freeze (odafagyasztd)
peremfeltételnek koszonhetden a poziciojuk rogzitve marad. Az 1dofliggd
szimulacidokat mind a nyolc szoérofej alkalmazasa esetén 30 s-ig futtattam, amely
kell6 iddt biztositott ahhoz, hogy az 0Osszes szemcse beérkezzen a kimeneti
peremre.

A részecskekOvetéses  szimulaciok  futtatasa  soran  bizonyos
keveredés hatékonysaganak szadmitasahoz ezeket a rdgzitett pozicidadatokat
hasznaltam, az adatfeldolgozast MATLAB kornyezetben végeztem. A kezdeti
allapot jol definialt szemcsepozicidi lehetdséget adtak arra, hogy a szemcséket
megjeldljem az eredetiik (kiils6 vagy belsd bemenet) alapjan. Ez a jelolés
valtozatlanul a szemcsékhez rendelve marad a szimuléacio teljes ideje alatt. A
megjelenitéshez piros szint hasznaltam azokra a szemcsékre, amelyek a belso
bemenetrdl indultak, és a 0 azonositot rendeltem hozzajuk. A kiils6 bemenetrdl
szdrmazo szemcséket fekete pontokként jelenitettem meg, és 1-es azonositot
rendeltem hozzajuk. A kiilonféle szorofejek keverési teljesitményének
jellemzésére a kimeneti sikon generalt Poincaré metszeteket vettem alapul. A
szimuldcios adatok kiértékeléséhez a Poincaré metszetek teljes teriiletét kis
négyzetekre osztottam fel, a tanulmanyban 276 darab mintavételezési mezdre.
Ennél finomabb felosztas nem biztositotta volna a kiértékeléshez sziikséges
elegendd szadmu szemcsét egy adott mintavételezési mezdén beliil, ennél durvabb
felosztas pedig nem adott volna kelld informaciot a térbeli eloszlasrol. A jelen
tanulmanyban ismertetendd kevertségi mérték meghatdrozasahoz eldszor a
mintavételezési mezdk szintjén értelmezett lefedettséget definidlom a 4.13.

egyenletnek megfelelden.

C= {0, ha a mintavételezési mez6n nincs szemcse (4.13)

1, ha a mintavételezési mezon legalabb egy szemcse van

Bevezetem a p=(Xpyp) jelolést a szemcsék kétdimenzids descartes-i
koordinatainak jelolésére, és az S=(XsYs) jelolést a mintavételezési mezok

kozépponti koordinatainak jel6lésére. A mintavételezési mezOk szamat N-nel
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jelolom. A lokalis (mintavételezési mezdnkénti) lefedettségtdl fiiggden a lokalis

kevertséget minden | mez6 esetében a 4.14. egyenletnek megfeleléen szamitottam.

haCl-=O

ZWJ /ZWJ’ ha C;>0 (4.14)

ahol i=1,...,N, ki az i-edik mintavételezési mez6 teriiletén elhelyezkedd szemcsék
darabszama, |; a j szemcse identitasat (melyik bemenetrdl érkezett) jeldli. 0, ha a
belsé bemenetrdl érkezett, 1, ha a kiils6rol. A j szemcséhez tartozo wj sulyt a 4.15.
egyenlet alapjan szamoljuk a szemcse és a referenciapont (i-edik mintavételezési

mez0 kozéppontja) koordinatai kozotti euklideszi tdvolsag (d;) szerint:

1 1

o= L= 4.15
/ dJZ' (xp,j_xs,i)z+(3’p,j‘3’s,i)2 ( )

Egy adott mintavételezési mezdt akkor tekintiink jol kevertnek, ha a lokalis
kevertségi mértek 0,2 és 0,8 kozé esik. Az idedlis, legjobban kevert esetben
M;i=0,5, amely azt jelenti, hogy a két bemenetr6l érkezé jelolérészecskék
darabszdmukat tekintve fele-fele ardnyban vannak, és eloszlasuk a lokalis
referenciapont koriil egyenletes. A teljes metszeti sikra vonatkoztatott keveredés
jellemzésére az alabbiakban négy metrikat vezettem be.

A teljes lefedettség (Coverage) a lefedett mezdk szdma osztva az Osszes
mezo szamaval a 4.16. egyenlet szerint.

i=N
G
Coverage=100 % (4.16)

Az abszolut kevertséget a jol kevert mezdk és az Osszes mezd szamanak

hanyadosaként definialtam (4.17. egyenlet).

|{M;,i=1,..,N|0,2<M;<0,8}|
N

Mix s = 100 (4.17)

A relativ kevertség a jol kevert mez0 szdma osztva a lefedett mezdk

szamaval, formalisan a 4.18. egyenlettel leirva.
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M, i =1,..,N|0,2 < M; < 0,8}] (4.18)
100 : ha|{C;i=1,..,N|C;=1}| >0
|{Ci,l=1,...,N|Ci=1}| ¢ ¢

0 ha |{C;,i=1,..,N|C; =1} =0
Mixye =

A homogenitas céljanak eléréséhez mind a lefedettséget, mind a relativ
kevertséget maximalizalni szeretnénk. A negyedik, a teljes metszeti sikot jellemzé
metrikat a 4.19. egyenlet fejezi ki egy olyan célfiiggvény formajaban, amely a két

célt egyforma sullyal veszi figyelembe.
Z =0,5-Coverage + 0,5 Mix,, (4.19)

A helyi, mintavételezési mez6 szintli kevertségi mértékek kiszamitasa
lehetdveé teszi, hogy vizualizaljuk a kevertség eloszlasat a kilépd feliileten,
valamint felhaszndlasukkal a teljes metszeti sikra vonatkozé metrikakat is
meghatarozhatunk. A tanulmanyban arra voltam kivancsi, hogy a relativ kevertség
¢s a lefedettség hogyan alakul a szoréfej kialakitdsdnak (furatszdmanak és a
furatok dodlésszogének) fiiggvényében. A kiilonbozd konstrukciok keverési

teljesitményének kiértékeléséhez a fent leirt metrikakat alkalmaztam.

Halofiiggetlenségi vizsgalat

Halofliggetlenségi vizsgalatot végeztem, hogy a CFD modell megolddsanak
megbizhatosdgarol meggy6zodjek. Ot kiilonbdzd szamitasi hald hasznalata mellett
mérleghibat szdmitottam, valamint a futdshoz sziikséges 1dot is feljegyeztem. A
szimulaciok Intel Xeon 2,4 GHz CPU-val és 80 GB RAM-mal rendelkezo
személyi szamitdgépen futottak. A 4.12. dbra a 10_20-as konstrukci6 esetében az

impulzusmérlegre lefuttatott halofliggetlenségi vizsgalat eredményeit mutatja.
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4.12. abra. A halofiiggetlenségi vizsgalat eredménye impulzusmérlegre.

Szamitdsaimhoz a legfinomabb, koriilbeliil 1,2-106 elemszamu szamitasi
halot alkalmaztam, mert azzal kellden alacsony a hibaérték, a szamitasi idot
tekintve még éppen elfogadhatd, és a tendencia alapjan tovabbi finomitastol
feltehetden nem varhatunk jelentds javuldst a mérleghibat illetéen. A szamitési
halo alapvetden tetraé¢deres elemekbdl all. A hatarfeliileteken és a sarkokban
kisebbek a haloelemek ahogy az a berendezés feliilnézeti abrajan is latszik (4.13.

abra)

4.13. abra. A szamitasokhoz alkalmazott halé a 4 0-s konstrukcio esetében.

Kiserleti berendezés és tartozkodasi ido analizis

A modell kisérleti validalasahoz létrehoztuk a multijet keverd fizikai
modelljét, amely a CFD modellel azonos geometriai paraméterekkel rendelkezik.
A csO a csében elrendezésii eszkozhdz tartozod szorofejek Mendelmax 2.0 3D

nyomtatoval lettek elkészitve CAD rajzok alapjan. A szérofejek a belsd csé
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végéhez lettek illesztve. A 4.11. dbran is bemutatott nyolc alap konstrukcié a 4, 6,
8 és 10 furatos kialakitas, mindegyik egyenes furatos és érintéiranyban 20°-kal
dontott szoges valtozatban.

A fizikai kisérlet soran mértiik a tartozkodasi 1d6 eloszlast piros indikator
hasznalataval. A bels6 és a kiils6 bemeneten is viz aramot vezettiink be 90 I/h
térfogatirammal. A 4 g/l piros szinli indikatort Dirac delta fiiggvényhez
kozelitden, impulzusszeriien juttattuk a rendszerbe. Minden konstrukciéval harom
mérést végeztiink el, ezek értékeit atlagoltuk. A tartdzkodasi id6 eloszlas
meghatarozasdnak elsé 1épésében az indikator koncentracidoval aranyos
szinintenzitas id6beli valtozasat rogzitettiik a keverési zonaban egy Sony CX115E
HD kameraval. A kiemelt képtartomany (Region of Interest, ROI) a kdzvetleniil a
kimenet el6tti térrész volt. A 4.13.a dbra a videofelvételek feldolgozasanak
folyamatat ismerteti. A rogzitett képkockak piros, zold és kék (R, G, B)
szinkomponensekbdl alloé pixelekbdl tevodnek oOssze. A rogzitett képkockak
szinintenzitdsanak szdmitdsdhoz a pixeleinek atlagolt szinkomponens értékeit
hasznaltuk ((R+G+B)/3). A hattérintenzitast ugyanigy szamitottuk azokbdl a
képkockakbol, amelyekben még nem tlinik fel az indikator (minden felvétel elsd
25 képkockdja). Az igy kapott hattérintenzitas értéket kivontuk az Osszes
képkocka intenzitasértékébdl, hogy a jelzéanyagot nem tartalmazd képkockak
intenzitasa 0 legyen. A tartdzkoddsi id6 eloszlasfliiggvény az egymadst kdvetd
pillanatok rogzitett képeinek szinintenzitds-értékeibdl all dssze. Utolsod 1épésként
kiszamitottuk az atlagos tartozkodasi 1dot. A kisérletekbdl adodo atlagos
tartozkodasi idoket az egyes szorofej-konstrukciok esetében a 4.14.b abran 1évo
kék oszlopok mutatjak.

A fent részletezett modon végzett kisérletek eredményeihez hasonlitottuk a
CFD modell eredményeit. A CFD modell alkalmazéasaval Ggy nyertink RTD
gorbét, hogy a jelzéanyagot impulzusszeriien (0,2 s-on keresztiil) vezettiikk be a
belsé bemeneten keresztiil, és ezt kovetéen iddpillanatonként rogzitettiik a
kimeneti peremen jelentkezd jelzéanyag koncentracidt. A gorbék alapjan atlagos
tartozkodasi 1dot szamitottam minden esetre a 3.8. egyenlet szerint. Ezek értékét a

4.14.b abran 1€vo piros oszlopok jelolik.
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4.14. abra. a) A videofeldolgozas folyamatdbraja. b) Modell validacio a kisérleti
¢és szimulacids atlagos tartdozkodasi idok 0sszehasonlitasaval.
c¢) Koncentraciogdrbék hatfuratos, kiilonbozd délésszogl szorofejet alkalmazo
szimulaciok esetében.

A 4.14. 4bra b) részében oszlopgrafikonon abrazoltam a méréssel és a
szimuldcioval nyert 4tlagos tartdzkodasi idoket. Habar a tokéletesen kevert
egységek atlagos tartozkodédsi idoknek azonos térfogataramok és térfogatok
mellett azonosnak kell lenni a 4.20. egyenlet alapjan, a mi esetiinkben nem
beszélhetiink tokéletes kevertségrol, és a holtterek kialakuldsa miatt a valodi

térfogat a geometriai térfogatnal kisebb.

.10~4m3 .
Y10 ™ o 0.0015h =565 (4.20)
Q 905
ahol V a térfogat és Q a térfogataram.
A valdédi, hasznos térfogatot igy szamitottam, hogy csak azoknak a
haléelemeknek a térfogatat adtam hozza a teljes bejart térfogathoz, amelyben a

sebesség nagyobb volt, mint 0,01 m/s. Ezt elosztva a geometriai térfogattal, a

4.5. tablazat értékeit kaptam az egyes szorofej-alapesetekre.
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4.5, tablazat. Az alapesetek szimulaciobol szamitott atlagos tartozkodasi idok és
a holtterek leszamitasabol adodo hasznos térfogatok.

Eset Atlagos tartozkodasi id6 [s] | Hasznos térfogat
40 5,60 96,26%
4_20 5,69 98,67%
60 5,44 95,53%
6_20 5,51 99,92%
8 0 5,41 94,69%
8_20 5,45 94,93%
10 0 5,38 93,24%
10_20 5,65 95,73%

A tablazat adatait pontdiagramon megjelenitve a 4.15. 4brat kapjuk. Ezen

piros négyzettel jeldltem az idealis, tokéletesen kevert esetet.

100% |
*
99%
’ <&

98%
8
‘g 97%
2 o6% *
P ¢
E 95% / <+

94%

93% *

92%

5.35 5.40 5.45 5.50 5.55 5.60 5.65 5.70 5.75
Atlagos tartézkoddsi idé [s]

4.15. abra. A nyolc alapesetre szamitott hasznos térfogatok és az atlagos
tartozkodasi idok alakulasa (kék rombusz) és a tokéletesen kever egységtdl vart
eredmény (piros négyzet).

A holtterek jelenléte csak csokkentené az atlagos tartdzkodasi idoket, de a
vizsgalt esetekben visszakeveredés is torténhetett (ahogy majd a 4.16. abran az
aramvonalakbol latszik is), amelynek a hatasa viszont megndveli a tartdzkodési
1dét.

A mért és a szimuldciobdl szamitott atlagos tartozkodasi 1d6 értékek kozott

az egyezést a legtobb esetben elfogadhatonak talaltuk, ezen eredmények alapjan
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validaltnak tekintjiik a CFD modellt. Jol latszik a d6lésszog hatdsa a tartozkodasi
idére. Minden tipusnal igaz, hogy a dontdtt furatos konstrukciok esetében
nagyobb az atlagos tartozkodasi id6. Ez a tény a keveredésre jO hatadssal lehet,
ahogy azt majd késébb latni fogjuk. A jelenséget vizsgalva a 6 furatos
kialakitassal tobb szimuldciot is futtatunk, melyekben a furatok ddlésszogét
valtoztattuk. A do6lésszog ndvekedésével jobbra tolédd koncentraciogorbéket

mutatja a 4.14.c abra.

Eredmények és értékelésiik

A jelen esettanulmany célja, hogy a kordbban bemutatott multijet keverd
késziilék szamara a legmegfelelobb szorofejet kivalasszuk. A kivalasztas legfobb
szempontja, hogy a lehetd leghatékonyabb keveredést biztositsa ¢és ezzel a keverdt
kovetd reaktorban a gyors reakcidk sordn a mellékreakciok esélyét csokkentsiik.

A vizsgalat els6 1épéseként a validalt CFD modellel szimulaltam a jetkeverd
miikodését. A 4.16. abra a nyolc alapesetbdl nyert sebességmezd hossz menti
keresztmetszetét mutatja a keverési zona helyén. A sebesség magnituddja helyileg
megnovekszik a szllk keresztmetszeti furatokban. Mivel a furatok
Osszkeresztmetszeti teriilete megegyezik, ezért minél tobb furat van, annal
sziilkebbek az egyes furatok, ezéltal a jet hatds is fokozottan érvényesil. A
sebességprofilok mellett az aramlasi kép szemléletesebb megjelenitése érdekében
aramvonalakat is dbrdzoltam a belsd €s a kiilsé bemenetrdl inditva 25-25-6t. Piros
vonalak jelzik a belsé bemenetrdl indulé d&ramvonalakat, fekete vonalak a kiils6rél
indulokat. Az egyenes furatos szorofejek esetében a faziselemek a cs6 kozepe felé
terel6dnek (4.16. abra a-d), mig a dontott furatosok esetében az aramvonalak a cs6
fala felé helyezkednek el (4.16. abra e-h), feltehetden holt teret alakitva ki a bels6
térrészekben. Az aramvonalak alapjan azt is megfigyelhetjiik, hogy a dontott

furatos szoérofejek esetében hatasosabb a keveredés.
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4.16. abra. Hosszmenti sebességprofilok és dramvonalak a keveredési zonaban a
nyolc szorofej-konstrukcid esetében. a-d) rendre 4_0,6 0,8 0,10 0, és e-h)
4 20, 6_20, 8_20, 10_20 esetek.

A 4.16. abran a sebességi mezok €s az dramvonalak a kiilonb6z6 szorofejek
keverdteljesitményének csak vizudlis kiértékelését teszik lehetdvé. A keverési
hatékonysag szamszerti jellemzéséhez kidolgoztam egy szemcsekdvetéses
szimulacion alapuld kiértékelési modszert. A modszer bemutatdsahoz a validalt
CFD modellt és az el6z6ekben ismertetett keverési mértékeket hasznalom fel.

A CFD modell altal szamitott stacionarius aramlasi mez6 felhasznalasaval
1d6fliggd szemcsekovetési szimulaciokat futtattam, melyek sordn a faziselemet
jelolo, belsé és kiils6 bemenetrdl egyforma darabszami, a bemeneti feliileten
egyenletes kezdeti eloszlasu szemcsék pozicidadatait rogzitettem tovabbi
feldolgozas céljabol. A kimeneti sikon 4thaladd szemcsék identitdsa €s feliileti
pozicidja szolgaltatja az alapot a konstrukcidk keverési teljesitményének
értékeléséhez, ezeket Poincaré metszetek formajaban a 4.17. abran mutatom be. A
jol kevert rendszerek esetében a piros és fekete pontok egyenletes eloszlassal
helyezkednek el a sik teljes teriiletén. A hossz menti d&ramvonalas abrdk alapjan
sejtett jelenséget a Poincaré metszetek is megerdsitik: az egyenes furatos
szorofejek a cs6 kozeépso régiojaban tartjak a kovetett szemeséket, mig a dontott

furatos konstrukciok a csd fala felé terelik.
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4.17. abra. Poincaré metszetek és kevertségi térképek a kimeneti sikon a nyolc
szorofej-konstrukcid esetében. a-d) rendre 4 0,6 0,8 0, 10 0, és e-h) 4_20,
6 20,8 20, 10 20 esetek.

Ahhoz hogy jol kevert rendszeriink legyen, két célt kell egyszerre elérni.
Eldszor is a pontoknak a Poincaré metszeten minél egyenletesebben kellene
elhelyezkedniiik, tehat a holttereket minimalizalni kell. Masodszor a piros és
fekete jelolok szama lokalisan a mintavételezési mezOkben kozel egyenléknek
kellene lenniiik. A Poincaré metszetek adatai, a részecskék pozicidja és identitasa
(piros vagy fekete) jol hasznalhatéak a lokalis és a teljes kilépd feliiletre
vonatkoz6 kevertségi mértékek meghatarozasahoz, igy szamszerlien, kvantitative
kifejezhetjiik a keverési hatékonysagot.

A Poincaré metszet adatait felhasznalva kevertségi térképeket hoztam 1étre
mind a nyolc szérofej hasznalata esetén, melyek egy els6 benyomast adnak a
rendszer kevertségi allapotarol (4.17. abra). Minden egyes mintavételezési
mezoben lokalis kevertségi mértéket szamitottunk a 4.14. egyenlet alapjan, €és a
kapott szamértéknek megfelelden a mez6hdz egy szint rendeltiink. Fehéren
maradt a mez0, ha a Poincaré metszet alapjan egyetlen szemcse sem érkezett az
adott mintavételezési teriiletre. Ezek a fehér teriiletek a holttereket jelolik, ahol az
aramlas sebessége alacsony. A mintavételezési mezot sziirkére szineztem, ha a

lokalis kevertség 0,2 ald vagy 0,8 folé esett. Ez azt jelenti, hogy vagy a piros
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szemcsék vagy a feketék voltak talsulyban. A kevertség szempontjabdl az
identitas mindegy, ezeket a teriileteket gyengén kevert régioknak tekinthetjiik. A
legjobban kevert mezoket vilagoszolddel jeloltem, ezek azok a mezdk, ahol az M;
érteke 0,4 és 0,6 kozottinek adodott. Sotétzolddel a kozepesen jol kevert mezoket
jeloltem. Ahogy a 4.17. abran is latszik, azok a szoérofejek, amelyek tobb furattal
rendelkeznek, jobb keverési teljesitményt nyujtanak, kiillondsen is a dontott
furatosak, igaz esetlikben a jol kevert régiok az eszkoz fala koriil alakulnak ki.

A szorofejek keverési teljesitményét a koradbban bevezetett metrikak
szamitasaval is értékeltem. A teljes kilépo feliiletre négy metrikat definidltam: a
lefedettséget, a relativ kevertséget, az abszolut kevertséget és a Z célfiiggvényt.
Ezek mindegyikét a nyolc esetre kiszamitottam, és a kapott értékeket grafikonon a
4.18. abran abrazoltam. Az egyenes furati szorofejek esetében mind a négy
metrika vagy stagnalt, vagy csokkent, a relativ és abszolut kevertség esetében
minimalisan ndvekedett 6-t61 10 furatig. A dontott furatd szoérofejek
igéretesebbnek mutatkoztak, a 6 20-as konstrukcio érte el a maximumot a
lefedettség ¢és a Z fiiggvény érték esetében, a 8 20-as konstrukcié pedig az
abszolut és relativ kevertség esetében (4.18. ébra). A mindkét (lefedettség ¢és
kevertség) célt egyforma sullyal figyelembe vevd Z célfiiggvény értékének
maximumat vettem mérvadonak, ezzel a nyolc vizsgalt szérofej koziil a 6 _20-as
konstrukciot talaltam a leghatékonyabb keverést biztositd kialakitasnak, amelyet
egyébként a 4.17. abra vizualis keveredési térképe is megerdsit. A pontdiagramon
az Osszekotd egyenesek csak a szem vezetését segitik, értékek csak a pontok

helyén vannak.
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4.18. abra. A teljes kilépo feliiletre szamitott keveredési metrikak a) az egyenes
furata szorofejek, és b) a dontott furat szorofejek esetében.
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A kovetkezOkben azt vizsgaltam, hogy a hatékonysag ndvelheté-e a
dolésszog valtoztatasaval, ezért a legeredményesebbnek adddott hatfuratos esetre
dolésszog vizsgalatot végeztem 0°-t6l 25°-ig 1°-os Iépéskozzel. A lefedettség
vizualis értékelésére alkalmas Poincaré metszeteket néhany dolésszog esetében a
4.19. abra mutatja. Jol megfigyelheto rajtuk, hogy a dolésszog ndvelésével hogyan
alakul ki a cs6 kdzepén egyre jobban a holttér, ahogy a faziselemek a csé fala felé
terelodnek. Megfigyelheté azonban az a jelenség is, hogy meredek dolésszog
esetén habar a falhoz terelddnek a jelol6szemcsék, onnan vissza is verddnek, ezzel

viszont csokkentik a cs6 kozepén kialakulo holtteret.

4.19. abra. Poincaré metszetek a hatfuratq, kiilonb6z6 délésszogii szorofejek
esetében. A ddlésszog az a)-1) abrakon rendre 1°, 4°, 7°, 10°, 13°, 16°, 19°, 22°,
25°.

Az Osszes vizsgalt eset metrikdinak értéke a 4.20. abran lathat6. Ahogy a
gorbékbdl latszik, a lefedettség a 11°-0s d6lésszogh furatnal éri el maximumat, az
erosebben dontott furatok fal felé tereld hatisa mar hatraltatja a holtterek
csOkkentését. A dolésszog tovabbi novelése 18° folott azonban a visszaver6dd
falhatas miatt 4jbol noveli a lefedettséget. Mind az abszolut kevertség, mind a Z

célfiiggvény értéke a 23°-os dolésszognél éri el maximumat.
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4.20. abra. A teljes sikra szamitott metrikak alakuldsa a 6 furatos konstrukcidéban
kiilonb6z6 (0-25°) dolésszogek esetében.

A szamszer(i eredmények alapjan az esettanulmanyban vizsgalt cs6 a csében
elrendezésti tobbfuratos jetkeverd szamara a 6 23-as szorofej-konstrukciot
javasoltuk. Ez 95,3%-os lefedettséget, 51,1%-o0s abszolut kevertséget és 74,5%-0S

kombinalt kevertségi értéket eredményez a Z célfiiggvény szerint.

Osszefoglalds

Az esettanulmanyban létrehoztam egy csé a csOben elrendezésii tobbfuratos
jetkever6 CFD modelljét. A modellt fizikai rendszeren végzett mérésekkel
validaltuk a tartézkodasi id6 analizis médszerével. A kisérletben videokameraval
rogzitettiik a befecskendezett festékanyag kimosodasat, és ebbdl meghataroztuk a
jellemzd tartozkodasi id6 eloszlas fliggvényt, majd kiszamitottuk az atlagos
tartozkodasi 1d6t. A szimuldcidban komponensmérleg alkalmazasaval az
impulzusjelre adott valaszfiiggvény alapjan szamitottam az atlagos tartézkodasi
1dot. A kiilonbozo szorofejek keverési teljesitményének szamszert értékeléséhez
szemcsekovetési szimulacidkat futtattam. A homogenitas magas fokdnak elérése a

keverdegységet kovetd reaktor megfeleld miikodéséhez elengedhetetlen. Poincaré

crer
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pillanatban, amikor a berendezést elhagyjak. A pozici6 és az identitasadatok
felhasznaldsaval keveredési metrikdkat definidltam és szamitottam. A modszer
legnagyobb elénye a hagyomanyos, komponensmérleg szamitasan alapulod
szimulacios vizsgalatokkal szemben, hogy az itt bemutatott szdmitasokhoz csak a
staciondrius sebességmezdt hasznaljuk fel, emiatt szamitashatékonyabb. A teljes
kilépd feliiletre definialt kevertségi metrikak lehetévé teszik a kiillonbozd szorofej-
konstrukciok keverételjesitményének szamszerli 6sszehasonlitasat. A nyolc alap
kialakitasbol a 6 furatos, 20°-kal dontott furat szoréfej nyujtotta a legjobb
keveredési eredményt a lefedettséget és kevertséget egyforman figyelembevevo Z
célfiiggvény alapjan. Tovabbi vizsgalatokat végeztem a dodlésszogekkel,
amelyekbdl a 6_23-as konstrukcié adddott legjobbnak. Fontos megjegyezni, hogy
a szorofejek kialakitdsandl figyelemmel voltunk az egyszerli fizikai
megvalosithatosagara is.

Tovabbi tervek kozt szerepel a keverdfej konstrukcié még jobb eredményt
nyujto fejlesztése, és a miikddtetési paraméterek bedllitasa a multijet keverd lehetd
leghatékonyabb miikodése érdekében. A szemcsekovetési kisérleteket ki lehetne
egésziteni haromdimenziosra, mely soran a teljes keverési zondban talalhato
pozicidadatok felhasznalasaval a tanulmanyban ismertetett moédon szamitanank a
keveredés mértékét egy adott idSpillanatban. Erdekes lehetne még az is, hogy a
kilépd peremre érkezd jeloldszemcsék iddbeliségét figyelembe vessziik, vagy
mondjuk szomszédos jelolészemcesék esetén a trajektoria szétvalasokat vagy
megmaradasokat figyeljiik. A tanulmanyban bemutatott mddszer a keverési
teljesitmény értékeléséhez alkalmas lehet hasonld rendszerek vizsgalatahoz is,

ennek tovabbi példakon vald bemutatésa is lehet egy jovdbeli feladat.
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4.3. Laboratoriumi méretit fluidizacios berendezés CFD

modellezése direkt numerikus modszerrel

A fluidizdci6 mivelete olyan vegyipari folyamatokban fordul eld,
amelyekben szilard szemcsetomeget szeretnénk érintkeztetni gazzal. A fluidizacio
Iényege, hogy a kezdetben nyugvé fluidagy gazzal torténd befivas hatasara a
szemcsetomegnek bizonyos szempontbol folyadékokra jellemzd tulajdonsagai
lesznek. A cél lehet kémiai folyamatok intenzifikdldsa (példaul
katalizatorszemcsék esetében) vagy fizikai muvelet, példaul szaritds, keverés
hatékonyabba tétele. A szilard szemcsékbdl allo toltet fluidizalt allapotaban
intenzivebben megy végre komponens- vagy hdatadés, ezért a vegyiparban a
fluidizaciés miiveletek kutatasa érdekes €s fontos teriiletet jelent. Fluidizaciot
alkalmaznak az asvanyolaj-iparban a fluiddgyas katalitikus krakkolas (fluid
foglalkoznak John ¢és munkatarsai [98], statisztikai elemzésiikkel és
optimalizaciéval pedig Ebrahimi és Ghazvini [99]. Forgoagyas fluidizacios
berendezéssel a szemcsék valogatasat lehet elvégezni [100]. Idakiev és
munkatarsai a fluidagyak induktiv fiitésének vizsgalataval foglalkoztak, azon
belill is azzal, hogy a héatadas hogyan hat a magara a fluidizaciora [101], a szilard
szemcsék szaritasara [102], és bevonasukra [103]. A legtobb kisérleti fluidizacios
berendezés egy hengerbdl 4all, benne a szilard szemcsés toltettel. Ilyen
berendezésekben végezték a méréseket az utdbb felsorolt tanulmanyokban is.
Gyakori kialakitas az ugynevezett kvazi kétdimenzios kisérleti fluidizacios agy is.
Ez egy olyan haromdimenzios berendezés, amelynek mélység paramétere nem
szamottevd a szé€lességhez ¢€és magassaghoz képest, és tulajdonképpen egy
hengeres berendezés keresztmetszetét utdnozza. Az ilyen kisérleti berendezések
elénye, hogy segitségével lathatova valnak a részecskeagy belsejében lezajlod
fluidizacioés folyamatok, a részecskék mozgasa, és tanulmanyozhatok a kiilonb6zé
fluidizacios sebességek mellett kialakulo szilard-gaz kétfazist dramlas.

A fluidizacios folyamatra is igaz az az &ltaldnos megallapitds, hogy a
részletes, szemcseszintli modellek alkalmazasaval részletes képet kaphatunk a
fluidagyban kialakuld gaz-szilard kétfazisu aramldsrél. Az irodalmi attekintés

fejezetében mar ismertettem a leggyakrabban alkalmazott modellezési
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modszereket, azok koziil esettanulmanyomban a direkt numerikus szimulacio
modszerét alkalmaztam.

Géz-szilard rendszerek esetében a fluid fazis Osszenyomhato, ezért az
aramlas dinamikajat leir6 parcialis differencidlegyenletek hiperbolikus jelleglick
lesznek, ennek megfeleléen a megoldasukra alkalmazhaté példaul a bevezetében
bemutatott MacCormack véges differencidk modszerén alapul6d kétlépéses, térben
¢és id6ben is masodrendli pontossagu algoritmus. Mivel a fluidizacios folyamat
soran a gaz betaplalas kezdetekor vagy idékozben nagy sebességgradiensek
alakulhatnak ki a fluidagyban, a megolddmodszer sajatossagabol eredd esetleges
numerikus oszcillaciokat a megoldasban fontos lenne elkeriilni TVD-
MacCormack modszer alkalmazéasaval. Erre ebben az esettanulmanyban még nem
keriilt sor. A modell validdlasdhoz a kétdimenzids szimulacids eredményeket
Ossze lehet hasonlitani a kvazi kétdimenzios fluidaggyal torténd kisérletek
nagysebességli kameraval késziilt videofelvételek képfeldolgozas soran nyert

részecske pozicio adatokkal.

Modellegyenletek

A fluidizacios folyamat, a gaz-szilard kétfazisi aramlds modellezésére a
diszkrét numerikus szimulaciok kozé tartoz6 immersed boundary modszert
valasztottam. A gazfazisra felirt 2D-S momentummeérlegben a viszkozitast
elhanyagoltam, mert annak hatdsa nem befolyasolja szamottevden az aramlasi
valtozok értékét. Az Euler egyenletek megmaradasi alakja szolgalt alapul a

szamitasaimhoz (4.21-4.24. egyenletek).

op , dm  on _

E+a+£—0 (4-21)
2

om  (5+r) () _

wt =t =k (4.22)

2
on (%) (%)
~ ai +—= = f, (4.23)

=0 (4.24)
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ahol p az araml6 kozeg stirtisége, m és N az X és a z iranyu sebesség ¢és a siirliség
szorzata rendre (a momentumok intenziv megfelel6i), E a belsé és a mozgési
energia 0sszege, P a nyomas, t, X és z az id6- és helykoordinatak rendre. fy és f, a
body force tagok, melyek a hely és az id6 fliggvényei.

A fenti egyenletek megoldadsdhoz a MacCormack modszert alkalmaztam. A
szimuladcids vizsgalatokban nem a teljes berendezés és az Osszes részecske
aramlasat szamitottam, hanem egyetlen részecske mozgasat tekintettem a
tényleges berendezésnél kisebb szamitasi tartoményon. A kisérleti berendezést és

a szamitott tartomany nagysagat a 4.21. abra reprezentalja.

4.21. abra. A kvazi kétdimenzids fluidagy megjeldlve a kiemelt, modellezett
térrészt és egy, a videofeldolgozas alapjan felismert és kovetett golyot.

A kétdimenzids aramlasi modellben a 4.21. dbran jelolt téglalap also éle a
bemeneti perem. Itt a bearamld gaz sebességére a 3,33 m/s értéket vettem fel,
mivel a perem szélessége a fluidagy teljes szélességének harmada, a bevezetd
csonkon pedig szabalyozottan 10 m/s a sebesség. A kimeneti peremen (a téglalap
felsd ¢le) konstans, 1égkdri (105 Pa) nyomast, az oldals6 falakon pedig nem-
csuszd (no-slip) peremfeltételt definialtam. Kezdeti feltételként a teljes
geometrian a momentumokat illetden x és z irdnyban is 0 kg/m> m/s-ot adtam
meg, a siirliséget az egyetemes gaztdrvény alapjan a megadott kezdeti 1égkori
nyomasbol, a levegd datlagos moltomegébdl (28,8 g/mol), az egyetemes

gazallandobol (R=8,314 J/(mol-K)) és a hdméréskletbdl (a szimulacio teljes ideje
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alatt konstans 298 K (25 °C)) szamitottam. A peremeken és kezdeti feltételként az
egész térrészben a belsd és mozgasi energiat a 4.25. egyenlet alapjan szamitottam.

2 2

= 2 (4.25)

ahol y=1,4 a 20 °C-os levegének megfelelGen.

Faziskolcsonhatas

Az immersed boundary modszernek megfeleléen a virtudlis peremek
kialakuldsa a momentumegyenletek jobb oldaldhoz adott térfogategységre
vonatkoztatott fajlagos er6kkel, Gn. body force tagok segitségével valosul meg.
Ezek értékét a direct forcing modszer szerint szamitottam (lasd 2.3.2. alfejezet). A
body force tagok alkalmazasdnak koszonhetéen a gazfazis sebessége ugy keriil
meghatdrozasra, hogy a részecske kozvetlen kdrnyezetében az megegyezik a
részecske sebességével. A lagrange-i racspontok kozelében elhelyezkedd euleri
pontokat egy tavolsagalapt feltétel szerint detektaljuk, és a lagrange-i pontoktol
val6 tavolsaguk szabja meg, hogy milyen mértékben vannak egymasra hatdssal. A
2.3.2. alfejezetben bemutatott interpolécios figgvények  koziil
esettanulmanyomban a haromszogfliggvényt alkalmaztam a 4.26. egyenletnek

megfelelden.

" o< <h
wdy=1"x =M=

0, h < |d|

(4.26)

ahol w a suly ([0,1]), h az euleri halo racsszélessége, d az adott euleri és
lagrange-i racspontok kozotti euklideszi tavolsag.
az azt koriiloleld gazaram tulajdonsagaitol fiigg. A testre hato erket lagrange-i
pontonként szadmitjuk a kornyezetében taldlhatdo euleri pontok sulyozott
nyomasértékébdl, majd ezek szummajabol szamitjuk a test kdzéppontjara hato

er6t, ennek alapjan pedig a pozicidvaltozasukat. Az attekinthetdség érdekében

98



Esettanulmanyok és eredmények

egyetlen szemcsére hatd erd szamitasi algoritmusat az alabbi felsorolassal adom

meg.

Egyetlen szemcsére haté eré szamitdsi algoritmusa
1. Sorba vessziik az euleri racspontokat;
2. Minden euleri ponthoz sorba vessziik a szemcse hatarat reprezentald lagrange-
1 rdcspontokat, ahol
l. kiszamitjuk az i, j euleri racspont és az adott lagrange-i racspont (X)
euklideszi tavolsagat,
Il. a tavolsagot felhasznalva az interpolacids fiiggvény segitségével 0 és 1
kozotti stlyt (w) rendeliink az adott euleri-lagrange-i racspont parhoz,
I1l.  dimenzionként kiszamitjuk az adott lagrange-i pontra az adott euleri
pontban szamitott tulajdonsagok alapjan az er6t:
a F=-p-w-ds'n—G
ahol p a nyomas, w a stly, ds a feliiletelem hossza, n a normalvektor,
G a gravitacios erévektor;
Osszegezziik a lokéalisan szamitott eroket;
Kiszamitjuk a gyorsulast a részecskére hatd er6b6l (a=F/m);
Kiszamitjuk a részecske sebességvaltozasat a gyorsulasbol;

A sebesség alapjan kiszamitjuk az id6lépés alatt bekovetkezd poziciovaltozast;

crer

N o g > w

elmozdulas alapjan.
A fenti lépések az altalam alkalmazott modszert mutatjdk be a szemcsére

hato er6 kiszamitasahoz.

Eredmények

A kisérleti validalashoz a 3.8. alfejezetben bemutatott eszkozoket
hasznaltam. A nagysebességli Optronics CL600x2 kameraval készitett 500 fps-0s
nyers videofelvételt MATLAB kornyezetben dolgoztuk fel. A szimulaciot
négyféle halofinomsaggal is lefuttattam. A sebességvektorokat kirajzolod dbran jol
lathato, hogy az aramlas kikertili a részecskét a virtudlis peremének megfeleléen

(4.22. 4bra).
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4.22. abra. Sebesség-vektormez6 a kiilonb6z6 finomsagu euleri halok esetén. A
racsszélesség a) 0,001 m, b) 0,0008 m, ¢) 0,0006 m, d) 0,0004 m volt.

Szamitasaimat egy 16 GB memodriaval rendelkezdé Dell Optiplex 790 PC-n
végeztem. A direkt numerikus szimulaciok esetében ajanlott az euleri
racsszélességnek a szemcse méretétdl legalabb egy nagysdgrenddel kisebbnek
lenni, ezért egyes vizsgalt eseteket eleve kizarhattam volna, de azért azokkal is
elvégeztem a halofiiggetlenségi vizsgalatot (4.23 abra), melynek alapjan a 1672
elemszamot eredményezd 0,0004 m-es racsszélességli halot valasztottam a

tovabbi szamitasaimhoz.
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4.23 abra. Tomegmérlegre szamitott halofiiggetlenségi vizsgalat eredménye
kiilonboz6 racsszélességek alkalmazéasa mellett.

Az idébeli lépéskoz (dt) 7-107 s koriil valtozik a CFL stabilitasi
kritériumnak megfeleléen, emiatt nagyszamu id6lépés sziikséges ahhoz, hogy a
szimulacios (valés) idoben néhany szazad masodpercig is eljussunk.

A videofeldolgozas sordn a nagysebességli kamera altal rogzitett képsorbol

kivalasztottunk egy olyan szemcsét, amely éppen folfelé mozgott (a fluidagyban
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képzddd gazbuborékokban a gizdram felhajté hatdsa és a gravitacid hatasa
keresztiil kovettiik. Minden 0,002. masodpercben rogzitett a kamera egy
képkockat. Kivalasztottam a 0 s, a 0,008 s és a 0,014 s-ban rogzitett képkockakat
(4.24. abra), és a kivalasztott szemcsét megjelolve poziciovaltozasbol sebességet

szamoltam, ezt tekintettem mérési értéknek (4.6. tablazat).

Os 0,008 s 0,014 s

4.24. abra. A kisérlet képfelvételei nyomén kovetett szemcsemozgas harom
kiemelt id6pillanatban.

4.6. tablazat. A mérésbdl nyert poziciovaltozasok és az ebbdl szadmitott
sebességértékek.

Idéintervallum Poziciovaltozas Szamitott sebesség
0-0,008 s 0,0039 m 0,49 m/s
0,008-0,014 s 0,0029 m 0,48 m/s
0-0,014 s 0,0068 m 0,49 m/s

A szimuldciés eredmények a jelenlegi szimulator hasznéalatdval még
jelentdsen eltérnek a mért értékektdl, amely tobbek kozott a TVD és a
non-reflektiv peremfeltétel hianya, valamint a szimulacidéban jelenlévd egyetlen
szemcse (szemben a mérésben jelen 1évé 11000 db-bal) az oka. A modellben
definidlt bemeneti gazsebesség ¢értékaddsa sem volt pontos, ugyanis egy
feltételezésen, €és nem mérésen alapult, ez pedig nagyban befolyésolta a szamitott
aramlési mezd tulajdonsagait, ebbdl kovetkezden a szemcse poziciovaltozasat. A
szemcse mozgasat befolyasold er6k szadmitdsan is fejleszteni kell még, ezért a

szimulacids eredményeket nem tartottam érdemesnek bemutatni.
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Osszefoglalds

Az esettanulmanyban bemutatott modell alkalmas hasonld rendszerek
részletes aramléstani vizsgalatdra. Fontos fejlesztési feladatok a modell
megoldomoddszerét kiegésziteni TVD-vel ¢és a kimeneten non-reflektiv
peremfeltételt definialni. A  tovabbi modellvalidalast tamogathatjdk a
nyomasszenzorokbol gylijtott mérési adatok és a szimulaciobol nyert értékek
Osszehasonlitasa. A modellben mindenképpen sziikség lenne tobb szemcse
egylittes mozgasat kezelni, ezzel egyiitt egymassal €s a berendezés faldval torténd
itkozéseiket is modellezni. Erre a fejlesztésre leginkabb a diszkrét elem modszer

itkdzési modelljeit lehetne felhasznalni.
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4.4, Adszorpcios gaztisztito rendszer modellezése

Kornyezetre €s egészségre artalmas szennyezett gazok keriilnek ki szamos
vegyipari technologiabol, amelyeket a légszennyezés elkeriilése érdekében
tisztitani kell. Szerves oldoszereket haszndld eljarasok soran felmeriilhet ez a
probléma, példaul ioncseréld gyanta duzzasztasakor a folyadékkal torténd kezelés
soran kloérozott szénhidrogének szabadulhatnak fel [104], hasonléan szennyezd
gaz termelddik szintézis gaz pirolizissel torténd elballitasa soran [105]. Minden
érintett technologia esetében sziikség van a kéros szennyezdanyagok megkotésére
legfoképp az iiveghazhatasi gédzok kibocsatasanak csokkentése érdekében.
Gyakori gaztisztitasi technika a fixdgyas adszorber, amellyel a nemkivanatos
komponenseket egy porozus anyag (pl. aktiv szén) megkdti. A fixdgyas
adszorberek toltetei azonban egy id6 utan telitédnek, ezért regeneralni kell Oket,
ez pedig iddszakos ilizemledllassal, egyuttal gazdasagi veszteséggel jar. Egy
gyakran alkalmazott megoldas, hogy parhuzamos fixdgyas oszlopokat helyeznek
egymas mellé, és amig az egyiket regenerdljadk, a masik oszlop tovabb tud
mikodni, de ehhez kétszer annyi berendezés kell. Egy masik megoldas, ha
mozgoagyas adszorberagyat hasznalunk, ahol a friss adszorberszemcséket
folyamatosan taplaljak a rendszerbe. Ez utdbbi a leghatékonyabb a felsorolt harom
megoldas koziil, de modellezési szempontbol a legtobb kihivast is ez jelenti. Az
adszorpcids  gaztisztitd rendszer modellezési esettanulmdnyom célja az
adszorberszemcsén létrejovo fizikai folyamatok részletes modellezése, amely
tdmogathatja a teljes berendezés technologiafejlesztését példaul az optimalis
miikddtetési paraméterek megvalasztasaban.

Adszorbensként sokféle termék 4ll rendelkezésre, melyek anyagi
tulajdonsagaiban valamelyest eltérnek egymastol, de kozds benniik, hogy
atmérdjik 0,5-10 mm kozotti, hdmérsékletre stabilak, és kis atmérdjli porusaik
vannak, amelyek a nagy Osszteriiletii aktiv feliiletet biztositjak. Néhanyat ezek
kozil a 4.7. tablazat ismertet [97]. Egy csoportositas szerint az adszorbensek nagy
része harom csoportba sorolhatd: az oxigéntartalmu vegyliletekébe, amelyek
tipikusan hidrofilek (vizmegkotdk) és polarosak, példaul a szilikagél és a zeolitok;
a Szénalapu vegyiiletekébe, amelyek tipikusan hidrofébok (viztaszitok) és

apolarosak, példaul az aktiv szén és a grafit; végiil a polimeralapi vegyiiletek
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csoportjaba, amelyeknek lehet polaros vagy apolaros funkciondlis csoportjuk is a
pordzus polimer matrixban [106]. Adszorbens anyag alkothatja az egész szemcsét,

vagy csak adszorbens rétegként beborithatja egy hordozdszemcse feliiletét.

4.7. tablazat. Adszorbens anyagok ¢és tulajdonsagaik [97]

Adszorbens Adl
max. Aktiv Szemcse- . Bels6 Latszolagoy Hévezetési Fajhé
Adszor- 1 . o porus- - P . <
bens regeneralasi | feliilet atmérd Atmerd porozitas | stirliség tényez0 Cp
hémérséklete | a,[m%g] | d [mm] o [%] plkg/m®] | A [W/(m.K)] | [kd/(kg.K)]
[oc] dP [nm]
Aktiv
500 300...360 | 2..10 2.5 25..35 800 0,09..0,1 0,88...0,92
AlLO;
Szilika-gél | 400 300..800 |1..5 2.4 35...50 700 0,09..0,1 0,92...0,95
L\;Ii(::iekula- 600 600...1100 | 1..5 03..1,2 |30..55 700...1000 | 0,04...0,05 0,8..0,92
Aktivszén | 150 600...1500 | 1..4 05..7 50...70 300...600 |0,175..0,28 | 0,84

Az adszorpcios gaztisztitd oszlopot vizsgalhatjuk mikro- és makroszinten.
Technologiafejlesztés szempontjabol érdekesebb a makroszint (a teljes agy,
berendezés) vizsgalata, &m ahhoz ismerniink kell az adszorberszemcsék szintjén
végbemend folyamatokat. Ezek ismeretében lehet példaul optimalis

oszlopmagassagot vagy gazaramot megadni.

Modszerek és eszkozok

A kovetkezOkben bemutatando esettanulmanyban egyetlen, nem-mozgd
szemcsére alkalmaztam a részletes adszorpcidos modellt a folyamat részletesebb
megértése €rdekében. Az IBM modszernek megfelelden egy nagysagrenddel
kisebb haloméretet hasznaltam a gaz tulajdonsagainak szamitdsdhoz, mint
amekkora a szemcse. Mivel gdz-szilard rendszerrdl van sz6, a modellegyenletek a
folytonossagi, a komponens-, a momentum-, valamint az energiaecgyenletekbdl
allnak. Az egyenletek parcialis differencialegyenlet-rendszert alkotnak, amelyet a
2.4.4. alfejezetben ismertetett MacCormack moddszerrel oldottam meg. A
megoldasban TVD technikat is alkalmaztam, és a kilépd peremen non-reflektiv
peremfeltételt definidltam. A gaz-szilard kolcsonhatds modellezéséhez a direkt
numerikus szimuldcidos moddszerek koziil az immersed boundary modszert
alkalmaztam, amelynek altalanos bemutatasa a 2.3.2. alfejezetben talalhato.

A részecske feliiletén 1étrejovd adszorpcids folyamatok vizsgélatdhoz egy

kétdimenziés modellt alkalmaztam, amely egy téglalap alakd szamitasi
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tartomanybdl all oldalsé bemenettel és a tetején 1évo kimenettel. Az adszorbens
szemcse az immersed boundary modellezési megkozelités szerint egy
nagysagrenddel nagyobb, mint a gaz szamitisi haldja. A szemcse 3,2 mm
atmér6jii, a gaz szamitasi haldjanak racsszélessége 0,4 mm. A modellezett
aramlasi tartomany, valamint a lagrange-i és euleri szamitdsi pontok kozotti

interpolacidhoz hasznalt fiiggvény a 4.25. abra lathato.

v
[
*
(2]

/ 2dx \
J€—>\

suly

k; . | | 1 | .
=2 & !
m3

in

=102 N SR
V=102 N I ox ; .
—> T e a6k
| | | | | tavolsag

4.25. abra. a) A gaztisztito oszlop oldals6 bemenettel. b) A szemcsét leird
lagrange-i pontok és a fluid euleri pontjai a racsszélességgel, ds=2,61-10" m,
dx=dz=4-10"* m. ¢) Interpolacios fiiggvény, mely a tavolsag alapjan stlyt (egy 0
¢és 1 kozotti szorzot) rendel az egyes értékeknek.

Az aldbbi aramlési egyenletekkel irtam le a vizsgalt rendszert (4.27-4.31.

egyenletek).

B < “2n
%+@+@=R (4.28)
on o gz;l’) N a(f) K (4.29)
25 A5m)_ (4:30)

dpE 6(2-(pE+p)) 6(2-(pE+p)) _
T —t+t—+5,—=0 (4.31)

ahol py a nemszennyezé gazelegy sliriisége, C a szennyez$ gazkomponens
tomegkoncentracioja, p a teljes tomegkoncentracié (p=pg +C). m és n a momentum
intenziv megfeleldjének X és z iranyl Osszetevdje. R a szennyezd komponensre

vonatkozo nyel6tag, amely a komponens adszorpcidjdnak kdszonhetd, p a
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nyomas, amelyet az idealis gaztorvénybdl szamitunk, Fy és F, a body force x és z
iranyu Osszetevdje, amelyek az immersed boundary alapjan a virtudlis peremet
kialakitjak, és E a bels6- és a mozgési energia Osszege.

A szennyezO gazosszetevO megkotési folyamatat egyetlen szemcsén
mutatom be. A szemcse feliiletét diszkretizaltam, és a 4.32. egyenlettel leirt
elsérendl kinetika alapjan szdmitottam a komponensatadast a feliileti elemre és a
felilleti elem telitettségi  fokat (cs). Feltételezem, hogy egyenletes

koncentraciomez6 jon létre a szemcse adszorberrétegén beliil a gyors diffuzidnak

koszonhetoen.
58 =k ds - (c - ¢o) (4.32)

ahol ¢, [kg/m®] a szennyezé gazosszetevé koncentracidja a szemese feliiletelemén,
k [m?s?] a komponens atadasi egyiitthato, ds [m?] a feliileti elem teriilete, C
[kg/m®] a szennyezd gazdsszetevé koncentracidja a gazfazisban és ¢y [kg/m®] a
szennyezd gazdsszetevl egyensulyi koncentracidja a szilard feliileten, amely a

kovetkez6 Osszefiiggés alapjan szamithato: co=bcs [107], ahol b egy konstans.

A 4.28. egyenletben 1évo R forrastagot a 4.33. egyenlet alapjan szamitom.
n=N
Rij=- Z ke-ds- (cij— con) (4.33)
n=1

ahol N az i,j szamitasi racspont kozelében 1évo feliilei elemek szama, n ezek
indexe.

A 4.27-4.31. egyenletek megoldasahoz a masodrendii pontossagti TVD-
MacCormack modszert [108] alkalmazva irtam programot. A TVD technika
alkalmazasa sordn a kétlépéses MacCormack modszer egy harmadik Iépéssel
egésziil ki, amelyben egy disszipacids tag segitségével a numerikus megoldasban
jelentkezd oszcillacio kertilhetd el. A kilépd peremnél non-reflektiv numerikus
peremfeltételt alkalmaztam. A szamitdshoz a programkodot MATLAB
kornyezetben irtam és futtattam.

A gaz-szilard kétfazisu rendszer faziskdlcsonhatdsainak leirasara az

immersed boundary modszert hasznaltam. Ennek megfeleléen a 4.27-4.31.
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egyenleteket a gazfazishoz tartozo, idében allandd, 0,0004 m-nkénti racspontokon
szamitom, a szilard fazis pedig virtualis peremként jelenik meg. Az alkalmazott
halofinomsag valasztasat halofiiggetlenségi vizsgalattal tamasztom ala (4.26.

abra), amelyben a tdmegmérlegre mérleghibat szadmitottam.

8% 45
7% | /I— 40
6% \ - 35
2 5% AN yd - 30
E,, 29% \ / - 25
- \ / - 20
S 3%

KL i 15
2% T, 10
1% 4.__—././ -5
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0 500 1000 1500 2000 2500 3000
Haldelemszam

Futasi id6 [min]

4.26. abra. Halofliggetlenségi vizsgalat.

A megadott geometriaban (amely a gaztisztitd berendezés egy kivalasztott,
szlikitett tartomanya, amelyben csak az egyetlen szemcse, és annak kdzvetlen
kornyezete szerepel) 2916 héloelemet jelentd 0,0002 m-es racsszélességli halo
nem ad sokkal pontosabb eredményt, mint az 1089 haldelemet eredményezd
0,0004 m-es racsszélességli szamitasi hald alkalmazasa, ezért az utdbbi hasznalata
mellett maradtam. A szemcse méretét egy atlagos aktivszén adszorber részecskét
alapul véve 3,8 mm atmérdjtre vettem [97].

A faziskolcsonhatas a kiilonboz6 (euleri és lagrange-i) racspontokon
szamitott valtozok értékének atadasaval is jar, amelyhez interpolacios fliggvényt
kell hasznalni. Esettanulmadnyomban egyszerli haromszogfiiggvényt alkalmaztam
interpolacios fiiggvényként (4.25.c abra). Ennek haszndlata soran a tavolsag
fliggvényében linedrisan csokken az a suly, amellyel a mésik fazis racspontjanal
1évo értéket figyelembe veszem. A szamitasi algoritmus minden iddlépésben sorra
veszi a lagrange-i pontokat, és kivalasztja azokat az euleri pontokat, amelyek egy
bizonyos tavolsdgon beliil helyezkednek el (lasd 4.25.b 4bran a narancssarga
koron beliili pontok). A momentumegyenletbe beépitett direct forcing tag a

gazfazist a szemcse kikeriilésére kényszeriti. A faziskdlcsOnhatds az
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impulzusatadadson kiviil ebben a tanulmdnyban komponensatadast is magéaban

foglal.

Eredmények és értékelés

A 4.27-4.31. egyenletekkel megadott dinamikus modellt TVD-MacCormack
modszerrel oldottam meg egy MATLAB kdrnyezetben fejlesztett koddal. A
kilépd feliileten non-reflektiv numerikus peremfeltételt alkalmaztam. A szennyezd
gazkomponens sliriségét a bemeneten 2 kg/ m?>-re allitottam. A bearamld gaz tobbi
komponensét atlagos Osszetételli levegdnek tekintjiikk. A gaz sebességét a
bemeneten 10 m/s-ra allitottam. A tomegatadasi allandé k=1-10®° m?s?, a b
szorz6 pedig 1,1. A szamitas idélépése a CFL kritériumnak megfelelden 2-107 s
koriil valtozott. Az 5-10° s-os szimulacios idopillanatban a szemcse korili
pedig a 4.27.b abra. Az abra c részében a szemcse felszinének telitédését mutatom
be. A d abran kijeloltem hat pontot a szemcse feliiletén, és azok telitddési gorbéjét
abrazoltam, amelyen jol latszik, hogy a kiilonbozd feliileti pontokon eltérd

iitemben megy végbe az adszorpcio.

kg
“Im?

nens siiriisége kg/m?]
Y
<

Artalmas gazkomp
o o
= >

idélépés x 10°

4.27. abra. a) Sebességi mez6 az adszorberszemcse koriil. b) A szennyez6
gazOsszetevo siirlisége az dramldsi mezOben. c) Az adszorberszemcse feliiletének
telitettsége 50 000 i1ddlepés elteltével. d) A szemcse bizonyos pontjainak
szaturacios gorbéi.
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A szimulécios eredményekbdl lathatod, hogy a modell alkalmas a szemcse
feliileti pontjain az adszorpcids folyamat szdmitdsara, ezaltal kiszdmithatjuk az
adszorberszemcse aktiv életidejét. Ez a mddszer tobb részecske szamitasa esetén
hozzajarulhat a gaztisztitd oszlop optimalis mikodési paramétereinek

meghatdrozasahoz.

Osszefoglalds

Direkt numerikus szimulaciot alkalmaztam egyetlen adszorberszemcsén
végbemend adszorpcids folyamat szimulacidjara, melyben a szennyezd
komponens megkotését egy elsérendli kinetikaval irtam le, valamint a teljes
aramlasi mez6t dinamikusan szamitottam. A gaz-szilard faziskdlesonhatést
immersed boundary és direct forcing modszerekkel modelleztem.

Feltételeztem, hogy az adszorbens anyag a hordozoszemcse feliiletén egy
réteget alkot, amelyben a diffazidé gyors. A tanulmany eredménye, hogy a
kifejlesztett modell feliiletelemenként szadmitja a komponensatadast, igy a
kétdimenzids modellben a szemcse korvonala mentén nyomon tudjuk kdvetni a
telitodés mértékét. A részletes telitettségi adatok felhasznéaldsaval pontosabban
meg tudjuk hatarozni a teljes szemcsére vonatkozd szaturacids idOt, amely
folyamatfejlesztési kérdésekben adhat iranymutatast.

Tovabbi modellfejlesztési feladat e témakorben az adszorberoszlopot tobb
szemcsével feltdlteni, valamint szimuldlni a szemcsék mozgésat, és litkdzéseiket
egymassal és a berendezés falaval. Ez a diszkrételem modszer egyideji
alkalmazaséaval érhetd el. A kibdvitett modell alkalmas lehet egy adszorpcios

toltet milkodésének szimuldcidjara, ¢€s ennek segitségével az optimalis

mikodtetési paraméterek beallitasara.
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4.5. Szilard szemcse iilepedési trajektoriajanak meghatarozasa

newtoni folyadékokban

Szedimentacionak nevezziik azt a jelenséget, amely sordn a kozeg
stiriségénél nagyobb stirtiségli szilard testek a folyadékkal teli edény aljara
iilepednek. Ez a folyamat az ipar ¢€s a természettudomany szamos teriiletén
eléfordul, példaul geoldgiai-biologiai rendszerek esetén [109],
szennyviztisztitasnal [110], vagy tejtermékek eldallitasa soran [111]. Az iilepitést
leggyakrabban elvalasztashoz hasznaljak egy feldolgozo folyamat részeként. A
klasszikus szedimentacié kizardlag a gravitaciés er6t hasznalja fel a
szétvalasztodashoz, ezt a folyamatot azonban kiilonféle technikakkal (pl.
centrifugalassal [112], magneses erével [113], kémiai uton [114], ultrahanggal
[115] stb.) gyorsitani is lehet. Ellener6ként hat a felhajtoerd és a kozegellenallasi
erd, a szilard testek pozicidvaltozasat, lilepedését a rahatd erdk ereddje hatarozza
meg. Az lilepedés soran a test kezdeti sebessége folyamatosan csokken, majd egy
id6 utan a test megsziinik gyorsulni, amikor a ra hat6 erdk kiegyenlitik egymast.
A testek siillyedésének leirdsa, pontosabban a kozegellenallds szamitdsahoz
hasznalt Osszefliggés kivalasztasdhoz az aramlds Reynolds szdmat (lasd 3.1.3.
alfejezet, 3.5. egyenlet) meg kell hatdroznunk, ez alapjan két f6 tartomanyt
kiilonithetiink el. Abban az esetben ha Re<<lI, a Stokes torvény (4.34. egyenlet)
érvényes, magasabb Re szamu rendszerek esetén pedig a Rayleigh-féle
kozegellenallasi er6 szamitasara hasznalatos képletet (4.35. egyenlet) Kkell

alkalmaznunk.
Fp, = —6murv (4.34)
Fp = 2pv2CpA (4.35)

ahol Fp a kozegellenallasi erd, u a kozeg dinamikai viszkozitasa, p a kozeg
stirisége, v a kozeg sebessége a testhez viszonyitva (tulajdonképpen a test
sebessége), A a test vetiiletének teriilete, Cp a dimenziomentes kdzegellenallasi
egyiitthatd, amely fdleg a test alakjatol fiigg, gdmb esetében 0,47.

Fontos megjegyezni, hogy az esettanulmanyomban newtoni kozegekben

vizsgaltam a szilard szemcsék iilepedését. Egy kozeg akkor nevezhetd newtoni
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folyadéknak, ha igaz rd, hogy a sebességgradiens egyenesen aranyos a
nyirofesziiltséggel, ahol az aranyossagi tényez6 a dinamikai viszkozitas.

Ulepedés kdzben a szilard szemcsékre hato erdk ereddje foként a siillyedés
irdnydba mutat, azonban kisebb mértékben oldaliranyba is hatnak, ezzel
eltérithetik az iilepedd testet. A mésések a University College Cork Folyamat- és
Vegyészmérnoki Tanszékének laboratoriumaban késziiltek. A mérési adatokbol

latszik, hogy az tilepedés nem egyenes vonalu (4.28. abra, [116]).
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4.28. abra. Ot, egyenként 5,6 mm atmérdjii nylon golyo iilepedési trajektoriaja
vizben. Az X tengelyen a csd szélessége, az y tengelyen a magassaga szerinti
pozicio lathatd. A berendezés egy 10 cm atmérdji, 50 cm magas csé volt.

A kétfazisi rendszer részletes aramlasi modellje segitségével nyomon
kovethetd a test mozgasa. A kétfazist rendszerek modellezési lehetdségei koziil a
két-folyadék modszer (méasnéven Euler-Euler megkdzelités, TFM) alkalmazaséaval
is lehetséges a szedimentdcios folyadek-szilard rendszert modellezni, példaul
Noetinger munkéjaban a szedimentacids edény alakjanak hatdsat vizsgalta TFM-
mel [7]. Ezt a megkozelitést akkor szoktak hasznalni, ha egy szemcsesokasag
iilepedését akarjak modellezni, de a szemcsesokasdg modellezéséhez hasznalato
az Euler-Lagrangian megkdzelités is [117]. Az Euler-Euler megkozelités elonye a
kisebb szamitasi igény mellett, hogy az iileped6 testek alakja lehet szabalytalan is,
példaul tojashéj tormelékek [118], mivel a modszer csak az egyes szamitasi cellak
kitoltottségi hanyadat veszi figyelembe (lasd 2.1. alfejezet). A diszkrételem

modszer is alkalmazhatd a szedimentacid6 modellezéséhez, de sokkal
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iddigényesebb mint a TFM. Ebben az esetben egyenként szamitjuk a szemcsék
mozgasat és kolcsonhatasukat az dket koriilvevd kozeggel, a fallal és egymassal a
rajuk hat6 erék alapjan [119]. Az elébbi két térfogatatlagolt aramlasi egyenletet
hasznalé moddszer mellett a szedimentacidt is lehet direkt numerikus szimulacids
modszerrel modellezni. CFD szoftverekkel megadott body-fitted modellek is
lehetséges eszkozok lehetnek, dm az elmozdulds utdn liresen maradt térrész
kitoltése miatt is problémas a modszer a nagy szamitasigény mellett. Ez a
nehézség athidalhatd az Arbitrary Lagrangian-Eulerian (ALE, 6nkényes lagrange-
i/euleri) technika alkalmazasaval [120] (ezen az elven miikodik az ugynevezett
moving mesh (mozgd szamitasi hald) mddszere is), de kutatdsi tevékenységem
nem ebben az iranyvonalban haladt, hanem inkébb az idében &llandé euleri
szdmitasi halot alkalmazo direkt numerikus modszer alkalmazdsa mellett
dontottem. Az immersed boundary médszer hasznalata elényos, mert a szamitasi
halét nem kell minden id6lépésben, minden geometriavaltozasndl ujradefinialni,
¢és lres terek sem maradnak a virtualis peremkezelésnek koszonhetden (2.3.2.
alfejezet), azaz a szimulécio teljes ideje alatt minden szamitasi tartomany értéket
kap. Egy specidlis fajtdja az Immersed Boundary modellezési megkozelitésnek a
Level Set modszer (3.1.1. alfejezet), és az ehhez hasnold Phase Field modszer.
Ezek lényege, hogy a teljes geometria minden szamitasi pontjaban értelmezett egy
0 és 1 vagy -1 és 1 kozotti értékkészletli fiiggvény, amely az adott szamitési
cellanak a fluid/szilard Kkitoltottségi  ardnyat adja meg. Ez hasonlit a
térfogatatlagolt modszerek térfogati hanyaddhoz (g), de itt nagysagrendnyi
kiilonbségek vannak, egy szamitési celldban nem hogy egynél tobb szemcse esik,
de egy szemcse lefed tobb szamitasi cellat is, mig némelyeknek csak egy részét
(ezek adjak a koztes értékeket). A logika itt is ugyanaz, viszont mivel a szamitasi
halo Level Set mddszer esetén a szemcsétdl egy nagysagrenddel kisebb, lesznek
olyan celldk, amelyekben a fliggvény a sz¢€lso értekeit veszi fol, jelezve, hogy az
egyik vagy a masik fazis van jelen a szdmitdsi celldban, tovabba lesznek a
fazishatar szamitasa szempontjabol olyan celldk, amelyekben mindkét fazis jelen
van.

Ebben az esettanulmanyban newtoni folyadékban iilepedd egyetlen szilard

crer
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fehérdoboz (a priori) modellel nyert szimulacids vizsgalatok alapjan jobban

megérteni a fizikai mérésekben tapasztalhato sebességfluktudcio okait.

Modellezés Level-Set modszerrel

A szedimentacids rendszert eldszor Level Set moddszerrel kezdtem
modellezni COMSOL Multiphysics programcsomag segitségével, ezért a
bemutatand6 eset kapcsan is ezt a tanulméanyt ismertetem elészor. A modszer
altalanos elméleti bevezetdje a 3.1.1. fejezetben talalhato.

Kiilonallo  testek mozgasanak modellezésére fluidumban jobban
alkalmazhatd a Level Set modszer az Euler-Euler tipustt modszerekhez képest,
mivel azok inkabb szemcsetomegek mozgasanak modellezésére alkalmasak. A
Level Set modszer tovabbi eldnye, hogy kdnnyen kezelhet6k az alakvaltozasok,
az egyesiilések és a szétvalasok [121]. Ez nyilvanvalova teszi, hogy valdjaban
inkdbb olyan kétfazisi rendszerek modellezésére alkalmas, ahol a diszpergalt
fazis nem szilard, tehat buborékos rendszerek, emulziok stb. esetében. A Level
Set és Phase Field modszereket interface tracking (azaz érintkezd feliilet
kovetéses) moddszereknek is nevezik. COMSOL Multiphysics-ben 1étrehoztam
egy 2D-tengelyszimmetrikus modellt egy egyszerti, henger alaku iilepitd
berendezés leképezéséhez (4.29. abra). A Level Set modellegyenletek
hozzaadéasakor egy mintapéldat vettem alapul, amellyel egy vizben 1€v6 olajcsepp
mozgasat lehet szimuldlni. A modellben meg kell adni mindkét fazis
viszkozitasat, tehat a szilard szemcsét is folyadékként tudtam csak értelmezni,

nagy viszkozitassal kozelitve a szilard tulajdonsaghoz.
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4.29. abra. a) A szedimentacios beredezés 2D-tengelyszimmetrikus geometriai
modellje [mm]. b) A lecsokkentett méretii szamitasi tér. ¢) A haromszogekbdl allo
halozas egy részlete (metszet).
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A program a fazishatar dinamikus valtozasat a 4.36. egyenlettel irja le.

2+ u-V0 =yV- (V0 — d(1 - D) n%) (4.36)
ahol @ a Level Set fiiggvény, U a sebesség, y a reinicializacios paraméter, &5 a
fazishatar vastagsagat megado paraméter.

A reinicializacios paramétert tanacsos U-val egy nagysagrendben megadni,
hogy a frissités ne maradjon le a kdzeg mozgasatol, ebben az esetben 0,1 m/s volt.
A fazishatdr vastagsidgiat a maximalis szamitdsi haloméret felére allitottam. A
maximalis haloelem mérete a szemcse atmérdjének tized része (4.29. abra). A
4.29. abra b részében egy szlikitett geometria latszik (a szdmitasi id6 csokkentése
érdekében az atmérét a negyedére szikitettem), ezzel a haldbeallitassal 18279
domain haloelemet és 999 peremelemet kaptam. Ez joval kevesebb az eredeti
150246+1542 db haloelemnél. A rendelkezésemre all6 mérési adatok alapjan
valasztottam az anyagokat, melyek néhany jellemz6é tulajdonsagat a 4.8.

tablazatban foglaltam Ossze.

4.8. tablazat. Az alkalmazott anyagok anyagi tulajdonsagai.

Sturiség Dinamikai viszkozitas | Térfogat | Homérséklet
[kg/m?] [Pa-s] [m°] [°C]
nylon 1114 “10” 1,08:107 |25
viz 1000 0,0009 0,04 25
szilikon 1, 309 06 0,04 25
olaj
paraffin | o 0,11 0,04 25
olaj 1
paraffin | o9, 0,23 0,04 25
olaj 2
gépolaj 850 0,32 0,04 25

A 4.8. tablazatban felsorolt anyagokkal szimulaciokat futtattam, melyekben
az egyik fazis mindig a nylon volt, a kozeg pedig a tdblazatban felsorolt 6t
newtoni folyadék volt. Ha a golyd stirtiségét koriilbeliil 2700 kg/m3-re vennénk,

akkor a mérési értéket kapnank a modellbdl (4.30. dbra). A slirliség valtoztatasa
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azonban nem jo irdny, hiszen ezzel csak azt érjiik el, hogy mas anyagbdl késziilt
golyok tilepedését szimulaljuk, de a keresett rendszer modellpontositasahoz nem
jarulunk hozza. A feliileti fesziiltséget a két fazis hatardn elhanyagolhatonak
vettem, mert néhany értéket kiprobalva a mérési adattél egyre inkabb eltérd

sebességértékeket kaptam (4.30. abra).
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0.14 = 0.1035 . 2
* : ¢
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4.30. abra. a) Kisérletek kiillonb6z0 stirtiségti kvazi-folyadékokkal, b) A feliileti
fesziiltség hatasa a mért és a szamolt lilepedési sebesség kiilonbségére.

A szimulaciét 6 s-ig futtattam 0,2 s-os id6lépéssel. A  kapott
sebességprofilokat a 4.31. abra mutatja.
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4.31. abra. Sebességprofilok 6 s elteltével a sziikitett tengelyszimmetrikus
geometridban. Az elsd fazis a nylon goly6é minden esetben, a masodik (a kdzeg)
pedig a) viz, b) szilikon olaj, ¢) paraffin olaj 1, d) paraffin olaj 2, e) gépolaj.

w
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A 4.09. tablazatban a szamitott sebességeredmények és a szamitashoz
szlikséges 1d0 szerepel. A szimulaciok futtatasahoz egy 16 GB RAM-os személyi

szamitogépet hasznaltam 2.66 GHz 6rajelii Intel Core i5 CPU-val.

4.9. tablazat. A szamitashoz sziikséges id6 €s a kapott szemcsesebességek a
kiilonboz6 kdzegekben.

Szamitasi id6 [s] u [m/s]
viz 5236 0,0463
szilikon olaj 318 0,0043
paraffin olaj 1 3073 0,0175
paraffin olaj 2 2181 0,0086
gépolaj 1846 0,008

Folyadék-szilard rendszer modellezésére nem valt be a modszer, mert ahogy
a 4.32. abraan is latszik, a gdbmbként definidlt szemcse kiilondsen is a nagyobb

stiriségli kozegekben alakjat valtoztatta, egyes esetekben szét is valt.

"
b C d e

4.32. abra: Kvaziszilard szemcse iilepedése newtoni folyadékokban 2 s elteltével
a) vizben, b) szilikon olajban, ¢) €s d) kiilonboz6 parafin olajokban, e) gépolajban.

A deformécio, ahogy a sebesség is, fligg a kozeg viszkozitasatol és a
stirliségétol. A 4.8. tablazat és a 4.9. tablazat adatai alapjan két diagramot lehet
felrajzolni (4.33. abra).
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4.33. abra: Ulepedési sebesség a) a siirtiség és b) a dinamikai viszkozitas
fliggvényében.
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A pontokra illesztett gorbék alapjan meghatdroztunk egy olyan
sebességosszefiiggést, amely a slrliséget és a viszkozitast is tartalmazza (4.37.
egyenlet). Paramétereit (par(1l)-par(5)) egy globalis nemlinearis optimalizalo

algoritmussal, a NOMAD-dal hataroztuk meg [122].
u = par(1) - p? + par(2) - p + par(3) - uP¥™® + par(5) (4.37)

A szélséértékkeresd algoritmus célfiiggvénye a szamitott értékektdl vald
eltérés minimalizalasa volt. Eredményiil a paraméterekre rendre a kovetkezoket
kaptuk: le-7, -2e-4, 1e-3, -0,5, 0,1. A 4.33. abra a és b részét egy feliilettel is
abrazolhatjuk (4.34. abra).

1000+

950}

900+

Sirliség [kg/md]

850+

800

1e3 1e2 Te- 1
Viszkozitas [Pa-s]
4.34. abra. Az iilepedési sebesség a stlirtiség és a viszkozitas fliggvényében.

Alacsonyabb viszkozitasértékeknél nagyobb sebesség tud kialakulni, valamint
kisebb mértékben, de a stirliség ndvelése is csokkenti a sebességet.

Modellezés szemcsekovetéssel

crer

Particle Tracing (szemcsekovetd) modellje is szoba keriilt, mint lehetséges
modszer. Létrehoztam a szedimentécids rendszer haromdimenzios CFD modelljét,
és hat szimuldcios kisérlet soran kiilonbozo értékii, a kozegellenallasi erdt
szimulalo tagot adtam a modellegyenletekhez. Illesztés soran a 8,28:10° N
kozegellenallasi erd adodott megfelelonek ahhoz, hogy a modellel szamitott

ilepedési sebesség legjobban kozelitse a mérésbol szarmazo értéket (4.35. abra).
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A szamitasi id6 21 6ra volt, ezt a hossza idét foként a 3D geometria miatti

nagyszamu héaloelem okozta.
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4.35. abra. a) A szemcse pozicidja az id6 fiiggvényében a kiilonb6z6 beallitott
kozegellenallasi erdt imitald erdk (Fp [N]) hatasara, b) A kiilonbdz6 nagysagl Fp
erok hatdsa a sebességre.

A COMSOL Multiphysics segitségével végzett szedimentacios vizsgalatok
hatranya az volt, hogy az alkalmazott modszereket nem igazan folyadék-szilard
kéttazist rendszerek modellezésére talaltak ki. Kutatdsomat ezért mas iranyban
folytattam, sajat fejlesztési direkt numerikus szimuldcios modellezési
megkozelitésen alapuldé modellt fejlesztettem, amelyet a kdvetkezokben mutatok
be. Az aramlasi egyenletek és a faziskOlcsonhatas modellezése specifikusan
Osszenyombhatatlan kozegek €s szilard merev testek rendszerének modell leirdsara

alkalmas, ezért a megoldastol jobb eredményt varhatunk.

Modellezés Immersed Boundary modszerrel

Az ilepité berendezés kétdimenzidés modellegyenleteinek megoldésara egy
MATLAB programkodot hoztam létre, melyben a 2.4.6. alfejezetben ismertetett
SIMPLE modszert hasznaltam. A faziskdlcsonhatdas modellezését Immersed
Boundary modszeren alapuld direct forcing modszerrel végeztem haromszog
alakl interpolacids fliggvényt hasznalva. Az euleri racsszélesség (haloelemmeéret)
0,0005 m volt, amely az immersed boundary modszernek megfelelden egy
nagysagrenddel kisebb az 5,9 mm-es golyotol. Egyetlen nylon golyobol és a
ahol egy id6lépés 2,5-10™ s volt. A testre hato er8k koriilbeliil 16000 idélépés
utan egyenlitették ki egymast (4.36. abra) koriilbeliil 0,145 m/s-os iilepedési
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sebességet eredményezve, amely jO egyezést mutat az atlagosan 0,143 m/s-nak

mért iilepedési sebességgel.
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4.36. abra. a-d) A kozeg sebességének X (oldaliranyu) és z (fiiggdleges) iranyu
sszetevje az elsé és az utolsé szimulalt idSlépésben (2,5-107 s és 0,5 s), ¢) az
iilepedési sebesség valtozasa az id6 eldrehaladtaval a szimulacié szerint.

A 4.36. abran lathato eredményeket izoterm inkompresszibilis kozegre felirt

aramlasi egyenletek alajan kaptuk (4.38-4.40. egyenletek).

du OJv
—+—=0 4.38
ox oz (4.38)
du ou ou Jp _ (4.39)
Par P P tax T =0
av ov Jdv 0dp _ (4.40)
Part Pyt PV, o, =0

ahol u és v az x és z iranyu sebességkomponensek, t az id6, p a nyomas, p a kézeg
stirlisége, fx és f, pedig a virtualis peremhez sziikséges body force X és z iranya
Osszetevoje.
Késébb a momentumegyenleteket pontositottam a viszkozus tag
hozzaadasaval, igy a 4.39-4.40. egyenletek a 4.41-4.42. egyenletekre modosultak.
ou ou ou 0p O0Tyx 0Ty,

ow ~ou ~odu_ 0p 4.41
P TP PV, = T T o T T (441)

av av dav dp 0ty 01y
i _ - _F 4.42
+pus—+pv t ot +f, (4.42)

ahol 7 a nyirofesziiltség.
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Osszefoglalds

Ebben az esettanulmanyban szilard merev szemcse iilepedését modelleztem
newtoni folyadékokban. A modellezés és szimulacid célja, hogy az iilepedési
sebességben mutatkozd fluktuaciot meg tudjuk josolni. COMSOL Multiphysics
segitségével ¢és egy MATLAB kornyezetben fejlesztett programmal is
megprobaltam leirni. A tanulmany f6 eredménye, hogy létrehoztam

crer

melyet a tovabbiakban a célok elérése érdekében sziikséges tovabbfejleszteni.
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5. Osszefoglalas

Dolgozatomban a kétfazisu rendszerek aramlésaval foglalkoztam
modellezési €s szimulacidos szempontbol. Az irodalmi attekintés fejezetében a
tudomany ezen teriiletének jelenlegi allasat mutattam be. Torekedtem arra, hogy a
mar meglévo, felhasznalt eredmények és modszerek jol elkiilonithetdk legyenek
az 1j, altalam bevezetett mdodszerektdl és eredményektdl. A tobbfazisu rendszerek
aramlasanak modellezésében alapvetd kérdés, hogy az egyes fazisok mozgasat
milyen részletességgel irjuk le. Az attekintésben a modellezési megkozelitések
harom alap tipusat mutattam be, a két-folyadék modszert, a CFD-Diszkrét elem
modszert és a direkt numerikus szimulaciés modszereket. A modellegyenletek
alkotta parcidlis differencidlegyenlet-rendszer megoldasahoz alkalmazhato
numerikus modszerek bemutatdsat kovetéen a kutatdsaimban alkalmazott
modszereket és eszkozoket ismertettem. A gyakorlati kutatomunkamat és az elért
Uj tudomanyos eredményeket négy esettanulmanyon keresztiil mutattam be.

Els6ként egy kétlépéses biomassza elgazositd reaktort vizsgaltam az
aramlési viszonyainak szempontjabol. Az Osszetett geometridju berendezés két
bemenettel és egy kimenettel rendelkezik, és hidrodinamikai jellemzését
tartozkoddsi idé analizis modszerével végeztem. COMSOL Multiphysics CFD
szoftver segitségével hiaromdimenzids éaramlasi modellt készitettem, mellyel
jeldldanyag impulzusszerii bevezetésére adott valaszbol tartozkodasi id6 eloszlés
gorbéket nyertem. Vizsgaltam a bemeneti tomegaramok hatésat a tartozkodasi 1d6
eloszlasfliggvényre. A szadmitasigényes 3D-s CFD modell mellett 1étrehoztam a
berendezés cellds modelljét is, amely az idedlis 4aramldsi modellek
kombinaci6jabdl €s a megfelelden megvalasztott paraméterekbdl all. A CFD ¢és a
cellas modell alapjan nyert RTD gorbék jellegiikben megegyeztek.

A masodik esettanulmanyban egy tobbfuratos jetkeverd péld4djan mutattam
be egy ) moddszert a keverdteljesitmény értékelésére. Faziselemeket jelold
szemcsé€k trajektorigjat  kovettettem, amelyek az eldzetesen kiszamitott
stacionarius sebességmezé szerint haladtak. A keveré eszkdz két bemeneti
peremérdl induld jeldldszemcséket megkiilonboztetd jeloléssel lattam el, amely a

szimulacid végéig megmaradt. A berendezés kimeneti peremén Poincaré

crer
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osztva lokalis lefedettségi és kevertségi mértékeket definidltam. A berendezés
keverési teljesitményét a teljes kilépd feliiletre Osszegzett metrikakkal
jellemeztem.

A harmadik alkalmazasi példaban egy laboratoriumi méreti, kvazi-
kétdimenzids fluidizaciés berendezés modelljét €s szimuldtorat mutattam be.
Immersed boundary modszerrel modelleztem a géz- és a szilard fazis
kolcsonhatasat, melynek segitségével egy szilard szemcse mozgésat szimulaltam.
A szimuléacids eredményeket mérésekkel validaltam, azonban a modell még
fejlesztésre szorul annak érdekében, hogy egy teljes szemcsesokasagot legyen
képes kezelni, melyben a szemcsék egymadssal és a berendezés falaval torténd
litkozését (szilard-szilard kolcsonhatas) is szamitjuk a gaz-szilard kolcsonhatas
szdmitasa mellett.

Adszorpcids gaztisztitdo berendezés szemcse szintli modelljét ismertettem a
negyedik esettanulmanyban. A folytonossagi, momentum- és energiamegmaradasi
egyenletek mellett ebben az esetben komponensmérleget is szamitottam, amellyel
szamitja a modell. A tanulmany f6 eredménye, hogy az adszorbens szemcse
telitettségi allapotanak részletes, feliileti elemenkénti jellemzése lehetove valt.

Végiil egy szilard szemcse newtoni folyadékban torténd iilepedésének
modell-felépitését és szimulatorat mutattam be, mellyel a szemcse iilepedési
trajektoridja és a termindlis sebesség irhatd le. A folyadék-szilard kétfazisu
rendszert COMSOL Multiphysics-ben level set moddszerrel és MATLAB-ban
SIMPLE modszerrel megvaldsitott immersed boundary modszerrel modelleztem.
A modellegyenletekben a gaz-szilard rendszerek esetében még elhanyagolhato
viszkozitasi  tagokat ebben a  folyadék-szilard rendszert modellezd
esettanulmanyban meghagytam €s szamitottam.

A dolgozatban kifejtett eredmények tomor, 1ényegre toré6 megfogalmazasat

az Uj tudomanyos eredmények (tézisek) fejezetben mutatom be.
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Uj tudomanyos eredmények (tézisek)

1. Numerikus aramlastani és cellas modellen alapulé tartézkodasi ido
eloszlas analizist alkalmazo6 vizsgalati modszert fejlesztettem Ki Osszetett
geometriaju berendezések hidrodinamikai viselkedésének feltarasahoz. A
modszer altal meghatarozott heurisztikus cellas modellel generalt
tartozkodasi ido eloszlas fiiggvény jol kozeliti a részletes CFD modellel

kapott tartézkodasi ido eloszlas fiiggvényt.

a) Biomassza elgazositd reaktor haromdimenziés CFD modelljének
megalkotasaval szimuldcids eszkozt készitettem, amely alkalmas tobb-

bemenetii rendszerek tartdzkodasi id6 vizsgalataira.

b) Megmutattam, hogy az idealis aramlasu egységek kombinacidjaval
létrehozott cellds modell alkalmazasaval a részletes CFD modellel kapott
hidrodinamikai viselkedés reprodukalhatd, ezaltal jelentdsen kisebb
szamitas igényll eszkozt kapunk a tartozkodéasi id6 eloszlas analizisen

alapul6 vizsgalatokhoz.

Kapcsolodoé publikaciok: 6., 10., 18.

2. Folyamatos iizemil Kkeverok teljesitményének értékeléséhez egy
tobbszempontu kevertségi mértéket definialtam, és ennek felhasznalasaval
egy értékelési modszert dolgoztam Kki. A kifejlesztett modszer elénye, hogy
a hagyomanyos, komponensmérleg szamitasan alapulé szimulacios
vizsgalatokkal szemben a szamitasokhoz csak a stacionarius

sebességmezot kell felhasznalni.

a) Keveredési metrikakat dolgoztam ki a kevertség meghatarozasara, amelyek

alkalmasak statikus és jet keverék mindsitésére.

b) Definialtam a lokalis lefedettségi érték fogalmat, amelyet a teljes kilép6

feliiletre értelmezve mindsithetdveé valik a kevero.

c) Olyan szamitasi eljarast dolgoztam ki, amely alkalmas a faziselem

jeloldszemesék  pozicidadatai  alapjan a  keverési  teljesitmény
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meghatdrozasara az 4aramlastani szimulacioval kapott stacionarius

sebességmez0 felhasznalasaval.

Kapcsolodo publikaciok: 1., 13.

3. Kétfazisu rendszerek részecske szintii aramlasi modellezéséhez a direkt

numerikus szimuliciés modellezési megkozelitésen alapulé immersed

boundary médszert alkalmazva modelleket fejlesztettem ki, amelyekkel a

fazisok kozotti kolecsonhatasokat irtam le kiilonb6zo kétfazisi miiveletek

esetében, mint a fluidizacio, az adszorpcio és az iilepedés.

a)

Létrehoztam egy fluidizalt szemcsét tartalmazé kétfazisu rendszer
szimulatorat, amelyben a géz- és szilard fazis kolcsonhatasat immersed
boundary modszerrel szamitottam. A szamitdsi algoritmus alkalmas a
szilard szemcse mozgasanak szadmitdsara a részecskét koriilvevé aramlési

mez0 tulajdonségait felhasznalva.

b) Egy részecske szintli szamitasi modellt fejlesztettem ki az adszorbens

crer

adszorbens részecskét és a megkotendd komponenst tartalmazd kétfazisu
rendszer aramlastani modelljét készitettem el az immersed boundary
modszeren alapulva. Az aramlastani modellt kiegészitettem a megkdtendd
komponensre vonatkozdé komponensmérleggel és az adszorpcid folyamatat
leird els6érendli kinetikaval. A kidolgozott modszer lehetévé teszi a
szennyezd komponensekkel valo telitddés mértékének meghatarozasat a

szemcse kiillonbozo feluleti elemein.

Szilard merev szemcse newtoni folyadékban torténd iilepedésének
vizsgalatara egy részecske szintli szdmitasi modellt hoztam létre, amelyben
az immersed boundary modszert alkalmaztam. A létrehozott szimulator
alkalmas a szilard szemcse 4ll6 folyadékban valé mozgasanak szamitasara a

részecskeét koriilvevod dramlasi mezo tulajdonségait felhasznalva.

Kapcsolédo publikaciok: 3., 7., 8.,9., 11.,12., 14., 15., 16., 17., 19., 20.
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New scientific results (theses)

1. 1 developed a new method based on residence time distribution analysis
using computational fluid dynamics and a compartmental model to study
the hydrodynamic behavior of the equipment with complex geometry. The
residence time distribution curve obtained by using the heuristic
compartmental model is in good agreement with the curve obtained by the
detailed CFD model.

a) A three-dimensional CFD simulator of a biomass gasification device is
developed, which is suitable for studying residence time distribution of

systems with multiple inlets.

b) Using a compartmental model which is based on ideal flow units | showed
that the hydrodynamic behavior of the detailed CFD model can be
reproduced. With the application of the compartmental model we got a tool
for the calculation of the residence time analysis with significantly less

computational cost.

Related publications: 6., 10., 18.

2. To evaluate the performance of continuous mixers, | defined a multi-
aspect mixing measure and used it to develop an evaluation method. The
advantage of the developed method is that in contrary to the traditional
simulations based on the solution of the component balance equation, only
the stationary velocity field has to be used for the calculations.

a) | developed metrics of mixing to define the mixedness. These metrics are

applicable to qualify static and jet mixers.

b) I defined the concept of local coverage, which can be used to qualify the
mixer by interpreting the local coverage to the whole outlet boundary.

c¢) | developed a calculation method that is suitable for determining the mixing
performance of mixers based on the position data of the marked phase

elements using the stationary velocity field obtained by the flow simulation.

Related publications: 1., 13.
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3. Models using the immersed boundary method based on the direct
numerical simulation modeling approach are developed for particle level
modelling of two-phase flow including the phase interactions for different

processes such as fluidization, adsorption and sedimentation.

a) A simulator of a two-phase system, including a fluidized particle is
developed in which the gas-solid interaction is calculated by the immersed
boundary method. The algorithm of the calculation is usable to calculate the
moving of a solid particle considering the properties of the surrounding flow
field.

b) I developed a particle level model to simulate the adsorption process on the
surface of an adsorbent particle. | constructed a flow model of a two-phase
system containing the adsorbent particle based on the immersed boundary
method. The flow model is completed with a component balance for the
component to be adsorbed and first-order kinetics describing the adsorption
process. The developed method makes it possible to determine the degree of
saturation of the adsorbed components on different surface elements of the

particle.

c) | also developed a particle level model based on the immersed boundary
method that can calculate the sedimentation of a solid particle in Newtonian
fluid. The simulator is suitable to calculate the moving of the solid particle

in still fluid based on the properties of the surrounding flow field.

Related publications: 3., 7., 8., 9., 11., 12., 14, 15, 16., 17., 19., 20.
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