Valasz Dr. Pataricza Andrdas Professzor Ur
biralatara

Az eértekezés cime: Planning of fault-tolerant solutions of operations research problems
and multi-level heuristic scheduling

Mindenekel6tt nagyon koszéndém, hogy Professzor Ur elvéllalta disszertaciém birdlatat,
tovabba azt, hogy gondos, alapos és segits szandéku észrevételeivel tamogatta dolgozatom
min&ségének javitasat.

El&sz6r Professzor Ur tézispontjaim vonatkozdsaban tett javaslataira reflektalok. Egyetértek
azzal, hogy szerencsésebb lett volna az altalanosabb, tdlrészletezés nélkiili megfogalmazais,
ugyanakkor a benyujtott dolgozatban megfogalmazott tézispontok szévegén mar nem
megengedett, hogy valtoztassak (és azokat a nyilvanos vitan is a benyujtott formaban kell,
hogy bemutassam). Mivel mind a birdlatokat, mind az azokra adott valaszt kézzé kell tenni az
egyetemi kdnyvtar weboldalan keresztiil, bizom benne, hogy elfogadhaté megoldas az, ha
jelen vdlaszomban kifejezem, hogy szerencsésebb lett volna az els§ tézispontom elsg
altézisének az 1. dbran lithatd, eredeti megfogalmazasit a 2. abran lithatéak szerint,
tulrészletezés nélkil kézreadni. Ugyanigy, a 2. tézispontom 3. &bran l[athatd, eredeti
megfogalmazasdnak a 4. dbrdn lathatd, részletes parametrizalds nélkili valtozata is
szerencsésebb.

1.1 1 have compared the results of the heuristic algorithm with the result of a MILP solver on
1000 random inputs. In about half of the cases, the heuristic solver found the optimum. The
relative error was at most 2% in 80% of the cases and at most 5% in 95% of the cases. The
computation time of the heuristic solver was 2 minutes altogether for the 1000 inputs. That
means 0.12 seconds for one instance on average. The exact solver's calculation usually took
more time: there were cases when 10000 seconds were not enough far getting the optimal
schedule for one instance. Based on these results, it can be stated that the heuristic algorithm
is efficient.

1. abra: Az els6 tézispontom elsé altézisének eredeti megfogalmazasa

1.1 I have compared the results of the heuristic algorithm with the result of a MILP solver.
Based on the results, the heuristic algorithm proved to be efficient.

2. 3bra: Az els6 tézispontom elsé altézisének tulrészletezés nélkiili, tdmér valtozata

Thesis 2. | have developed and improved a genetic algorithm {GA} that can sclve an extended FISP
scheduling problem with transportation devices (the considered problem is much more general than
the problem of Thesis 1). | have investigated the algorithm's parameter settings and determined its
efficient values for the analyzed problem {population size: 100, crossover rate: 0.3, mutation rate:
0.38). The improvement covers the creation of the initial population, the design of the genetic
operators and the selection mechanism, and the development of the fitness function.

3. abra: A masodik tézispontom eredeti megfogalmazasa



Thesis 2. | have developed and improved a genetic algorithm (GA) that can solve an extended FJSP
scheduling problem with transportation devices (the considered problem is much more general than
the problem of Thesis 1). | have investigated the algorithm's parameter settings and determined its
efficient values for the analyzed problem. The improvement covers the creation of the initial
population, the design of the genetic operators and the selection mechanism, and the development of
the fitness function.

4. abra: A masodik tézispontom részletes parametrizalas nélkili valtozata

A dolgozat szaggatottsaganak (f6szoveg-fliggelék szerkezet) oka a f6sz6veg 100 oldalas felsé
oldalkorlatja. Igyekeztem mind targyszert lenni, mind az érthetGséget novelni magyardzoé
példak és illusztracidk dolgozatomban térténé elhelyezésével, de nem volt egyszerd az
egyensulyt megtalalni a megalapozott, értheté érvelés és a feszes szerkesztés kozétt.
Egyetértek Professzor Ur azon észrevételével, hogy még feszesebb szerkesztéssel a
szaggatottsag csokkenthetd és az érthetlség javithato lett volna.

Professzor Ur birdlataban feltett kérdésekre az aldbbiakban adom meg a vélaszokat:

1. kérdés: A célkitlizés rogton a legelején a termelési és a kapcsolodo kiszolgalo folyamatokra
korldtozza az értekezés témajat. Ugyanakkor mar a motivaciorol szélo 1.2 alfejezetben is
megjelennek infokommunikdcids példak. Ertékelése szerint az eredmények mennyire
specifikusak a termelési kornyezetre illetve az azok mogétt rejlé matematikai apparatus
dltalanosabb alkalmazhatésaga milyen tovabbi lehet6séget kindl az alkalmazasi teriilet
esetleges blvitésére?

Vélasz: A 2. és a 3. fejezet eredményei tetszéleges olyan (temezési feladatokra
alkalmazhatdak, amelyek a fejezetek végén 6sszefoglaléan bemutatott (a 2.5.1. és a 3.7.1.
alfejezetekben leirt) problémaosztalyba tartoznak. Ez nem csupan termelési kornyezet esetén,
de akdr uzleti folyamatok, vagy infokommunikacios rendszerek (temezése esetén is
fennallhat.

Egy példa lehet erre egy tomeges lizemorvosi vizsgalat feladata (5. dbra), amely akar
folyamatszerkezet szempontjdbdl is analég lehet a 2. fejezet példafeladatdval.
Megjegyzend8, hogy a példaként szerepeltetett feladat-struktura helyett joval szélesebb
szerkezet(i feladatokon alkalmazhaté mind a 2., mind a 3. fejezetben ismertetett megoldasi
maodszer (ahogy ezt a 2.5.1. és a 3.7.1. alfejezetek is leirjdk). Fontos megemliteni azt is, hogy a
human eréforrast alkalmazé feladatok esetén az er6forrdsok miveletvégzési idejének szérasa
jellemzéen joval nagyobb egy gépi er6forrasénal.

Az infokommunikacids haldzatok esetén is gyakran meriilnek fel Gtemezési feladatok (pl.
feladatok parhuzamos processzorokra térténd litemezése, ahol a cél gyakran a legrévidebb
teljes atfutdsi id6t eredményezé ltemezés megtalaldasa; szenzorhdldzatok esetén az egyes
szenzorok adatainak begy(ijtése, ahol a cél az adatgyljtés minél gyorsabb sebességének
elérése mellett jellemz&en az energiahatékonysdg; kommunikaciés halézatok elemeinek —
példdul antennak, miholdak, routerek — itemezése az adatok minél kisebb teljes atfutasi ideji
tovabbitdsa érdekében). Ha a disszerticidban példaként bemutatott termelési folyamattal
vizsgdljuk az analdgidt, ezekben a feladatokban jellemzéen egy-egy hélézati elem (node,
router, antenna) jelenti az eréforrast, mig a tevékenység az adat atvitele és/vagy valamilyen
transzformaciéja. Az infokommunikaciés héldzatokra jellemzé (temezési feladatok
folyamataiban — ellentétben a termelési folyamatokkal —a miveletvégzésiidé jellemzden nem




csak az erdforrastdl és a feladat tipusatdl fiigg, hanem annak targyatél, azaz az adattél is
(példaul az adat mennyiségétdl, ami akar atvitelenként is mas-mas lehet, alkalmazkodva a
felhasznaldi igényekhez). Viszont vannak olyan technoldgiai megoldasok, ahol ez nem igy van:
példaul TDMA rendszerek esetén elSre rogzitett hosszusagl idészeletek jutnak minden
kommunikalo fél szamara, avagy bizonyos csomagkapcsolt rendszerek esetében a csomagok
mérete elGre rogzitett (pl. ATM celldk). Ezen esetekben egy-egy id6résnyi adat, avagy egy-egy
adatcsomag esetén — a disszertdciomban bemutatott modellhez hasonléan - a
miiveletvégzési id6 az eréforrastol és a tevékenység tipusatol fiigg, a tevékenység targyatol
nem.
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5. abra: Egy példa a témeges Gizemorvosi vizsgalat feladatara

Tovabbi fontos kiilénbség az infokommunikaciés rendszerek jellemz8 litemezési feladatai és
az altalam vizsgalt Gtemezési feladatok kozott az, hogy az infokommunikacids rendszerek
gyakran dinamikus kérnyezetben, valds id6ben jelentkezé, valtozd igények mellett mikddnek
(szemben egy tdmegtermelési feladat elére rogzitett, nagy szamossagu, azonos litemezendd
folyamataival). Emiatt az infokommunikaciés rendszerek iitemezési igényeire leginkdbb az
online (temezési modszerek adnak megoldast. Mégis, eléfordulhatnak olyan
feladatcsoportok, amikor a disszertaciomban térgyalt offline megoldasi mddszerek jél
alkalmazhatoéak infokommunikacids rendszerek litemezési feladataira is (tébbek kézétt, mert
az adatatviteli igények el6re ismertek, nem kell 8ket valds id6ben megoldani — pl. bufferelés
alkalmazasa miatt —, tovabba minden feladat el6re rogzitett és azonos mennyiségli adaton
kell, hogy torténjen). llyen feladat lehet példaul foldi (vagy mds, Grbéli) dllomasok kézott
atvinni  kivant bufferelt adatcsomagok miholdak transzpondereinek kommunikécids
egységeire (vevGire/ismétlGire/addira) torténd ltemezése egy fedélzeti
antennanyalabkapcsoldst alkalmazé id6osztdsos tobbszorés hozzaférésl (Satellite-Switched



Time Division Multiple Access - SS/TDMA) rendszerben? (6. abra), ahol minden atviteli
folyamat egy TDMA id6résnyi adat atvitelét jelenti egy ado és egy vevd allomas kozott.
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6. abra: Fedélzeti antennanyaldbkapcsolést alkalmazé miiholdas rendszer

Ennek az alkalmazasi esetnek is szamos ponton névelheté a komplexitasa. Példaul itt is
szamolhatunk setup time-mal (pl. a fedélzeti kapcsold altali dj kapcsolas kialakitasanak ideje).
Ezenkiviil eléfordulhat akar uplink nyalabok fedélzeti nyaldbolasa (pl. Skyplex) egy nagyobb
sebességli downlink multiplex-re, amikor is az iitemezend§ folyamat szerkezete mar nem
egyszer( szekvencialis struktura (hanem az adasi tevékenyseget tébb kdzvetlenil megel6z6
mas tevékenység is szerepel az itemezendd folyamatban, akdrcsak a doktori dolgozatomban
ismertetett litemezési feladatmodell 8sszeszerelési m(iveletének esetében).

2. kérdés: A gyorsité heurisztikdk alkalmazasa esetében a leirtak szerint bizonyos
egyszerisitések nem mindig alkalmazhatdak. Van egzakt kritérium arra, hogy ezek az esetek
milyen feladatoknal kévetkeznek be?

Valasz: Az alkalmazott egyszer(isitésekre (5 darab) vonatkozd valaszomat a dolgozatban
szerepld sorszéamuk alapjan, sorban taglalom:

(S1) Gépenként legfeljebb egyszer fordul eld dtdllitdsi id (setup time)

1 Christian Prins: An overview of Scheduling Problems Arising in Satellite Communications (1994), The Journal of
the Operational Research Society, Vol. 45., No. 6., pp. 611-623.

25.D. IliEev: Implementation of Multiple Access Techniques Applicable for Maritime Satellite Communications
(2013), TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, Vol.7.,No. 4.,
pp. 529-540.



Ez az egyszer(isités technikailag barmely olyan feladat esetén alkaimazhaté, ahol egy gép
legfeljebb kétféle feladattipus elvégzésére képes, hiszen a gép éltal elvégezhets kétféle
tevékenységtipusba (t® és t¢ tipus) tartozo tevékenységekbdl &ll6 tevékenység-sorozatnak
minden esetben létezik olyan permutécidja, amelyben egy t® tipusd tevékenységet sem eléz
meg t¢ tipusu tevékenység, illetve olyan is, amelyben egyetlen t€ tipusu tevékenységet sem
el6z meg t® tipusd tevékenység. Fontos megemliteni, hogy a dolgozatomban bemutatott
heurisztikus algoritmus alkalmazhatésagi feladatosztalyara kikététtem, hogy egy gép
legfeljebb kétféle feladattipus elvégzésére képes (2.5.1. fejezet) — emiatt a gépenként
legfeljebb egyszer alkalmazott atallitdsi id6 minden ilyen feladat esetén alkalmazhaté.
Ugyanakkor azt érdemes megjegyezni, hogy ezzel az alkalmazhatéséggal nem mindig érdemes
éIni. Bizonyos esetekben ez az egyszer(sités nem ront, vagy nem sokat ront a megoldason
(tesztjeim sordn 1000-b8l kb. 500 esetben megtaldltam az optimumot és a relativ hiba az
esetek 80%-aban legfeljebb 2% volt), de az optimumhoz képesti elérheté tavolsag fiigg a
termékek darabszamatol, a miiveletvégzési és az atallitasi id6ktl. Az el6forduld rosszabb
eredmenyek oka az, hogy gépenként legfeljebb egy atéllitést alkalmazva az egyik alkatrész
felszaporodik, mikdzben az Gsszeszereléshez sziikséges mas tevékenység még nem keriil
elvégzésre. Azt, hogy pontosan hogyan filigg a megoldas minésége a feladat paramétereitdl
(termékek darabszdma, mliveletvégzési és &tallitasi id6k), nem tudtuk egzakt mddon
meghatdrozni a probléma Gsszetettsége miatt.

(S2) Minden gépen annak bdrmely t5-tipusi mdvelete megel6zi a gép bdrmely t -tipust
miiveletét.

Az (1) pontban adott vélasz alapjdn ez az egyszerisités is barmely feladatra alkalmazhatd.

(S3) Vagy a Di-tipusu gépek nem végeznek t-tipusi miveletet, vagy a Da-tipusu gép nem
végez ti-tipust miiveletet. (A feltevés mdsodik része dltaldnosabban — ha a szobdban mindkét
géptipusbol tébb van — a kévetkez6: ,vagy a Di-tipusi gépek nem végeznek tE-tipusi
miiveletet”. Ugyanakkor a tdrgyalt modellben csak egyetlen D,-tipust gép van (rs).)

Mivel mindkét tipusu gép képes mindkét miivelettipus elvégzésére, igy ez a feltevés is mindig
alkalmazhaté. A feltevés (illetve annak két opcidja kéziil az egyik) alkalmazasa ugyanakkor
hatassal lehet az optimum maximalis megkézelithet8ségének mértékére.

(S4) A (vagy dltaldnosan: barmely) Da-tipusu gép a feladatait megdillds nélkiil végezheti (azzal
a kitétellel, hogy a (vagy dltaldnosan: bdrmely) Da-tipusti gép dur(t8,D1) idépontban kezdhet el
dolgozni, ahol dur(t?,D1) egy tB-tipusu tevékenységnek egy Di-tipusti gépen vald elvégzésének
mdveleti ideje). Tovdbbd bdrmely olyan Di-tipust gép, amelyik t*-tipusu miveletet is végez,
folyamatosan végezheti a t¢-tipust miiveleteit az utolsd tB-tipusu miivelete utdni atallitdsi idé
letelte utan.

Ez az egyszer(sitd feltevés azt jelenti, hogy a t“tipusi miiveleteket folyamatosan tudjik
végezni a gépek. Ez a feltevés csak abban az esetben érvényes, ha minden tC-tipust mdvelet
megkezdése esetén mar elvégzésre kerilt egy neki megfeleltethet6 tB-tipusti m(velet. Ennek
megvaldsithatésaga viszont abbdl adddik, hogy a heurisztika a lehetséges esetekbdl azt az
alesetet valasztja, amelyikben ez teljesil (azaz e feltétel mentén hatdrozza meg azt, hogy mely
gépek legyenek azok, amelyek kétféle miiveletet is végezhetnek).

(S5) A dolgozat (2.1)-(2.3) egyenletrendszerének megolddsdt csak nemnegativ szémok
alkotjdk, azaz x,y,v,w 2 0.



Ez az egyszer(sités — kiindulva az alabb lathatd, a dolgozatbdl idézett (2.1)-(2.3) egyenletekbdl
— néhany jol értelmezhetd egzakt kritériumot definidl a feladat vonatkozasaban.

oxy + B * v =n(py) + n(p,) (2.1)
Bxw+yxx=n(p,) (2.2)
v * dur(t?,D;) = v » dur(tB,D;) + w = dur(t®, D,) + setup(D,, t5,t¢) =
= x * dur(t®, D) + dur(t?,D;) (2.3)
Réviden a szarmaztathaté kritériumok:

- Legaldbb egy olyan D>-tipusu gép kell, hogy legyen a feladatban, amelyik csak t®tipus
tevékenységek elvégzésére képes.

- Egy tB-tipust miivelet hossza egy Di-tipusu gépen legalabb akkora kell, hogy legyen,
mint ugyanezen tipusi gép atallitasi ideje tB és t-tipusu tevékenységek kozott.

- Az iitemezendd tB-tipusu tevékenységek szamanak legaldbb annyinak kell lennie, mint
a tC-tipusu tevékenységeket is elvégezni képes Da-tipusu gépeké.

Azt, hogy ezen egzakt kritériumokat hogyan szarmaztattam, az aldbbiakban részletezem.

A (2.3) egyenlet bal és jobb oldalat tekintve és alkalmazva azt, hogy x > 0, valamint, hogy
miveletvégzési id6 nem lehet negativ szdm, azt kapjuk, hogy

y * dur(t8,D;) = dur(t®,D,).

Ebbél az kovetkezik, hogy y 2 1, azaz legaldbb egy olyan D»-tipusu gép kell, hogy legyen a
feladatban, amelyik csak tC-tipusu tevékenységek elvégzésére képes.

Ha a (2.3) egyenlet bal és kozépsé részét vessziik figyelembe, valamint az egyszerdsit6 feltétel
vonatkozédsdban azt, hogy v 2 0 és w 2 0, tudvén, hogy miveletvégzési id6 nem lehet negativ
szam, az adddik, hogy

y * dur(tB, D)) = setup(Dy, t5, t).

Ez azt jelenti, hogy a csak t“-tipusi tevékenységek elvégzésére képes D»-tipusu gépek
szamanak (y), és a tB-tipust mdvelet Di-tipusu gép altali elvégzésének idejének szorzata nem
kisebb, mint a Di-tipusu gépek atallitasi ideje tB-r61 t°tipusi tevékenység elvégzésére. Mivel
az elébb lattuk, hogy az egyszeriisité feltétel alapjan y 2 1 kell, hogy legyen, ezért az is
elmondhatod, hogy egy tB-tipusi miivelet hossza egy D;-tipusu gépen legaldbb akkora kell,
hogy legyen, mint ugyanezen tipusu gép atallitasi ideje t® és t°-tipusu tevékenységek kozott.

Ha a (2.2) egyenletbdl kifejezziik w-t, és behelyettesitjiuk a (2.3) egyenletbe, majd tekintjlik az
egyenlet kozépsé és jobb oldali részét, azt kapjuk, hogy

n(p,) —y * x
(Iz)—ry— * dur(t€,D,) + setup(D,, tB,t%) =
3]

= x * dur(t®, D,) + dur(t?,D,).

v dur(t?, D)) +

Az egyenletet atrendezve a kovetkezd eredményre jutunk:



n(p,) * dur(t®,D,)

(v —1) * dur(t?,D,) + setup(Dy, t5, t°) +

¥ * dur(t€, D1)>
3 :

Mivel sem miiveletvégzési idd, sem 4téllitasi id6 nem lehet negativ, tovabbé a feltevés alapjan
x 2 0, valamint semmilyen géptipus halmaza nem lehet negativ szamossagu (azaz B20ésy2
0) /B azon Dy-tipusu gépek szama, amelyek t*tipust mivelet elvégzésére is képesek, y pedig
a csak tStipusy miiveletek elvégzésére képes D,-tipust gépek szama/, ezért

= x * (dur(tC,Dz) +

v—120.

Mivel a dolgozatban v az olyan Di-tipusu gépeken, amelyek tC-tipusu tevékenységeket is
képesek elvégezni, a t®tipust tevékenységek szamat jelentette, igy kijelenthetd, hogy minden
ilyen gépen legalabb 1 tB-tipusi tevékenységnek lennie kell.

Bdr ez az eredmény a feladat megolddséra nézve megszoritas, mégis, magara a feladatra nézve
is korlatot jelent, mégpedig azt, hogy az litemezendd tB-tipusu tevékenységek szamanak
legalabb annyinak kell lennie, mint a t -tipusu tevékenységeket is elvégezni képes D;i-tipusua
gépeké (ez utobbit B jelsli). Mivel a folyamatok mindegyike (mind az els8, mind a mésodik
tipusba tartozéak) pontosan egy tB-tipusi tevékenységet tartalmaznak, ezért a feladatra
vonatkoz6 egzakt kritériumot igy fogalmazhatjuk meg:

n(p.) + n(p;) = 6.

Ez a kritérium adja magdt a (2.1) egyenletbdl is régton, alkalmazva, hogy y > 0 és az elébb
megkapvan, hogy v > 1.

3. kérdés: A hatékonysdg értékelésénél mindharom problémanal véletlen feladathalmazokat
alkalmaz. Mi biztositja azt, hogy ezek az adott feladatkérre ltalanos reprezentativak?

Valasz: Az itemezési feladatok esetén nem térekedtem teljes mértékii altalanossagra. Ezzel
szemben feladatosztdlyokat definidltam, és azokon beliil vizsgaltam az algoritmusok
hatékonysagat. Professzor Ur kérdését az egyes fejezetek vonatkozasiban kiildn-kiilén
valaszolom meg a kévetkez6kben.

A 2. fejezetben bemutatott modell Gj, emiatt a munka sordn kitalalt feladatosztallyal
dolgoztam, korabbi inputok ilyen jellegli probléma vonatkozasaban nincsenek jelen a
szakirodalomban. Ezen a feladatosztalyon — ahogy az a fejezetben is olvashaté — sok feladatot
megoldottam, és a kapott eredményeket sokféle szempont alapjén hasonitottam &ssze.
Ugyanakkor vérhatéan lényegesen mas eredményt kapnank, ha példéul a feladat
gépcsoportjainak ardanya mds lenne (pl. 4 darab Dy-tipusd, 5 darab D,-tipusu, 3 darab Ds-tipusu
és 10 darab Da-tipusu). A kutatds célja nem egy altaldnosan érvényes algoritmus létrehozasa
volt, hanem egy példa mutatdsa arra, amikor a bemutatott , triikkék” hatékonyan m(ikédnek
(dekompozici6, mohé algoritmusok alkalmazésa a részproblémak egy részére, masik részére
tobbfazisu heurisztika készitése). A vizsgalt input osztdlyon beliil viszont nagyszamu (1000) és
valtozatos feladatot vizsgaltam meg. Erre a feladatosztalyra nézve altaldnos kdvetkeztetések
levonasa érdekében a feladatok egyes paramétereinek értékét egymastdl fiiggetleniil, adott
intervallumbdl térténd, egyenletes eloszldst kdvetd véletlenszer(i valasztédssal hatdroztam
meg.



A 3. fejezetben térgyalt modell a 2. fejezet modelljének dltaldnositdsa. Mivel mar a 2. fejezet
modellje is U] volt, igy ez is Uj abban az értelemben, hogy a sz6ban forgé feladatcsoportot nem
vizsgaltdk, a szakirodalomban nem volt ilyen jellegli modell targyalva eddig. E fejezet
feladatosztalyat is alaposan megvizsgdltam, emellett a fejezetben bemutatott algoritmust a
szakirodalom jelent8s szamu és kilonbozé jellegli benchmark feladatan is teszteltem. A
vizsgalt benchmark feladatok nem csak a mUiveletvégzési id6kben, az litemezendé folyamatok
szamaban és a folyamatonkénti tevékenységszamban tértek el, de az alkalmazott gépek
szamdban, és abban is, hogy egy tevékenységet atlagosan hany gép képes elvégezni.

A 4. fejezetben a kidolgozott algoritmus jellege biztositja azt, hogy az abban reprezentalt
alapelv dltalanosan alkalmazhat6 tetsz6leges kapacitdsos, egy depdval rendelkezd, id&ablak
nélkili kiszallitasi probléma megolddsara. A bemutatott algoritmus meghatdrozza az
atlagosan legjobb ,utirany kompoziciét”, ezt az 6sszes lehetdség kiprébalasaval — a nyers eré
modszerével — biztositja. Emiatt az elmondhaté, hogy a legjobb ,utirdny kompozicié”
kivélasztasa altalanosan reprezentativ kapacitdsos, egy depdval rendelkezd, id6ablak nélkiili
kiszallitdsi problémak megoldasara, ugyanakkor az elért nyereség mértéke nem
altaldnosithatd. Itt szintén a célom egy ujszerd megkozelités megadasa volt, amit szamos
bechmark feladaton vizsgaltam (véletlenszerlien generdlt sajat feladaton, illetve a
szakirodalomban széleskorlen alkalmazott Solomon teszteken), ami megfelel6 arra, hogy
megadhassam azt, hogy adott szintli eredmények elérésére alkalmas a médszerem, de annak
pontos hatdrainak megadhatdsagat nem biztositja.

4. kérdés: Van-e lehet8ség arra, hogy egy uj feladat felmeriilése esetén algoritmikusan
dontsiink legaldbb jo valdszin(iség erejéig a szoban |évé alternativék kozotti valasztasrol!

Valasz: Annak eldéntéséhez, hogy egy Uj feladat esetén a heurisztikat vagy az egzakt megoldot
érdemes-e hasznalni, azt vizsgdltam meg, hogy fligg-e a disszertdcidban vizsgalt két
folyamattipus végrehajtdsi szamossaganak aranyatol (n(p:)/n(pz)) az, hogy a heurisztika
mennyire optimum-kozeli eredményt tud adni. Ha meghatarozhatdak lennénk olyan arany
értékek, amelyekre szignifikdnsan jobb (az optimumhoz kézelebbi) eredményt kapnank a
heurisztikdval, mint a tobbi esetben, akkor kijelenthetd lenne, hogy egy Uj feladat esetén
algoritmikusan eldénthets, hogy vdrhatéan jo eredményt szolgdltat ra a gyorsan
végrehajthaté heurisztikus algoritmus (igy érdemesebb a heurisztikdval megoldani, mint az
egzakt megoldéval, hiszen nagy valdszin(iséggel nem csak gyors, de j6 eredményt is kapunk).

Ezt a vizsgalatot is a disszertacidban bemutatott 1000 véletlenszer(i inputon végeztem, ahol
minden input esetén az dsszes litemezendd folyamat szama (n(pz)+n(pz)) 100 volt Ggy, hogy
mindkét tipusu folyamat végrehajtasanak szama 30 és 70 koz6tti intervallumban helyezkedett
el. Ennek megfeleléen a 7. dbra a heurisztikus algoritmus relativ hibdjat mutatja, mikdzben az
elsé folyamattipus végrehajtasi szama 30-r6l 70-re nd, mig a 8. dbra filiggbleges tengelye
szintén a heurisztika relativ hibajat dbrazolja, mikézben a vizszintes tengelyen az elsé és a
méasodik folyamattipus végrehajtasi szdmainak ardnya valtozik 3/7 és 7/3 kozo6tt.

Az dbrakrol egyrészt lathatod, hogy a vizszintes tengely barmely tartomdanydn vannak olyan
inputok, amelyekre a heurisztika optimalis megoldast ad, de ugyanigy vannak gyengébb
megoldasok is. Ugyanakkor bizonyos jellegzetességek megfigyelhet8ek, f6leg, ha a 7. és 8.
abra adatait ugy szemléltetem, hogy a vizszintes tengely tartomanyat azonos méretl
blokkokra bontom, és a blokkba illeszkedé inputokra kapott relativ hibajat a heurisztikanak



atlagolom. Ezt szemlélteti a 9. dbra. Megfigyelhetd, hogy a heurisztika relativ hibaja akkor a
legkisebb, amikor az elsé tipusu folyamat végrehajtési szdma alacsony (legfeljebb 39; igy a
masodik tipusd folyamat végrehajtési széma legaldbb 61). Ahogy a 9. abra bal oldali oszlopa a
legalacsonyabb, tgy a 7. és 8. dbra bal fels6 része is ires.
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7. abra: A heurisztikus algoritmus relativ hibaja az elsé folyamattipus végrehajtasi szamanak

fuiggvényében
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8. abra: A heurisztikus algoritmus relativ hibaja a két folyamattipus végrehajtasi szamai
aranyanak figgvényében
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9. abra: A heurisztikus algoritmus relativ hibaja az (a) elsé folyamattipus végrehajtasi
szamanak fliggvényében, blokkonként atlagolva (b) a két folyamattipus végrehajtdsi szémai
aranyanak fliggvényében, blokkonként atlagolva

Tehat, ha az inputban szerepl§ két folyamattipus kozil az els6t kisebb szamban kell
végrehajtani, akkor mindenképpen érdemes a heurisztikus algoritmust hasznélni.



Emellett, ahogy a dolgozatban olvashaté, ha egzakt megoldét alkalmazunk, akkor azt érdemes
a heurisztikus algoritmus altal adott eredménnyel segiteni, leginkabb a durva alsé korlat és a
heurisztika altal nyujtott értékek kozti logaritmikus keresés mddszerét (a dolgozatban
Method5) alkalmazva.

5. kérdés: Az értekezés legvégén vazoltakon tul, mennyire altalanosithatéak az eredmények,
ha példaul az egyes megszorité feltételeket elkezdjiik relaxalni?

Vélasz: Az alkalmazott megszoritéd feltételek relaxaldasanak a dolgozatban ismertetett
eredményekre gyakorolt hatdsat az aldbbiakban fejezetenként mutatom be.

A 2. fejezet esetén alkalmazott megszoritdé feltételek a feladat részfeladatokra vald
szeparalhatosagat, tovabba az erdforrasok korldtozdsat legfeljebb kétféle feladattipus
elvégzésére foglaltak magukba. A kiinduldsi feladat részfeladatokra bonthatésaga nem jelent
lényeges korlatot abban a tekintetben, hogy ha nem bonthaté fel a feladat részfeladatokra,
akkor a megoldds soran a teljes feladatot egyetlen ,,szobaként” tekintjlik, és erre dolgozzuk ki
a megoldashoz sziikséges modszert. A hatdsa ennek a szcenaridnak annyi lesz, hogy a kezdeti
feladat megoldasanak komplexitasat nem fogjuk tudni csékkenteni részfeladatokra bontdssal.
Abban az esetben viszont, ha megengediink egy er6forrdas szamara ketténél tébbféle
tevékenységtipus elvégzését, akkor a fejezetben ismertetett megoldd modszert jelentSsen at
kellene alakitani, hiszen szamos alkalmazott egyszerdsités azt a tényt hasznalta ki, hogy egy
eréforrés legfeljebb kétféle feladattipus elvégzésére képes.

A 3. fejezetben bemutatott genetikus algoritmus |ényegesen altalanosabb {itemezési
feladatok megolddsara képes, mint a 2. fejezetben ismertetett heurisztika. Az itt alkalmazott
megszoritd feltétel a szallitéeszkozok 1 terméknyi kapacitdsa volt. Bar az algoritmus
kdnnyedén maddosithatd oly mddon, hogy nagyobb kapacitdsu szallitédeszk6zok kezelésére is
képes legyen, ugyanakkor nincs beépitve olyan logika, amely a nagyobb kapacitasok mentén
valé optimalizaldst végezné, azaz véarhatdéan 1-nél nagyobb kapacitasu szallitéeszkdzok
megengedése esetén a kapott eredmény gyakran messzebb lenne az optimalis megoldastdl,
mint a dolgozatban alkalmazott megszorité feltétellel rendelkez6 feladatok esetén.

A 4. fejezetben szdmos megszorito feltételt alkalmaztam. Ha szakitunk a jarm{vek azonos és
konstans sebességének feltételezésével, akkor annak hatdsara azok a pontok, amelyeken az
egyes jarm(vek tartdzkodnak az egyikiik meghibasodasa esetén, hiibben fogjak tiikrézni a
valds lokaciokat. Ez hatdssal lehet a segité jarmi kivalasztasdra és annak utvonaldnak
meghatdrozdsara. Ugyanilyen hatdssal birna az, ha az lgyfelek kiszolgalasi idejével, illetve a
meghibdsodott jarmi{nél az datpakoldssal toltott id6vel is szamolnék, tovabba ha
megengedném, hogy a jarm(ivek ne feltétlenil egyszerre induljanak a depobol.

Amennyiben azzal a feltevéssel szakitunk, hogy minden jarm{ azonos kapacitasu, a
meghibédsodott jarmiinek az algoritmusban leirt médon térténé meglatogatasanak tébbszori
megismétlését teheti sziikségessé, ezzel kiterjesztve az algoritmussal megoldhaté feladatok
korét, de mindez az eddigi mddszerrel is megoldhatd feladatok eredményeire nincs hatassal.
Ha egynél tobb jarm( segitségét is megengedjiik, akkor — bar jéval komplexebb szamitasok
valnak sziikségessé, de —az eredmény varhatdan révidebb teljes kiszallitast fog eredményezni
azzal, hogy bar tébb jarmi eredeti Utvonaldnak hossza né meg, de &sszesen nem akkora
mértékben, mintha a teljes segitséget csak egyetlen jarm( végezné.



Amennyiben a jarm(-meghibasodas feltételezett lokacidit nem csak az ligyfelek tartézkodasi
helyéhez kétném, hanem barhol szamolnék vele Utjuk soran, akkor — bdr toébb szamitasra
lenne sziikség, de — egy-egy jarm(i meghibdasodasanak lehetdségeit figyelembe véve tdbb
pozicié utvaltoztatasi koltségét (route change cost) atlagolnam, igy pontosabban tudnam
meghatarozni a legjobb ,,utirdny kompoziciét”.

A depdk szamara (1) vonatkozd megszoritd feltétel relaxdlasaval az tigyfelek depékhoz
rendelésével kibdviil a feladat. Ez az alkalmazhatésagot bdviti, ugyanakkor az egy depdval
rendelkezé feladatok eredményére nincs hatdssal.

A bemutatott algoritmus tekintetében az id6ablak-nélkiiliség, tovabba a pontparok kézétti
szimmetrikus tavolsagok megszoritd feltétele nem relaxalhatd, hiszen az szembe menne az
algoritmus alapfeltevésével, mely szerint a kérutak barmely irdnyban bejarhatoak nélkiil, hogy
a bejarasi irdny megvalasztasa az adott korat bejardsi koltségére hatassal lenne.

6. kérdés: Volt-e a kidolgozott algoritmusoknak gyakoriati alkalmazasa, és ha igen az milyen
eredményeket mutatott?

Valasz: A disszertaciom irasanak kezdete el6tt kutatdcsoportunkon beliil foglalkoztam
Utemezéssel két ipari partner gyartasi- illetve tesztfolyamatai vonatkozdsaban. Ugyanakkor
ezek a feladatok szekvencialis strukturdju folyamatok {itemezését foglaltdk magaba, és a
feladatban megjelené korldtozé feltételek vonatkozasdban is gazdag irodalom dllt
rendelkezésre. A disszertacidmban bemutatott komplexitasi Utemezési feladatokkal valés
kornyezetben még nem foglalkoztam, igy a kidolgozott algoritmusoknak eddig nem volt
gyakorlati alkalmazdsa. A kiszallitasi feladatok vonatkozdsdban adott megoldasomat sem
haszndltam eddig konkrét gyakorlati alkalmazasban. Megjegyzend6 ugyanakkor, hogy a
kdzelmultban csatlakoztam egy, tobbek koézétt a Miszaki Informatikai Karon végzett
kutatdsi+fejlesztési projekt csapatahoz, akikkel egészségiigyi feladatok Utemezésének
megoldasa a feladatunk. Remélem, hogy kutatdmunkam eredményei e projekt keretei kozott
eredményesen felhasznalhatdak lesznek.

Végiil ismételten készéndm Professzor Urnak a dolgozatom gondos, konstruktiv és pozitiv
biradlatat, és kérem a valaszom elfogadasat.

Veszprém, 2021. janius 7. j)(/ f?
L. s

Dulai Tibor
a PhD dolgozat szerzGje
Informatikai Tudomanyok Doktori Iskola
Pannon Egyetem, Mdiszaki Informatikai Kar



