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Tartalmi kivonat

Az értekezésben harom olyan probléméval foglalkoztam, amelyek az iitemezés és a
ladapakolas teriiletéhez tartoznak. Mindharom teriiletnek szamos alkalmazéisa van
a gyakorlatban, tobbek kozott az iparban, gazdasagi életben vagy éppen optimali-
zaldsban. Az iitemezési feladat megoldasaban egy, a megerdsitéses tanulas teriiletén
ismert és népszert algoritmust vettem alapul. A ladapakolasi feladatok megoldasa
soran Un. el6feldolgoz6 algoritmusok segitségével igyekeztem megoldani benchmark
feladatokat. Tovabba egy viszonylag 1j teriilettel is foglalkoztam, amelynek ladafe-
dés szallitassal (angolul: Bin Covering with Delivery, roviden BCD) a neve. Ezen a
teriileten természetesen adodé algoritmusokkal oldottam meg a benchmark felada-
tokat, valamint bemutattam egy 1j, rugalmas algoritmust is. Mindharom feladat
meglehetdsen nehéz, bonyolult kombinatorikus optimalizalési feladat.

A 2. fejezetben egy nehéz ilitemezési feladattal foglalkoztam, amely a fiiggetlen
gépek litemezése megel6zési relaciokkal. Ez egy klasszikus iitemezési probléma, ahol
az egyes feladatok kozott megelGzési relaciok vannak és a feladatok végrehajtasi ideje
a hozzarendelt eréforrastol fiigg. (Megel6zési relacion a kovetkezot értjiik: ha az i.
munka megel6zi a j. munkat, akkor a j. munka végrehajtasa csak akkor kezdddhet el,
ha az i. munka végrehajtasa mar befejez6dott. Az 7. és a j. munkak akar kiillonbo6zé
gépeken is végrehajthatoak.) Az iitemezési feladat megoldasaban a megerdsitéses
tanulas teriiletérdsl ismert Q-tanulast alkalmaztam. Az algoritmus célja egy olyan
feladatsorrend kialakitasa a megel6zési relaciokat figyelembe véve, hogy ebben a
sorrendben iitemezve a feladatokat az LS algoritmus altal, a teljes atfutasi id6 minél
kisebb legyen. Az eredmények alapjan sikeriilt hatékony algoritmust elGallitani.

A 3. fejezetben bizonyos tipusi ladapakolasi feladatok mohé modszerekkel torté-
n6 megoldasaval foglalkoztam. EI&bb bizonyos fajta eléfeldolgozast hajtunk végre,
amelyek a probléma egyes tulajdonsagait kihasznalva egyszertsitik a megoldést gy,
hogy az optimalitds nem sériil, vagyis tovabbra is lehetséges optimalis megoldast
kapnunk. Azaz, ha példaul van 120 pakolandé targy, amelybdl valamilyen tulajdon-
sagot felhasznélva rogton 60 targy pakolhaté "gondolkodas" és Gsszetett eljarasok
nélkiil, akkor maris felére csokkent azon targyak szama, amelyeket tigyesen, 6vatosan
kell pakolni tovabbi ladakba. A vizsgalt feladatosztalyok a Schwerin és a Falkena-
uer voltak. A megmaradt targyak pakolasira moho algoritmusokat fejlesztettem
ki.  Osszefoglalva, mindkét feladatosztalyra moho algoritmusokat fejlesztettem,
amelyek a Schwerin osztaly esetén minden feladat, a Falkenauer osztaly esetében
pedig a feladatok 91%-a esetén talaltak optimélis megoldast, és gyorsan.

A 4. fejezetben egy uj feladat keriilt definidlasra, amely egy bonyolult ladapa-
kolasi feladat egy bizonyos célfiiggvénnyel kombinalva. A megoldas soran korébbi,
természetesen adddo algoritmusok keriiltek kifejlesztésre és vizsgélatra a megadott



benchmark példakon. Megjegyezziik, hogy 1j benchmark osztalyok (LR) is defini-
alasra keriiltek.  Tovabba, bemutattam egy 1j, flexibilis algoritmuscsaladot. Az
algoritmus paramétereinek automatikus beallitasa paraméter optimalizalassal tor-
tént. Az 4j algoritmus a vizsgalt feladatosztalyokon jo eredményeket ért el.



Abstract

In the thesis three problems were considered belong to the area of scheduling and
bin packing. All three areas have many applications in practice, including industry,
economics or optimization. To solve the scheduling problem, I used an algorithm
known and popular in the field of reinforced learning. During the solution of the
bin packing problems, I used the so-called preprocessing algorithms to solve the
benchmarks. T also dealt with a relatively new area called Bin Covering with Delivery
(BCD for short). In this field, I solved the benchmark problems with already known
algorithms, and I also presented a new, flexible algorithm. All three problems belong
to the field of combinatorial optimization and finding their optimal solution is
difficult.

In Chapter 2, I dealt with a difficult scheduling task, which is called unrelated
machine scheduling with precedence constraint. This is a classic scheduling problem
where there are precedence constraints between tasks and the execution time of the
tasks depends on the assigned resource. (Precedence constraint means the following:
if task ¢ preceeds task j then the execution of task j can only be started the task
i is already finished. Task i and j can be assigned to different machines.) In
the solution of the scheduling problems, I used Q-learning known from the field
of reinforced learning. The goal of the algorithm is to create a sequence of tasks,
taking into account the precedence constraints, so that by scheduling the tasks in
this order, the makespan is kept to minimum. Based on the results, it was possible
to achieve an efficient algorithm.

In Chapter 3, I dealt with certain preprocessing algorithms for bin packing prob-
lems. Preprocessing algorithms simplify the solution by exploiting some properties
of the problem so that optimality is not compromised. That is, if, for example,
there are 120 items to be packed, of which 60 items can be packed immediately wit-
hout any "thinking" and complex procedures using some property, the number of
items to be examined has already been halved. The examined problem classes were
Schwerin and Falkenauer. The remaining items are packed with FFD. I developed
greedy algorithms for both problem classes, which solved all problems optimally and
quickly for the Schwerin class and 91% of the problems for the Falkenauer class.

In Chapter 4, a new problem was defined, which is a complex bin packing prob-
lem combined with a certain objective function. The benchmark instances belong
to the Schwerin, Falkenauer, and LR classes (LR was created by me). During the
solution, previously known algorithms were implemented, and a new, flexible family
of algorithms was introduced. The automatic setting of the parameters of the algo-
rithm was optimized by parameter optimization technique called local search. The
new algorithm achieved good results on the examined problem classes.



Auszug

In der Doktorarbeit wurden drei Probleme betrachtet, die zum Bereich Termin-
planung und Bin Packing gehoren. Alle drei Bereiche haben viele Anwendungen in
der Praxis, sei es in der Industrie, in der Wirtschaft oder in der Optimierung. Um
das Scheduling-Problem zu 16sen, habe ich einen Algorithmus verwendet, der im
Bereich des verstdrkten Lernens bekannt und beliebt ist. Bei der Losung der Bin-
Packing-Probleme habe ich die sogenannten Preprocessing-Algorithmen zur Lésung
der Benchmarks eingesetzt. Auferdem beschéftigte ich mich mit einem relativ neuen
Bereich namens Bin Covering with Delivery (kurz BCD). In diesem Bereich habe ich
die Benchmark-Probleme mit bereits bekannten Algorithmen gelost und auch einen
neuen, flexiblen Algorithmus vorgestellt. Alle drei Probleme gehoren zum Gebiet der
kombinatorischen Optimierung.

In Kapitel 2 habe ich mich mit einer schwierigen Scheduling-Aufgabe befasst,
die als unabhingiges Maschinen-Scheduling mit Prédzedenzbeschrinkung bezeichnet
wird. Dies ist ein klassisches Planungsproblem, bei dem Prioritdtsbeschrinkungen
zwischen Aufgaben bestehen und die Ausfiihrungszeit der Aufgaben von der zu-
gewiesenen Ressource abhingt. Bei der Losung der Scheduling-Probleme habe ich
das aus dem Bereich des Reinforced Learning bekannte ()-Learning eingesetzt. Das
Ziel des Algorithmus ist es, unter Beriicksichtigung der Vorrangbeschrinkungen ei-
ne Abfolge von Aufgaben zu erstellen, so dass durch die Planung der Aufgaben in
dieser Reihenfolge die Makespan auf ein Minimum reduziert wird. Basierend auf den
Ergebnissen war es moglich, einen effizienten Algorithmus zu entwickeln.

In Kapitel 3 habe ich mich mit bestimmten Vorverarbeitungsalgorithmen fiir
Bin-Packing-Probleme beschiftigt. Vorverarbeitungsalgorithmen vereinfachen die
Losung, indem sie einige Eigenschaften des Problems ausnutzen, sodass die Op-
timalitat nicht beeintrachtigt wird. Das heifst, wenn beispielsweise 120 Artikel zu
verpacken sind, von denen 60 Artikel ohne Nachdenken und aufwindige Proze- du-
ren unter Verwendung einiger Eigenschaften sofort verpackt werden kénnen, hat
sich die Anzahl der zu untersuchenden Artikel bereits halbiert. Die untersuchten
Problemklassen waren Schwerin und Falkenauer. Fiir beide Problemklassen habe
ich Greedy-Algorithmen entwickelt, die alle Probleme optimal und schnell 16sen
konnten.

In Kapitel 4 haben wir ein neues Problem definiert, ndmlich ein komplexes Bin-
Packing-Problem in Kombination mit einer bestimmten Zielfunktion. Die Benchmark-
Instanzen gehoren zu den Klassen Schwerin, Falkenauer und LR (LR wurde von mir
erstellt). Bei der Losung wurden bereits bekannte Algorithmen implementiert und
eine neue, flexible Familie von Algorithmen eingefiihrt. Die automatische Einstel-
lung der Parameter des Algorithmus wurde durch eine als lokale Suche bezeichne-



te Parameteroptimierungstechnik optimiert. Der neue Algorithmus erzielte bei den
untersuchten Problemklassen gute FErgebnisse.
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Jelolések

Megerdsitéses tanulas (2. fejezet)

S allapot

a akcio

s’ kovetkezd allapot

a’ kovetkezd akcio

S Osszes nem végallapot halmaza

St osszes allapot halmaza (végallapotok is)

Al(s) s allapotban elérhetd akciok halmaza

R lehetséges jutalmak halmaza

t diszkrét id6pillanat /epizod

T egy epizod utolso idGpillanata

Sy allapot a t pillanatban

Ay akcio a t pillanatban

R, jutalom a t pillanatban

Gy kumulativ jutalom a ¢ pillanat utan

s stratégia

Ty optimaélis stratégia

m(als) a akcio kivalasztasanak valoszintsége s allapotban 7 szerint (sztochasztikus)
v(s) allapotértékels fiiggvény s allapotra

V() s allapot értéke a 7 stratégia mellett

V() s allapot értéke a 7 optimalis stratégia mellett
Gr(8,a) a akcio kivalasztasanak értéke s allapotban a 7 stratégia mellett
q+(8,q) a akcio kivalasztasanak értéke s allapotban a m optimaélis stratégia mellett
Q:(s,a) qr(s,a) vagy ¢.(s,a) becsiilt értéke

Q matrix a Q-értékek térolasara

~y diszkontalasi paraméter

« tanulasi paraméter

€ valoszintiségi valtozo a t. idGpillanatban

E varhato érték

P valoszintiségi érték

P allapotatmenet matrix

T hémérséklet

Di Boltzmann valo6szintiség az i iterdcioban

n tevékenységek szama

m erGforrasok szama



m;
task;

tsum

selectedRes

LBy, LB,
CPLEXLB
CPLEXUB
NC

QLM

QLM — freq

az i. erGforras

az 1. tevékenység

a végrehajtasi idok Osszege

kivalasztott eréforras indexe

er6forrasok (gépek) halmaza

tevékenységek halmaza

egységmatrix

irdnyitott graf diszjunkt utakkal és izoldlt pontokkal
tevékenységek egy permutaciojanak listija a t. epizod utéan
megelzési relacidban résztvevs tevékenységek indexhalmaza
valaszthato tevékenységek indexhalmaza

permutacioba mar bevalasztott tevékenységek indexhalmaza
iitemezés eredményeként kapott atfutasi idé a t epizédban
eddigi legjobb iitemezés

approximécios arany (legrosszabb eset)

er6forrasok halmaza

legkésébb befejez6dd tevékenység befejezési ideje

also korlatok

a CPLEX altal kiszamolt als6 korlat

a CPLEX altal kiszadmolt fels6 korlat

megelzési relaciok szama

a QLM algoritmus altal kiszamitott megoldas

tiz futasbol hanyszor talalta meg a QLM az optimumot

Ladapakolas (3. fejezet)

n

z

OPT

A

OPT(L)

A(L)

LBy, LBy, LBy
Rabs

SR

targyak szama

célfiiggvény

egy optimaélis offline algoritmus
egy tetszbleges ladapakolasi algoritmus
OPT Aaltal generalt ladak szama
A Altal generalt 1ladak szama
also korlatok

abszolat kozelitési arany
aszimptotikus kozelitési arany
pakolando6 targyak listaja

lada, hatizsdk kapacitasa

lada, hatizsdk toltottsége
targyhalmaz 6sszmérete
aktudlisan nyitott ladak szama
1. csomopont a grafban

1. csomopont cimkéje

az 1. targy stlya (mérete)

az i. targy haszna (nyereség)

az 1. targy a j. ladaban van-e

a j. lada hasznélatban van-e
tartalékra vonatkozo6 als6 korlat



resg
res

kezdeti tartalék (kihasznalatlan helyek a ladakban)
a teljes feladatra vonatkozé tartalék

Ladafedés (4. fejezet)

IV ARSI QSNQ;; ~xQ=

LR
S;G,
FiG,
LR,G,

targyak szama

lada, hatizsdk kapacitasa

nyitott ladak megengedett maximalis szama
aktudlisan nyitott ladak szama

az 1. targy stlya (mérete)

célfiiggvény

bemenet (input)

az A offline algoritmus eredménye

offline optimum

versenyképességi arany

a probléma fels§ korlatja

Schwerin bemenet tipus

Falkenauer bemenet tipus

Large Range bemenet tipus

Schwerin osztaly 6sszekapcsolasa a G célfiiggvénnyel
Falkenauer osztaly Osszekapcsoldsa a G célfiiggvénnyel

Large Range osztaly Gsszekapcsolasa a G célfiiggvénnyel

K-dimenziés nemnegativ vektor
egy pozitiv egész szam

kis pozitiv konstans, amelynek mértékével az a és 3 paraméterek valtoznak

1. tablazat: Jelolések jegyzéke



1. fejezet

Bevezetés

Dolgozatomban harom olyan feladattal foglalkoztam, amelyek mindegyike az iite-
mezés elmélet vagy a ladapakolas teriiletéhez tartozik. Ezeken a teriileteken sok és
jelent&s alkalmazas van, tébbek kozott az iparban, gazdasagi folyamatok elemzésé-
ben, optimalizalasiban és egyéb teriileteken. Az {litemezési feladatot megerdsitéses
tanulas alapu algoritmussal oldottam meg. Emiatt az {itemezési feladatokrol és a
megerdsitéses tanulésrol adunk az alabbiakban egy bevezetd attekintést. Utana ko-
vetkezik majd a bevezetésben egy altalanos ismerteté a ladapakolasi feladatokkal
kapcsolatban.

1.1. Utemezés

Altalanossagban egy iitemezési probléma esetén adottak tevékenységek (munkak) és
er6forrasok (a mi esetiinkben gépek). Az iitemezés soran azt hatarozzuk meg, hogy
melyik tevékenységet melyik gép mett6l meddig hajtja végre. A tevékenységek vagy
munkak az elvégzendd feladatok, ezeknek a szama valtozd. Az eréforrasok pedig
olyan egységek, amelyek a tevékenységek végrehajtasara szolgdlnak. A cél pedig
az, hogy ezeket az erGforrasokat a tevékenységekhez rendeljiik tgy, hogy valamely
célfiiggvényt optimalizaljuk. Az altalunk vizsgalt esetben a cél a teljes atfutasi id6
minimalizalasa.

Az er6forrasoknak kiilonb6zé tipusai lehetségesek. Egy erdforras lehet valami-
lyen gép, feldolgozo egység, ember, valamilyen szoftver, megtjulé és nem megtjuld
er6forras. A gépek tipus szerint lehetnek identikusak (identical machines), az ilyen
tipusu gépek miikodésiikben azonosak, egymas méasolatainak is tekinthetGk. Tovab-
b4, lehetnek hasonlé gépek (uniform machines), amelyek ugyanazt a munkat tudjak
elvégezni, csak a sebességiik eltérs. Végiil pedig beszélhetiink fiiggetlen gépekrol
(unrelated machines), ahol egy munka elvégzési ideje attol fiigg, hogy melyik gép
fogja elvégezni. Az altalunk targyalt esetben Osszesen m darab fiiggetlen gép &ll
rendelkezésre. FEgy gép egyszerre csak egy munkat végezhet, minden munkat el kell
végezni és a végrehajtas soran a megszakitas nem lehetséges.

A tevékenységek atomi miiveletek (amelyek tovabbi altevékenységekre nem bont-
hatok), amelynek végrehajtasa az eréforrasok segitségével torténik. Az egyes teve-
kenységek altalaban kiilonbo6z§ paraméterekkel rendelkezhetnek, pl. prioritas, a vég-
rehajtas legkorabbi id6pontja (release time), a végrehajtas befejezésének lehetséges



legkésébbi id6pontja (due date vagy deadline, a ketts kozott az a kiilonbség, hogy
az elsG esetben szeretnénk, hogy addig befejez6djon a munka, ha lehet, a masik eset-
ben eddig az id6pontig mindenképpen be kell fejezni a munkat). A munkak kozott
lehetnek megel6zési relaciok (precedence constraints). Tovabbéa, minden munkéanak
adott a végrehajtasi ideje (processing time). Az altalunk vizsgalt esetben tehat m
fiiggetlen gép van és bizonyos munkak kézott vannak megel6zési relaciok. Emlékez-
tetlink arra, hogy ha el van irva, hogy az . munka megel6zi a j. munkét, azon azt
értjiikk, hogy a j. munkat csak akkor szabad elkezdeni (valamely gépen), ha az i.
munka végrehajtasa mar befejez6dott.

A célfliggvény altalaban tobbféle lehet, az egyik leggyakrabban vizsgalt célfiigg-
vény a teljes atfutasi id6 (makespan), amit minimalizalunk. A 2. fejezetben targyalt
iitemezési probléma esetén is a teljes atfutasi idé minimalizélasa a cél. A teljes at-
futasi idén azt az idGintervallumot értjiik, ami az els6 tevékenység végrehajtasanak
kezdetétdl az utolsod tevékenység befejezési idGpontjaig tart.

Az iitemezésrdl részletes attekintést példaul [1]-ben talalunk. A konyv az iite-
mezéshez kapcsolodo elméleti modelleket és a kiilonb6z6 litemezési problémakat tar-
gyalja igen részletesen. Az igen bdséges irodalombol e helyiitt még megemlitjiik Ro-
nald L. Graham két alapveté munkajat |2, 3]. Mindkét munkaban a tébbprocesszoros
rendszerekben el6forduld, az litemezésekhez kapcsolodd anomalidkkal foglalkozott.
Cikkeiben tobbek kozott azt vizsgalta, hogy melyek azok az anoméliak, amelyek
befolyasolhatjék a teljes atfutasi id6t. Ezekben a cikkeiben definidlta a hires LS
(List Scheduling, vagyis lista szerinti iitemezés) algoritmust, amely az elsé online
litemezési algoritmusnak tekinthetd; valamint ennek a rendezett valtozatat, az LPT
(Longest Processing Time) algoritmust. Az LS algoritmus valamilyen sorrendben
iitemezi a munkékat, a kovetkez6 munkat arra a gépre teszi, amelyik azt a legko-
rabban képes befejezni. Az LPT esetén a munkik a hosszusagaik szerinti monoton
csOkkend sorrendbe vannak rendezve.

Megjegyezziik, hogy a Graham altal vizsgalt P,,||Cq. feladat esetén a munkak-
nak nincs kibocsajtési ideje sem és hatarideje sem, nem megszakithatoak a munkak
és amennyiben megelzési relacio is van, az csak idébelit jelent, attol lehetnek a
munkak kiilon gépeken.

Valamely iitemezési algoritmus approximacios aranya (approzimation ratio, leg-
rosszabb eset aranya) az R szam, ha az algoritmus altal kapott célfiiggvényérték
legfeljebb R-szerese az optimélis megoldas értékének, tetszéleges input esetén. Koz-
tudott, hogy az LS algoritmus approximacios aranya 2 — % m gép esetén, mig az
LPT algoritmusnak az approximécios aranya % — :,%m

Mivel a 2. fejezetben egy iitemezési feladatot gépi tanulasi modszerrel oldok
meg, a gépi tanulasrol is megadok egy rovid altalanos ismertetét az alabbiakban.

1.1.1. A mesterséges intelligencia

A mai értelemben mesterséges intelligencianak nevezett tudomanyteriilet nagyon
fiatal, keletkezése formalisan az 1956-os évre datalhato; ekkor alkottdk meg a tu-
domanyteriilet nevét. Azonban azon tudomanyok fejlédése, amelyek ezt a teriiletet
megalapoztak, mar idgszamitasunk el6tt elkezd6dott.

A mesterséges intelligencia a szamitégép-tudomany azon részteriilete, amely az-



zal foglalkozik, hogyan lehetne hardver és szoftver rendszerekkel a lehetd legjobban
lemésolni az ember kognitiv képességeit. Egy nagyon altalanos teriiletrsl van szo,
amely alapvetGen az intelligencia megértéséhez és mesterséges lemasoldsahoz sziiksé-
ges eszkozoket kutatja azzal a céllal, hogy ezt a képességet a szoftverbdl és hardverbél
felépiils gépeknek atadja.

A mesterséges intelligencia leirdsa alapvetGen négy oldalrél kozelitheté meg:

e emberi modon cselekvé rendszerek,
e cmberi modon gondolkodé rendszerek,
e raciondlisan gondolkod6 rendszerek,

e raciondlisan cselekvs rendszerek.

Az emberi mdédon cselekvl rendszereknek képesnek kell lenniiik a természetes
nyelvek feldolgozéséra, a tudasreprezentaciora, az 6nallo kovetkeztetésre, a gépi ta-
nulasra, a gépi latasra és a robotikara. Azok a gépek, amelyek ezekkel a képességek-
kel rendelkeznek mar intelligens viselkedést mutathatnak. Ennek mérésére 1950-ben
Alan Turing javasolta a Turing-tesztet [4]. A teszt lényege, hogy a gép tud-e olyan
intelligens viselkedésmintakat mutatni, amely alapjan az ember elhiszi, hogy egy
méasik emberrel kommunikal. Ha igen, a teszt sikeres, ha nem, akkor a teszt nem
sikeres.

Az emberi modon valé gondolkodas teriiletével a kognitiv tudoméanyok foglal-
koznak, azonban még ma sem tudjuk pontosan, hogy hogyan miikodnek a kognitiv
funkciok. A mesterséges intelligencia és a kognitiv tudomanyok Osszefondédnak és
egymas fejlédését serkentik, jelenleg leginkabb a latas, a természetes nyelvek feldol-
gozasa és a tanulas teriiletén.

A racionalis gondolkodas fontos alapja a formalis logika, amely logikai kifejezé-
sekkel lefrt problémak megoldasat igyekszik megadni kovetkeztetések ttjan. Olyan
programok, amelyek egy logikai kifejezésekkel reprezentalt problémat megoldottak,
mar 1965-ben léteztek.

A racionalis cselekvés nem maéas, mint egy meghatarozott cél elérése érdekében
megtett cselekvés. A mesterséges intelligencidban a racionalisan cselekvd entitasokat
agenseknek nevezziik. Fontos, hogy a racionalis cselekvéshez szorosan hozzatarto-
zik a raciondlis gondolkodas is. Azaz a legtobb esetben a racionélis kovetkeztetés
eredménye a racionalis cselekvés.

Ez tehat az a négy szempont, amelyek mentén kénnyebben és érthetGbben lehet
megfogalmazni, hogy mi is az a mesterséges intelligencia. Ez egy nagyon altalanos és
szerteagazo teriilet, amely t6bb mas tudomanyteriilettel dsszefonodva fejlédik. Az
alapvets cél az intelligensen gondolkodo és viselked$ hardver- és szoftverrendszerek
létrehozasa, amelyek lényegében az ember kognitiv képességeit probaljak masolni.

1.1.2. Gépi tanulas

A gépi tanulas fogalmat Alan Turing veszette be az 1950-ben megjelent cikkében
[4]. A gépi tanulas a mesterséges intelligencianak egy, ma nagyon népszeri rész-
halmaza, amely olyan algoritmusokkal foglalkozik, amelyek képesek az altaldnositas



elvével tanulni anélkiil, hogy explicit moédon programozva lennének konkrét feladat
megoldasara.

A mesterséges intelligencia az 0sszes olyan algoritmus gytjtéhelye, amelyek ké-
pesek a tanulasra és a kovetkeztetésre, hasonléan az emberekhez. Ezen algoritmu-
sok részhalmaza a gépi tanulés, amelyr6l mar volt sz6 az el6zGekben, majd ennek
sziikebb részhalmaza a mély tanulds. A gépi tanulds modszereit hdrom csoportba
sorolhatjuk alapvetGen: feliigyelt tanulas, nem feliigyelt tanulas és a megerdsitéses
tanuléas.

A feliigyelt tanulas esetében rendelkezésre allnak a bemenetek és a hozzajuk
tartozo elvart kimenetek, vagy mas néven a tanitomintik. Ezek alapjan a cél egy
leképezés, azaz egy fiiggvény megtanulasa a bemeneti és a kimeneti halmaz ko-
zOtt. A bemeneti és kimeneti attributumok lehetnek diszkrétek vagy folytonosak.
Ha a kimeneti attribatumok diszkrétek, akkor osztalyozasrol, ha folytonosak, akkor
regressziorol van szd. Az osztalyozas esetében gyakorlati alkalmazasként emlithe-
t6 a képek osztalyozasa, diagnosztika vagy a detektalas (pl. csalas detektalasa) .
A regresszional a jellemzGen felmeriils feladatok kozé tartozik példaul az idGjaras
elérejelzés, az arak és arfolyamok meghatarozasa, kiilonbozd becslések elvégzése.

A feliigyelet nélkiili tanuladsnal a bemeneti mintdk tanulasa torténik ugy, hogy
nincs tanitohalmaz, azaz nem all rendelkezésre cimkézett kimenet. Ez azt jelenti,
hogy az algoritmus nem tudja eldénteni a kimenetrdl, hogy az jo, vagy nem jo. A
nem feliigyelt tanulas esetében az algoritmusok a bemeneti adathalmazon probalnak
szabalyokat és mintdkat felismerni. A két nagy algoritmuscsoport a klaszterezs és az
Osszefiiggéseket keres6 algoritmusok. A klaszterezd algoritmusok célja, hogy a beme-
neti adatok alapjan a kimeneteket csoportokba (klaszterekbe) soroljak hasonlosagi
mintdk alapjan. Méasképpen fogalmazva, az egyméashoz hasonlé kimenetek azonos
klaszterbe keriilnek. Az Osszefiiggési szabalyokat keresé algoritmusok célja pedig,
hogy olyan szabalyokat keressenek, amik egy nagy adathalmazt leirnak. Példaul,
ha az emberek megvisaroljak az A terméket, akkor valdsziniileg a B terméket is
megveszik, viszont aki a C terméket valasztja, az szinte biztos nem fogja megvenni
az A-t.

A megerdésitéses tanulas a gépi tanulas harmadik csoportja. A megerdsitéses
tanulas feladata egy agens dinamikus kérnyezetben torténs dontéshozatalanak az op-
timalizalasa tgy, hogy a dontések utan kapott jutalmak Gsszege maximaélis legyen.
A kornyezetben végrehajtott dontések utan, mint visszajelzés vagy megerGsités, az
agens egy jutalomnak nevezett értéket kap, ami lehet negativ vagy pozitiv. A ju-
talom értéke, valamint az allapotokat és az akciokat értékels fiiggvények kimenetei
alapjan az agens iteraciok alatt képes megtanulni egy stratégiat arra vonatkozoan,
hogy a dinamikus kornyezetben hogyan kell viselkednie a jutalom maximalizalasa és
ezaltal egy cél elérése érdekében. A megerGsitéses tanulast tipikusan olyan problé-
méaknal alkalmazzak, ahol valés id6ben, azonnal dontéseket kell hozni. Ilyen lehet
példaul egy jatékot jatszo agens, egy robotot vagy jarmiivet irdnyité dgens vagy
valamilyen logikai rejtvényt (pl. labirintus) megfejts dgens.

Az altalam targyalt {itemezési feladatra a megerGsitéses tanulasbol ismert Q-
tanulas (@-Learning) algoritmusat alkalmazva egy olyan eljarast dolgoztam ki, amely
a tevékenységeknek egy olyan sorrendjét probalja meghatarozni, amely sorrendben
a tevékenységeket iitemezve minimalis atfutasi id6t kapunk. A tevékenységek ko-



zOtt megeldzési relaciok adottak. Az eljaras kifejlesztésekor a Q-Learning modszerét
alkalmaztam (viszonylag szabadon), emiatt az algoritmust " Q-Learning Motivated
Algorithm" vagy roviden QLM-nek neveztem. A Q-Learning és az algoritmus rész-
letes ismertetése az 2. fejezetben talalhato.

1.2. Ladapakolas

A dolgozat 3. fejezetében ladapakolési feladatokkal foglalkozom, emiatt itt roviden,
altalanosan ismertetem a ladapakolasi (bin packing) feladatkort.

A ladapakolasi feladatok esetében targyakat szeretnénk ladakba pakolni ugy,
hogy a pakolt ladak szama minimélis legyen és az egy laddba pakolt targyak mé-
rete ne lépje at a lada kapacitasat. A probléma NP-nehéz [5, 6]. A ladapakolasi
problémat a hetvenes évek elején definidltak és kezdték vizsgalni. Az Gn. approxi-
macios algoritmusokat ezen a teriileten fejlesztették ki. Olyan algoritmust neveziink
approximacios algoritmusnak, amelytél nem véarjuk el, hogy feltétleniil optimalis
megoldast adjon egy feladatra, de egyrészt gyors (polinomialis ideji), méasrészt az
altala szolgaltatott megoldas garantaltan "nincs til messze" az optimum értéktsl.
Az approximécios aranyt a kovetkezG alfejezetben pontosan definialjuk.

D.S. Johnson disszertacioja 7] a ladapakolasrol (és Graham munkéja [2]) azokhoz
a korai munkékhoz tartoznak, amelyek elinditottak és forméltak az approximacios
algoritmusok vizsgalatat és megszabtak a tovabbi kutatasok irdnyat. A ladapakolas
teriiletén megkiilonboztetiink online és offline eseteket. Online esetben a targyak
adatai el6re nem ismertek, offline esetben viszont igen.

A ladapakolési probléma témakorében méar ismert benchmark feladatokat hasz-
naltam az algoritmusok tesztelésére. Ebben a kutatési téméaban a cél az volt, hogy
olyan, a ladapakolashoz kapcsolodoé eléfeldolgozé algoritmusokat adjak meg, amelyek
egyszerisitik az egyes feladattipusok megoldasat. Az &ltalam kidolgozott eléfeldol-
gozd algoritmusok esetén a kovetkezd torténik. A feladatosztaly elemeire bizonyos,
a 3. fejezetben részletesen ismertetendé moh6 modszerrel pakoljuk a targyakat. Ki-
deriil, hogy bizonyos esetekben sikeriil optimalis pakolast késziteni (annak ellenére,
hogy a ladapakolasi feladat NP-nehéz). Természetesen nincs arra garancia, hogy
minden inputra miikodik a moédszer, de ez nem is cél. Azt fogjuk latni, hogy ha a
benchmark feladatosztaly 100 inputot tartalmaz, akkor a 100-bél 80 vagy akar tobb
esetben optimalis megoldast tudunk kapni moho6 algoritmusok segitségével. Emiatt
elegend§ csak a maradék inputra alkalmazni valamilyen 6sszetettebb algoritmust.

1.2.1. Approximécids eljarasok

“ e,

a First Fit (FF) vagy a Best Fit (BF). Ebben a munkdmban az ismert algoritmusok
koziil a First Fit algoritmust hasznaltam, amely feltehet6leg els6ként 1971-ben jelent
meg Ullman munkéjaban [8].

A First Fit algoritmus a targyakat valamilyen adott sorrendben pakolja. A so-
ron kovetkezd targy mindig az elsG olyan ladaba keriil, amelybe a lada kapacitasat
figyelembe véve belefér. Amennyiben egyik nyitott ladaba sem pakolhato, gy 1j
ladat nyit és a targyat ebben helyezi el. Az algoritmust First Fit Decreasing-nek



nevezziik abban az esetben, ha a targyak a méretiik alapjan csokkend sorrendben
kévetkeznek egymas utan.

Egy ladapakolasi algoritmus hatékonysagat altalaban az approximacios arannyal
jellemzik, amelynek két 6 fajtaja van: aszimptotikus (asymptotic approzimation
ratio) és abszolut approximécios arany (absolute approximation ratio). Legyen L
a pakolando6 targyak halmaza. Legyen OPT egy optimalis offline algoritmus és A
egy tetszbleges ladapakolasi algoritmus. OPT(L) és A(L) jelolje a 1adak szamat,
amelyeket a két fenti algoritmus generdl. Az abszolit és aszimptotikus kozelitési
arany a kovetkez&képpen definidlhato:

Russ(A) = sup {M} , (1.1)

.\ OPT(L)
R(A) = limsup {s%p {OA%L()L) |OPT(L) = n}} . (1.2)

Ullman munkajaban méar bebizonyitotta, hogy az R(FF) értéke legfeljebb 1,7.
Garey ¢és tarsai [9] valamint Johnson és tarsai [10] pedig erre vonatkoz6 alsoé korlatot
is megadtak. Ezek az eredmények az approximéciés algoritmusokkal kapcsolatos
elsG eredményekhez tartoznak. Simchi-Levi 1994-ben megjelent munkajaban [11]
bebizonyitotta, hogy Rups(FF) < 1,75. Az FF esetében az éles korlat Ryps(FF) =
1,7, amelynek bizonyitasa a [12] és a [13] munkdkban talalhato. Az FFD esetében
az €les korlat a [14] és [15] alapjan az FFD(L) < L. OPT(L) + § forméaban adhato
meg. Az éles jelz6 azt jelenti, hogy a g érték nem csokkenthetd.

Az FF és FFD algoritmusok a mai napig nagyon népszertiek ladapakolasi fel-
adatok megoldasihoz, mert egyszertiek és sok esetben hatékonyak. Természetesen
ezenkiviil més algoritmusok is léteznek, mint pl. aszimptotikus polinomialis ideji
approximéacios sémék [16, 17|. Az approximacios séma azt jelenti, hogy barmilyen
e > 0 esetén létezik olyan A. algoritmus, amelyre A.(L) < (1 +¢)-OPT(L)+ C
teljesiil, ahol a C' az inputtol fiiggetlen, univerzilis konstans, és az algoritmus futési
ideje polinomialis e-ban. Ezek az algoritmusok inkabb elméleti jelentGségiiek.

1.2.2. Egzakt eljarasok

Szamos egzakt algoritmust publikaltak a ladapakolasi probléma megoldasara, téb-
bek kozott dinamikus programozason alapulot, LP-relaxacion alapulot (utofeldol-
gozassal), branch-and-bound, branch-and-price vagy constraint programming alapt
modszereket. Egzakt eljarasnak olyan modszert neveziink, amelyik minden esethben
megtalalja az optimélis megoldast, azonban hatranyuk ezeknek, hogy relative kis
méretii (ladapakolasi) feladatokat tudnak csak megoldani elfogadhaté idén beliil.
Alabb néhany kapcsolodd publikaciot adok meg.

Delorme és tarsai [18] gorcsé ala vették a legfontosabb matematikai modelleket
és algoritmusokat, amelyek a ladapakolasi probléma megoldasat egzakt modon al-
litjék el6, majd tesztelték a legjobbnak vélt szoftverek teljesitményét. Carvalho [19]
linearis programozasi modellekkel foglalkozott a ladapakolési probléma megoldéasa-
ra. Wei és tarsai [20] egy 1j branch-and-price-and-cut algoritmussal oldottak meg a



ladapakolasi problémét. Ez az egzakt eljaras a klasszikus osztalyozasi modellen és
egyéb modszereken alapult.

A ladapakolasi probléma MILP (mized-integer linear programming, kevert egész-
értéki linearis programozasi feladat) modellje meglehetGsen egyszerii. A ladapako-
lasi feladathoz egy ilyen MILP modellt adok meg.

Legyen n db targy, amelyek wy,ws, ..., w, mérettel rendelkeznek. A targyak
méretei a racionalis szamok halmazabol keriilnek ki, tovabba 0 és C k6zott helyez-
kednek el. A ladaknak C' a kapacitasa és feltessziik, hogy n db ladank van. Tovabbé
legyenek z;; és y; valtozok az alabbiak szerint.

1 ha azi. targy a j. ladaban van

LTij = - (1.3)
0 kiilonben
1 ha aj. lada hasznalatban van

Yyj = 1 (1.4)
0 kiilonben

Az y; valtoz6 megadja, hogy a j. lada hasznalatban van-e vagy sem. Az x;;
valtozo pedig azt irja le, hogy az i. targy a j. ladaban van-e vagy sem. A cél nem
més, mint a felhasznalt l1adak szamanak a minimalizalasa néhany feltételt figyelembe
véve.

A probléma formélis leirdsa a kovetkéképpen adhaté meg.

z = minZyj (1.5)
j=1

Zwi]}i]’ < ij, j = 1, o, (16)

=1
dawy=1i=1...,n (1.7)
j=1

yi,ri; €{0,1}, i=1,....n, 7=1,....m (1.8)

Az (1.6) feltétel megkoveteli, hogy a j. lada t6ltottsége nem lehet nagyobb C' kapa-
citasnal, tovabba rakényszeriti az y; valtozot, hogy 1 legyen ha van targy a ladaba
pakolva. Az (1.7) pedig azt irja le, hogy az i. téargy pontosan egy ladadba van
bepakolva.

1.2.3. Metaheurisztikak, a f6 valtozatok

A ladapakolasi probléma NP-nehéz és emiatt az egzakt algoritmusoknal problémak
adédhatnak, mint pl., hogy nem adnak optimadlis eredményt elfogadhatd idén be-
lil. Emiatt a problémét a metaheurisztikdk oldalarol is indokolt volt megkdozeliteni
és szamos eljaras latott napvilagot, gy mint genetikus algoritmusok (genetic algo-
rithms), részecske raj optimalizalas (particle swarm optimization) vagy tabu keresés
(tabu search). FEzek az eljarasok kozel optimalis megoldasokat talalnak, azonban
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néhany esetben képesek az optimalis megoldas felderitésére is. Dokeroglu és Cosar
munkajukban [21] Gsszesen 1318 benchmark feladatot vizsgaltak meg a cikkiikben
bemutatott genetikus algoritmusokkal. A megoldott feladatok 88,5%-ban sikeriilt
optimélis megoldést talalni.

Loh és tarsai [22] egy méasfajta, egyszert és gyors heurisztikus megoldast fejlesz-
tettek. Az algoritmus teszteléséhez egy 1584 feladatbol all6 benchmarkot alkalmaz-
tak. A feladatok kapcsan ismert legjobb illetve optimélis megoldasokat az algoritmus
megtalalta, valamint harom tovabbi feladat esetén talalt optiméalis megoldast (amely
feladatokra nem tudtak kordbban, hogy mi az optimalis megoldas).

Kucukyilmaz és tarsai 23| szintén egy genetikus algoritmust mutattak be. 1318
benchmark feladatot vizsgaltak és 99,6%-ban optimalis megoldast talaltak. A Hard28
teszthalmaz esetében 28 feladatbol 23 alkalommal taldltak meg az optimalis megol-
dast. Azonban a szép eredmények ellenére az algoritmus nagyon magas futasi idével
dolgozik.

Borgulya [24] egy hibrid evolucios algoritmust (evolutionary algorithm,) fejlesz-
tett, ahol egy egyed a megengedett megoldas és tartalmazza a ladak leirasat is. Az
algoritmus két j mutaciés operatorral dolgozik és a megoldas mindségét lokalis ke-
resési eljarassal javitja. A szerzd 1615 benchmark feladatot oldott meg és 99,7%-ban
optimalis megoldéast kapott. A Hard28-as teszthalmaz mind a 28 feladatéra sikeriilt
optimélis megoldést talalni.

1.2.4. Allatok viselkedésén alapuld, kiilsnb6zé metaheuriszti-
kus valtozatok

Erdekességként megemlitem, hogy szamos olyan metaheurisztika létezik, amely az
allatok viselkedését probalja lemésolni. Az elsé ilyen volt a hangya kolénia algorit-
mus (ant colony algorithm), ami szamos optimalizalasi probléma megoldasaban [25]
hatékonynak bizonyult. Hasonlé eljaras a részecske raj optimalizéalas is [26]. Széa-
mos egyéb, az allatok viselkedését utanzo algoritmus létezik ma mar. Ilyen példéul
a balna optimalizalas (whale optimization algorithm), amelyet a ladapakolasi prob-
léméara is alkalmaztak [27]. Tovabbi hasonlé algoritmusok, amelyek mifkddésének
Otlete a természetbdl valo, a kakukk (cuckoo search) [28] és mokus keresés (squirrel
search) [29]. A szentjanosbogar (firefly search) és a kakukk kereséssel, valamint a
mesterséges méh kolonia algoritmussal (artificial bee colony algorithm) a [30]-ban
foglalkoztak. Létezik még a denevér optimalizalas (bat optimization) [31], az afrikai
bivaly optimalizalas (african buffalo optimization) |32, 33| vagy a kenguru keresés
(kangaroo search) [34] és a szocske algoritmus (grasshopper algorithm) [35].

1.2.5. Kapcsolédd, tovabbi relevans publikiciok

Ebben az alfejezetben a ladapakolasi probléma, teriiletéhez kapcsolddo, relevans pub-
likdciokat mutatom be. A ladapakolasi feladatokkal kapcsolatos attekinté cikkek
példaul a kovetkezok [5, 18, 36]. Az irodalmi attekintésbol lathato lesz, hogy a lada-
pakolas, mint kutatasi teriilet jelenleg is aktiv, tovibba szdmos, egymassal versengd
kutatasi irany létezik. Emellett az elméleti eredményeket szdmos ipari teriileten
alkalmazzak.
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A [37]-ben a szerz6k egy ladapakolési keretrendszert mutatnak be.

A [38]-ban a szerzok két 1j ladapakolasi problémét mutatnak be néhany hasznos
alkalmazasi lehetGséggel, elsGsorban logisztikai teriileten. Mindkét probléma eseté-
ben a hagyomanyos lada kivalasztési koltség mellett szamos més koltség is meg-
jelenik. Ujfajta heurisztikikat vezettek be, amelyeket szamos feladatra teszteltek.
Az eredmények alapjan a bemutatott heurisztikdk teljesitménye jo, tovabba az 1j
modellek gyakorlati alkalmazasanak lehetnek elényei.

A [39]-es publikdcioban a szerz6k repiilégépek karbantartasi feladatainak iite-
mezésével foglalkoznak, amelyek sziikségesek ahhoz, hogy a gépek biztonsagosak
legyenek minden repiilés soran. Ez egy Osszetett kombinatorikus feladat, amelyet
minden nap el kell végezni. A probléma egy id&fiiggs, valtozd méreti ladapakolasi
feladatként adhato meg. Az j megkozelités képes hatékonyan megoldani a tobb-
éves feladatkiosztéasi problémat néhany perc alatt. A probléma megoldasdhoz egy, a
Worst Fit Decreasing-en alapulé heurisztikus médszert alkalmaznak. A heurisztikat
egy eurOpai légitarsasagtol szarmazo adatokkal tesztelték és validaltak. A korabban
hasznalt modszerhez képest az 0j algoritmus 30%-al gyorsabb volt minden elvég-
zett tesztesetre és a legtobb esetben az optimalis eredménytdl valo eltérés 3% alatt
maradt.

A [40]-es publikacioban bemutatjik az egydimenzios ladapakolasi probléma meg-
oldo6 algoritmusainak legijabb implementécioit, kiilénos tekintettel a populacivalapt
metaheurisztikus algoritmusokra.

A [30]-ban a szerzdk egy szisztematikusan elvégzett teljesitmény kiértékelést mu-
tatnak be néhény reprezentativ algoritmuson. A teszthez harom standardnak sza-
mit6 ladapakolasi adathalmazt hasznéltak, amelyekben Osszesen tobb mint 1210
feladat talalhato. A vizsgalt heurisztikdk altal adott eredményeket a best fit és més
heurisztikdk eredményeivel hasonlitottdk ossze.

A |41]-es publikacioban a szerzék egy dinamikus ladapakolasi probléma egy konk-
rét valtozatat alkalmaztak, amely egy iitemezési feladat részfeladataként fordul elg.
A feladat megoldasara a szerzdk kiilonboz6 elGfeldolgozo technikat javasolnak a val-
tozok és a feltételek szamanak csdkkentése érdekében. Az elvégzett szamitasok alap-
jén az 1j megkdozelités a korabbiaknal jobb teljesitményt eredményezett mind a meg-
oldasok, mind pedig a futési id6 tekintetében.

1.3. LAadafedés

A 4. fejezetben egy viszonylag j teriilettel foglalkozom, amelynek a neve ladafedés
széllitassal (Bin Covering with Delivery, BCD). Ebben a problémaban, hasonléan a
ladapakolasi problémahoz, targyakat pakolunk ladakba, amelyeket, ha fedetté val-
nak, lezarunk és elszallitunk. A célfiiggvény meghatarozasa a fedett és elszallitott
ladak szama alapjan torténik. Azaz, minden elszallitott ladaért pénzt kapunk és a cél
az, hogy a profitot maximalizaljuk. A probléma els6ként a [42]-ben lett bemutatva.
A 4. fejezetben ennek a problémanak a kiterjesztésérdl és alapos vizsgalatarol lesz
sz0. A probléma offline valtozatéval a [43| foglalkozik, tovabba néhany kapcsolodo
probléma a [44]-ben keriil bemutatasra.

Emlékeztetiink arra, hogy a klasszikus ladapakolasi probléma esetében a tar-
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gyakat be kell pakolni valamelyik lddaba gy, hogy a targyak Gsszmérete a lada
kapacitasat nem lépheti tul, és a cél a felhasznalt 1addk szamanak minimalizalasa.
A ladafedési feladat esetében viszont a lehetd legtobb ladat akarjuk lefedni. A la-
dat fedettnek tekintjiik, ha a ladaba bepakolt targyak osszmérete legalabb a lada
kapacitasaval egyenls. Ismert, hogy mindkét probléma (ladapakolas és ladafedés)
NP-nehéz [6]. Ez azt jelenti, hogy az optimalis megoldas eléréséhez akar exponenci-
alisan sok lépés is sziikséges lehet (rossz esetben). Azonban szamos olyan eset van,
amikor rovid idén beliil sikeriilt optimalis megoldast talalni.

A BCD probléma online valtozataban a targyak el6re nem ismertek, és egyesével
érkeznek egymas utan. Az éppen érkezs targyat azonnal be kell pakolni egy ladaba.
A célfiiggvény a nyitott ladak szaméanak fiiggvényében valtozik. Minél tobb lada
van nyitva egyszerre, a célfiiggvény értéke annal jobban csokken. A cél az, hogy a
célfiiggvényt, azaz a profitot maximalizaljuk. A ladapakolasi és ladafedési problé-
ma offline és online valtozataival tébbek kozott az [5], [45] és [46] attekintd cikkek
foglalkoznak.

A kutatasom ezen teriiletén a ladafedési probléma online valtozataval foglalkoz-
tam. Ahogy fentebb volt rola szo, a megoldas nem csak a pakolas minGségén (azaz,
hogy az egyes targyakat milyen mésik targyakkal egyiitt pakoljuk), hanem a fel-
hasznalt ladak szaman is mulik. A feladat megoldéasa soran "gyors és jo" pakolast
szeretnék elérni az algoritmussal, amely esetében a célfiiggvény biinteti azt, ha tal
sok lada van nyitva egyszerre. Ez az otlet természetesen adodik abbol a megéllapi-
tasbol, hogy minél tobb lada van nyitva, annal nehezebb ket kezelni.

Megjegyezziik, hogy a "Scheduling with delivery” témakor (pl. [47]) hasonld
probléma a mostanihoz. Vannak olyan munkak is ([48], [49]), amelyek a varakozasi
id6t biintetik. Azaz azt az id6t, amely a lada nyitasa és elszallitasa kozott telik el.

Az altalam alkalmazott modell eltér az utobbi két munkatol, ugyanis ebben az
esetben nem az eltelt id6t biinteti a célfiiggvény, hanem egyebek mellett a til sok
nyitott ladat.

A 4. fejezetben pontosan meghatarozom a probléma definici6jat és néhany, az
offline modellre vonatkozo6 tulajdonsagot is megadok. Bemutatom azokat a feladat-
osztalyokat, amelyekre vonatkozo vizsgélatokat végeztem. Ezutan ismertetek né-
hany természetesen adodo online algoritmust, majd ezek alapjan bemutatok egy 1j,
rugalmas algoritmus osztalyt, amit MMask-nak neveztem el. Az 1j algoritmushoz
kapcsolodéan bemutatok egy metaheurisztikus megoldast Evolution of Algorithms
(EoA) néven, amelynek korabbi valtozata a [42]| cikkben mar megtalalhato. A fe-
jezet végén az 1j algoritmus hatékonysagat szamitogépes futasokbol szarmazo ered-
ményekkel demonstralom, majd konklaziok levonasa mellett Osszegzem az elvégzett
munkat.

1.4. A dolgozat szerkezete

A dolgozat négy f6 fejezetre tagolodik, amelyek koziil az 2., 3. és 4. fejezetek a
harom kutatasi teriiletet foglaljak magukba, a dolgozat elején pedig egy altalanos
bevezetés olvashato.

A 2. fejezet a megerGsitéses tanulas teriiletérdl ismert Q-tanulas algoritmusat
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alkalmazza egy bizonyos, bonyolult {itemezési feladat megoldasara. A megoldas
alapotlete az, hogy az algoritmus a tevékenységeknek egy sorrendjét hatarozza meg,
amely sorrendben az iitemezés végrehajtasra keriil. A sorrend kialakitasaban jatszik
nagy szerepet a (Q-tanulas. Az algoritmusban a megerdsitést az litemezés végered-
ménye, a teljes atfutasi idG jelenti.

A 3. fejezetben ladapakolasi feladatoknak bizonyos moh6 algoritmusait vizs-
galtam. A moho6 algoritmusok a feladatok kiilénboz6 tulajdonsigait hasznéljak ki,
ezaltal egyszerd és konnyen implementéalhaté eljarasokkal a megoldand6 probléma
bizonyos esetekben optimalisan megoldhato.

A 4. fejezet a ladafedési feladat egy bizonyos altaldnositasaval foglalkozik. A
megoldés soran korabbi, természetesen ad6do algoritmusokat vizsgaltam, tovabba
bevezettem és vizsgaltam egy 1j, flexibilis algoritmuscsalddot, amelynek optimali-
zaltam a paramétereit.
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2. fejezet

Egy megerdsitéses tanulas altal
motivalt algoritmus alkalmazasa
bizonyos tipust utemezési feladatra

2.1. Q-tanulas altal motivalt algoritmus (QLM)

A Q-tanulas egy olyan megerssitéses tanulasi modszer, amely az élet szamos terii-
letén felmeriil6 helyzet kezelésére alkalmas. Ebben a fejezetben a Q-tanulast bizo-
nyos fajta litemezési feladat megoldasara fogjuk alkalmazni. A feladat jellemzésére
lassunk néhany példat. Elsé példaként a hivatali iigyintézést emlithetném (pl. ado-
hivatal, bevandorlasi hivatal, 6nkorményzati hivatal stb.), ahol naponta rengeteg
dokumentumot kell feldolgozni. A példa kedvéért a dokumentumokat kiilonboz-
tessiik meg. Az els6 tipusi dokumentumok feldolgozésa egyszert, azt barmilyen
hivatali dolgozé képes elvégezni. A masodik tipusi dokumentum feldolgozasat mar
csak a megfelel§ képzettséggel rendelkezd dolgozok tudjak elvégezni. Tehat, azoknél
a munkdkndl, amelyet mindenki el tud végezni, a p; id6k azonosak. Azon mun-
kék esetében, amelyeket nem mindenki tud elvégezni, ott a dolgozok egy részénél
azonosak csak a p; idék. A feladatok pedig nem megszakithatoak, ugyanis a do-
kumentumok feldolgozasa gyorsan torténik és feltételezziik, hogy egy dokumentum
feldolgozasat nem hagyjak félbe. Tovabba itt nincs megel6zési relacio. A cél a
dokumentumok feldolgozasi idejének a minimalizalasa.

Egy masik példa lehet az épitkezési munkéalatok. A munkéalatok tobb alfeladatra
oszthatoak fel, pl. alapozas, falak felhtzasa, mérnoki feladatok stb. Természetesen
ezen részfeladatok kozott megel6zési relaciok vannak. Példaul a falak felhuzasa
el6tt nyilvanvaldéan az alapnak kell elkésziilnie. Ebben a példaban az eréforrasok az
épitkezésen dolgozd emberek. A munkasok kiilonbozs feladatokat tudnak elvégezni
(pl. a segédmunkas keveri a betont, viszont villanyt nem szerelhet, de a villanyszerel§
tudja feliigyelni a beton keverését, de § inkabb a villanyszereléshez ért). Az épitkezési
munkalatok elvégzését napokban mérjiik. A munkasok egyszerre csak egy helyen
dolgoznak, és addig nem mennek méshova, amig az adott helyen el nem késziilnek.
Ebbdl a szempontbdl a munka nem megszakithato. A cél pedig az, hogy a dolgozokat
vagy azoknak a csoportjait ugy osszuk szét a feladatok kozott, hogy egyrészt azt az
adott dolgozd vagy dolgozok képesek legyenek elvégezni, mésrészt pedig a munka
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ideje minimalis legyen.

A harmadik példa egy csalddi haz felajitasa. Itt is hasonlé a megoldandé problé-
ma az el6z6 példahoz. Egy cég, amely a felajitast végzi, munkéisokat kiild a feladat
elvégzésére. Azonban mind a cégnek, mind pedig a haz tulajdonosanak érdeke, hogy
olyan munkéasok végezzék el a munkat, akiknek megvan hozza a megfelel6 kvalita-
suk, azaz precizen, szakszertien el tudjak végezni azt. Tovabba az egyes munkasok
elosztasa a feladatok kozott tgy torténjen, hogy a munkavégzés hatékony és minél
gyorsabb legyen.

Természetesen, ha egy megel6zési relacié van, akkor ha az egyik munkéas befe-
jezi az adott részfeladatot, akkor a tervben kovetkezd feladat mas munkas altal is
végezhet6. Mint lattuk, bizonyos esetekben feltehetd, hogy a munkak végzése nem
megszakithato, ez a munkafolyamat szervezésébdl, vagy a munkak jellegzetességeibsl
kovetkezik. (Pl. porszivozas az megszakithato, de piskota siitése az nem megszakit-
hato.) Megjegyezziik, hogy sok esetben a munkavégzés esetén kibocsatasi és elvart
befejezési id6k is vannak. Ez azt jelenti, hogy példaul valamely munkaknak egy bi-
zonyos hataridére el kell késziilnie. Kétfajta hatérid6 van a szakirodalomban. Egyik
esetben eddig az id6pontig a munkadnak mindenképp el kell késziilnie. Példaul, taxi-
val megyiink a reptérre. Akkor a repiil6t mindenképp el kell hogy érjiik, kiilénben
nem fizetiink. Masik esetben "j6 lenne" ha a munka egy adott id6pontra befejezGdne,
de nem torténik tragédia akkor sem, ha kicsit csiiszik a munka, legfoljebb valamennyi
kotbért fizetiink majd. Kibocsatasi idé pedig azt jelenti, hogy az adott munkat nem
kezdhetjiik el ennél az id6pontnal kordbban. Ebben a dolgozatban ilyen kibocséata-
si id&kkel és elvart befejezési idGkkel nem foglalkoztam, egyrészt mert a vizsgalat
enélkiil is eléggé bonyolult, méasrészt azért, mert a kapcsolodo cikkekben sem voltak
sem kibocsatési, sem befejezési id6k.

A fenti példak segitségével egy konnyen érthets attekintést kivantam adni arrol,
hogy a felvetett probléménak mi a lényege. A problémat olyan iitemezési problé-
maként modelleztem, ahol az egyes tevékenységek kézott megelézési relaciok vannak
definidlva, valamint az egyes tevékenységek végrehajtasanak ideje a hozzarendelt eré-
forrastol fiigg. Ezeket az eréforrasokat fiiggetlen erdforrasoknak nevezziik. Az elsé
példaban a masodik tipusi dokumentum feldolgozasa két tevékenységre bonthatod
fel: feldolgozas és ellenérzés. Lathatd, hogy a két tevékenység kozott egyértelmi
megel6zési relacié van, ugyanis a dokumentum feldolgozasat elébb kell elvégezni,
mint az ellenGrzést.

Tehat a felvetett probléma az ilitemezés teriiletéhez tartozik. Az egyes tevékeny-
ségek végrehajtasat az ercforrasokkal tudjuk elvégezni, amelyeket hozzé kell rendel-
ni a tevékenységekhez gy, hogy az el6re meghatarozott feltételek teljesiiljenek. A
munkamban a cél az, hogy a teljes atfutasi id6t minimalizaljam.

Az iitemezési feladatok altaldban szdmitasigényes, nehéz feladatok. KEzeket a
problémakat gyakran valamilyen heurisztikus modszerrel oldjak meg. Az ebben a
fejezetben bemutatott munkam egy, a megerdsitéses tanulassal kiegészitett litemezd
eljaras. A kovetkezd alfejezetekben részletesen bemutatom a felvetett problémat, a
megerdsitéses tanulast, és azon beliil a Q-tanulast, a kidolgozott eljarast. Kitérek az
alkalmazott példékra és azok eredményeinek kiértékelésére, végiil osszefoglalasként
Osszegzem az elért eredményeket.

A problémaval és annak megoldasaval az els§ impakt faktoros cikkemben [50]
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foglalkoztam.

2.1.1. Kapcsol6dé munkiak a megerdsitéses tanulas litemezés-
ben val6 alkalmazasara

Orhean és szerz6tarsai [51] egy, a megerdsitéses tanulason alapulo, elosztott felhd
rendszerhez alkalmazhaté {itemez6 eljarast mutattak be. A cél egy rendszer telje-
sitményének az optimalizalasa volt az eréforrédsok iitemezésén keresztiil. Aydin és
Oztemel [52] egy agens alapt iitemezési modszert dolgoztak ki, amelyben az 4dgens
kiilonbozs feltételek mentén szabalyokat valaszt ki, amelyek alapjan az iitemezés
végbemegy. Az agens tanitisara a (Q-tanulas egy tovabbfejlesztett valtozatat alkal-
maztak. Stefan [53] a Q-tanulas algoritmusat alkalmazta egy permutacios flow shop
problémara, ahol a cél a gépek iiresjarati idejének a minimalizaldsa volt. Stefan
tipust probléma megoldasara késziilt. A cikk [53] és a disszertacio [54] az altalam
bemutatott probléma megerésitéses tanulas oldalrol valo megkozelitésében segitett.
Gabel és Riedmiller [55] szintén a Q-tanulast alkalmaztak, viszont 6k egy job shop
tipusi problémara, amelynél a Q-fiiggvényt neurédlis halo segitségével kozelitették.
Shahrabi és szerz6tarsai [56] a megerdsitéses tanulast alkalmaztak egy job shop tipu-
st problémara kifejlesztett eljards tovabbfejlesztéséhez. Tovabbi példakat taldlunk
a megerdsitéses tanulas alkalmazasara az iitemezés teriiletén az [57-59| cikkekben.
A |60]-ban példaul a Q-tanulasnak a neuralis halozatokkal Gsszekapesolt valtozatét
alkalmaztak, amelyet Deep Reinforcement Learning-nek hivnak.

2.2. Megerdésitéses tanulas

A megerdsitéses tanulas [61] a gépi tanulason beliil a harmadik teriilet a feliigyelt és a
nem feliigyelt tanulas mellett. A megerdsitéses tanulas olyan technikak, algoritmusok
gytjteménye, amelyek segitségével a tanuld azt tanulja meg, hogy adott szitudcidban
mit tegyen. A dontéseket stratégidk megtanulasaval hozza meg. A stratégia az adott
allapot leképezése egy akciora, cselekvésre. A megerdsitéses tanulassal megoldhato
problémék jellemz6je, hogy adott dllapotban a valasztott akcié pontos megfigyelésére
nincs lehetéség, csak az an. késleltetett jutalmakon keresztiil, amely egy becslés. A
cél az, hogy ezen jutalmakat a tanuldé dgens maximalizalja.

Formalisan, egy megerdsitéses tanulasi probléma Markov déntési folyamattal ir-
hato le. Az érthetdség kedvéért a Markov folyamatok bemutatasat a Markov tu-
lajdonsagtol kezdem, és megmutatom, hogy ezek a folyamatok hogyan épiilnek fel
attol fliggden, hogy milyen j komponenseket vesziink be a rendszerbe.

2.2.1. A megerdsitéses tanulas altalanos modellje

A tanulo entitast vagy dontéshozot agensnek nevezziik. Az dgens lehet barmi (em-
ber, robot, jarmi ...), ami érzékeli a kornyezetét, az érzékelt informaciok alapjan
dontést hoz és visszahat a kornyezetére. Kornyezet az, amelyben az agens miikod-
ni képes. Az agens a meghozott dontések hatasara a kdrnyezetével interakcioba
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lép, azaz valamilyen cselekvést végrehajt. Ezekre az akcidkra a kornyezet valaszol,
amelynek hatésara az agens 4j allapotba keriil. Tovabba a kornyezet az dgens szé-
méara egy megerdsitést, egy un. jutalmat is biztosit. Ez a jutalom egy szamérték,
amelyet az agens igyekszik maximalizalni. Természetesen a jutalom értéke lehet
negativ, pozitiv vagy éppen nulla is.

N,
»

Agens
éllapot (tanulé)

St

jutalom akcio

Ry At
L—KiRM

. Koérnyezet

€—Si+1

2.1. abra. A megerdsitéses tanulas altalanos modellje

Formalisan megfogalmazva a fentieket, az 4gens minden diszkrét ¢t = 1,2,3,4. ..
id6pillanatban kapcsolatba keriil a kdrnyezetével. Minden egyes ¢ iddpillanatban
az agens egy adott S; € § allapotban van, ahol § a lehetséges allapotok halmaza.
Az aktualis allapotban valaszt egy A; € A(S;) akciot, ahol A(S;) az S; allapotban
elérhetd akciok halmaza. Egy idGpillanattal késébb a végrehajtott akcié hatasara a
kornyezettsl kap egy R, 1 € R C R jutalmat, és egy 0j S;.1 allapotba keriil. Az
el6bbi képletben R a lehetséges jutalmak halmaza.

Adott allapotban az akcio kivalasztasa valamilyen elére definidlt mechanizmus
szerint torténik. Ezt a mechanizmust az agens stratégiajanak vagy politikajanak
nevezziik. A stratégia nem mas, mint egy fiiggvény, amely egy valoszintiségi eloszlast
ir le az akciok felett. A fliggvényt m-vel jeloljiik. A 7(a|s) kifejezés azt adja meg, hogy
az Ay = a akci6 mekkora valoszintiséggel keriil kivalasztasra az S; = s allapotban.
Az el6bbi kifejezésekben a szokésos, egyszeri jeloléseket hasznaltuk.

2.2.2. Célok és jutalmak

Ahogy a kordbbiakban volt réla szo, az agens célja az, hogy a kornyezettsl kapott
jutalmat maximalizalja. Itt nem az azonnal megkapott jutalomra kell gondolni,
hanem a hosszitavon szerzett jutalmakra. FEzt nevezziik kumulativ jutalomnak.
A kumulativ jutalom formalis felirdsakor konnyebb dolgunk van abban az esetben,
ha az agens-kérnyezet paros kozotti interakciok szdma véges, azaz az agens futasa
véges lépésben befejezddik. Egy ilyen szekvencidt epizodnak neveziink és az epizod
akkor fejez6dik be, amikor az agens egy specialis allapotba, a végallapotba keriil. A
végallapotokat is tartalmazo halmazt ST szimbolummal jeloljiik. Ebben az esetben
a GGy kumulativ jutalom a ¢ idépillanatban nem més, mint a ¢ idépillanat utan kapott
jutalmak Osszege. Az dgens célja pedig a varhaté kumulativ jutalom maximalizalésa.
Mivel nem tudjuk el6re, hogy mennyi lesz a tényleges jutalom a folyamat végén, a
hangsily a "varhaton" van.

1. Definici6. Vdrhato kumulativ jutalom

Gt == Rt+1 + Rt+2 + Rt+3 + - + RT, (21)
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ahol a T' < oo az utols6 id6pillanat.

Azonban vannak olyan helyzetek, amikor egy probléma nem bonthaté fel egy-
értelmiden epizodokra, tehat a folyamat nem fejezédik be véges szamu lépésben.
Ezeket a problémékat folytonos vagy végtelen id6horizonti feladatoknak nevezziik,
ahol a T = oo. Ekkor konnyen lathato, hogy a (2.1) Osszegzés végtelenné valhat,
azaz egy olyan végtelen sort kapunk, ami divergens. Ennek a problémanak a fel-
oldasara egy 1j modszert kell bevezetniink, amit diszkontalasnak hivunk. Innentél
kezdve az agens célja a varhaté diszkontéalt kumulativ jutalom maximalizdlasa. A
(2.1) kifejezés az alabbiak szerint modosul.

2. Definicié. Varhato diszkontdlt kumulativ jutalom
Gt = Ry + 7Ry + ’VQRt+3 +--= Z Wth+k+1> (2.2)
k=0

ahol a v a diszkontélasi paraméter és v € [0,1]. A diszkontalasnak koszénhetGen
a végtelen sor konvergenssé valik. A diszkontélasi paraméter méasik alkalmazasa a
jovében esedékes jutalom jelenértékének a kiszamitasa, azaz, hogy mennyit ér most
a k id6pillanat milva kapott jutalom. Pontosabban kifejezve a k idépillanat milva
esedékes jutalom most, a jelenben az eredeti érték "~ !-szeresét éri, ahhoz képest
mintha azt most, azonnal megkapnink. Ezzel az adgens viselkedését lehet befolya-
solni. Ha a v értéke nullahoz kozelit, igy az agens egyre mohobb, és egyre nagyobb
mértékben csak az azonnali jutalmat veszi figyelembe. Ha a v értéke egyhez kozelit,
ugy az agens egyre nagyobb mértékben veszi figyelembe a jovébeni jutalmakat is.

2.2.3. Markov tulajdonsag

Egy probléma Markov tulajdonsagu [62] akkor, ha a jovGbeni allapotok nem fiigge-
nek a multbéli dllapotoktol, csak a jelentdl.

A megerésitéses tanulés esetében azt mondjuk, hogy egy probléma (és a kérnye-
zet is) Markov tulajdonsagi, ha a rendszer minden j6vGbeni allapotara igaz az, hogy
csak a jelentdl fiigg, a mualtbéli dllapotoktdl nem.

3. Definicié. Markov tulajdonsdg
P[Si41]St] = P[St41[S1, 52, - - ., 5] (2.3)

Ha a (2.3) tulajdonsag igaz, akkor az S; allapotot Markov allapotnak nevezziik. A
Markov tulajdonsiggal rendelkez6 allapot minden hasznos informaciot tartalmaz a
multban megtoértént eseményekrsl, kompakt formaban.

2.2.4. A rendszer dinamikaja

A rendszer dinamikajat az allapotok kozotti dtmenetek valosziniiségét leird, tn.
atmenet valoszintiség méatrix adja meg. Barmely tetszéleges két szomszédos allapot
k6zotti atmenet az alabbi valoszintiséggel irhato le.

Pss = ]P)[St—i-l = 3/|St = S] (2~4)
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A valoszintségeket a P allapotatmenet méatrix tartalmazza minden s allapotbol
minden s éallapotba. A matrix egy sordban talalhaté valoszintiségek Osszege pon-
tosan 1. Ez azt jelenti, hogy valamilyen szomszédos s’ allapotba biztosan atlép az
agens.

P=: : (2:5)

Y Py=1i=1...n (2.6)

Ahhoz, hogy egy probléma értelmezhets és megoldhaté legyen, minden esetben elére
definialni kell az allapotatmenet méatrixot. Bonyolultabb feladatok esetében ennek
a definidlasa kényelmetlen és nehézkes lehet.

Markov dontési folyamat

Az olyan megerésitéses tanulasi problémat, amely Markov tulajdonsagi, Markov
dontési folyamatnak nevezziik. Az alabbiakban attekintést nyujtok az egyszerd
Markov lanctol indulva az Gsszetettebb Markov dontési folyamatig a megerGsitéses
tanulas szemszogébdl.

Markov-lanc

A Markov-lanc egy memoria nélkiili, véletlenszertd allapotok sorozatabol allo folya-
mat.

4. Definicié. Markov folyamat: A Markov folyamat egy (S, P) rendezett kettes,
ahol:

e S az dllapotok véges halmaza
o P az dllapotatmenet valdosziniségi mdlriz
PSSI = P[StJrl = Sllst = 5]
Markov-folyamat jutalmazassal

Annak a Markov-lancnak a neve, amelyben megjelenik a jutalomfiiggvény, Markov-
folyamat jutalmazassal (Markov Reward Process), vagy roviden MRP. Ez nem mas,
mint a Markov-lanc kiterjesztése, ahol az egyes allapotvaltasokra a kornyezet egy
jutalomfiiggvény segitségével visszajelez.

5. Definicié. Markov Reward Process: A Markov Reward Process egy (S, P,R,~)
rendezetl négyes, ahol:

e S az dllapotok véges halmaza

o P az dllapotdatmenet valoszinidségi mdtric

Pss = P[St—i-l = S/|St = 3]

20



e R a jutalomfiigguény
R, = E[Ri141]|S; = ¢

e v € [0,1] a diszkontdldsi faktor (leszamitoldsi tényezd)

Megjegyezziik, hogy itt R nem fiigg a valasztott 1épéstdl csak az adott dllapottol.

A varhaté diszkontalt jutalom a (2.2) képlet alapjan szamithato. A 2.2.2. fe-
jezetben méar volt réla sz6, hogy miért sziikséges a jutalom értékeit diszkontalni
az id¢ fiiggvényében. Egyrészt, a folytonos feladatok esetében ezzel biztosithaté a
végtelen sor konvergenciaja, masrészt pedig a jovébeni jutalmak fontossaga is beal-
lithato. Utobbi esetben, ha a v értéke nulldhoz kozelit, akkor az dgens rovidlato, ha
az egyvhez kozelit, akkor a jovébeni jutalmak egyre jobban felértékelGdnek.

6. Definici6. Allapotértékeld fiigguény MRP esetén: Az MRP dllapotértékeld fiigg-
vénye, v(s) egyenld az elvdrt diszkontdlt jutalommal az s dllapotbdl indulva.

v(s) = E[G¢[Sy = s] (2.7)

Az allapotok hasznossagat a beldle kiindul6 allapotsorozatok varhatd hasznos-
saganak Osszegével tudjuk leirni. Az allapotok hasznossiaganak meghatarozasara
a Bellman-egyenletet [63] alkalmazzak, amely Richard Bellmantol szarmazik. A
Bellman-egyenlet szerint egy adott dllapot hasznossdga a benne tartézkodas értéke
és a szomszédos allapotok varhat6 hasznossaganak az Osszege. A Bellman-egyenlet
szerint az értékels fiiggvény két részre bonthato fel:

e az azonnali jutalomra (R 1)
e a szomszédos allapot diszkontalt hasznossagara (yv(Si1))
Az MRP esetében az értékeldfiiggvény Bellman-egyenlete a kivetkezd.

7. Definicié. Bellman-egyenlet

v(s)

I
ﬁ

[G4] Sy = 5]

[Ris1 +YRiv2 + 7’ R + ... Sy = 5]

[Riv1 4+ V(Rizo + YRz + ... )|S; = §] (2.8)
[

[

Ry + 9G] Sy = 8]

E
E
E
E[Ri+1 4+ yv(Se41)[ St = ]

azaz,

v(s) = Ra+7 Y Pawrv(s). (2.9)
s'eS
Az MRP esetében egy allapot hasznossaganak kiszamitasa a (2.9) kifejezés alapjan
torténik. A kifejezésben az R, az azonnali jutalom az s allapotban, a P,y annak
a valoszintisége, hogy s allapotbol az s allapotba keriil az agens, a v(s’) pedig a
szomszédos allapot hasznossiga. A szumma mivelet pedig amiatt kell, mert egy
adott allapotnak tobb szomszédja is lehet.
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A Bellman-egyenlet linearis, igy kozvetleniil is megoldhaté. Ehhez a (2.9) kife-
jezést matrixok segitségével kell felirni. Igy kapunk egy linearis egyenletet, amelyet
atrendezve megkapjuk a megoldast.

v="R+yPv
(Z—-~4P)v=R (2.10)
v=(Z-9P) 'R
Az el6bbi képletben feltételezziik, hogy a megfelel6 matrix invertalhatd. A direkt

megoldas csak kis méretti MRP-k esetén lehetséges. Tovabba szamos iterativ mod-
szer is rendelkezésre all:

e Dinamikus programozas
e Monte-Carlo kiértékelés

e TD (Temporal Difference - Idgbeni kiilonbség) tanulas

Markov ddntési folyamat

A Markov dontési folyamat (Markov Decision Process, MDP) egy Markov Reward
Process (MRP), ahol mar megjelenik a dontés akciok formajaban. Azaz a modell
egy tjabb taggal b&viil.

8. Definicio. Markov Decision Process: A Markov Decision Process eqy (S, A, P, R,7)
rendezett 6tds, ahol:

e S az dllapotok véges halmaza
e A az akciok véges halmaza

o P az dllapotdatmenet valoszinidségi matriz
PSSI = P[StJrl = S/’St = S]

e R a jutalomfiigguény
Rs = E[Rt+1|8t = 8]

e v € [0,1] a diszkontdldsi faktor (leszamitoldsi tényezd)

Az akcidk olyan elemei a rendszernek, amelyek az agens cselekvéseit irjak le.
Minden &llapotban az agens valahany akci6 koziil valaszthat, amelynek hatasara
atkeriil egy 1j allapotba. Az akci6 kivalasztasa is valoszintségek alapjan torténik.
Az, hogy milyen a valoszintiségek eloszlésa az akciok felett, azt a stratégia vagy mas
néven a politika hatarozza meg. Egy stratégia teljes mértékben meghatarozza az
agens viselkedését.

9. Definicid. Stratégia: Eqy m stratégia eqy valdsziniségi eloszlds az adott dllapotban
elérhetd akciok felett.
m(al|s) = P[A: = a|S; = s] (2.11)
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Tehat a fenti definicid szerint egy stratégia azt irja le, hogy az agens egy adott s
allapotban mekkora valoszintiséggel vilasztja az a akciot. Az MRP-hez hasonléan az
MDP esetében is az allapotok a hasznossagukkal jellemezhet6ek. Azonban az MDP
definici6ja szerint itt mar megjelennek az akciok is, mint dontés. Ezért itt nem csak
allapotértékels, hanem akcioértékels fiiggvényrdl is beszélhetiink. Az MDP esetében
az értékels fiiggvények definicidja a kovetkezd.

10. Definicio. Allapotértékeld fiigguény MDP esetén: Az MDP dllapotértékeld figg-
vénye, v(s) egyenld az elvdrt diszkontdlt jutalommal az s dllapotbdl indulva és a

stratégidt kévetve.
Uﬂ—(S) = EW[Gt‘St = S} (212)

11. Definicid. Akcioértékeld fiigguény MDP esetén: Az MDP akcidértékeld fliggué-
nye, q(s,a) eqyenld az elvart diszkontdlt jutalommal az s dllapotbdl indulva, az a
akciot végrehajtva és a m stratégidt kovetve.

0r(s,a) = EL[G] S = s, Ay = a (2.13)

Az MRP-hez hasonléan az MDP értékels fiiggvényei is két részre bonthatoak.
Viszont, itt az MRP-hez képest az dgens tigy probalja meghatarozni egy allapot vagy
akcio hasznossagat, hogy egy 7 stratégiat kovet. Emiatt itt a Bellman-egyenletet
Bellman varhatoérték-egyenletnek [64] nevezziik. A két fiiggvény dekompozicioja a
kévetkezSképpen irhatoé fel.

12. Definicidé. Bellman vdrhatiérték-eqyenlet

U(8) = Ex[Rev1 + Y0 (St41)| St = ] (2.14)

Gr(s,a) = Ex[Rii1 4+ 74z (Seq1, A1) [Se = s, Ay = d (2.15)

Az elébbiek, vagyis az allapotértékels és az akcidértékels fiiggvény kozott rekurziv
Osszefiiggés van. Késébb megmutatjuk, hogy kolesdénosen, egyikbdl a masik levezet-
hets. Az s allapot értéke az elérhetd akciok hasznossaganak stlyozott Gsszege.

ve(s) = Zﬁ(a\s)qﬁ(s, a) (2.16)
acA
Egy akcio értékének a silya az adott akcié kivalasztasanak a valoszintisége. A va-
lasztott a akcio hasznossiga fiige azon s’ utdodallapotok hasznossagatol, amelyekbe
az agens a kornyezet dinamikaja alapjan keriilhet. Tovabba fiigg az R¢ azonnali
jutalomtol is.

Gr(s,0) = RE+7 > Peova(s) (2.17)
s'eS
Az R? az s éllapotban végrehajtott a akcié utdn kapott azonnali jutalom. A
P2, annak a valoszintiségét adja meg, hogy s allapotban az a akciot végrehajtva az
s allapotba keriil az agens.
Ha a (2.16) kifejezésbe behelyettesitjiik a (2.17) kifejezést, az allapotértékels fiigg-
vény alabbi alakjat kapjuk.
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ve(s) = Y w(als)(RE +7 ) Piyva(s) (2.18)

acA s'eS

Tehat az s allapot értéke (hasznossaga) fiigg a valasztott akcio értékétsl (ennek
kivalasztasa az adott stratégia mentén torténik) és azon utodallapotok értékétdl,
amelyekbe az adott akcid végrehajtasa utan a rendszer az el6re definialt dinamika
alapjan vihet. Tovabbé az akci6 kivalasztasaért kapott azonnali jutalomtol.

Ha a (2.17) kifejezésbe behelyettesitjiik a (2.16) kifejezést, az akcioértékeld fiiggvény
alabbi alakjat kapjuk.

0x(s,a) = R* + 7 Z P, Z m(d'|s")q (s, a") (2.19)

s'eS a'€A
Az MDP-k esetében a Bellman-egyenlet linearis, igy a (2.10) alapjan kozvetleniil is
megoldhaté.
Az értékeld fiiggvény optimalitdsa MDP-ben

13. Definicio. Allapotértékeld fiiggvény optimalitdsa: Az optimdlis dllapotértékeld
fliggvény v.(s) a mazimdlis dllapotértékeld figguény minden m stratégia felett.

V4(8) = mﬁwi(s) (2.20)

14. Definicio. Akcidértékeld figguény optimalitdsa: Az optimdlis akcioértékeld fiigg-
vény q«(s,a) a maximdlis akcidértékeld fiigguény minden m stratégia felett.

q«(s,a) = mﬁquﬂ(s,a) (2.21)

15. Definicid. Stratégidk 6sszehasonlitisa: Két tetszdleges stratégia kozil m leg-
aldbb olyan jo, mint ' (m > 7') ha

U (8) > v (), Vs (2.22)

Megjegyezziik, hogy az optimélis stratégia nyilvanvaléan legalabb olyan j6, mint
barmelyik masik.

Az optimaélis értékels fliggvény garantalja az agens legjobb teljesitményét az
MDP-ben, és egy MDP akkor megoldott, ha ismerjiik ezt az optimélis fiiggvényt.

1. Tétel. [61] Birmely Markov dintési folyamat esetében

o [étezik legaldbb eqy opltimdlis m, stratégia, ami legaldbb olyan j0, mint a tébbi,
me > mw, VT,

e minden optimdlis stratégia megadja az optimdlis dllapot- és akcidértékeld fiigg-
vényt, vy, (s) = V.(8) €s qr.(s,a) = q.(s,a).
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Az optimalis stratégia megtalalhato, ha ¢.(s,a) felett maximalizalunk.

1 haa=argmaxgq.(s,a)
m.(als) = acA (2.23)
0 egyébként

Azaz adott s allapotban az a akcié kivalasztasanak valoszintisége pontosan 1, ha az
az akcid keriil kivalasztasra, amelyik a legnagyobb jutalmat eredményezi. Ha ismert
q«(s,a), akkor ismert az optimalis stratégia is. Az optimélis értékelsfiiggvények
rekurzivan kapcsolodnak egymashoz a Bellman optimalitasi egyenlet [61] alapjan.

U«(s) = max ¢.(s, a) (2.24)
¢u(s,0) =RE+ 7> Phov(s) (2.25)
s'eS

ebbdl behelyettesitéssel,

16. Definicié. Bellman optimalitdasi egyenlet

v.(s) = max(R“—i—WZP“,U* )) (2.26)

s'eS

¢« (s, Ra—kvz ,maxq* s’ a'). (2.27)

s'eS

A Bellman optimalitasi egyenlet a max operator miatt nem linearis, igy kozvetlentil
nem megoldhato.

2.2.5. Q-tanulas

A Q-tanulds a megerdsitéses tanulason beliil az Gn. idGbeli kiilonbség tanulas, azon
beliil pedig az iranyitasi eljarasok csoportjaba tartozo, modell-fiiggetlen eljaras. Az
algoritmus kidolgozasa Christopher J.C.H. Watkins nevéhez fiiz6dik [65].

Azokat az MDP-ket, amelyeknél ismert a rendszer dinamikaja és a jutalomfiigg-
vény is, jellemz&en az értékiteracio vagy a stratégia iteracio eljarasokkal oldjuk meg,
amelyek a dinamikus programozas témakorébe tartoznak és modell-fiiggGek.

Az idébeli kiilonbség tanulas modszer 1ényege, hogy egy adott s allapot esetében
az értékels fiiggvények frissitése kizarolag csak a megfigyelt szomszédos ' allapoto-
kat veszi figyelembe. Az idGbeli kiilonbség tanuldsa modszernél az agensnek nincs
sziiksége sem a rendszer dinamikdjanak, sem pedig a jutalomfiiggvénynek az isme-
retére, ezért ezt a modszert modell-fliggetlennek nevezziik. Megjegyezziik, hogy
semmilyen tréning adatbézis nem sziikséges, mert a kapott jutalmak alapjan tanul
az agens.
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Eljaras

A Q-tanulas egy iranyitasi eljaras, amely azt jelenti, hogy egy meglévé stratégiat
igyekszik javitani. Azaz olyan 7 stratégiat keres, amelyre igaz a 15. Definicio. Az
eljaras egy @) akcioértékels fiiggvényt tanul meg, azaz minden allapot esetében az
ott végrehajthatd akciok hasznossagat. Tovabba a Q-tanulas az optimalis ¢, fiigg-
vényt kozeliti, fiiggetleniil attol, hogy milyen viselkedési stratégiat kovet. Legyen
(S1, A1, R1)(S2, Aa, Ry) ... a megfigyelt S; allapotok, A, akciok és R, jutalmak so-
rozata és t = 1,2, 3, ... diszkrét idépillanatok. Az optimalis akcidértékels fiiggvény
kozelitése az alabbi szabéllyal torténik.

Qi1(St, Ar) = (1 — ) Qu(Sy, Ay) + a(Ry + v max Qi(Sty1,a)), (2.28)

ahol

Qir1(s,a) = Q(s,a). (2.29)

A (2.28) kifejezésben az o € [0, 1] a tanulési paraméter (vagy batorsagi faktornak
is hivjak), amely azt hatarozza meg, hogy az utédallapot becsiilt maximélis akcio-
értéke, amelyet a kornyezetbdl vett minta alapjan kaptunk, és az azonnali jutalom
Osszege mekkora mértékben lesz figyelembe véve. Amennyiben az o = 0, Ggy az
agens nem tanul semmit; ha o = 1, akkor pedig az aktualis Q;(s,a) érték teljesen
felillirodik. A Q-értékek egy kétdimenzids () matrixban keriilnek eltarolasra, ahol a
sorok jelentik az allapotokat, az oszlopok pedig az akcidkat. A Q-tanulas tovabbi
fontos tulajdonsaga az off-policy tanulas. Ez azt jelenti, hogy a (2.28) kifejezés két
stratégia mentén miikodik. Ebbdl az egyik az an. célstratégia (), a masik pedig a
viselkedési stratégia (u). Ebben az esetben a 7 stratégia a (2.28) kifejezésben a max
operator, amely egy moho stratégia. Azaz, a kivetkezd allapotban az akcié valasz-
tasanak értékét gy becsiili, hogy a vélaszthatd akciok koziil a legnagyobb értékiit
valasztja. Ez a stratégia fix, a frissitd szabaly része. A pu stratégia pedig az akcid
kivalasztasat végzs stratégia, amely az eljarast implementaléd személy valasztésa (pl.
e-moho, softmax .. .).

Watkins a publikiciojaban [65] megmutatta, hogy a @, fiiggvény p = 1 valoszi-
niiséggel konvergal a ¢* optimélis akci6értékels fiiggvényhez adott feltételek mellett.

2. Tétel. [61] Adott, véges idbhorizonti MDP esetén a Q-tanulds algoritmusa az
optimadlis q* fiiggvényhez konvergdl, ha

© > =00 €s
® > . af < oo és

e minden (s,a) pdr végtelen sokszor megjelenik az (Si, A1)(S2, As) ... sorozat-
ban.
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Az elsG két feltétel azt irja le, hogy az o, paraméterek négyzetosszege véges, de a
paraméterek nulldhoz tartasa ne legyen tul gyors. Azaz az o; paraméterek négyze-
tének Osszege mar ne végtelenhez tartson. Az utolso feltétel pedig azt kdveteli meg,
hogy minden akciénak az adott 7 stratégia mellett barmely allapotban nem lehet
0 a kivalasztéasi valoszintisége. Az utolsé feltételt nem a Q-tanulés frissit szabalya
vezérli, hanem egy megfelel§ 7 stratégia. Szamos stratégia létezik, amelyek koziil
a legnépszertibbek az e-moho és a Boltzmann felfedezési (softmax) stratégiak. Az
e-moho stratégia miikodése nagyon egyszert. A stratégia szerint az 4gens minden ¢
id6pillanatban 1 — ¢; valoszintiséggel a legjobbnak gondolt a akciot valasztja, azaz
ami maximalizadlja a Q.(S;, a)-t, és €, valoszintiséggel egy véletlenszerid akciot va-
laszt egyenletes eloszlas mellett. A munkamban a Boltzmann felfedezési stratégiat
alkalmaztam, amelyet a kovetkezs részben nagy vonalakban targyalok.

Boltzmann felfedezési stratégia

Az akciok kivalasztasa soran alkalmazott akciovalasztd stratégia két f6, id6ben és
viselkedésben eltéré szakaszra bonthatd. Az egyik a felfedezés, a masik pedig a ki-
aknazas szakasz. A felfedez6 szakaszban az agens véletlenszertien valaszt akcidkat,
ezzel megadva az esélyt, hogy addig még nem probalt cselekvéseket is végrehajt.
Ennek elénye, hogy egyre tobb informéacioja lesz a kornyezetérsl, ami hossziatavon
megtériil, révidtavon azonban nyilvan veszteséget is okozhat, ha éppen olyan cse-
lekvést valasztott. A masik szakasz, a kiaknazas azt jelenti, hogy a mar meglévs
informaciokra tamaszkodva mindig a legjobb (moho) akciot valasztja az dgens.

A Boltzmann felfedezési stratégia pl. az e-moho stratégidval szemben az egyes
akciok kivalasztasat eltérd valoszintiségi értékek alapjan végzi.

Q(St,a’)
(& Tt

Q(Sg,a’)
;€ Tt

P(alS;) = (2.30)

a
Az egyes akciok valoszintiségének kiszamitasa fiigg az akcié becsiilt értékétdl és a
7; € RT paramétertsl. A felfedezés és a hasznositas kozotti atmenet a 7, paraméter
fiiggvénye. Ha a 7, értéke magas, akkor az akciok kivélasztasa kozel azonos eloszlas
mellett torténik. Alacsonyabb 7, esetén ezek a valdszintségi értékek a jobb (ma-
gasabb értéki) akciok esetében nagyobbak lesznek, mig a rosszabb (alacsonyabb
értéki) akciok esetében alacsonyabbak. Minél jobban kozeliti a nullat, az akciok
kivalasztasa egyre jobban moho lesz. A (2.30) kifejezés az a akcio kivalasztasanak
valosziniségét adja meg az Sy allapotban a Boltzmann eloszlasfiiggvény segitségével.
Masképpen fogalmazva, a fiiggvény bemenete egy vektor, amely az adott S; allapot-
ban elérhetG akciok értékeit tartalmazza, a kimenet pedig minden akci6 szamara egy
valoszintiség.

Epizodikus Q-tanulas
Egy MDP-t epizodikusnak tekintiink, ha minden egyes

(Sl, A17 Rl), (SQ, AQ, R2>7 ey (Sn7 A'I’L? RTL)? S’nJrl (2.31)
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epizdd utan Gjraindul a megoldés a kiindulo allapotbol. Az S, .1 az epizod végéllapo-
ta. Egy epizdd vége meghatarozhaté egy maximélis lépésszamban vagy valamilyen
leallasi feltételként is. Az epizodikus Q-tanulas epizodikusan alkalmazza a (2.28)
frissitd szabalyat, azaz csak az adott epizod befejezése utan torténik meg a frissités.
Az altalam fejlesztett algoritmus is epizodikus Q-tanulast alkalmaz. Ez azt jelenti,
hogy egy kovetkezd S, allapot nem egy akcio végrehajtasaval 4ll el§, hanem akcio-
sorozatok végrehajtasaval, amely egy teljes epizodot olel fel. Az epizod befejezédése
az allapotsorozat végrehajtasdnak a befejez6dése, amelynek eredménye egy Gj S;iq
koévetkezg allapot.

2.3. Problémafelvetés

Ebben a fejezetben részletesen bemutatom az altalam felvetett litemezési problémaét.
Az titemezési feladat tipusa fliggetlen gépek litemezése megel6zési relaciok figyelem-
bevételével (unrelated machine scheduling with precedence constraints), amely az
aldbbiak szerint irhato le:

R |prec|Crax (2.32)

ahol R,, a gépek halmaza (m darab fiiggetlen gép), prec jeloli azt, hogy az egyes
tevékenységek kozott megeldzési relaciok vannak és C,op = max(Cy,. .., C,) jeloli
a legkésGbb befejezddd tevékenység befejezési idejét a rendszerben, amit minimali-
zélunk. A C; jeloli a j. munka befejezési idejét. A j. feladat végrehajtési idejét az
M; gépen p;; jeloli, a cél pedig az atfutasi id6 minimalizalasa (kibocsatasi idék nin-
csenek a modellben). Lenstra és szerzétarsai [66] az R,,||Cinar probléméra (vagyis
az altalunk vizsgalt feladatnak arra a specidlis esetére, amikor nincsenek megelGzési
relaciok) egy polinomiélis idejt, 2-approximacios algoritmust adtak meg. Tovabba
azt is megmutattak, hogy ezen probléma esetén nem létezik olyan polinomiélis idejti
algoritmus, amelynek az approximéciés aranya %—nél kisebb, feltéve, hogy P # NP.
Ez mar mutatja, hogy a feladat (megelézési relaciok nélkiil is) nagyon nehéz, hiszen
a feladatot Osszehasonlitva a hasonlo (uniformly related) gépek iitemezésével, erre
viszont létezik polinom ideji approximécios séma. Lenstra és szerzGtarsai [66] azt
is megmutattak, hogy az R,,||Cpe: problémanak meég az a specilis esete is NP-
nehéz, amikor a végrehajtasi idok kétfajtak lehetnek csak, vagyis p;; € {p, ¢} ahol
p < q,2p # q. Lenstra és szerzGtarsai [66] eredményét Shchepin és Vakhania [67]
kicsit tudta javitani agy, hogy m gép esetében 2 — % approximéaciot értek el.

Az altalam felvetett problémaban azonban még a tevékenységek kozotti meg-
el6zési relaciok is megjelennek. Ezek a megelzési relaciok egy iranyitott G graffal
adhatok meg. A graf csomoépontjai a tevékenységek, az iranyitott élek pedig a vég-
rehajtasi sorrendet definidljak. Azaz, a megel6z6 tevékenységnek minden esetben
elébb be kell fejez&dnie, mielétt az utodtevékenység végrehajtasa elkezdédhetne.
Egy gép egyszerre csak egy tevékenységet hajthat végre és a végrehajtds nem meg-
szakithato. Tovabba, a megelézési relacioban résztvevd munkik kiilon gépekre is
iitemezhet&ek. Nincs kibocsajtasi és befejezési hatarids. Csak olyan relaciokat vet-
tem figyelembe, ahol minden csomoépont bemend és kimendé éleinek szama legfeljebb
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egy. Ez azt jelenti, hogy a graf diszjunkt utak és izoldlt csomopontok unidja.

Herrmann és szerzGtarsai [68] valamint Liu és Yang [69] publikaciéi azok, ame-
lyek a fliggetlen gépek iitemezésével foglalkoznak gy, hogy a modellbe beépitik a
megel6zési relaciokat, amelyek az én munkdmhoz hasonldéan diszjunkt utak és csomo-
pontok uni6ja. A [68]-ban harom also korlat (LBy, LBy és LB3) keriil definidlasra.
Az esettanulmanyban 33 input végeredményét hasonlitja a szerzé a harom als6 kor-
lat koziil a legnagyobbhoz. A [69]-ben Liu és Yang egy hatékonyabb heurisztikat
kozol, amely altalanosabb problémék esetén is alkalmazhat6. A szakirodalomban
ehhez a problémakdérhéz még szamos més publikicié talalhato, azonban a probléma
specialitasat tekintve az [68] az, amely az altalam vizsgalt probléméhoz leginkabb
hasonlithat6, ugyanis ez olyan munka, amely kizarolag diszjunkt utak forméajaban
veszi figyelembe a megel6zési relaciokat. A [69] esetében viszont a megelézési re-
laciok nem feltétleniil diszjunkt utak és csomoépontok unidja, ugyanis a modelljiik
megengedi, hogy egy tevékenység tobb masik tevékenységgel alljon megel6zési re-
lacioban egyszerre. A modelljiikben ezt tetszéleges megel6zési relacionak nevezik
(arbitrary standard precedence constraints). Liu és Yang a bemutatott algoritmust
a Herrmann és szerzGtarsai [68] altal kidolgozott heurisztikaval hasonlitjak ssze. Az
input azonos a Herrmann munkajaban bemutatottal. Az eredmények azt mutattak,
hogy sikeriilt egy hatékony algoritmust 1étrehozni.

Az elmilt években megnétt az érdeklédés olyan uj modellek irant, amelyek a
fiiggetlen gépek iitemezésével valamilyen modon kapcsolatosak. Aldbb néhany re-
levans publikaciot szeretnék felsorolni. |[70]-ben a szerzék egy nehéz problémaval
foglalkoznak, amelyet Team Work Scheduling-nek hivnak. Ebben a feladatban van-
nak munkasok, amelyek egy halmazt alkotnak. Ebbd6l a halmazboél munkacsapatokat
hozhatunk létre és néhany feltétel mellett adott, hogy a csapat milyen hatékony bi-
zonyos munkak elvégzésében. Egy munkés egyszerre csak egy csapatba tartozhat.
De ha ez a csapat elvégzett egy adott munkat, a munkés mésik csapathoz is csat-
lakozhat. A csapatok uni6ja barmely pillanatban részhalmaza az 6sszes munkésbol
all6 halmaznak. Minden egyes munkara valasztunk egy csapatot. Az, hogy melyik
csapatot valasztjuk, befolyasolja a munkavégzés idGtartamat, pl. egy nagyobb csa-
pat ugyanazt a munkét gyorsabban tudja elvégezni. Minden csapat egy idGben csak
egy munkan dolgozhat, és minden egyes munkat valamelyik csapatnak el kell végez-
nie. A csapatokat gy kell megvalasztani, hogy a munkdk minél hamarabb készen
legyenek. Ez a modell a fiiggetlen gépek {itemezésének az altalanositésa.

Egy masik, ide vonatkozé modell az an. Multiprofessor Scheduling [71]. Ebben
a modellben adottak a professzorok, a tanarsegédek és néhany oktatéi munka. A fel-
adat az, hogy ezeket a munkakat a professzorokhoz és a tanarsegédekhez rendeljiik
meghatarozott feltételek betartasa mellett. Ez a probléma egy tjabb altalanosi-
tdsa a fiiggetlen gépek iitemezésének, ugyanis a professzoroknak eltéré a tudasuk
az egyes szakteriileteket tekintve. Példaul az egyiknek az algebra a szakteriilete, a
méasiknak pedig a geometria. Tovabba, néhany oktatasi tevékenységben a tanarse-
gédeknek is részt kell vennie (pl. azért, hogy megtanulja, hogyan is kell oktatni a
targyat). A publikicié approximacios algoritmusokat és komplexitéssal kapcsolatos
eredményeket kozol.

A Multiprofessor Scheduling probléménak egy speciélis esetével foglalkozik a
[72], ahol az eréforrasokra vonatkozo korlatozasok is megjelennek. Ez a publikacio
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is approximacios algoritmusokat és komplexitassal kapcsolatos eredményeket k6zol.
Az én esetemben a feladat modellje a

(T, M, G) (2.33)
rendezett harmassal irhato le, ahol T = {task,..., task,} az Osszes tevékenység
halmaza, M = {my,...,m,,} az Osszes er6forras halmaza és G = (V, E) egy graf,

ahol V' a csiicsok véges halmaza, E C V x V az élek halmaza. A graf egy élét a
(vi,vj) € E alakban irjuk és az aldbbiakat koveteljitk meg:

e iranyftott graf, azaz £ C V xV a csticsokbol alkotott rendezett parok halmaza,

o egyszerd graf, azaz (v;,v;) € E esetében i # j (hurokélmentes) és (v;,v;) ¢ E
(nincs t6bbszoros él) Vi, j-re,

e diszjunkt utak és izolalt pontok unidja.

Tovabbfejlesztési lehetGségként meg lehet vizsgalni, hogy némileg més struktirak
esetén pl. fa struktira esetén hogyan miikodik a modszeriink. Természetesen ezekre
is 1 tesztfeladatokat kellene generélnunk. Specidlis esetek (példaul két gép vagy
kevés szamu lanc, vagy csak kétfajta feldolgozasi idg) vizsgalata is érdekes lehet.
Ezekkel a kérdésekkel a 2.3. fejezet, vagyis a jelen fejezet végén foglalkozom. Mindez
tovabbi kutatésnak lehet a targya. El6fordulhat, hogy egy 1t csak egy tevékenység-
bol all. A csomopontok kozotti irdnyitott él pedig a megel6zési relacio. Az litemezés
célja a teljes atfutasi idé minimalizélasa.

P &

D O

2.2. abra. Egy példa a modell alapjan

A 2.2, abran egy egyszeri példa lathatdé a modell alapjan felépitve. Lathato,
hogy van egy eréforrashalmaz, azaz M = {my, mg, ms, my} és egy tevékenységhal-
maz, azaz T = {tasky,tasks,tasks,tasky,tasks}. Az eréforrasok pontozott vonallal
kapcsolodnak azokhoz a tevékenységekhez, amelyeket egy lehetséges iitemezés sze-
rint végrehajtanak. Az egyes tevékenységek kozott megfigyelhetGek a megelGzési
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relaciok, pl. task; — tasks. Ezek a relaciok szigorian meghatarozzak a tevékeny-
ségek egymashoz viszonyitott végrehajtasi sorrendjét, az ezektdl valo eltérés nem
megengedett. A tasks — tasks relacié nem megengedett, ugyanis ez megsérti a
diszjunkt utak feltételét.

Ezen az dbran (2.2. dbra) még nem tiintettiik fel a kiilonb6z6 feldolgozasi idSket
a gépeken. EgyelGre csak azt mutatja az abra (esetleg meglehetdsen ad-hoc moédon),
hogy mar hozza vannak rendelve a munkék a gépekhez.

A probléma illusztralasara ugyanazon példa két kiillonb6z§ iitemezési megoldésa
lathatd a 2.3. és a 2.4. abrakon. A két megoldas kozott egy aprd kiilonbség volt,
azonban a végeredményt nagyban befolyasolta. Az abrakon a sarga kivételével az
azonos szint tevékenységek kozott a nyilak jelzik a megelGzési relaciokat. Ertelem-
szertien, ahonnan indul a nyil, az a megel§z6 tevékenység, ahova tart, az pedig a
kés6bbi. A feladat az alabbiak szerint irhato fel.

o T = {tasky,tasks,tasks,tasky, ..., tasks}
L M = {m17m27 ms, m4}
o G graf (diszjunkt utak és izolalt pontok)

— diszjunkt utak:

x task; — tasky — tasks — tasks — tasks — taskg
x tasks — taskg — task,y — taski
* tCLSk?lﬁ — tCLSk’lg — taskgo

— izolalt pontok:

x taskr,taskis, taskyz, taskyy, tasks, taskir, taskig

Osszesen 20 tevékenység van, amelyek végrehajtasara 4 gép all rendelkezésre. A
tevékenységekbdl felépiils utak a precedencia relaciokkal vannak leirva. Az olyan
utat, ami csak egy tevékenységhdl all, az egyszertiség kedvéért egységesen jelol-
tem (sarga: taskq,taskis,taskis,taskys, taskys, taskiy, taskis), ugyanis ezek eseté-
ben a precedencia relacid6 nem értelmezett, azaz nem fiiggnek mas tevékenységek-
t6l, igy nem sziikséges ezeket a tevékenységeket egyméstol élesen megkiilonboz-
tetni. Tovabba még harom lanc van (kék: tasks — tasky — taskig — taskiy,
zold: tasky — tasky — tasks — tasky — tasks — taskg, narancssarga: taskyg —
taskig — tasksg), ahol a tevékenységek kozott megelézési relaciok talalhatoak. A
fliggGleges tengelyen a gépeket, a vizszintes tengelyen az id6t abrazoltam. Az egyes
tevékenységek végrehajtéasi ideje a gépektdl fliigg. A cél az, hogy a teljes feladat
atfutasi ideje minimalis legyen. A tevékenységeknek a gépeken torténd végrehajtasi
idejeit itt most nem adjuk meg, tegyiik fel, hogy egy bizonyos iitemezés a kdvetkezs
(2.3 abra).

A 2.3. abran a feladat egy megengedett megoldéasa lathato. Ez a megoldas 27
idGegységet jelents atfutasi id6t mutat. Ahhoz, hogy egy jobb megoldast megkap-
junk, egyszertien fel kell cserélni a taskig és a task, tevékenységek sorrendjét az my
gépen. Ennek hatasara a végrehajtasi id6k nem valtoznak, azonban a precedencidk
miatt mégis 4 idGegységet sikeriil nyerni. Ha megnézziik a zold szinnel jelolt at
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| | | | |
[ [ [ [
Path; : I =
Path,: mmm ™ | | taski Afaski
tasklg
Path; : [
Singles: [T 4,
mg taskm
my

2.3. dbra. Egy példafeladat megengedett {itemezése

tevékenységeit, azonnal lathato, hogy ez a leghosszabb 1t, ami azt jelenti, hogy az
atfutasi id6t ez hatarozza meg. Természetesen mindez csak az adott inputra vonat-
kozik, altalaban a helyzet sokkal bonyolultabb lehet. Az is lathato, hogy a tobbi 1t
(beleértve a sarga tevékenységeket is) mindegyik jocskan a zold at el6tt mar befeje-
z6dik, igy ezeknek nincs tul sok jelentdségiik az atfutéasi id§ tekintetében. Azonban
(lasd: 2.4. abra), ha a két emlitett tevékenységet felcseréljiik az my-es gépen, gy a
teljes zold ut atfutasi ideje 4 idGegységet fog csokkenni az idStengelyen valé balra-
tolodas miatt. Megjegyezziik, hogy a feladatra vonatkozo alsd korlatok kérdésével

pl. a 2.5. alfejezetben részletesebben foglalkozunk.

0 2 4 6 8 10 12 14 16 18 20 22
| | | | | | | | |
[ [ [ | | I [ [ [
Path; : -
Path,: T ™ | taskiy /ifafkﬁ asksg
taskig tasks
Paths : [
Singles: [ ma o
taskir taski
} s\m
my sk | taskss [ ]
taskg tasks

2.4. dbra. A példafeladat egy masik lehetséges {itemezése

A 2.4. abran mar egy jobb megoldas lathato, ami 23 idGegység. Mivel a task;
tevékenység az my-es gépen legeldl keriilt a sorba, igy a téle kdzvetleniil és kozvetet-
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ten fliggd tobbi z6ld tevékenység is eltolodott balra. Lathato ebbdl a példabol, hogy
az ilitemezés soran a tevékenységek beiitemezési sorrendje kritikus pont lehet. Egy
egyszerl sorrendcsere két tevékenység kozott egy megengedett megoldasbol rogton
jobb megoldast generalt.

Az el6z6 abrakon (2.3., 2.4. abréak) lathatjuk, hogy ha van egy hosszi utunk,
amelyet mindeniitt a leggyorsabb gépre iitemeziink, az egy als6 korlat a feladatra.
Es ha raadasul az is teljesiil, hogy amikorra a hosszii itban szereplé munkék befe-
jez6dnek, addig a tobbi munka is elkésziil, akkor a makespan-t ez a hosszu 1t adja,
tehat ez fels6 korlat is a feladatra. Amint latjuk, a tobbi munkat j6 koranra iite-
mezve a végére mar alig marad. Ez persze csak egy speciélis input volt szemléltetés
végett, az altalanos eset ennél sokkal bonyolultabb lehet.

A kovetkezd fejezetben egy olyan altalam kidolgozott modszert mutatok be,
amely a tevékenységeket mohd modon, az elére meghatarozott sorrendjiik szerint
iitemezi. A tevékenységek sorrendjének kiszamitasat pedig egy, a megerdsitéses ta-
nulas teriiletérdl ismert algoritmus altal inspirdlt eljaras végzi.

Megjegyzendd, hogy az algoritmus a fentebb megadott megel6zési relacio helyett
maés struktarakra (pl. fa) is mikodéképes lenne. Annyi kiilénbség van csak, hogy a fa
(illetve erdd) tipust megelGzési relaciok esetén a sorban kivetkezd munka esetén tobb
olyan munka is lehet (nem csak legfeljebb egy), amelyek az ¢ kozvetlen megel6zdi,
és csak ezek befejezése utan szabad az aktudlis feladatot elkezdeni. Ez a kutatési
irdny tovabbi vizsgilatokat igényel, emiatt késGbbi kutatas targya.

2.4. A javasolt moédszer

A 2.3. alfejezetben felvetett iitemezési probléma megoldasara egy, a megerssitéses
tanulason beliil ismert Q-tanulasi eljaras altal tamogatott heurisztikus algoritmust
fejlesztettem. Az eljarast Q-Learning Motivated Algorithm-nek (QLM) neveztem
el. Ebben az alfejezetben az algoritmus miikodését mutatom be.

Az eljaras két komponensre bonthato fel. Az egyik egy moho algoritmus, amely
az ilitemezést végzi a tevékenységek egy megadott sorrendjében. A masik pedig
maga a (Q-tanulassal tdmogatott komponens, amelynek feladata ennek a permutaci-
onak az elGéllitasa. A cél az, hogy olyan permutaciét taldljon az algoritmus, amely
szerint mohoén iitemezve az atfutési id6 minimalis lesz. Az algoritmus megprobal-
ja megkeresni a legjobb sorrendet, de nem garantalja az optiméalis megoldast. A
moho6 algoritmus mikodése a soron koévetkezd tevékenységhez mindig azt a gépet
rendeli hozza, amellyel az addig elért atfutasi id§ a legkisebb mértékben novekszik,
természetesen a megeldzési relaciokat is figyelembe véve. A 2.5. abran egy egysze-
ri szemléltets példa lathatdé a mohd algoritmus miikodésére. Tegyiik fel, hogy a
tasky,tasks és tasks tevékenységek mar iitemezésre keriiltek. Most a task, koévet-
kezik, amely esetében figyelembe kell venni a task, — tasky, — task, relaciot. A
task, tevékenység nélkiil az addig elért atfutasi id§ 10 egység. A megeldzési relacio
figyelembevételével azt a gépet kell valasztani, ahol az eddig elért atfutasi id§ mi-
niméalisan novekszik. Az my gépen a task, végrehajtasi ideje 2 idGegység. Az mo
gépen 3 idGegység. A jo6 valasztas az mo gép, annak ellenére, hogy ott a tevékenység
végrehajtasi ideje (3) nagyobb mint az m; gép esetén (2). Ugyanis ezzel a valasztas-
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sal a teljes, addig elért atfutasi id6 csak 1 idGegységgel ndvekszik. Az m, esetében
viszont a kisebb végrehajtasi id§ ellenére is 2 idGegységet novekedne. Azaz, a task,
mindkét gépre tehet6: az m; gépen igy a teljes atfutési id§ 12 egység lesz, az mo
gépen pedig 11 egység.

0 2 4 6 8 10 12 14
| | | | | | | N
[ [ [ [ [ [ [ 4
my task; |—\ tasks )’task4
ms task; | tasky |

Lathato tehat, ho

2.5. dbra. A moh¢ algoritmus miikddése

gy a mohd algoritmus nem az alapjan valaszt, hogy melyik

gépen a legkisebb a végrehajtasi ideje az adott tevékenységnek, hanem az alapjan,
hogy az adott gépre iitemezve a tevékenységet az addig elért atfutasi id6 mennyivel

novekszik meg.

Algorithm 1: A moho algoritmus miikodése

Result: Atfutasi id6
Input: L; permutéacid

1 tgum < O

2 M - eréforrasok halmaza

3 L, - tevékenységek egy permutacioja

4 min < mazxliInt;

5 selectedRes;

6 for i < 0 ton do

7 for j + 0 tom do

8 if m;(task;) + toum < min then

9 min <— m;(task;) + tsum;

10 selectedRes < j;

11 end

12 end

13 az 1. tevékenység hozzarendelése az selectedRes erGforrashoz
14 tsum — tsun + mselectedRes(ta‘Ski);

15 min < maxlInt;
16 end
17 Atfutasi id6 kiszamitasa az iitemezés alapjan

Graham |2, 3] altal tekintett modell a P, |prec|Cq., ami kiilonbozik az altalam

vizsgalt feladat modelljétél.

A tevékenységek permutaciojanak elGallitasa az [53] publikicioban kozolt ot-
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letek alapjan torténik. Az altalam fejlesztett algoritmus implementacioja az [53]
cikkben bemutatott logikat koveti (lasd a [73] cikket is). Az implementalt algo-
ritmus azonban Stefin munkajaval (flow-shop scheduling) ellentétben egy teljesen
maés, speciélis feladat (unrelated machine scheduling) megoldasara késziilt, amely
egyrészt tevékenységek végrehajtési idejével dolgozik, masrészt pedig kezeli a meg-
el6zési relaciok altal leirt megszoritod szabalyokat. Stefan munkajaban a flow shop
iitemezéshez kapcsoloddan a tevékenységek egy olyan sorrendjének kiszamitésaval
foglalkozott, amelynek eredményeképpen a végrehajtas kozben keletkez§ iiresjaratok
ideje minimélisra csokkenthets. Ennek a sorrendnek a kiszamitasahoz a megerdsi-
téses tanulast, azon beliil pedig a Q-tanulast alkalmazta. A megoldas lényege, hogy
minden task; és task; parra az eljaras kiszdmitja a Q.(7, j) értéket a (2.28) szabaly
segitségével, amely azt reprezentalja, hogy a kiszamitand6 permutacioban mennyire
hasznos, ha task; tevékenységet a task; tevékenység kovet. Masképpen fogalmazva,
annak az akcionak a hasznossagat keresi az eljaras, amely szerint a task; utan a
sorrend kovetkezd tagjanak a task; tevékenységet valasztjuk. A QLM algoritmusnal
a megallési feltétel 2000 iteracio volt. A vizsgalatok alapjan 2000 iteracio felett méar
nem javult az elGallitott megoldas.

Az algoritmus az alabbi 6t 1épésben Osszegezhets, amelyeket a kovetkezd alfeje-
zetekben részletesen bemutatok.

Algorithm 2: QLM algoritmus

Result: Utemezett tevékenységek
Input: M, T, precConstraints, epoch (iteraciok szama)
1 for ¢ + 0 to epoch do
2 Permutécié meghatarozasa (Algorithm 3 és Algorithm 4)
3 Moho algoritmussal az iitemezés megvalositdsa és az atfutasi idé
kiszamitasa (Algorithm 1)
4 A Q-métrix értékeinek frissitése (Algorithm 5)
5 end

2.4.1. A tevékenységek egy permutacidjanak generalasa

A tevékenységek permutéaciojanak generalasa a (2.30) Boltzman felfedezési stratégia
alapjan torténik. Ahhoz, hogy a sorrendet az eljaras generalni tudja, mar rendelkez-
niink kell Q-értékekkel. Ez mér az els6 lépésben biztositva van, ugyanis a Q-értékek
tarolasara alkalmazott matrix kezdeti értékei nullak, azaz QQ;(7, 7) = 0,4, j. Legyen
L, = (i1,...,1,) a tevékenységek permutaciojanak indexhalmaza a t. epizod utan.
Tovabba legyen H = {j1,...,Ji} azon tevékenységek indexhalmaza, amelyek vala-
melyik megel6zési relacioban részt vesznek és a megel6zési relaciok fiiggvényében a
task; tevékenység kivalasztasa csak akkor lehetséges, ha a task; , ..., task;, tevé-
kenységek, mint megel6z6 tevékenységek mar szerepelnek az L; listAban. Amennyi-
ben olyan task; tevékenységrél van sz6, amely nem vesz részt megel6zési relacioban,
azaz i ¢ H, az automatikusan valaszthato.
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Algorithm 3: A permutéci6 els§ elemének a kivalasztésa

Result: L; permutacio elsé eleme

Input: Q, B, D, 7

Q@ - Q méatrix

B < () - a valaszthat6 tevékenységek indexhalmaza

D <« () - a bevalasztott tevékenységek indexhalmaza

T - a hémérséklet

fori < 0ton—1do

if i ¢ H or (i € H and task; az elsé elem a ldncban) then
| B+ BU{i};

end

end

for i< 0ton—1do

if : € B then
eQ(jvi)
Pi & — aup

ieB€ 7

© 0w g O ;o W N

e
- o

iy
N

13 end

14 end

15 A permutécio els§ elemének kivalasztasa a p; értékek alapjan;
16 ¢ hozzdadasa az L, listahoz;

17 selectedT askIndex < 1;

18 B« B\ {i};

19 D« DU{i};

[ ]

Az 3. algoritmus feladata a tevékenységek permutaciojanak elss elemét kivalasz-
tani. Az algoritmus bemenetei (1-4 sorok) a kezdetben nullara inicializalt ) matrix,
a valaszthato tevékenységek B indexhalmaza, a bevalasztott tevékenységek D index-
halmaza, amelyek kezdetben iiresek és a 7 hémérséklet paraméter. Els§ 1épéshen
(5-9 sorok) az eljaras az Osszes tevékenység koziil kivalasztja azok indexeit, amelyek
a permutacioba bevalaszthatoak. Ez azt jelenti, hogy az adott tevékenység nem
vesz részt megel6zési relacioban, vagy ha igen, akkor a lanc legels6 eleme. Ezek a
tevékenységek a B indexhalmazba keriilnek. A mésodik lépésben (10-14 sorok) azon
tevékenységekhez, amelyeknek az indexei a B halmazban vannak, a Boltzmann felfe-
dezési stratégia szerint kiszamolja a valasztasi valoszintiségeket. Harmadik lépésben
(15-19 sorok) a kiszamolt p; valoszintiségek mentén kivalaszt egy tevékenységet és
annak indexét hozzaadja az L; listahoz, mint els6 elem. A kivalasztott tevékenység
indexét elmenti a selectedT askIndex véaltozoba, torli az indexet a B halmazbol,
ugyanis ez a tevékenység mar nem valaszthatd és hozzdadja a mar bevalasztott te-
vékenységek D indexhalmazahoz.

36



Algorithm 4: A permuticié maradék elemeinek a kivalasztasa

Result: Az Gsszes tevékenységek L; permutacioja
Input: Q, B, D, 7

1 @ - Q matrix
2 B # () - a valaszthato tevékenységek indexhalmaza
3 D # () - a bevalasztott tevékenységek indexhalmaza
4 T - a hémérséklet
5 while length of L; < n do
6 for j < 0ton—1do
7 if j¢ D and (j ¢ H or (j € H and task;-t megeldzd tevékenységek
(ha vannak) mdr kivdlasztasra keriltek)) then
8 | B+ BU{j};
9 end
10 end
11 for j <~ 0ton—1do
12 if j € B then
Q(selectedTaskIndex,j)
13 pj < < Q(selectTedTaskIndez,j)
jeB € T
14 end
15 end
16 A permutéci6 kovetkezs elemének kivalasztasa a p; értékek alapjan;
17 J hozzaadasa az L, listdhoz;
18 selectedT askIndex < j;
19 | B« B\{j}
20 | D+ DU{j};

21 end
22 Moho iitemezés az L; permutacio szerint;

A 4. algoritmus a fennmarad6 tevékenységek kivalasztasat végzi, logikailag a
3. algoritmus folytatasa. A szétvilasztés oka a jobb &atlathatésag. Az algoritmus
bemenete ugyanaz, mint az 3. algoritmus esetében, azonban lathato, hogy mivel méar
a permutacio els6 eleme kivalasztasra keriilt, igy a B és D halmazok nem iiresek.
A B halmaz tartalmazza a valaszthato tevékenységek indexeit, a D halmaz pedig a
bevalasztott els6 tevékenység indexét.

Mivel itt az Osszes fennmaradoé tevékenységet bevélasztja az eljaras, igy a tel-
jes mivelet egy while ciklusban foglal helyet, amely addig fut, amig az L, lista
szamossaga kisebb, mint a tevékenységek szama, azaz n. A ciklus els6 lépésében
(6-10 sorok) az algoritmus frissiti a B halmazt, azaz a valaszthaté tevékenységek
indexeit. Frre azért van sziikség minden egyes iteracio elején, mert a tevékenységek
bevalasztasa 1j valaszthatd tevékenységeket eredményez. Tehat, pl. ha egy lanc
elsG eleme bevalasztasra keriil, gy a kovetkezs iterdcioban a masodik eleme va-
laszthatova valik és igy tovabb. Masodik lépésben (11-15 sorok) minden, az aktudlis
iteracioban vélaszthato tevékenységhez az algoritmus hozzarendel egy valdsziniiségi
értéket a Boltzmann felfedezési stratégia alapjan. Harmadik lépésben (16-20 so-
rok) megtorténik a kivalasztés, j index hozzdadasa az L; listdhoz és elmentése a
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selectedT'askIndex valtozoban. Majd az index torl6dik a B halmazbol, és hozzé-
adasra keriil a D halmazhoz.

Az eljaras kimenete az Osszes tevékenység L, = (i1, ...,1,) permutacioja, azaz
egy sorrendje, amelynek szamitasa a () matrix alapjan tortént. Az L; permutacio ki-
szamitasa utan kovetkezik a moho algoritmus alkalmazasa, amely a tevékenységeket
a permuticionak megfelel§ sorrendben {itemezi be az Algorithm 1 moho algoritmus
szerint.

2.4.2. Q-értékek kiszamitasa

c s

kenységek egy teljes L; permutacioja felel meg, az akcidknak pedig egy tevékenység
permutécioba valé bevalasztasa a megelézési relaciokat figyelembe véve.

Ezt a Q-tanulast epizodikusnak nevezziik, ugyanis egy kdvetkezs Siq allapot ki-
szamitasdhoz az epizod végéig kell varakozni, azaz addig, amig a permutacié minden
eleme nem keriil meghatarozéasra, majd az 0j allapot alapjan frissiteni kell a Q mét-
rix értékeit. A frissitéshez a (2.28) szabalyt alkalmazza az eljaras. Az aldbbiakban
bemutatom az értékek frissitésének menetét és a jutalom értékének kiszamitasat.

Tegyiik fel, hogy az algoritmus permutaciot generdld szakaszaban a kdvetkezd
L, = (tasky o, task, 4, task, 1, task, 3) permutacié adodott. A négy tevékenység kozott
a task; o — task,s és a task, 4 — task,; megelGzési relaciok vannak definidlva. A ¢
epizddban a (Q matrix allapota legyen a kovetkezd.

Q task; | tasky | tasks | tasky
task; | 2.21 | 6.67 | 1.13 0
tasky, | 3.39 | 5.53 | 8.81 | 7.76
tasks | 2.24 0 1.17 | 5.90
task, | 3.33 | 5.58 | 4.02 | 7.48

2.1. tablazat. Példa () matrix értékekkel

A 2.1. tablazatban a pirossal jelolt cellak értékei soha nem frissiilnek a definiélt meg-
el6zési relaciok miatt. Azaz, soha nem lehet olyan permutéciot generalni, amelyben
a megel6zési relaciok sériilnek, azaz, hogy task;s megel6zi task, o tevékenységet,
vagy task;; megel6zi task; 4 tevékenységet. Az R, jutalom a ¢ epizodban az alabbi
fliggvénnyel van definidlva.

—1 ha 2 > A
R,=¢0 haz=2Z2 (2.34)
10 haz < Z

ahol Z az eddigi legjobb atfutési id6, z; pedig a t epizddban az iitemezés altal adott
atfutasi id6. Az a =0.8 ésa v =0.7.

A jutalmazési stratégia paraméterei a vizsgalatok alapjan csak enyhén befolya-
soljak a nehéz feladatok megoldasat. A megvalasztasuk egyrészt probalgatassal tor-
tént, masrészt pedig szimulalt hiitéssel. Az utobbi megoldés sordn a paramétereket
véletlenszertien véltoztattam 1 egységgel. A véltoztatas iranya is véletlenszeriien
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tortént, de ugy, hogy a biintetés értéke negativ maradjon, a jutalom pedig pozi-
tiv. A megvélasztott paraméterekkel ezutan az algoritmus elGallitott egy megoldast.
Ha ez jobb volt, mint az addigi legjobb, akkor az Gj paraméter-beallitas rogzitésre
keriilt, ellenkez6 esetben egy adott valoszintiséggel elfogadta a rosszabb megoldast
is. Tapasztalatunk szerint a szimuladlt hiités alkalmazasa nem javitott lényegesen
a megoldason, emiatt maradtam az egyszert, el6re beallitott paramétereknél. A
paraméterek optimalizalasaval a [74]-ben foglalkoztam.

Algorithm 5: A Q matrix értékeinek frissitése
Result: Frissitett Q értékek az L, permutacié alapjan
Input: Q, L,
Q - Q matrix
L; - permutacié a t epizodban
for i < 0 ton — 2 do
if i1+1<n—1 then

| mazQ < Q[Ly[i + 1][L[i + 2J};
else if i+ 1 ==n —1 then

‘ max@) < 0;
for j«<—i+2ton—1do

if Qi + 1][j] > maz@ and prec. szabdlyok nem sérilnek then
| masQ  QILi + )Ll

end

() matrix értékeinek frissitése a (2.28) szaballyal;
end
maz @ < Q[L[0]][L[0]];
A permutéaci6 elsd eleméhez tartozo @ érték frissitése a (2.28) szaballyal;

© 0 N O otk W N -

e
= o

[ S S SO
[5 O T )

A 5. algoritmus feladata, hogy a Q matrix értékeit frissitse a (2.28) szabaly
alapjan. Az algoritmusnak két bemenete van; a frissitendé Q matrix, és az el6z6
lépésben kiszamitott L; permutacio. A kimenet pedig a frissitett () matrix lesz. Az
algoritmust a fentebb bevezetett példan keresztiil mutatom be a kénnyebb érthetdség
miatt. Az algoritmus 4-11 soraiban torténik a frissité szabaly max operatora altal
definialt mivelet végrehajtasa. A max operator segitségével a Q-tanulés az aktualis
allapotban kivalasztott akci6é hatasara kapott kovetkezd allapotban megbecsiili a
legjobb akciét, azaz a valaszthatd akciok koziil azt valasztja, amelynek az értéke
maximalis.

A 2.6. abran a max operator vizualizacioja lathat6. Egy adott allapotban az
a akcid keriil kivalasztasra, amely egy s’ kovetkez$ allapotba viszi az agenst. A
(2.28) szabalyban talalhato max operator az s utédallapotban visszaadja az ott
valaszthato akciok koziil a legnagyobb értékiit. Ezzel a Q-tanulas moh6 modszerrel
igyekszik becsiilni az aktuélis s allapotban valasztott a akcié josagat.

A task o és task;, egymasutanisdganak az értéke

Legyen az aktualis legjobb atfutasi id6 Z = 15, és legyen az aktudlis L; permutacio
alapjan kapott 0j titemezés z; = 12. Mivel z; < Z, ezért R, = 10. Az adott L,
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2.6. dbra. Q-tanulds max operatoranak miikodése

L, = (task;s,task; 4, task: 1, task:s)

2.7. abra. A task; s és task, 4 sorrend Q értékének a szamitasa

permutacio esetében az elsé 1épés a task; o és task, , tevékenységek egymasutanisa-
gat leiro Q érték kiszamitasa. A sorrendet a 2.7. abran a kék nyil szimbolizalja. A
két narancssarga nyil pedig a max operator vizualizacidja. Azaz, ha a sorrendben
a task, o utdn a task,s tevékenység kovetkezik, akkor a frissité szabdly értelmében
ki kell szamitani azt is, hogy a task,s tevékenység utan milyen tevékenységek ko-
vetkezhetnek a sorrendben (természetesen a precedencidkat nem megsértve), és ezek
koziil melyik tevékenység véalasztasa (akcio) adja a maximalis értéket. A példaban
a task; 4 tevékenység utan kovetkezhet majd a task:; és a task; s is.

Az algoritmus els6ként a max operator értékét szamitja ki. Ehhez tekintsiik a 2.1.
tablazatban példaként megadott (Q matrixot. Ebben az esetben az algoritmusnak azt
kell eldontenie, hogy a task; 4 utan melyik tevékenység valasztasa adja a nagyobb ak-
cibértéket. Ehhez a Q matrixban a (tasky 4, task: 1) és a (tasky a, task: ) cellakat kell
kiolvasni, és a maximalisat kivalasztani. Azaz max((task; s, task,y), (task, s, task,s))
max(3.33,4.02) = 4.02. Tehat a maz@ = 4.02. Ezutan kovetkezik a frissité szabaly
alkalmazasa.

Qi+1(taske o, taskss) = (1 —0.8) % 7.76 + 0.8 % (10 + 0.7 x 4.02) = 11.8032

A task;, és task,; egymasutanisdganak az értéke

A maésodik lépésben az algoritmus a permutacié kiovetkezd, egymas utani parjat
vizsgalja. Azaz annak az akcionak a hasznossagat, hogy task; 4 utan a task;; kovet-
kezik. Ahogy az el6z6 1épésben is, itt is a max operator altal meghatarozott érték
kinyerése az els6. Ebben az esetben a task;; utdn mar csak egy tevékenység maradt,
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L; = (task:2,task: s, task,1,task:s)

2.8. abra. A task; 4 és task,; sorrend QQ értékének a szamitasa

igy a max operator altal visszaadott érték a (taskyy,task:s) = 1.13 lesz. Tehét a
maz@ = 1.13. Ezutan a Q41 (task; 4, task: 1) értékének szamitasa kovetkezik.

Qr+1(taskea, tasks) = (1 —0.8) % 3.33 + 0.8 % (10 + 0.7 x 1.13) = 8.6328

A task,, és task,; egymasutanisdganak az értéke

R

L; = (taskia, task;a,task,,task; )

X--->»
2.9. abra. A task;; és task, 3 sorrend Q értékének a szamitasa

Harmadik lépésben a permutacié utolsdé egymas utani parjat vizsgalja az algo-
ritmus, azaz annak az akciénak a hasznossagat, hogy task,; utan a task; s kertl
kivalasztasra. Mivel a task; 3 tevékenység az utols6 a permutacioban, igy nincsenek
kovetkezd kivalaszthatd tevékenységek. Emiatt a max operdtor nem hasznalhatod
mar, tehat a maz@ = 0. Ezutan a Q41 (task, 1, task, 3) értékének szamitasa kovet-
kezik.

Qui1(tasks 1, task,z) = (1 —0.8) * 1.13 + 0.8 * (10 4 0.7 % 0) = 8.2260

A task; s tevékenység, mint elsé elem Q értékének kiszamitasa

A Q értékek frissitésének befejezG lépése az, hogy a permutacio elsd elemére az
algoritmus kiszamolja annak @ értékét. Azaz azt az értéket, amely leirja, hogy az
adott tevékenységet tekintve (a példa esetében a task;s) mennyire hasznos, hogy a
sorrend elsé tagja.

A max@ értéke ekkor a (taskio,task: o) értékkel lesz egyenls, amely nem mas,
mint a task; o tevékenység onmagaval vett () értéke. Azaz max(@) = 5.53. Ezutén a
Qir1(tasky 2, task, o) értékének szamitasa kévetkezik.

Qi1 (tasky o, taskss) = (1 — 0.8) % 5.53 + 0.8 % (10 + 0.7 % 5.53) = 12.2028
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L; = (task:2,task: s, task,1,task:3)

2.10. abra. A task:s (mint a permutacio elsé eleme) Q értékének a szamitisa

Tehat az adott L, permutéicié alapjan az algoritmus frissitette a Q értékeket a
matrixban, amely ezek utan az alabbiak szerint néz ki.

Q task; tasks tasks tasky
task; | 2.21 6.67 0
tasky | 3.39 8.81
tasks | 2.24 0 1.17 5.90
task, 5.58 4.02 7.48

2.2. tablazat. Példa frissitett (3 matrix értékekkel

2.5. Eredmények

Emlékeztetek arra, hogy az altalam kifejlesztett algoritmus két komponensbdl all.
A Q-tanulas alapi keret megallapitja a munkaknak egy sorrendjét és utana a mun-
kakat ebben a sorrendben iitemezziik a klasszikus LS algoritmussal természetesen
a megel6zési relaciokat is figyelembe véve. Megjegyzem, hogy sok més lehetGség is
lenne a targyalt megoldason kiviil.

Els6ként a [68]-ban és a [69]-ben kozolt kis méretii feladatot oldottam meg, amely
Osszesen hét tevékenységhbdl (task; —tasky), két gépbdl (mq, ms) és harom megel6zési
relaciobol all, tovabbé a gépi id6k is ismertek. A megel6zési relaciokat megado lancok
a kovetkezok:

o task; — tasks — task;
e tasky — taskg

A kis méretii példaban hasznalt gépi idk a [68] és [69] cikkekbdl szarmaznak.

A fenti példat optimalisan oldottak meg a [69]-ben. Az optimalis megoldas 13.
Azonban a [68]-ban alkalmazott heurisztikus eljaras megoldasa csak 15 lett. A QLM
algoritmusom szintén megtalalta az optimélis megoldést.

Megjegyezziik, hogy ez a feladat akar "kézzel" megoldhato, mert viszonylag kevés
kombinécié johet szoba. Ha mindegyik munkat arra a gépre tessziik, ahol révidebb
id6 alatt végrehajthato, elGszor az my gépnek 17 lesz az atfutasi ideje, az mo gépnek
kevesebb. Ha tudjuk, hogy 13 a feladat optimum értéke, akkor elég a task, munkat az
my géprdl attenni az mo gépre. Ha a megel6zési relacidkat nem vessziik figyelembe,
maris optimélis ilitemezést kaptunk. A gépek atfutasi ideje 13 illetve 11. Ha azt
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my | Mo
task; | 3 9
tasks | 4 5
tasks | 8 2
tasky | 2 6
tasks | 5 | 10
taskg | 9 4
task,; | 3 8

2.3. tablazat. A kis méretd példaban hasznalt gépi id6k

akarjuk, hogy a megel6zési relaciok is teljesiiljenek, ehhez elég a gépeken a munkakat
megfelel6 sorrendbe tenni.

Altalaban viszont konnyen lehetséges az, hogy az az iitemezés, amelyik a meg-
el6zési relaciokat nem veszi figyelembe nem javithato ki olyannd, amelyik esetén a
megel§zési relaciok is teljesiilnek, pusztan azaltal, hogy az egyes gépeken a munkak
sorrendjét megcseréljiik. Tehat ebbdl a szempontbél ez a kisméretii feladat nem
jellemz6, de mindenképp fontosnak tartottam ennek a feladatnak a megoldasat is,
mert az emlitett cikkek is megoldjak ezt a feladatot. Erdekes, hogy a [68] cikkbeli
algoritmus erre a konnyt feladatra se taldlta meg az optimélis megoldést.

Az altalam fejlesztett algoritmus hatékonysagénak vizsgalatara tovabbi feladatok
megoldasara keriilt sor. Ehhez a [68]-ban és a [69]-ben megoldott tovabbi feladatokat
vettem alapul. A [68]-ban 33 iitemezési problémat oldottak meg a szerzdk, azon-
ban a feladatok részletei, mint a gépi id6k és a megel6zési relaciok, egyaltalan nem
keriiltek kozlésre, csak a gépek, tevékenységek és a megelGzési relaciok szama. A
[69]-ben a problémékat osztalyokba soroltak a gépek szama, a tevékenységek szama
és a megel&zési relaciok szama alapjan. Azonban a gépi id6k és a megel6zési relaci-
6k ebben az esetben sem ismertek. Emiatt a gépi id6ket és a megel6zési relacidkat
én hoztam létre. A gépi id6k generalasa véletlenszertien tortént diszkrét, egyenletes
eloszléas szerint. A megelGzési relaciok megadésa is véletlenszeri volt. Mivel a cikkek-
ben megoldott feladatok részletei nem keriiltek kozlésre, igy nem tudtam pontosan
ugyanazokat a gépi idSket és megelézési relaciokat alkalmazni. Probaltam felven-
ni a kapcsolatot a szerzGkkel mindkét cikk esetében a feladatok konkrét adatainak
megismerése céljabol, de sajnos egyik esetben sem kaptam valaszt a megkeresésre.

A modszer teszteléséhez a [68]-ban talalhato 33 problémabol harmat valasztot-
tam gy, hogy ezek a rendelkezésre 4llo adatok (gépek szama, tevékenységek szama
és a megeldzési relaciok szama) alapjan kiilonbozzenek egyméastol. A feladatok [68]-
ban hasznalt szdmozasat megtartva a #1, #2 és #5 keriilt kivalasztasra. Ezek kis
méretii feladatok. A [69]-bdl pedig egy nagy méreti feladatot valasztottam, az ere-
deti szdmozas szerint a #28-at. Az alabbi tablazatban megadom a feladatokhoz
tartozo, a fenti cikkekbdl szarmazo adatokat.

A 2.4. tablazatban n a tevékenységek, m a gépek és NC (number of chains) a
megel§zési relaciok szama. Fzen adatok alapjan négy osztalyt hoztam létre.

e Class #1 - n=14, m=8és NC =5
o Class #2 —-n =28, m=Tés NC =8
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1| #2 | #5 | #28
n | 14 | 28 | 27 | 74
m | 8 | 7| 4| 19
NC| 58| 1] 10

2.4. tablazat. A kivalasztott feladatok ismert adatai

o Class #3 - n =27, m=4¢és NC =1
e Class #4 > n =74, m =19 és NC' =10

Minden feladatosztalyhoz generaltam 10 db feladatot a megfelels gép, tevékeny-
ség és megelGzési relacio szammal. A gépi idGk generalasa egyenletes eloszlas mellett
tortént az {1,2,...,10} halmazbol. Tovabba az eredmények egyszertibb elemzéséhez
két also korlatot szamoltam, amelyek szamitési modszerét a [68]-bol vettem at és
LBy-gyel és LBs-vel jelolom a cikk alapjan. Az LB also6 korlat segitségével a prob-
lémaban a megel6zési relaciok altal leirt 1ancokat vizsgdlom. Ez az als6 korlat azt
adja meg, hogy ha az egyes lancokban szerepld tevékenységekhez a végrehajtasi idé
szerint leggyorsabb gépet rendeljiik, mekkora a végrehajtasban legtovabb tarté lanc
atfutasi ideje. Az LBs esetében pedig minden tevékenységhez azt a gépet rendel-
jiik, amely a tevékenységet a leggyorsabban hajtja végre, ezeknek a minimumoknak
vessziik az Osszegét és elosztjuk a gépek szaméaval. A két alsé korlat informativnak
tekinthetd a kovetkez6k miatt. Egyrészt, ezek egyszertien kiszamithatok, emiatt
kénnyen alkalmazhatoak. Ezeknél jobb alsé korlatot nem taldltam az irodalomban.
Magunk is igyekeztiink ezeknél erésebb also korlatot elGallitani, azonban nem sike-
riilt. Ennek az az oka, hogy a munkék p(i, j) végrehajtasi idejei valtozatosak, nem
talaltam semmilyen egyszer( szabalyszertiséget koztiik, nem is lehet ilyet talalni,
mert egyenletes eloszlas szerint, véletlenszertien vannak a végrehajtasi id6k megvéa-
lasztva. Tovabba, eléggé erds also6 korlatokrol van sz, amit az is bizonyit, hogy
sok esetben az algoritmus altal talalt megoldéas értéke megegyezik, vagy majdnem
megegyezik az LBy és LBy alsé korlatok maximumaéval, és sok esetben ez a maxi-
mum erdsebb als6 korlatot biztosit, mint a CPLEX megoldo 4ltal szolgaltatott also
korlat. Ezen okok miatt, az LB; és LBy als6 korlatok hasznalatidt alkalmaztam.
Megjegyezhets, hogy bizonyos feladatosztaly esetén az LB;, masok esetén az LB,
szolgéaltatja az erGsebb alsé becslést, de van olyan feladatosztaly is, amikor néha az
egyik, néha a masik adja az erésebb becslést. Tovabba a probléma specidlis eseteire
semmilyen fels6 korlat nem ismert a legjobb tuddsom szerint.

Minden feladat esetén a QLM algoritmus tiz, egymastol fiiggetlen futast haj-
tott végre, igy minden egyes problémaéra tiz eredmény sziiletett. Az algoritmuson
beliil egy futas esetén a Q-tanulo fazis iteracioszama (azaz az epizodok, vagy maés
néven az epoch szama) 2000 volt. Az optimalis megoldasok meghatarozasara a [69]-
ben alkalmazott kevert egész értékd modellt hasznaltam, a megoldasokat pedig a
CPLEX megolddval allitottam els. A feladat modelljét a teljesség kedvéért megad-
juk a C fiiggelékben. A [68]-ban és a [69]-ben kozolt algoritmusokkal, HH és SS, a
QLM o6sszehasonlitasa nem lett volna korrekt gy, hogy nem ismerem azon feladatok
részleteit, amelyeket a szerzék a sajat algoritmusaikkal megoldottak a cikkben. (A
szerzGk sajnos nem publikaltik az altaluk megoldott feladatok részletes adatait és
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ez iranyl megkeresésemre sem reagaltak. Az én altalam generélt 1j feladatok adatai
megtalalhatok itt: [75].) A QLM algoritmus eredményeit a CPLEX altal adott ered-
ményekkel hasonlitottam 6ssze. A CPLEX egy széles korben ismert és alkalmazott
kereskedelmi szoftver, amely (tobbek kozott) kevert egész értéki linearis modellek
megoldaséira alkalmazhato.

A négy feladatosztalyon beliil Osszesen 44 feladatot hoztam létre és oldottam
meg a QLM algoritmussal, majd a CPLEX megoldoval. A kiévetkez§ alfejezetekben
az eredményeket és azok értékelését mutatom be.

2.5.1. Eredmények kiértékelése

Els6 alkalommal mind a négy feladatosztalyhoz egy-egy feladatot generaltam, majd
ezek QLM-mel és CPLEX-szel val6 megoldasaval teszteltem az algoritmusom. Meg-
jegyzem, hogy a CPLEX ugynevezett "fekete dobozként" funkcional, mivel keres-
kedelmi szoftverrél van szo, nem tudhatjuk pontosan milyen algoritmusok vannak
beépitve. Az biztos, hogy ezen beliil van linearis programozasi programcsomag re-
laxacio kezelésére, B&B illetve Branch and Price tipust algoritmusok, valamint he-
urisztikus megoldok is. Ezeket a feladatokat tekintsiik az alap feladatoknak. Az
ezekhez a feladatokhoz tartozo gépi id6k és megel6zési relaciok az A.1. fiiggelékben
talalhatok. A megoldasokat tartalmazo tablazatban a kovetkezd jeloléseket alkal-
mazom:

e 1 - a tevékenységek szama,
e m - a gépek széma,

e NC' - a megel6zési relaciok szama,

LBy, LB, - a két als6 korlat értéke,

CPLEX LB, CPLEX UB - a CPLEX &ltal kiszamitott also és fels6 korlat,
e QLM - a QLM algoritmus altal kiszamitott megoldas,

o QLM-freq - a tiz futasbol hanyszor taldlta meg a QLM az optimumot.

Megjegyzem, hogy csak akkor tudhat6 pontosan hogy mekkora az optimum érté-
ke, ha az als6 korlatok maximuma megegyezik a fels6 korlatok minimumaval. Tehat
az LBy, LBs illetve a CPLEX altal szolgéltatott alsé korlat maximuma megegyezik
a CPLEX é&ltal taladlt megoldas, illetve a QLM 10 futédsabol szarmazé megoldasok
értékeinek minimumaval. Mint lathat6 az #1 feladat esetén példaul LB, = CPLEX
LB = 10, valamint CPLEX UB = QLM — 10. Ttt a QLM mindegyik futasa 10-es
értéket adott. Vagy példaul a #28 feladat esetén LBy, = CPLEX LB = 5, a CPLEX
UB értéke ennél nagyobb (6), de a QLM 10 futasbol 9-szer szintén 5-6s értéket adott.
Most lassuk a feladatok megoldésanak részletes kiértékelését.

Az els6 feladat (#1) konnytinek bizonyult mind a QLM, mind pedig a CPLEX
szamara. Mindkét esetben sikeriilt megtalalni az optiméalis megoldasat, tovabba
lathato, hogy a QLM a 10 futasbol tizszer talalta meg az optimumot. A feladat
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Feladatok: #1 #2 #5 #28
n 14 28 27 74
m 8 7 4 19
NC 5t 8 1 10
LB, 10 11 7 4
LB, 4 9 18 5t
CPLEX LB 10 11 8 5
CPLEX UB 10 11 18 6
QLM 10 11 18 5
QLM-freq 10/10 3/10 1/10 9/10
CPLEX id6 (s) | 0,188 288 28 526 28 247

2.5. tablazat. Az els6ként generalt négy feladat megoldasanak eredménye

optimalis megoldasa 10 volt. A CPLEX also és fels§ korlatjai és az LB is ezt
mutatja. A CPLEX nagyon gyorsan megtalalja a megoldast, 0,188 masodperc alatt.
A CPLEX eredményeire vonatkozo statisztikai adatok a C fliggelékben talalhatoak.
A feladat modelljében Osszesen 1625 feltétel, 239 valtozé talalhatd, utobbibol 224 a
binéris valtozok szama.

A maésodik feladat (#2) nehezebb volt, lathato, hogy a tiz futasbol csak harom
alkalommal talalta meg az optimumot a QLM. Az optimélis megoldas 11 volt. Ez
a feladat a CPLEX-nek is nehéz volt, 28 masodperc alatt oldotta meg. A CPLEX
eredményeire vonatkozo statisztikai adatok a C fliggelékben talalhatoak. A feladat
modelljében Gsszesen 21491 feltétel, 1009 valtozo talalhatd, utobbibol 980 a binaris
valtozok szama.

Ezekkel kapcsolatban megjegyzem a kdvetkezdket: vannak olyan tanulé algorit-
musok, amelyeket tObbszor futtatva az algoritmus foélhasznalja a korébbi futasok
eredményeit. Az én altalam fejlesztett QLM algoritmus nem ilyen, minden egyes
1j futas esetén a Q értékeket djraszamolja. Ki lehetne probalni azt a valtozatot,
amelyik a korabbi futas altal kapott legjobb célfiiggvényértéket tgy hasznalja fel
egy késGbbi futasnél, hogy ha az aktualis célfiiggvényérték ennél nagyobb, akkor ott
megndoveli a biintetést, ha pedig kisebb, akkor megndévelt jutalmat ad. Ez késGbbi
kutatas targya lehet.

A harmadik feladat (#5) mar jelentGsen nehezebb az el6z6 ketténél. A QLM
algoritmus csak egy alkalommal taldlta meg az optimalis megoldést a tiz futasbol.
Lathato, hogy a CPLEX-nek is nehéz volt a feladat megoldasa, ugyanis bar hamar
megtalalja az optimalis megoldast, de mivel a NEOS szerver tigy van beallitva, hogy
nagyjabol 28 000 masodperc (ami nagyjabol 8 6ra) utan leall, ennyi id§ nem volt elég
az optimum verifikdldsahoz. A CPLEX &ltal talalt 18-as célfiiggvény érték valojaban
optimalis, de ezt a CPLEX nem tudta verifikalni (mert 8 6ra futas utan CPLEX UB
nem egyenld CPLEX LB-vel). Csak onnét tudhato, hogy a 18-as célfiiggvényérték
az optimum, hogy megegyezik LBs-vel, de a CPLEX erre "nem jott ra", ennél
sokkal gyengébb alsé korlatot (8) talalt csak. A CPLEX eredményeire vonatkozo
statisztikai adatok a C fiiggelékben talalhatoak. A feladat modelljében Gsszesen
17060 feltétel, 784 valtozo taldlhatod, utdébbibol 756 a binaris valtozok szama.

A negyedik feladat (#28) az el6z6 haromtoél eltérGen joval nagyobb probléma. Ez
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a gépek szamaban, a tevékenységek szamaban és a megelGzési relaciok szamaban is
lathato. Azonban a feladat mérete ellenére nem volt nehéz a QLM szdmara, ugyanis
a tiz futasbol kilencszer megtalalta az optimalis megoldast. A CPLEX szamara
azonban nehéz volt a feladat, ez lathaté a CPLEX UB és CPLEX LB értékekbdl, a
ketts kozott nagy az eltérés. A CPLEX eredményeire vonatkozo statisztikai adatok
a C fiiggelékben talalhatoak. A feladat modelljében Gsszesen 412282 feltétel, 7105
valtozo6 talalhato, utobbibol 7030 a binaris valtozok szama.

Mind a 4 alapfeladatra lefuttattam 10-szer a QLM algoritmust. A futasi id6k
0,1 mésodperc és 1 masodperc kdzott mozognak, egy feladaton beliil is valtozatosak,
de mindig 1 méasodperc alatt maradtak. A futasidék atlaga feladatonként 0,5, 0,64,
0,53 és 0,59.

A feladatokhoz tartozd részletes gépi id6 tablazatok és megel6zési relaciok az
A.1 fiiggelékben talalhatok. A futasi idGk részletes adatai a C fiiggeléekben vannak
megadva.

Mivel a QLM futéasideje 1 masodperc alatt marad mind a négy alapfeladat esetén,
a 2.5. tablazatban csak a CPLEX futésidejét adtam meg, mert az viszont erdsen
fiigg a feladattol.

2.6. Reészletesebb vizsgalatok

A 2.5.1. fejezetben bemutatott eredményeken til mind a négy osztaly esetében
tovabbi feladatokat generaltam, természetesen figyelembe véve az adott osztaly pa-
ramétereit. Minden egyes osztaly tovabbi tiz darab feladattal béviilt. Ebben a feje-
zetben az ezekre a feladatokra vonatkozo eredményeket mutatom be. Az ezekhez a
feladatokhoz tartozo, a gépi idGkre és a megel6zési relaciokra vonatkozo informaciok
az A.2 szamu fiiggelékben talalhatok. Az alabbi tablazatokban az egyes osztalyokba
tartozo feladatpéldanyokat 1-10 szamokkal jeloltem. Tehat minden inputhoz tarto-
zik egy oszlop. Négy feladatosztély esetén ez Gsszesen 40 input. Megjegyzem, hogy
minden inputra a QLM 10-szer van futtatva. Ez 6sszesen 400 futas. Minden oszlop
aljan a QLM* szam azt jelenti, hogy a 10 futasbol az algoritmus hanyszor talalta
meg az altala talalt legjobb értéket. Ez bizonyos esetekben egyenls az optimummal
(ha a legjobb LB egyenl§ a legjobb UB-vel) mas esetekben csak annyit tudunk, hogy
a legjobb fels6 korlat. Mivel a QLM futasideje mindig 1 mésodperc alatt maradt,
ezért azt a tablazatokban nem adtam meg. A CPLEX futésidejét a folyoszovegben
ismertetem.

A Class #1 osztalyhoz generalt 10 feladat esetében a QLM algoritmusa a 10

futasbol 10 alkalommal taldlta meg az optimalis megoldast. Mind a CPLEX, mind
a QLM algoritmus esetén a futds gyors, kevesebb, mint 1 méasodperc alatt ment
végbe.
A 2.6. tablazatban lathato, hogy minden feladat esetében sikeriilt megtalélni az op-
timéalis megoldast, amelyet a CPLEX is megerdsitett. A CPLEX &ltal kiszamitott
also és felsd korldtok minden feladatnal megegyeznek. A QLM esetében szamitott
korlatok koziil az LBy korlat értékei minden oszlopban megegyeznek a CPLEX kor-
lataival. Mind a QLM, mind a CPLEX &atlagosan 1 masodpercen beliili futasi id6vel
dolgozott.
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n=14, m=8, NC =5
Feladatok: 1 2 3 4 5 6 7 8 9 10
LB 9 5 9 &8 8 4 9 17 7 10
LB, 3 3 3 3 3 2 3 5 3 3
CPX LB 9 5 9 & 8 4 9 17 7 10
CPX UB 9 5 9 & 8 4 9 17 7 10
QLM 9 5 9 &8 8 4 9 17 7 10
QLM* (/10) 10 10 10 10 10 10 10 10 10 10

2.6. tablazat. A bévitett feladatok Class #1 osztélyanak eredményei

A Class #2 feladatai esetében méar valtozdak az eredmények. A CPLEX mind-
Ossze egy esetben tudta megerdsiteni az optiméalis megoldéast, méghozz4a a 6-os szamu
esetében. Ha a feladatok koziil példaul az 1-es szamiit tekintjiik, akkor lathato, hogy
a 10 futasbol a QLM 6 alkalommal szamolt 9-es értékd atfutasi idét. Ugyanezen
feladat esetében az LB, = 8 és LB, = 7. Ebbdl lathato, hogy az optimalis megoldés
legfeljebb 9 és legalabb 8.

n=28 m=7 NC=28
Feladatok: 1 2 3 4 5 6 7 8 9 10
LB, 8 6 5 8 7 7 6 6 5 9
LB, T 7T 7 8 9 6 7 6 7 9
CPLEXIB 8 6 5 8 7 7 6 6 5 9
CPLEXUB 9 8 8 9 12 7 7 8 7 11
QLM 9 8 8 9 12 7 7 8 7 11
QLM* (/10) 6 10 10 3 6 2 6 7 9 6

2.7. tablazat. A bévitett feladatok Class #2 osztélyanak eredményei

A CPLEX is ugyanezeket az értékeket szamolta, azaz az als6 korlat 8, a fels6 kor-
lat pedig 9 volt. A CPLEX altal szamitott als6 korlatok a 2-es, 3-as, 5-0s, T-es
és 9-es feladatok esetében rosszabbak, mint a max(LBy, LB;). A 6-os szamu fel-
adat esetében a CPLEX als6 korlatja és fels§ korlatja megegyeznek, igy itt sikeriilt
megerdsiteni az optimalis megoldast, amelyet a QLM is megtalélt. A 7-es és 9-es fel-
adatoknal lathato, hogy az LB; és LB, értékei megegyeznek a CPLEX also és fels§
korlatjaval, tovabba a QLM altal szamitott eredmények mindkét esetben egyenl6k az
LB, értékével, igy a megoldas optimalis, azonban ezt a CPLEX nem erdsitette meg.
A CPLEX éatlagosan 12 mésodperc alatt megtalalja az altala legjobb megoldast,
de ezen utdna nem tud mar javitani. A 8 6ras idSkeretben nem képes a megoldas
optimalitasat verifikdlni (kivéve az emlitett 6-odik input esetén.)

A Class #3 feladataihoz tartozo eredmények a 2.8. tablazatban lathatok. Meg-
allapithatéak a kovetkezék:

e a CPLEX also6 korlatja mindig az L B;-el egyezik meg, de ennél 1ényegesen jobb
az LB, érték, érdekes, hogy ezt a CPLEX nem talalta meg,

e a CPLEX soha nem ad jobb megoldast, mint a QLM, azonban egy feladat
esetén a QLM jobb megoldast ad (3. feladat).
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n=27m=4, NC =1
Feladatok: 1 2 3 4 5 6 7 8 9 10
LBy 5 8 5 7 6 8 5 8 6 6
LB, 16 18 15 18 16 19 17 18 19 16
CPLEXLB 5 &8 5 7 6 8 5 8 6 6
CPLEXUB 18 20 18 19 16 20 17 19 21 17
QLM 18 20 17 19 16 20 17 19 21 17
QLM* (/10) 10 9 7 8 2 10 1 8 9 10

2.8. tablazat. A bévitett feladatok Class #3 osztélyanak eredményei

A CPLEX itt sem képes garantaltan optimélis megoldast talalni 8 oras futasidé
alatt.

n =74, m=19, NC = 10
Feladatok: 1 2 3 4 5 6 7 8 9 10
LB, 6 4 4 5 5 4 4 6 5 4
LB, 5 55 5 5 5 5 55 5
CPLEXLB 6 4 4 5 5 4 3 5 5 4
CPLEXUB 13 9 11 9 9 15 9 9 8 10
QLM 6 5 6 6 6 5 6 6 5 5
QLM* 6 1 7 10 10 1 10 8 1 3

2.9. tablazat. A bévitett feladatok Class #4 osztalydnak eredményei

A Class #4 feladataihoz tartozo eredmények a 2.9. tablazatban lathatok. Az
eredményekbdl lathatd, hogy a QLM algoritmus az esetek tébb, mint a felében
(1-es, 2-es, 6-0s, 8-as, 9-es, 10-es feladatok) ugyanazt az eredményt adta, mint a
max(LBy, LBy). A 3-as, 4-es, 5-0s és T-es feladatok esetében a QLM eredménye
csak eggyel nagyobb, mint max(LBy, LBy). Az l-es, 2-es, 6-0s, 8-as, 9-es és 10-
es feladatok esetben a QLM eredményei egyben az optimélis megoldasok is. Az
is lathato, hogy a CPLEX szaméra nehezek voltak ezek a feladatok, mert nagyon
magas felsé korlatokat szamolt ki, egyuttal egyik esetben sem tudta megerGsiteni az
optimalis megoldast. A CPLEX &tlagosan 9 mésodperc alatt talalja meg az altala
talalt legjobb megoldést, és a 8 6rés idGkeret nem elég annak eldontésére, hogy ez
optimalis-e.

A vizsgalatok alapjan elmondhat6, hogy a megoldasok minésége nem a QLM
paraméterein milik. Ezek a feladatok felépitésiikbél eredéen nehezek. Nem arrol
van sz6, hogy a megoldasok nem sikeresek, hanem a feladatok nehézsége folytan a
CPLEX nem tudta igazolni, hogy az optiméalis megoldéast kaptuk-e meg vagy sem.

A feladatokhoz tartozé Osszefoglalé gépi id6 tablazatok és megelGzési relaciok az
A2 fiiggelékben talalhatok.

2.7. Osszefoglalas

Ebben a témakdrben egy olyan, specidlis iitemezési probléma megoldésaval foglal-
koztam, amelyben a tevékenységek kozott el6re meghatarozott megel6zési relaciok
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szerepelnek, és az egyes tevékenységek végrehajtasi ideje a hozzajuk rendelt gépi
erGforrastol fiigg. A feladat specialitdsat a megel6zési relaciok adjak, amelyek rovid,
diszjunkt utakat definialnak. A szakirodalomban csak kevés szamu olyan algorit-
mus van, amely az dltalam bemutatott modellek esetében egyaltalan relevans lenne.
Az altalam létrehozott algoritmus azon kevés megoldasok kozé tartozik, amely ezen
specialis probléma megoldasara lett kidolgozva.

Megmutattam, hogy a QLM eljaras alkalmas az ebben a fejezethen bemutatott
iitemezési probléma megoldasara.

Az allapottér egyszeriisitésével sikeriilt megmutatni, hogy a kifejlesztett eljaras
hatékony a felvetett iitemezési probléma megoldasaban. Az algoritmus kifejezetten
azokra az iitemezési problémékra lett kifejlesztve, ahol a tevékenységek végrehaj-
tési ideje az erdforrastol fiigg, a végrehajtas nem megszakithato, tovabba az egyes
tevékenységek kozott megelézési relaciok lehetnek. Az altalam megadott problé-
ma megoldasaval a megerGsitéses tanulas témakorében nem taldltam publikaciot.
Osszehasonlitéasi alap lehetett volna a [68]-ban és a [69]-ben kizolt megoldas, de az
itt megoldott feladatok részletei nem ismertek. Igy alapvetSen sajat magam altal
generélt feladatokkal teszteltem a QLM algoritmust, tovabbé ugyanezeket a felada-
tokat a CPLEX-szel is megoldottam. Az eredmények alapjan lathatd, hogy a QLM
minden esetben, amikor a CPLEX is, megtalalta az optimalis megoldast. A tobbi
esetben csak sejtjiik, hogy a QLM optimalis megoldast talalt, de ezt a CPLEX nem
tudta megerdsiteni. Ez alapjan lathato, hogy a kidolgozott feladatokra szoritkoz-
va, a QLM algoritmus hatékony és a feladatok megoldésaban felveszi a versenyt a
CPLEX megoldojéval, hiszen a QLM é&ltal adott eredmények 6sszhangban vannak
a CPLEX megold¢ja altal kiszamitott eredményekkel.

Emellett érdekes és tovabbra is nyitott kérdés az, hogy a Q-tanulds vagy maés
megerdsitéses tanulasi modszer hogyan és milyen hatékonysaggal alkalmazhato egyéb
litemezési problémak megoldéasara.

Jelenleg nincsen semmilyen eredmény a legrosszabb esetre vonatkozo kozelitési
aranyrol a bemutatott iitemezési problémaval kapcsolatban. Ez is egy érdekes és
nyitott teriilet, amely a jovébeni kutatasok részét képezheti.

Tovabbi vizsgalat targya lehet, hogy bizonyos specialis esetekben (példaul m = 2
gép esete, vagy csak kétfajta végrehajtasi id6 esete) nem kaphatnank-e jobb also
korlatokat illetve, hogy miikédik ezekben az esetekben a QLM algoritmus vagy ennek
valamilyen modositott valtozata.
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3. fejezet

Moho algoritmusok ladapakolasi
benchmark feladatokhoz

3.1. Bevezetés

A ladapakolas egy klasszikus teriilete a kombinatorikus optimalizalasnak, amelynek
szamos felhasznalési teriilete van a mindennapok soran. A ladapakolasi feladatok
megoldasakor a rendelkezésre allo kapacitas optimalis felhasznélasara toreksziink,
legyen sz tarolasrol vagy éppen szallitasrol. A minél hatékonyabb kapacitaski-
hasznalasnak az eredménye a kevesebb szamu tarolé alkalmazasa, ezéltal példaul a
szallités is kevesebb jarmtvel oldhatoé meg, ez pedig a kornyezet terhelésének csok-
kenéséhez vezet. Tovabba sokkal olcsobba tehetd ezédltal a tarolas vagy a szallités,
hiszen kevesebb er6forrast kell felhasznalni.

3.1.1. Az 1j megkozelités

A Bevezetésben (1. fejezet) nagyon roviden attekintettem, hogy a ladapakolasi
feladatnak milyen f&bb valtozatai vannak és ezekre milyen megoldasokat javasoltak.

Ebben az alfejezetben bemutatom az altalam bevezetett 1j megkozelitést. En-
nek lényege, hogy a ladapakolasi probléméak megoldasa el6tt egy an. el6feldolgozast
végzek el, amellyel igyekszem egyszeriisiteni a megoldando feladatot. Ha van egy
ladapakolasi feladat, amelyet szeretnénk optiméalisan megoldani, akkor az nehéz le-
het, ugyanis a ladapakolési probléma NP-nehéz. De ez nem jelenti azt, hogy az
optiméalis megoldas megtaladlasa minden feladat esetében nehéz. Példaul, ha min-
den targy w > 0 mérete egyforma, akkor a feladat megoldasa trividlis. Ebben az
esetben minden laddaba pontosan Lij targy pakolhato és a feladatot megoldottuk
optimalisan. Természetesen a valosaghan a ladapakolasi feladatok nehezebbek vagy
sokkal nehezebbek. A késGbbiekben azonban latni fogjuk, hogy bizonyos benchmark
feladatok esetén tudunk olyan "triikkos" algoritmusokat javasolni, amelyek az esetek
java részében mégis képesek megtaldlni az optimalis megoldast.

Az 0j modszer a kovetkezéképpen fogalmazhatdé meg. Megprobaljuk meghata-
rozni az adott feladat optimélis megoldésat egy moho algoritmussal; ha ez sikeriilt,
a feladat megoldasaval készen vagyunk. Ha viszont nem sikeriilt, akkor més, szo-
fisztikaltabb megold6 algoritmus sziikséges (amellyel itt most nem foglalkozom). A
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moho algoritmus alkalmazasanak 1ényege, hogy egyszer(i algoritmussal az adott osz-
talyon beliil a lehets legtobb feladatot optimalisan oldjuk meg. Igy a megoldott
feladatokkal mar nem kell foglalkozni, azaz a problémak szama csokken. A mo-
ho algoritmusok ilyesfajta alkalmazasa a mindennapi életben is jelen van, példaul
rovidebb tutvonalak megtalaldsa, két varos kozott olyan tutirdny valasztasa, ahol a
forgalom kisebb. Az operacidkutatas sok teriiletén szintén alkalmaznak mohé mod-
szereket segédalgoritmusként.

A kovetkez6 alfejezetben részletes attekintést nyujtok a vizsgalt benchmark fel-
adatokrol.

3.2. A vizsgalt benchmarkok

Ebben a fejezetben bemutatom azokat a benchmark feladatokat, amelyeket hasz-
naltam az algoritmusok fejlesztése és tesztelése soran. A feladatosztalyok példaul a
Bologna Egyetem Operaciokutatas Csoportjanak a weboldalan [76] elérhetdk.

A feladatok a kovetkez6 formaban vannak megadva. A targyak szamét n, a
lada kapacitasat pedig C jeloli. A targyak mérete w; és a feladatok kiilonbo6zé
osztalyokba vannak sorolva. A weboldalon Gsszesen 6195 db feladat érhetd el és
mindegyik feladat esetében a targyak méretiik szerint csokkend sorrendbe vannak
rendezve. A benchmarkok dént6 tobbségénél ismertek az optimélis megoldasok,
azonban vannak olyan osztalyok, ahol még vannak a feladatok kozott olyanok, ahol
nem ismerjiik az optimalis megoldast. A Schwerin és a Falkenauer osztalyok esetében
minden feladathoz ismertek az optimalis megoldasok.

3.2.1. Schwerin benchmark

A Schwerin [77] benchmark két halmazra oszlik; Schwerinl és Schwerin2. Mindkét

halmazban 100 feladat taldlhat6. A Schwerinl esetében a targyak szama n = 100,

a Schwerin2 esetében pedig n = 120. A ladak kapacitasa egységesen C' = 1000

és a targyak meéretei a [150,200] intervallumbol keriilnek ki egyenletes eloszlassal.

(Tehat minden ladaba vagy 5 vagy 6 darab targy fog keriilni.) A Schwerin 1 esetében

valamennyi feladat optimalis megoldasa 18, a Schwerin 2 esetében pedig 21 vagy 22.
Osszes feladat: 200 db.

3.2.2. Falkenauer benchmark

A Falkenauer [78| benchmark két osztalyra oszlik, amelyek mindegyikében 80 feladat
talalhato.

Az els6 osztaly, a Falkenauer U tovabbi négy alosztalyra bomlik, mindegyik
alosztalyban 20 feladat van. Az alosztalyokban a targyak szama n = 120, n = 250,
n = 500 és n = 1000. A targyak mérete a [20, 100] intervallumbol keriil ki egyenletes
eloszlassal, a ladék kapacitasa C' = 150.

A mésodik osztaly, a Falkenauer T ugyancsak négy alosztalyra oszlik és mind-
egyik alosztalyban 20 feladat van. A targyak szama n = 60, n = 120, n = 249 és
n = 501. A targyak mérete a [250, 500] intervallumbol keriil ki egyenletes eloszlassal,
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a ladak kapacitdsa C' = 1000. A Falkenauer U esetében az optimélis megoldasok
értékei feladatonként valtozo.
Osszes feladat: 160 db.

3.2.3. Tovabbi benchmarkok
Scholl

A Scholl benchmark [79] esetében a feladatok harom részre oszlanak: DataSetl,
DataSet2 és DataSet3. Ezekben a halmazokban 720, 480 és 10 feladat talalhato.
A téargyak szama (n) az [50,500] intervallumbol keriil ki. A ladak kapacitésa (C)
DataSet1 esetén az [100, 150] intervallumbol keriil ki, DataSet2 esetén C' = 1000 és
a DataSet3 esetén C' = 100000. A DataSet1 esetében a targyak mérete az [1, 100], a
DataSet2 esetében az [1, 500] és a DataSet3 esetében a [20000, 35000] intervallumbol
keriil ki.
Osszes feladat: 1210 db.

Wascher

A Wischer benchmark [80] feladatai az egyik legnehezebbek az &sszes benchmark
koziil. A targyak szama (n) a [57,239] intervallumbol keriilnek ki, a ladék kapa-
citaisa C' = 10000. A legnagyobb targyméret kicsivel 5000 alatti és egészen kicsi
targymeéretek is vannak (40). Mivel a kés6bbiekben csak a Schwerin és Falkena-
uer U osztaly inputjaival fogunk részletesen foglalkozni, ezért a tobbi benchmark
osztalyok targyméreteit a hely kimélése végett nem adjuk meg.

Osszes feladat: 17 db.

Schoenfield Hard28

A Hard28 benchmark [81] 28 nehéz feladatot tartalmaz, ahol a targyak szama (n)
160 és 200 kozott alakul, a 1adak kapacitasa C' = 1000. A targyak mérete valtozatos.
Osszes feladat: 28 db.

RGI, Augmented Non-IRUP, Augmented IRUP, GI

Az RGI benchmarkban [18] a targyak szdma n € [50, 1000], a ladéak kapacitasa (C)
pedig 50 és 1000 kozott. A legkisebb targy mérete a [0.1C,0.2C] intervallumbol, a
legnagyobb targy mérete pedig a [0.7C,0.8C] intervallumbol szarmazik. Osszesen
3840 feladat talalhaté ebben a csomagban.

Ugyanez a publikacio [18] mutatja be az Augmented Non-IRUP (ANI) és az
Augmented IRUP (AI) benchmarkokat. Mindkét benchmark 250 feladatot tartal-
maz, igy Osszesen 500 feladatrol van sz6. Az ANI esetében a feladatok 6t halmazra
vannak bontva és a targyak szama az 6t alosztalyban n € {201, 402,600, 801, 1002},
tovabba a targyak méretei az [1, 2500, [1, 10000], [1,20000], [1,40000] és az [1, 80000]
intervallumokbol keriilnek ki. A ladak kapacitasa az 6t halmaz esetén sorra 2500,
10000, 20000, 40000, és 80000. Az AT osztaly az ANI osztalybol lett generdlva annyi
modositassal, hogy minden alosztaly esetében a targyak szama n + 1.
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A harmadik benchmark a GI [82], amely nagyon véltozatos feladatokat tartalmaz,
Osszesen 240 darabot.

3.3. Algoritmusok

Ebben a fejezetben kordbban mar 1étezd, illetve az altalam kifejlesztett algoritmu-
sokat mutatom be. Az FFD algoritmust arra hasznaltam, hogy a lehetd legtobb
feladatot megoldja az osztalybol. Ez azért fontos, mert ha egy olyan egyszeri algo-
ritmus, mint az FFD a feladatok egy jelentGs részét optimalisan képes megoldani,
akkor a teljes problémakor gyorsan egyszertisodik, ugyanis az FFD-vel megoldott
feladatokkal mar nem kell foglalkozni. Természetesen ez az el6bbi megjegyzés csak
akkor igaz, ha a tekintett feladatra létezik olyan alsd becslés, amelynek az értéke
egyenlé az FFD eredményével. Viszont az emlitett benchmarkok jelent6s részében
ez igaz. A legegyszeriibb als6 korlat a kovetkezd: a targyak Osszméretét elosztjuk a
ladameérettel és a kapott szamot folfelé kerekitjiik. Ez a trividlis als6 korlat is elég
erGs volt ahhoz a benchmarkok jelentds részében, hogy az FFD altal kapott megoldas
optimalitasat bizonyitsa. Tehat egy természetesen adodo lehetség, hogy egy adott
benchmark osztélyon beliil az inputokra elGszor lefuttatjuk az FFD algoritmust, ha
ez optimalis megoldast ad, akkor kész is vagyunk. Mivel ez nem minden esetben
torténik meg, sziikségiink van més, bonyolultabb algoritmusokra is.

Kovetkez6 1épésként a ladapakolasi feladatot egyszertsitjiik az alabbi modszerrel.
Ahelyett, hogy arra figyelnénk, hogy sok ladat hogyan lehet egyszerre j6l megtolteni,
egyesével fogunk ladakat megtolteni. Vagyis egymas utan fogunk hatizsak feladato-
kat megoldani. Egy hatizsak megfelel egy ladanak. Azt figyeltiik meg, hogy (leg-
alabbis a Schwerin osztalyon beliil) ha "jol" telepakolunk egyesével ladékat, akkor
igy globalisan is j6 megoldast kapunk. Vagyis mas széval moh6 dontések sorozatat
lehet alkalmazni. A hétizsak "jo" megtoltésére pedig egy egyszeri ttkeres6 segéd-
algoritmust alkalmaztam.

3.3.1. First Fit Decreasing (FFD)

Az FFD algoritmus az FF algoritmus modositott viltozata oly modon, hogy az elsG
lépés egy el6feldolgozas. Ahogy az algoritmus nevében is benne van, a bemeneti
elemeket méret szerinti csokkend sorrendbe rendezziik, majd ezen a sorrenden al-
kalmazzuk a First Fit algoritmust. Tulajdonképpen az ismertetett benchmarkok
esetében erre mar nincs sziikség, ugyanis alapértelmezetten csokkens sorrendben
szerepelnek a targyak a méretiik alapjan minden feladat esetében. A tovabbiakban
az FFD teljesitményét mutatom be a fenti benchmarkok esetén.

Az FFD algoritmussal kapcsolatos els6 tapasztalat az volt, hogy a fentebb emli-
tett benchmarkok koziil néhanyra elég jo eredményeket adott. Els6ként az Al és az
ANI benchmarkok FFD-vel torténd megoldasait mutatom be. Ezek olyan feladat-
osztalyok, amelyek esetében a benniik taldlhaté feladatok kozott vannak még meg
nem oldottak, azaz az optimélis megoldasuk nem ismert, csak a megoldas also (LB)
és felsé (UB) korlatja. Néhany esetben igaz, hogy LB = UB.

A 3.1. tablazatban az FFD algoritmus teljesitménye lathaté az Al és az ANI
osztalyokon. Lathato, hogy az FFD algoritmus a fels6 korlattal megegyezd ered-
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Al ANT

# % # %

FFD = UB 131 524 250 100
FFD ~UB 119 476 0 0
Osszes 250 100 250 100

3.1. tablazat. Az FFD teljesitménye az Al és az ANI feladatosztélyokon

ményt hozott az Al osztalyban talalhato feladatok 52,4%-ra és az ANI osztalyban
talalhato feladatok 100%-ra. A fels6 korlat az ismert legjobb megoldast jelenti. Te-
hat ezzel az egyszerd algoritmussal az Al osztaly feladatainak tobb, mint a felét, az
ANT osztaly feladatai koziil pedig mindet sikeriilt megoldani. Azaz a megoldand6 Al
osztalybeli feladatok aranya 47,6%-ra csokkent, az ANT feladatoké pedig 0%-ra. Igy
drasztikusan csokkentettiik a megoldatlan feladatok szamét mindenféle bonyolult
algoritmus alkalmazasa nélkiil. Természetesen tovabbfejlesztési lehetdségként felme-
riil, hogy jobb als6é korlatot is lehetne alkalmazni, azonban dolgozatom e részében
csak azt szeretném illusztralni, hogy nagyon sok benchmark feladatra méar a klasszi-
kus és altalanosan ismert FFD algoritmus is hatékony. Altalanossagban a kiilonféle
benchmarkok vizsgéalatat viszont itt nem részletezem, tehat az FFD-vel kapcsolatos
vizsgalatok itt csak illusztracio céljabol vannak. Két benchmark osztéalyt (Schwerin
és Falkenauer U) viszont részletesen megvizsgalok a kovetkezékben. Ezekben az
FFD nem elég hatékony, emiatt jonnan kifejlesztett algoritmusokat mutatok be.

A fejezet tovabbi részében a maradék benchmarkok eredményeit tekintem at.
Ezek az osztalyok a megoldas szempontjabol abban kiilonboznek az AT és ANI osz-
talytol, hogy itt minden egyes feladatnak ismert az optimalis megoldasa.

DataSet1 DataSet2  DataSet3 Falkenauer U Falkenauer T
# % # % H# N # % # %

FFD = UB 546 758% 236 492% 0 0% 6 7,5% 0 0%
FFD >UB 174 242% 244 50,8% 10 100% 74 92,5% 80  100%
Osszes 720 100% 480 100% 10 100% 80 100% 80  100%

3.2. tablazat. Az FFD teljesitménye a tobbi feladatosztalyon (I)

GI Instances RGI Instances  Schwerin Waéascher Hard28
# % # % # % # % # %

FFD=UB 1 0,4% 1601 41,7% 0 0% 2 118% 5 17,9%
FFD >UB 239 99,6% 2239 583% 200 100% 15 882% 23 82,1%
Osszes 240 100% 3840 100% 200 100% 17 100% 28 100%

3.3. tablazat. Az FFD teljesitménye a tobbi feladatosztalyon (IT)

A 3.2. és a 3.3. tablazatokban lathatok a tobbi feladatosztaly esetén kapott
eredmények. Ezek koziil a DataSet1l esetében volt a leghatékonyabb az FFD. Itt a
feladatok tobb mint 75%-at sikeriilt optimalisan megoldani. A DataSet2 esetében
kozel a feladatok felében optimalis megoldas sziiletett. A harmadik legjobb ered-
mény az RGI feladatoknal lathato, itt a feladatok 41,69%-at sikeriilt optimélisan
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megoldani. Sajnos a tébbi feladatosztéily jocskan elmarad ezektdl az eredményektdl.
A Falkenauer T és a Schwerin esetében 0 feladat esetében talalta meg az FFD az
optimalis megoldast. A GI esetében Tim a Wischer-nél %, a Falkenauer U-nal %,
a Hard28-nal pedig 2% ez az arany.

Amennyiben az FFD nem talalt optiméalis megoldast, ugy jellemz&en egy ladaval
tobbet toltott meg a kelleténél. Osszesitve a 6195 feladatbol az FFD-nek sikeriilt
2778 darabot optimalisan megoldani, ami 44,84%-os teljesitmény. Mint emlitettem,
az FFD-vel kapcsolatos vizsgalataim itt csak illusztracioként szerepelnek, azt mutat-
jék be, hogy sok esetben nem sziikséges bonyolult algoritmus alkalmazasa. Megjegy-
zem, hogy amikor az FFD a "sziikségesnél" egy ladaval tobbet hasznél, varhatoan,
lokalis cserék alkalmazasaval sok esetben el lehet jutni az optiméalis megoldasig. Ez
azonban nem képezte vizsgalatok targyéat.

A |[83]-as publikaciéban egy 1j, viszonylag bonyolult algoritmust mutatnak be,
amely a Scholl feladatosztalybol 120 feladatot optimdlisan megold az Gsszes 1210
feladatbol. Ugyanezt a 120 feladatot az FFD is megoldja optiméalisan. Adédik a
kérdés, hogy akkor miért hasznaljunk bonyolult eljardsokat, ha sokkal egyszertibb
modszerekkel is megoldhatjuk ugyanazt? Feltehets, hogy a cikk szerz6i az 1210
feladatbol olyan 120-at valasztottak (harom alosztaly a sok alosztéaly koziil), ame-
lyekre az FFD hatékony, mert nem til nehezek a feladatok. Az alabbi konklaziokat
vonhatjuk le.

e Az FFD algoritmus nem minden esetben hatékony, de jo 6tletnek tiinik elGszor
az FFD-t futtatni. Lathaté, hogy az Osszes feladat kozel felét megoldotta
optimalisan.

e Ezek utan két feladatosztalyt valasztottam: Schwerin és Falkenauer U. Ezekre
az FFD nem hatékony. Viszont a késébbiekben megmutatom, hogy Osszetet-
tebb, de még mindig moh6 algoritmusok képesek lesznek megoldani vagy az
Osszes feladatot vagy a feladatok jelentds részét ezekbdl az osztalyokbol. Mint
kés6bb részletesen bemutatom, ennek az az oka, hogy ezekben az osztalyok-
ban taladlhato feladatok targyméretei véletlenszeriien és egyenletesen vannak
kivalasztva valamely intervallumbol.

3.3.2. Eléfeldolgozé eljarasok az irodalomban

Az el6feldolgozas egy jol ismert és gyakran alkalmazott technika az optimalizalés-
ban. Ez lényegében azt jelenti, hogy az adott feladat megoldésa el6tt megprobaljuk
egyszertsiteni a problémat, amennyiben lehetséges. Péld4ul, ha egy linearis optima-
lizalasi probléméarol van szo, akkor els6 1épésben eltavolitjak a redundéans korlatoza-
sokat, azaz egyszertsitik a modellt. VélhetGen a legelsG, a linearis programozasban
alkalmazott el6feldolgozd modszerrel foglalkozd publikacio [84], amely 1975-ben je-
lent meg. Majd ezt tobb hasonlé publikici6 is kovette; 1983-ban Tomlin és Welch
[85, 86], 1995-ben Andersen és Andersen [87] vagy 1997-ben Gondzio [88] munkéja.

Savelsbergh munkéjaban [89] javasolja az eléfeldolgozast a kevert értékd progra-
mozési problémakra. A témaban néhany tovabbi publikacié [90-92].

Mészaros és Suhl [93] a linearis és kvadratikus programozas kapcsan foglalkozott
az el6feldolgozassal. [94] pedig egy olyan publikacio, amely kiilonboz6 eléfeldolgozési
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technikékkal foglalkozik az egész értékii programozas kapcsan.

Az egyes targyak méret szerinti rendezése is el6feldolgozasnak tekinthetd, ami
lathatoéan nagyon hatékony tud lenni. Ha a First Fit algoritmust futtatjuk egy adott
L targylistaval, akkor a legrosszabb esetben az FF(L) = 1,7- OPT(L), fiiggetleniil
attol, hogy milyen nagy OPT (L) [12]|. Viszont, ha az elemek nem névekvs sorrendbe
vannak rendezve, és a rendezés utan alkalmazzuk az First Fit algoritmust (ami
innentdl kezdve tulajdonképpen First Fit Decreasing), akkor a legrosszabb esetben
FFD(L) ~ + - OPT(L) nagy OPT(L) értékek esetén [7, 15].

3.3.3. Segédalgoritmusok

Ebben a fejezetben néhany kiegészitG algoritmust mutatok be. FEzek nem djak,
gyakran alkalmazott algoritmusokro6l van szd. Az itt bemutatott algoritmusokat a
kiilonboz6 feladatosztalyok (Schwerin és Falkenauer) megoldasa soran alkalmaztam.

A hatizsak feladat és kapcsolata a ladapakolassal

A hatizsak feladat a kovetkezd: adott n targy, minden i-re az ¢. targynak van egy
w; silya és egy g; haszon értéke. Tovabba a hatizsak rendelkezik egy C' kapacitéssal
is. A cél az, hogy a targyak egy részhalmazat agy pakoljuk a hatizsdkba, hogy a
targyak méreteinek Osszege legfeljebb C' legyen, a nyereség pedig a lehets legnagyobb.
Koztudott [95], hogy a hatizsak probléma NP-nehéz, a ladapakolasi probléma pedig
er6sen NP-nehéz. Természetesen adodik a kovetkezs otlet. Tekintsiink egy ladat egy
hatizsdknak, azt pakoljuk "jo alaposan" tele, zarjuk le ezt a ladat, aztan pakoljunk
meg hasonléképpen egy tjabb ladat és igy tovabb. Az algoritmust az egyszeriiség
kedvéért Hatizsaknak nevezziik és pontos leirdsa a kovetkezd:

Algorithm 6: Hatizsik
Input: a ladapakolési feladat elemei
Output: az elemek pakolasa C' méretii ladakba
1 Amig valamely megéallési feltétel nem teljesiil do
2 Néhéany elemet kivalasztunk a még nem pakoltak koziil, valamely késébb
meghatéarozando elv alapjan. Ezeket bepakoljuk a hatizsakba (ladaba).
3 A hatizsakba (ladaba) pakolt targyak megjelolése "méar pakolt" targyként,
majd folytatas az 1. 1épéssel.

Fontos leszogezni, hogy nincs garancia arra, hogy a fenti algoritmus optimalis
megoldast ad egy adott ladapakolasi feladatra. Azonban, kés6bb lathato lesz, hogy
egy ilyen egyszeri mohé algoritmus mégis képes sok esetben optimalis megoldast
elgallitani. Az algoritmus moho, ugyanis egyszerre egy ladaval dolgozik, és arra
torekszik, hogy a még nem pakolt targyakkal a lehets legjobb pakolast érje el.

Ami a targyak hasznossagat illeti a hatizsak problémaban, szamos lehet&ség van
ennek az értéknek a megallapitasara. Erre az egyik legegyszertibb, ha a targyak mé-
retével azonos haszonértékeket vilasztunk, azaz minden i. targy esetében g; = w;. A
haszonfiiggvény vagy mas néven profitfiiggvény ekkor aranyos koltség (proportional
cost).
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1. Megfigyelés. Tegyiik fel, hogy a ldda kapacitisa C > 0 (egész érték) és minden
targy mérete eqy pozitiv egész szam az [1, C| intervallumbdl, a haszonfigguény pedig
gi = w;. FEz esetben a Hdtizsdk feladat eqy specidlis esetét kapjuk, amelynek neve
Subset Sum. Figyeljik meg, hogy ilyen modon csak egy laddt figyeliink egyszerre.

Ha ugy akarjuk pakolni a targyakat a ladakba, hogy azok minél jobban fel le-
gyenek toltve, akkor a fenti haszonfiiggvény (g; = w;) is egy jo valasztéas lehet.
Azonban annyi hatranya van, hogy nem tesz kiilonbséget két pakolas kozott, ha pél-
daul mindketts teljesen megtolti a ladat, de az egyik kevesebb, a mésik tobb targyat
hasznal ehhez. Nyilvanval6, hogy két ilyen pakolas koziil jobb egy olyat vilaszta-
nunk, ahol kevés nagy targyat pakolunk a ladaba, mint ha sok kicsit. Azért van igy,
mert akkor a sok kicsi targy megmarad a késGbbi ladak pakolasahoz és igy nagyobb
mozgasteriink marad a késébbi ladak iigyes pakolasara.

Emiatt az el§z6nél jobb valasztas lehet a g; = w; — 1. Ezzel a haszonfiiggvénnyel
az algoritmus inkdbb a nagyobb targyakat fogja valasztani a kisebbek helyett, ha
lehetséges. Példaul legyen a ladaméret 10 és legyen hét targy, amelyek méretei
6, 4 és 6t darab 2 méretd. Tobbféleképpen is fel lehet tolteni a hatizsdkot, de
csak egy esetben lesz a haszon maximalis. Mégpedig akkor, ha a lehets legkevesebb
targgyal toltjiik fel. Azaz, a g; = w; haszonfiiggvény minden teljes feltdltést azonosan
jonak venne, azonban a g; = w; — 1 haszonfiiggvény esetében az algoritmus a {6,4}
véalasztast fogja preferalni ahelyett, hogy pl. 6t darab 2 méreti targgyal toltse fel a
hatizsékot.

Utkeresé algoritmus alkalmazasa

A kovetkezé algoritmus egy jol ismert tutkeresé algoritmus. Az algoritmus olyan
targyhalmazokat keres, amelyek egyiittesen beleférnek egy ladaba és az 6sszméretiik
pontosan K, ahol K < C'. Az algoritmus ennek megfelelGen keres iranyitott utakat
egy grafban. Van egy kezd@cstcs: kg, amely az iires ladanak felel meg. A ko-
bol egy masik k; cstcsba vezetd irdnyitott dtnak pedig megfelel egy olyan pakolés a
ladaba, ahol a pakolt targyak Gsszmérete éppen j. Az algoritmus iligyes szervezésével
(visszafelé keresés) biztosithatd, hogy minden targy csak egyszer van figyelembe
véve. Megjegyzem, hogy C, vagyis a lada mérete egész szam, és minden targyméret
is egész.

Kezdetben adottak az ¢ = 1,2,...,n targyak. Az algoritmus egy irdnyitott
grafot épit fel, ahol minden csiics rendelkezik egy cimkével. Indulaskor a graf C'+ 1
csuccsal rendelkezik, élek nélkiil. A graf j-edik csticsa a szamegyenesen a j egész
szamnal van. A leginkadbb balra levé cstics a 0 helyen, a leginkabb jobbra levé a C'
helyen talalhat6. Kezdetben minden k; csomoépont [; cimkéje -1, a kg csomoponté
pedig 0. Azaz l; = —1Vj > 0 esetén és [j = 0. Ha egy csomépont cimkéje -1,
az azt jelenti, hogy a csomoépontot még nem értiik el. Ha a cimke értéke nem -1,
akkor a csomopontot mar elértiik. Ha egy k; csomopontot mar elértiink, akkor az
l; cimke értéke a ko-bol induld és a k; csomépontban végzds iranyitott t utolso
élszakaszanak a hossza, ami nem mas, mint az utolsoként pakolt targy mérete. Az
algoritmus egymas utan tekinti a targyakat az adott sorrendben. Az aktuélis, 7.
targy esetén megvizsgalja, hogy milyen 6sszméret pakolasa lehetséges, ahol az elsé ¢
darab targyat vessziik csak figyelembe. Ezt Ggy teszi, hogy az i. targynak megfeleltet
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egy olyan élt, amelynek a hossza ugyanakkora mint az 7. tirgy mérete, és ezt az élt
minden méar elért csicshoz hozzailleszti, és igy 1j csticsokat érhetiink el.

Algorithm 7: Utkeres6 algoritmus
Input: a ladapakolasi feladat elemei
Output: az elemek pakolasa C' méretii ladakba

1 Az 1. targynak megfeleltetiink egy elére mutato (—) iranyitott élt,
amelynek a hossza ugyanakkora, mint a targy mérete.

2 Tekintsiik a mar elért k; csicsokat jobbrdl balra haladé sorrendben. Adjunk
a grathoz egy iranyitott élt a k;-bdl a k; cstcsba (k; — k), ahol t = j + w;
(ha t < C és w; az i. targy mérete). Ha a k; csticsot még kordbban nem
értiik el, akkor legyen k; cimkéje [; = 1. Ha a k; csomopontot korabban
mar elértiik, akkor vagy véaltozatlanul hagyjuk az [; kordbbi cimkét, vagy
feliilirjuk.

3 Ha van még targy, akkor menjiink az 1. lépésre, ha nincs, akkor megall az
algoritmus.

Az ttkeress algoritmusnak tobbféle implementacioja is létezik. Mi egy egyszeri
valtozatot alkalmaztunk. Megjegyzem, hogy az el6bb ismertetett ttkeresG algo-
ritmus a késébbi 8. algoritmusnak (REM SW algoritmus) egy segédalgoritmusa,
amelynek segitségével pakoljuk egyesével a ladakat.

Also korlatok

A ladapakolasi feladatok megoldasa soran az tn. alsé korlatoknak fontos szerepe
van. Példaul, ha ismerjiik a feladatnak egy megengedett megoldésat és a meg-
oldas értékével megegyezik valamely also korlat értéke, akkor ebbdl arra tudunk
kovetkeztetni, hogy a megengedett megoldasunk optimélis megoldas is egyben. A
ladapakolasi feladat alsé korlatainak béséges irodalma van, két relevans publikicio
a kovetkez6: |96, 97|.

Nézziink meg két, jol ismert als6 korlatot, amelyeket az egyszertiség kedvéért
LBi-gyel és LBy-vel jeloliink. Az alabbi LB; dgy adodik, hogy vessziik a targyak
Osszméretét, elosztjuk a ladamérettel és ezt felfelé¢ kerekitjiik. Ez egy természetesen

adodo alsod korlat.
LB = {—Z(; w (3.1)

Az LB, is egy trividlis alsé korlat, ami nem més, mint azoknak a targyaknak a
szdma, amelyek a ladakapacitas felénél nagyobbak. Nyilvanvaloan ezek mind kiilon
ladaba keriilnek.

LB, = 1haw; > % (3.2)
=1

LB, altalanositasaként kapjuk a kévetkezd also korlatot: vessziik azon targyak sza-
mat, amelyek mérete nagyobb, mint % valamilyen k& > 1 esetén, és az el6bbi szamot
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elosztjuk (k — 1)-gyel, és ezt a hanyadost felfelé kerekitjiik. Ugyanis az ilyen tar-
gyakbol (amelyek mérete nagyobb, mint %) legfeljebb k& — 1 darab férhet egy ladaba.
Igy kapjuk tehat az alabbi also korlatot:

" lhaw >¢
LBg,f:{zzzl aw k} (3.3)

(k—1)

3.4. Egyes benchmark feladatok megoldasa

3.4.1. Schwerin osztaly

A Schwerin feladatosztaly tulajdonsagai a 3.2. alfejezetben keriiltek ismertetésre.

Schwerin 1: Az elsd 100 feladat

A Schwerin 1 csoportba tartozoé feladatok esetében a lada kapacitasa C' = 1000 és a
targyak szama n = 100. A targyak meéretei a [150,200] intervallumbol keriilnek ki
véletlenszertien, egyenletes eloszlassal. Az ebbe a csoportba tartozo feladatok mind-
egyikénél az optimalis megoldas 18 darab felhasznalt lada. Emiatt, ha kozelebbrol
megvizsgaljuk a feladatokat, akkor lathato, hogy a 100 targybol 40 darabot auto-
matikusan, "gondolkodas nélkiil" tudunk pakolni, és csak 60 azon targyak szama,
ahol mar figyelni kell a pakolédsokra. Ennek az oka a lada kapacitisa, valamint a
targyméretekhez tartozo also és felss korlat. Ugyanis a kdvetkezs két tulajdonsigot
tudjuk észrevenni:

e semelyik hét targyat nem tudjuk egy ladaba pakolni, ugyanis ha a legkisebb
targymeéretbdl (150) hetet vesziink, akkor 7 x 150 = 1050 > 1000, és

e barmely 6t targyat tudjuk egy ladaba pakolni, ugyanis ha a legnagyobb targy-
méretet vessziik (200), akkor 5 x 200 = 1000.

Ezért minden ldda 5 vagy 6 darab targyat fog tartalmazni. Kovetkezésképpen 8
lada (a 18-bol) 5 targyat tartalmaz. Igy a 40 legnagyobb targy elpakolhato 8 lad4ba
ugy, hogy az optimalitas nem sériil. A mas feladatosztélyokra vald altalanositasi le-
hetGségekkel a néhany oldal mulva kovetkez6 Skdldzhatosdg és komplexitds részben
foglalkozom. Ezutan mar csak a maradék 60 térgyat kell elpakolni, itt viszont méar
jol meg kell gondolni az eljarast. Fontos kiemelni, hogy mar ezen a ponton egy-
szer(isodott a feladat, hiszen a targyak 40%-at maéris sikeriilt a ladakba bepakolni
kevés id6 befektetésével, hiszen csak két egyszert tulajdonsagot kellett felismerni a
lada kapacitasa és a targyak mérete alapjan, valamint az optimalis megoldéds isme-
retében. Mint nemsokara latni fogjuk ezek az inputok olyanok, hogy az alsé korlat
megegyezik az optimum értékével. Emiatt valojadban nincs sziikség arra, hogy el6re
ismerjiik az optimumot: megprobaljuk annyi laddba pakolni a targyakat, amennyi
az also korlat. Mivel azt tapasztaljuk, hogy ez sikeriil, tudjuk, hogy optimélis meg-
oldéast kaptunk. Hangsilyozom, hogy ez nem minden feladatosztalyra igaz, de mint
latni fogjuk a Schwerin feladatosztaly esetén teljesiil ez a szerencsés tulajdonsag.
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Mivel ismerjiik a feladatok optimélis megoldasat, ami 18, igy tudjuk, hogy a
maradék 60 targyat 10 darab ladaba kell elosztani, hiszen igy jutunk el az optimalis
megoldashoz. Az ezt a célt megvalosité algoritmust Algorithm Rem SW-nek nevez-
tem el. A "Rem" jelz6 az angol "remaining" sz6 roviditése, amely ebben az esetben
a maradék elpakolandé targyakat jelenti, az "SW" pedig a Schwerin tipusra utal.

Algorithm 8: REM SW algoritmus

Input: a ladapakolasi feladat elemei

Output: az elemek pakolasa C' méretii ladakba

Legyen k a legnagyobb olyan szam, amelyre 0 < k < 6, tovabba teljesiil az,
hogy a k legnagyobb és 6 — k legkisebb targy belefér egy ladaba. (Ha nincs
ilyen k, az algoritmus megall.)

Pakoljuk a k darab legnagyobb targyat egy ladaba.

3 Alkalmazzuk az ttkeres6 algoritmust a ladaban fennmarado hely lehetd

legjobb betdltésére.
4 A pakolt targyak eltavolitasa a rendszerbdl.
5 Ugorjunk az 1. 1épésre, ha van még targy, egyébként az algoritmus leall.

[uny

N

Megjegyezziik, hogy az algoritmus altaldban nem a k legnagyobb és 6 — k legki-
sebb targyat pakolja, hanem a k legnagyobb targy pakoldsa utan 6 —k olyan tovabbi
targyat pakol, amelyek a fennmaradé helyet a lehetd legjobban megtéltik a ladaban.
A Schwerin 1 osztallyal torténd futtatasbol szarmazéd tapasztalatok azt mutattak,
hogy a k értéke kezdetben 3, majd innen névekszik egészen 6-ig. Ritkan, de el&for-
dult, hogy a k értéke kezdetben 2 volt és innen ndvekedett 6-ig. Soha nem fordult
el olyan eset, hogy a 6 legkisebb targy ne fért volna bele egy ladaba. Emlékeztetek
arra, hogy a Schwerin 1 halmaz esetén minden input 100 darab targyat tartalmaz
és minden inputra az alsé korlat 18. Emiatt megprobéljuk a targyakat 18 ladaba
pakolni. Elgszor a 40 legnagyobb targyat 6tosével 8 ladaba pakoljuk. A megmaradt
60 targyat pedig megprobdljuk hatosaval 10 ladaba pakolni. Arra azonban nincs
semmi garancia, hogy ez sikeriilni fog! Vagyis a k szdm definialasakor "optimista"
modon jarunk el, feltételezziik, hogy van ilyen k szam. Val6jaban az torténik, hogy
a 100 input esetén minden egyes alkalommal sikeriilt a maradék 60 targyat 6 ladaba
pakolni, ilyen értelemben a k szam jol definialt volt, tehat az algoritmus soha nem
allt meg amiatt, hogy nem talalt volna megfelel§ k szamot. Az algoritmus bedgya-
zottan tartalmazza az utkeresé algoritmust. Az Algorithm Rem SW eljaras futasi
ideje polinomialis n targy esetében, mert k értéke legfoljebb 6 és az ttkeress algo-
ritmus lépésszama C' fiiggvényében linedris. 60 targyra vetitve a futasi id§ nagyon
alacsony, milliszekundumokban mérhetdé.

A futasi eredmények alapjan a fenti egyszertd algoritmus segitségével mind a 100
feladatra sikeriilt megkapni az optimalis megoldast. Az altalanositasi lehet&ségeket
a kicsit kés6bb kovetkez6 Skdldzhatdsdg és kompleritds alfejezetben targyalom.

Schwerin 2: A masodik 100 feladat

A Schwerin 2 esetében a lada kapacitasa a Schwerin 1-hez hasonloan C' = 1000,
viszont a targyak szama n = 120. A targyak méretei a [150,200] intervallumbol
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keriilnek ki. A feladatok esetében itt is ismertek az optimélis megoldasok, amely
a feladattol fiiggben 21 vagy 22 felhasznélt lada. Az LB; értéke minden feladat
esetében megegyezik az optiméalis megoldassal. Ha a Schwerin 1 esetében bemuta-
tott algoritmust alkalmaztam a Schwerin 2 feladatainak megoldaséara, akkor a 100
feladatbol 99-et tudott megoldani optimélisan. Egy apr6 médositassal azonban elér-
het6 volt, hogy minden feladat esetén megtalalja az optimélis megoldést. A k értékét
kellett korlatozni 2 és 3 kozé, azaz 2 < k < 3 (ahelyett, hogy 0 < k < 6). Tovabba,
ha az algoritmust ezzel a megszoritassal a Schwerin 1 feladatokra alkalmaztam, ott
is mind a 100 esetben sikeriilt optimalis megoldast talalni. Igy ezzel a beallitassal
sikeriilt mind a 200 feladatot optimalisan megoldani. A feladatok lépésrdl lépésre
valo megoldasanak menete megtekinthets a kévetkezs honlapon |75].

A kovetkezd alfejezetben foglalkozunk kicsit részletesebben altalanositasi lehe-
tGségekkel. Mér itt megjegyzem a kdvetkez6t: a targyméretek intervalluma erdsen
meghatarozza, hogy alkalmazhato-e valamilyen fajta mohé algoritmus a targyak
ligyes pakolasara. Mint lattuk, ha a targymeéretek a [0, 15; 0, 2] intervallumbol keriil-
nek ki (a C' ladamérethez viszonyitva), az el6bb ismertetett algoritmus jol mikodik.
Ha ez az intervallum példaul (%, 1], akkor ismert, hogy az FFD algoritmus optimalis
pakolast hataroz meg. Még egy példat véve, ha az intervallum (%; %], akkor pe-
dig a jol ismert 3-particios feladatot kapjuk (tovabbi feltételek mellett), ami erdsen
NP-nehéz.

Skalazhatosag és komplexitas

Felvetddik a kérdés, hogy a kidolgozott algoritmus csak erre a benchmark osztalyra
alkalmazhato, vagy esetleg masokra is. A kérdésre a vélasz els§ kozelitésben az,
hogy a kidolgozott moh6 mddszer sajnos nagyon specifikus, tehat erésen kihasznalja
a Schwerin osztaly jellemzGit. Melyek ezek a jellemzék? A targyak mérete egyen-
letes eloszlas szerint van valasztva egy viszonylag sziik intervallumbol, és a targyak
szama nem til kevés. Ezen feltételek mellett az algoritmus bévebb osztalyon is
alkalmazhato6 az alabb ismertetett modon.

Tehat nézziik, mi torténik akkor, ha a fent bemutatott algoritmus bemenete nem
a Schwerin osztalyba tartozo feladat? Példaul, ha a ldda kapacitasa nem 1000, vagy
a targyak mérete nem a [150, 200] intervallumbol keriilnek ki. Mésképpen, a kérdés
az, hogy az algoritmus miképpen skildzhato, hogy eltéré bemenetekre is megfelelGen
mikodjon? Ha a targyak mérete egyenletes eloszlds mentén véletlenszertien keriil
kivalasztasra egy "sziik" intervallumbol (ilyen volt példaul a [150, 200] intervallum
is), akkor az optimalis megoldds megtaldlasa rendszerint egyszerid. A kovetkezd
lépésekben adjuk meg az algoritmus altalanosabb osztalyon valé miikodését:

1. Az LB, als6 korlat kiszamitasa.

2. Az egy ladaba pakolhato targyak minimalis és maximalis szaméanak meghata-
rozésa. Feltételezziik, hogy ez a szam csak K — 1 vagy K lehet. (A Schwerin
osztaly esetében K = 6).

3. Néhany lada megtoltése a legnagyobb méreti targyakkal, K —1 targy pakolasa
minden ladaba. Ezutan méar csak a még nem pakolt targyakkal kell foglalkozni.
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4. Az Algorithm Rem SW alkalmazasa tgy, hogy k értéke egy korlatozott in-
tervallumbol keriiljon ki a 0 < k£ < K helyett. Példaul, mint a Schwerin 2
esetében, ahol 2 < k < 3.

A 2. lépésben feltételeztiik, hogy az egy ladaba pakolhato targyak szama vagy
K vagy K — 1. Ha tobb eset lehetséges, a pakolas sokkal bonyolultabb lehet, ilyen
esettel nem foglalkoztam. Ez tovabbi kutatas targya lehet.

Visszatérve a K = 6 esetre, nézziik meg az Algorithm Rem SW eljaras becsiilt
lépéseinek a szadmat, ahol a targyak szama n = 100 Schwerin 1 esetében és n = 120
Schwerin 2 esetében. Fiiggetleniil attol, hogy mekkora n értéke, az 1. lépésben
az algoritmus konstans szamitast végez, mivel maximum K darab targy méretét
Osszegzi. A 2. és 4. 1épés esetében is konstans szdmitasrol van szo, hiszen csak K
darab targyat kell kezelni. A 3. 1épés viszont mér t6bb id6t vesz igénybe, amely
fiigg n értékétsl. Ennek a lépésnek a futéasi ideje O(C - n), ugyanis legfeljebb C'
darab csomopont tartozik minden ¢ elemhez. Mivel ez a lépés koriilbeliil g-szor
keriil futtatasra (figyelmen kiviil hagyva azt a tényt, hogy az algoritmus altal kezelt
targyak szama a 2. lépésben redukalasra keriil), igy a futasi id6 nem lehet t6bb,
figyelhet6 meg, ezzel garantalva az algoritmus futasi idejének felsé korlatjat. A
feladatok megoldésa egy Intel Core i5-4300M processzorral és 8 GB RAM-mal szerelt
szamitdégépen tortént.

A kovetkezSkben Gsszehasonlitom algoritmusom eredményeit egy masik, haté-
kony (state-of-the-art) algoritmuséval.

Osztaly Osszes (s)  Atlag (s) HEA atlag (s)
Schwerin 1 0,3817811 0,003817811 0,34
Schwerin 2 0,408763  0,00408763 0,47

3.4. tablazat. Schwerin futasi id6k sszehasonlitésa a HEA &atlaggal

A HEA algoritmus Borgulya [24] munkajaban keriilt bemutatasra (és implemen-
talasra). Ez az algoritmus az egyik leghatékonyabb (és az egyik legtijabb) ezen
benchmark feladatok megoldasara. A HEA algoritmus egy Intel Core i5 processzor-
ral és 16 GB RAM-al szerelt iMAC szamitogépen keriilt futtatasra. A 3.4. tablazat
alapjan az alabbi kovetkeztetések vonhatok le. A teljes futési id6 az én algorit-
musom esetében a Schwerin 1 osztalyra nézve 0,3817811 masodperc, a Schwerin 2
esetében pedig 0,408763 masodperc. Az atlagid6t tekintve a sajat algoritmusom
futéasi ideje 0,003817811 mésodperc volt a Schwerin 1, és 0,00408763 mésodperc volt
a Schwerin 2 esetében. A HEA algoritmus atlagos futasi ideje a Schwerin 1 ese-
tében 0,34 mésodperc, a Schwerin 2 esetében pedig 0,47 masodperc. Az atlagos
futasi idGket Gsszehasonlitva lathatd, hogy az algoritmusom futasi ideje a Schwerin
1 esetében 90x, a Schwerin 2 esetében pedig 115x gyorsabb. Viszont fontos meg-
jegyezni, hogy a HEA egy sokkal altalanosabb eljaras, amely az 0sszes benchmark
feladatra alkalmazhatd, mig az Algorithm Rem SW specializalt eljaras, amely kife-
jezetten a Schwerin osztalyra lett kifejlesztve, és ezen az osztalyon miikédik nagyon
hatékonyan. Tovabbéa az altalam kidolgozott algoritmusok nem ugyanabban a prog-
ramozasi kornyezetben késziiltek, mint a HEA, emiatt a futasid6k tekintetében csak
hozzavet6leges 6sszehasonlitas volt készithetd.
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3.4.2. Falkenauer U osztaly

A Falkenauer U feladatosztaly tulajdonsagai a 3.2. alfejezetben keriiltek ismerte-
tésre. A Falkenauer U feladatosztaly és a Schwerin feladatosztaly kozott a két nagy
kiilonbség az intervallum, ahonnan a targyak méretei szairmaznak és a lada kapaci-
tasa. Pontosabban, hogy a targyak intervalluma hogyan aranylik a lada méretéhez.

Az arany a legnagyobb és a legkisebb méretek kozott a Schwerin esetében % = %,
a Falkenauer U esetében pedig % = 5. Ez azt jelenti, hogy a targyak mérete az
utobbi esetben sokkal valtozatosabb. A Falkenauer U esetében tehét, a valtoza-
tossag miatt, nem jelenthet§ ki az, hogy a megoldidsban minden lada nagyjabol
azonos szamu targyat fog tartalmazni. Ennek ellenére ennél a feladatosztalynal is
megadhat6 egy nagyon egyszerii, de fontos megfigyelés.

2. Megfigyelés. Tételezziik fel, hogy van két tdrgy, i. és j. dgy, hogy w; +w; = C,
azaz a két targy méretének dsszege pontosan a ldda kapacitdsdval eqyenld. Feltéte-
lezhetd, hogy az optimdlis megolddsban ez a két tdrgy egy ldddba fog keriilns.

A fenti megfigyelésben szerepl két targyat nevezziik el "jo par"-nak. A megoldas
soran, ha egy "jo par" egy ladaba keriil, akkor az nem rontja el a feladat megolda-
sanak minGségét, azaz megmarad az optimélis megoldas megtalalasanak lehetGsége.

A részletesebb vizsgalathoz tekintsiik a Falkenauer ul120 00 feladatot a Falke-
nauer U120 alosztalybol. Ebben a feladatban 15 darab "jé par" taldlhat6. Ez azt
jelenti, hogy a 120 darab targybol méar csak 90 targgyal kell foglalkozni. Ez egy
jelentGs egyszertsitése a feladatnak. A tSbbi Falkenauer U120 feladat is nagyon
hasonlé ehhez, azok is hordozzak ezt a tulajdonsagot.

1. Megjegyzés. Megjegyzem, hogy a "jo par" fogalma egyszerien dltalanosithatd.
Teqyiik fel tehdt, hogy a ladaméret ¢ = 1000 és van példdul eqy 600-as méretd tdr-
gyunk. Ha taldlunk ehhez eqy "jo pdrt”, amelynek a mérete 400, azt lattuk, hogy
jobban jdrunk, hogy ha ezt a 400-as tdrgyat tessziik ebbe a ldddba a 600-as tdrgy
mellé, minthogy ha tobb kicsi tdrgyat tennénk ide, amelyeknek az dsszmérete 400.
Ugyanakkor, az is igaz (elemi wton beldthatd), hogy ha példdiul eqy 390 méretd tdr-
gyat teszink a 600-as meéretid tdrgy lddajdba, az is optimdlis vdlasztdas akkor, ha
nincsenek olyan kicsi tdrgyak, amelyeknek az dsszmérete 391 és 400 kozott van. A
kévetkezdkben bevezetjiik a tartalék fogalmdt, ahol mint ldtni fogjuk akkor is megen-
gediink parokat (vagy hdrmasokat, négyeseket) pakolni, ha nem teljesen téltik meg a
laddt, de a tartalék elég nagy; implicit modon pontosan ezt az dltaldnositdst fogom
alkalmazns.

A feladat megoldasédhoz vezessiik be a kezdeti tartalék fogalmat. Ez a mérGszam
megmutatja, hogy mennyi hely marad kihasznalatlanul az optimalis megoldasban,
ha az OPT = LB, egyenlség fennall, azaz az optimalis megoldas egyben az als6
korlat is (szerencsére a Falkenauer U osztalyban szerepld legtobb feladatra ez igaz).
Jelolje a kezdeti tartalékot resg.

17. Definici6. A kezdeti tartalék kiszamitdsa

resp = LBy -C — Zwi (3.4)
i=1
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Ahol w; a targy mérete, C' pedig a lada kapacitasa. Emlékeztetek arra, hogy
ugyan tudjuk, hogy az optimum érték megegyezik az als6 korlattal, de ezt az al-
goritmus futdsa soran nem hasznaljuk. Emiatt van az el6z6 képletben LB;, nem
pedig OPT. A feladatok vizsgalata sorén kideriilt, hogy, mivel a targyak mérete
egyenletes eloszlas mellett, véletlenszertien lett generalva, igy jellemzs, hogy jelen-
t6s mennyiségl tartalék keletkezik. Ez azt jelenti, hogy nem sziikséges minden
esetben telepakolni a laddkat. Azaz, ha van egy elempér, amik nem teljesen, de
"majdnem teljesen" megtoltik a ladat, akkor ez a két elem is pakolhat6 a "jo par"
helyett, ami ugyancsak j6 valasztéas lehet. Igy, néhany esetben elegendd, ha a ladak
csak egy megadott L, szintig vannak megtoltve, ahol L; értéke kozel van a lada C'
kapacitdsahoz. A tartalék értéke a feladat megoldasa kozben dinamikusan generalt
érték, amely kezdetben a resg a (3.4) alapjan, mint kezdeti tartalék, majd a késGbbi
lépésekben méar res-ként hivatkozok ra.

Ertelemszerten, ha egy lada legfeljebb L, szintig feltoltésre keriil, akkor a tartalék
értéke C'— L, mennyiséggel lesz cs6kkentve. Példaul, ha a kezdeti tartalék resq = 50,
és egy lada L, = 146 szintig feltoltésre keriil, akkor, mivel C' = 150 a fennmarado
tartalék res = 46 lesz. Ez azért van, mert a fennmarad6 4 szabad egység mér
semmivel sem t6lthetd ki, nincs ilyen kis méretd targy a feladatban, igy ez a hely
elveszik.

18. Definicidé. Az i. tdrgyat nagynak tekintjik, ha

w; > g (3.5)
2

A (3.5) feltétel alapjan egy targyat akkor tekintiink nagynak, ha annak a térgy-
nak a mérete nagyobb, mint a lada kapacitdsanak a fele. A Falkenauer U osztaly
esetében egy targy akkor nagy, ha a mérete nagyobb, mint 75. Ebbdl konnyen lat-
hato, hogy két nagynak mindsitett targy mar nem fér bele egy ladaba. Ugyanis, a
legkisebb méretii, de mar nagynak tekintett targy mérete 76, amibdl ha ketts van,
az mar 152, ez pedig a C' = 150 kapacitast tallépi. Emiatt nem célszerd a pakolas
végére tul sok nagy targyat hagyni, jobb t6liik mar a pakolas elején megszabadulni,
amikor még a kis méreti targyakkal 6sszepakolhatok.

A Falkenauer U osztalyhoz késziilt algoritmus tulajdonképpen jol elhatarolha-
to eljarasokbol épiil fel. Ezek azonban szekvenciélis sorrendben vannak, emiatt az
algoritmus nem parhuzamosithaté. Az algoritmus bemenete a feladathoz tartozo
Osszes targy. A mar pakolt targyakat az eljaras eltavolitja a listdbol. Amint egy
lada pakolt lesz, a res értéke, azaz a tartalék a fentebb bemutatott mdédon csok-
ken. Ahogy kordbban mar volt réla szo, a targyak minden esetben nem névekvs
sorrendben vannak és az algoritmus is igy dolgozza fel Gket.

Az els6 eljaras a Pair(Ly, 7). Az eljaras olyan (7, j) elemparokat keres, amelyek
méretének Osszege pontosan Ly, tovabbé, ha a targyat pakolnank, akkor az azutdn
megmarado tartalék értékének legalabb akkoranak kell még lennie, mint az r korlét.
Az r a tartalékra vonatkozo also korlat. Az algoritmus minden esetben olyan part
keres, amelynek a nagyobbik tagja a lehetd legnagyobb még nem pakolt elem.
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Algorithm 9: Pair(Ly, r)
Input: L,, r
Output: a megtalalt elemparok pakolasa
1 Legyen az i. a legnagyobb még nem pakolt targy.

2 Ha w; < % vagy a pakolas utan a tartalék res < r lenne, akkor az
algoritmus leall.

3 Ha létezik olyan j. targy, ahol w; + w; = L;, akkor pakoljuk ezt a két
targyat egy 1j ladaba. Toroljiik a targyakat a még nem pakolt targyak
halmazabdl és csokkentjiik res értékét C' — L, mértékével. Majd 1épjiink az
1. lépésre.

4 Legyen 1 =i+ 1 a kdvetkez6 nem pakolt targy indexe és 1épjilink a 2.
lépésre.

A kévetkez6 segédalgoritmus a Triplet(Ly, r). Az algoritmus a futdsa soran elem-
harmasokat keres és pakol 0j laddkba. Ha egy megfelel6 harmas megvan, akkor
ezeket egy 1j ladaba pakoljuk, toroljiik ket a még nem pakolt targyak koziil és a
tartalék értékét csokkentsiik. A megfelel§ harmas kivalasztédsanil a harom targy
egyiittes méretét és a tartalék pakolas utani értékét veszem figyelembe.

Algorithm 10: Triplet(L,, )

Input: L,, r

Output: a megtalalt elemharmasok pakolasa
Legyen az i. a legnagyobb még nem pakolt targy.

[uny

Ha w; < % vagy a pakolas utan a tartalék res < r, akkor az algoritmus leall.

Ha léteznek olyan j. és k. kiilonboz6 targyak, ahol w; + w; + wy, = Ly,
akkor pakoljuk ezt a harom targyat egy 0j ladaba. Toroljiik a targyakat a
még nem pakolt targyak halmazabol és csokkentjiik res értékét C' — L,
mértékével. Majd lépjiink az 1. 1épésre.

4 Legyen 1 =1+ 1 a kdvetkez6 nem pakolt targy indexe és 1épjilink a 2.

lépésre.

w N

Az utols6 segédalgoritmus a Quadret(Ly, ). Ez a segédalgoritmus mar négyesé-
vel pakolja az elemeket egy ladaba, az el§zGekben latott feltételek mentén. Ha van
olyan négy targy, amely megfelel a feltételeknek, akkor ezeket a targyakat egy lada-
ba pakoljuk, toréljiik a még nem pakolt targyak koziil mind a négyet és csokkentjiik
a tartalék res értékét. Az algoritmus kivalasztja a két legnagyobb, még nem pakolt
targyat. Ha a két targy méretének Gsszege (w;+w;) és a tartalék (res) értéke megfe-
lel a feltételeknek, akkor ehhez a két legnagyobb elemhez keres egy part gy, hogy a
négy elem sszege pontosan Ly, legyen. (Mivel az algoritmusok futasa soran bizonyos
targyakat kivalasztunk és pakolunk, mésok még pakolasra varnak, ezért a pakolat-
lan targyak sorrendjében "lyukak" keletkeznek.) Emiatt kell az elgbbi képletben
(w; + w;) kiilonb6z6 indexeket alkalmazni, vagyis nem biztos, hogy j =i + 1.
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Algorithm 11: Quadret(Ly,r)

Input: L,, r

Output: a megtalalt elemnégyesek pakolésa

Legyen az i. a legnagyobb még nem pakolt targy.

2 Ha w; +w; < % vagy a pakolas utan a tartalék res < r, akkor az algoritmus
leall.

3 Ha létezik olyan k. és [. kiilonboz6 targy, ahol w; +w; +wy, +w; = L, akkor
pakoljuk ezt a négy targyat egy 1j ladaba. Toroljiik a targyakat a még
nem pakolt targyak halmazabol és csokkentjiik res értékét C' — L
mértékével. Majd lépjiink az 1. 1épésre.

4 Legyen 7 = j és j a kovetkez6 nem pakolt targy indexe, majd lépjiink a 2.
lépésre.

[uny

Még egy definiciora van sziikségiink. Megkiilonboztetiink "kicsi" és "nagy" tar-
gyakat. Egy targy akkor nagy, ha a mérete nagyobb mint a ladaméret fele, egyébként
kicsi. Ezt a megkiilénboztetést azért tessziik, mert nyilvanval6 médon minden nagy
targyat kiilon ladaba kell tenni. Az el6bb felsorolt segédalgoritmusokat fogom alkal-
mazni egy Master algoritmusban. Ennek sordn, ha van még hatra pakolatlan nagy
targy, akkor évatosabbak kell, hogy legyiink, ha mar nincs hatra pakolatlan nagy
targy, akkor "batrabban" alkalmazhatjuk a segédalgoritmusokat.

Most, hogy a segédalgoritmusok ismertek, Osszeallithato a {6 (master) algorit-
mus, ami az FU nevet kapta. Az algoritmus els6dlegesen a Falkenauer U 120
alosztalyhoz késziilt, azonban a paraméterek modositasaval a tovabbi Falkenauer
alosztalyokra is alkalmazhato. Az alabbiakban a segédalgoritmusokbol felépitve,
roviden bemutatom a teljes algoritmus miikédését. Els6ként, az algoritmus megpro-
balja "jol" megtolteni a ladakat a lehetd legnagyobb elempérokkal. Ttt igyekszik az
algoritmus megszabadulni a nagy méreti targyaktol, ugyanis ha ezek a targyak a
legvégén keriilnek pakolasra, akkor nem biztos, hogy méar nyitott ladaba még bele-
féernek. Ha a tartalék értéke "nagy", az algoritmus jobban engedi az olyan ladakat
hasznalni, amelyekben a toltottség nem éri el a kapacitast, azaz a lada nincs tele.
Ahogy a tartalék értéke csékken, az algoritmus egyre szigoribb a ladak toltottségével
kapcsolatban, azaz egyre kevésbé engedi meg a nem telepakolt l1adédkat. Amennyiben
az elempérokkal sikeriilt a lehets legtobb ladat "jol" megtolteni, utana kovetkeznek
az elemharmasok, majd az elemnégyesek. Ezutan a maradék (rendszerint csak né-
hany) targyat az algoritmus az FFD-vel pakolja. Az algoritmus pontos leirasat az
alabbi pszeudokod (Algorithm 12) szemlélteti. A masodik lépésben, ry(j11) a tarta-
lék éppen aktualis értékét jeloli gy, hogy a nem pakolt targyak kézétt még van nagy
méretii. (Ezt jelenti a b index, mint big.) Hasonloéan az r,; is a tartalék aktualis
értékét jeloli gy, hogy mar nincs a még nem pakolt targyak kozott nagy méretd.
Erre utal az n index, mint no. A 2(j 4+ 1) pedig azt jelenti, hogy a masodik lépés
tartaléka (2-es index) és a tartalékokat tartalmazo vektor hanyadik elemérdl van sz6
(7 +1).

Az FU algoritmus hatékonysiaga a kovetkezd alfejezetben keriil targyalasra. Itt,
most csak annyit érdemes megjegyezni, hogy az algoritmus a mésodik lépésben (7-
22. sorok) sokkal szigorubb, ha még vannak nem pakolt nagy targyak. A harmadik
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lépésben (23-30. sorok) az algoritmus egyaltalan nem szigort a tartalék értékét
illetGen. Fz azt jelenti, hogy barmi is a tartalék értéke, a ladak pakolva lesznek, ha
a toltottség szintje minimum 148.

Az FU algoritmus kiértékelése

A 3.5 és 3.6. tablazatokban a Falkenauer U osztalyhoz késziilt algoritmusban al-
kalmazott paramétereket tartalmazzak alosztalyok szerint. Az algoritmus leirasaban
az U120-as csoport paraméterei szerepelnek, de természetesen, ahogy a tablazatbol
is lathato, minden alosztalyra eltérd beallitasokat alkalmaztunk. Az algoritmus mt-
kédése minden beallitas esetében természetesen ugyanaz.

Algorithm 12: FU algoritmus

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

for:=0,...,5do
| Pair(150 - i, ry;)
end
while még van nem pakolt "nagy" tdirgy do
fori=0,...,5do
‘ Triplet(150 - 1, 7p2;)
end
end
if nincs mdr nem pakolt "nagy" tdrgy then
for :=0,...,5do
‘ Triplet(150 - 1, 7,2;)
end
end
if nincs mdr nem pakolt "nagy" tdrgy then
for:=0,...,2do
| Quadret(150 - i, r3;)
end
end
A maradék targyak pakolasa FFD-vel torténik

o 7T11 Ti2 T3 T4 Tis5 720 Te21 Th22 7823 Tu24 Th25

U120 o 1 2 3 4 ot 0 d 10 15 20 26
U250 0 1 2 30 40 50 O 3 10 30 30 30
U500 0 10 15 30 30 30 O 3 10 15 20 25
U000 0 30 45 60 90 100 O 10 10 10 10 10

3.5. tablazat. A Falkenauer U osztaly paraméter-beallitasa (v3)
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Tn20 Th21 Tn22 Th23 Tp24 Tn2s T30 731 732
U120 0 5) 10 15 30 30 0 0 0
U250 0 5) 10 30 30 30 0 0 0
U500 0 5) 15 30 30 30 0 0 0
U1000 0 30 40 50 60 70 0 0 0

3.6. tablazat. A Falkenauer U osztaly paraméter-beallitasa (v3)

Vegyiik észre, hogy az ryy,7r9,..., 732 értékek optimalizalhatok. Az értékek au-
tomatizalt optimalizdlasa nem tortént meg, csupan manudlis beallitassal keriiltek
kiprobélasra az értékek, amelynek a célja az volt, hogy "elég j6" eredményt érjiink
el. Lehetséges, hogy egy optimalizalo eljarassal még jobb eredményeket kaphatunk.
Tovabbi, a paraméterek beallitasaval, és altaldnositasi lehetdségekkel kapcsolatos
észrevételek a 3.4.2.1. alfejezetben szerepelnek.

A 3.7. tablaban az FU algoritmus eredményei lathatok a Falkenauer U120 osz-
talyra vonatkozoéan, kiilonboz6 beallitasok mellett. A zdld szinnel jelolt értékek azt
jelentik, hogy ebben az esetben az algoritmus megtalalta az optiméalis megoldast. A
piros jelolés esetében pedig nem talalta meg. Minden sorra igaz, hogy OPT = LB;.

vl v2 v3
FFD Utkeress
150 149 148 | 150 149 148 145 145 LB Kezdeti tartalék
ul20 00 i ' ' 122
ul20 01 145
ul20_ 02 106
ul20 03 65
ul20 04 146
ul20 05 78
ul20_ 06 63
ul20_ 07 55
ul20 08 22
ul20 09 30
ul20 10 120
ul20 11 103
ul20 12 20
ul20 13 148
ul20 14 127
ul20 15 98
ul20 16 112
ul20 17 97
ul20 18 95
ul20 19 28

3.7. tablazat. A Falkenauer U120 osztaly feladatainak megoldéasai

Az eredmények alapjan az alabbi konkliziokat és megfontolasokat teszem.
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3.4.2.1. Eszrevételek

1.

Az els6 tapasztalat a ladak toltottségére vonatkozik. A 2-4. oszlopban (vagy-
is az FFD-re vonatkozo eredmények oszlopaiban) lathato, hogy minél szigo-
ribb, azaz nagyobb a toltottségre vonatkozo Ly, értéke, az FU algoritmus annal
rosszabb eredményeket produkal. Igy annak tiltasa, hogy 149-nél alacsonyabb
toltottséget is elfogadok, nem hatékony. Emiatt a toltottségi szinteket egészen
145-0s értékig engedtem akkor, ha a tartalék mértéke "nem tul kicsi".

Az FU algoritmust ugy modositottam, hogy az utolsé lépésben (31. sor) nem
az FFD pakolta a maradék targyakat, hanem a korabban bemutatott ttkeresd
algoritmus. Ennek az eredményei a 5-7. oszlopokban lathatok. Lathato, hogy
nincs tul sok kiilonbség az FFD-hez képest, azaz az algoritmus nem igazan
érzékeny arra, hogy az utolso6 elemeket milyen médon pakoljuk. Azaz, az
utolso6 targyak pakolasa nem igazan befolyasolja az eredményt, ha a targyak
tobbsége a korabbi 1épésekben mar "jol lettek pakolva". Emiatt késébb a
sokkal egyszeriibb FFD keriilt vissza az utolsé lépésbe a bonyolultabb ttkeresd
algoritmus helyett.

A v2 és v3 algoritmusverziok esetében az L, értékét tovabb csokkentettem,
egészen 145-ig. (Mar ez a csokkentett érték szerepel az FU algoritmus leirasa-
kor.) Lathato, hogy a v3 verzioju algoritmus (9. oszlop) sikeresen megoldotta
az Osszes feladatot. A v2 és a v3 kozotti kiilonbséget az eltér6 paraméter-
beéllitas jelenti.

Fontos megjegyezni, hogy a Fakenauer U osztaly majdnem minden feladata
esetében az ismert optimalis megoldas egyenl6 az LB, értékével. Ez aldl csak
a Falkenauer U250-es osztaly 13-as szamu feladata a kivétel, ahol LB, = 102
és OPT = 103.

A tablazatbol lathato, hogy szamos esetben az algoritmus Gsszes verzidja meg-
talalta az optiméalis megoldast. Példaul ilyen a Falkenauer ul20 01. El-
lenpéldaként a Falkenauer ul20 19 emlithets, ahol az optimalis megoldast
(OPT = 49) csak a v3 verzioju algoritmus talalta meg. Kiemelendd, hogy a
Falkenauer ul20 12 esetében meglehetGsen kicsi a tartalék mértéke, mind-
ossze 20. Ennek ellenére az Gsszes algoritmus megtaldlta az optimalis megol-
dast. Ezzel szemben a Falkenauer ul20 00 és a Falkenauer ul20 11 eseté-
ben sokkal tébb a tartalék, de mégsem talalt optimalis megoldast az algoritmus
minden esetben.

Az itt bemutatott algoritmus a 80 feladatboél 73 feladatot tudott optimélisan
megoldani. Az ul20-as csoportbdl mindet. A maradék 60 feladat esetében
hasonld a helyzet, de néhany esetben az algoritmus egyik valtozata sem képes
megtalalni az optimalis megoldast. FEzeket nem részleteztiik tgy, mint az U120-
at a 3.7. tablazatban.

A futési id6 meglehetdsen kicsi. A 80 feladat megoldésahoz 31,8 masodpercre
volt sziikség. Az algoritmus komplexitasa O(n?), a rejtett egyiitthato a O(.)
szimboélumban koriilbeliil 20.

70



8. Lathato, hogy a v3 valtozat az els6 alosztaly (u120) esetében mindenhol opti-
malis megoldast talalt. A vizsgélatok alapjan ez nem jart a futasi id6 megndve-
kedésével: a kiilonbo6z6 valtozatok futasideje lényegében megegyezik. Azonban
a v3-as valtozat csak az els alosztaly esetében optimadlis. Sajnos nincs olyan
univerzalis beallitas, amely mindegyik alosztalyra optimalis lenne. Bizonyos
bedllitds az egyik alosztaly esetén jobb, masik beallitas pedig masik alosz-
taly esetén. Mivel a futéasi id§ kicsi, ezért tébb valtozatot is kiprobalhatunk,
amelyek koziil a legjobbat valasztjuk.

9. Az FU algoritmus hatékonysagat a kiilonboz6 paraméter bedllitdsok kiproba-
lasaval és mindig a legjobb beallitds rogzitésével lehetne névelni. Az is egy
lehet6ség, hogy a kiilénbo6z§ alosztalyok esetén més és mas beéllitast alkalma-
zunk.

A 3.8. tablazatban a Falkenauer U osztaly futtatasdnak futasi idejei latha-
tok Osszehasonlitva a HEA algoritmussal. Az FU algoritmus atlagos futasi ideje
az Osszes feladatosztélyra nézve kozel 0,4 mésodperc, a HEA algoritmusé viszont
1,48 masodperc. Az FU algoritmus teljes futasi ideje minddssze 31,8683809 masod-
perc, mig a HEA teljes futési ideje 118,4 masodperc. Az 10j algoritmus a jelenlegi
implementacioban 3,7-szer gyorsabb mint a HEA, és ez tovabbfejlesztéssel még vér-
hatoan novelhetd lesz a jovGben. Fontos tudni, hogy a jelenlegi implementaci6 az
elsé verzio, igy b&ven van tovabbfejlesztési lehetGség. Azt is jegyezziik meg, hogy
a Falkenauer U osztaly esetén ugyan a HEA algoritmus lassabb, de minden eset-
ben megtalalja az optimumot, mig az FU algoritmus az esetek 91%-ban. Korabban
megjegyeztem (az el6bbi észrevételek 8. pontjaban), hogy mivel egyik paraméter-
beallitas sem ad minden esetben optimalis megoldast, emiatt tobb (példaul 4 féle)
paraméterbeéllitassal is probalkozhatunk. Ez azonban nem jelent négyszeres futasi
id6t! Ugyanis, mint lattuk a v3 beallitassal a 80 feladatbol 73-at sikeriil optimalisan
megoldani. Akkor més paraméterbeallitassal csak a maradék hét feladat esetén kell
probalkoznunk. Igy sszességében csak némileg lesz nagyobb futasids, mintha csak
egy paraméterbeallitassal futtatjuk az algoritmust.

Osztaly FU Osszes (s) FU Atlag (s) HEA atlag (s)
Falkenauer U120 0,241859 0,01209295
Falkenauer U250 1,1633459 0,058167295 148
Falkenauer U500 4,1469928 0,20734964 ’
Falkenauer U1000  26,3161832 1,31580916
Falkenauer U 31,8683809 0.3983548 1,48

3.8. tablazat. Az FU algoritmus és a HEA futasi ideje

Az FU algoritmus v1 és v2 verzidinak részletes paraméter-beéllitasai a D fiigge-
lékben olvashatok.

3.5. Osszefoglalas

A 16 konklazié az, hogy az eléfeldolgozas egy nagyon hasznos eljaras, amelyet de-
monstraltam is ebben a fejezetben, felhasznélva 2 ladapakolasi benchmark feladat-
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osztalyt. Jol ismert, hogy a ladapakolasi feladat NP-nehéz, igy ebbdl az kovetkez-
hetne, hogy egy lddapakolasi feladat megoldasa sziikségszertien nehéz. De ez nem
igy van. Néhany konkrét feladat vagy akar egy teljes feladatosztaly els6 ranézésre
nehezen megoldhato, azonban kideriil, hogy mégis viszonylag egyszertien megoldha-
0.

Masképpen megfogalmazva, a ladapakolasi feladatok egy részét egyszert triik-
kokkel konnyen megoldhatjuk. Nagyon érdekes probléma, hogy milyen modszerek-
kel lehet hatékonyan kisziirni azt, hogy melyik feladat a nehéz. Jelenleg nem tudok
ilyen altalanos modszert, amely hatékonyan eldonti a feladatokrol, hogy azok nehe-
zek vagy sem. A nehéz feladatok kisziirésével a [80] foglalkozik. Ezzel ellentétben
munkdmban a konnyt feladatok kisztirésével foglalkoztam.

A bemutatott moho eljarasok gyorsak, egyszertiek és a legtobb esetben olyannyi-
ra segitenek a feladat egyszertsitésében, hogy az algoritmus végiil megtaldlja az
optimalis megoldast. Osszetettebb algoritmus alkalmazasa csak abban az esetben
indokolt, ha az egyszertibb modszerek nem adnak optimalis vagy elfogadhatéan jo
megoldast.

Tovabba, az ismertetett algoritmusok (Rem SW és FU) altalanos alkalmazhato-
saga eltérs. A Schwerin algoritmusa kihasznalja, hogy a targyméretek nagyon kézel
vannak egyméashoz és minden ladaban 5 vagy 6 db targy van. Viszont az algorit-
mus alkalmazhat6 olyan esetben is, amikor tovabbra is 150 és 200 kozott vannak a
targyméretek, de a ladaméret nem 1000, hanem példaul 1200. Ekkor minden ladéba
6 vagy 7 targy fog keriilni. (Csak akkor keriilhet 8 targy, ha ezek mindegyikének a
mérete 150, ennek azonban nagyon kicsi az esélye.)

A Falkenauer algoritmusa altalanosan is jo lehet, ha 0 és C' kdzdtt van a targyak
mérete. Parokat pakolunk, utana hirmasokat, majd négyeseket. Ezeket tgy, hogy
jol megtoltik a ladat. A maradékot pedig FFD-vel. Ennek részletezése szerepel a
3.5.2. és 3.5.3. fejezetekben.

Az optimalis megoldas ismeretére vonatkozoan kijelenthets, hogy nem kell is-
merni az optimalis megoldast. A Falkenauer osztaly esetében 80 esetbél 1 esetben
az OPT nem egyenl6 az LB-vel. A Schwerin 1 esetében véletlenszertien vannak va-
lasztva a targyak méretei 150 és 200 kozott. Emiatt atlagosan 175 a méretiik. A 100
targy mérete Osszegének varhato értéke 17 500. Nagyon kicsi a valoszintisége (elemi
aton kiszamolhato, hogy ez a valoszintiség kisebb, mint 0,0003), hogy az Gsszeg leg-
feljebb 17 000 vagy tobb mint 18 000. Emiatt mindig 18 lesz az als6 korlat. Ez igaz
az osztaly tobbi feladatara is.

3.5.1. A 16 konkluzi6 részletesen bemutatva

Ahogy a fejezet korabbi szakaszdban bemutattam, a Schwerin és Falkenauer U osz-
talyok esetében szamos olyan targy volt a konkrét feladatokban, amelyek kénnyen
pakolhatok voltak gy, hogy ezaltal nem sértettiik az optimalitast, azaz a pakola-
sukkal tovabbra is elérhet6 maradt az optimalis megoldas lehet&sége.

A Schwerin osztaly esetében ez gy nézett ki, hogy mindig az 6t legnagyobb
targyat pakolta az algoritmus egy ladaba. Ezzel a mddszerrel a targyak koriilbeliil
40%-a nagyon gyorsan pakolhato volt az optimalitas megsértése nélkiil.

A Falkenauer U osztaly esetében "jo péarokat" keresett. Ezek olyan parok vol-
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tak, amelyek mérete pontosan a lada kapacitasaval volt egyenls. Ezzel a mddszerrel
a targyak koriilbeliil 30%-a volt pakolhato, és azok a ladak, amikbe pakoléasra ke-
rilltek, pont tele lettek. A 3.4.2. fejezetbeli 1. Megjegyzés szerint a "jo parok"
altalanosabban is definidlhatok, és ezaltal esetleg tovabbi targyak pakolésa is lehet-
séges.

Az egyszertiiség kedvéért vegyiik ketté a targyak csoportjat kinnyd és nehéz téar-
gyakra. A konnyt targyak azok, amelyeket el6feldolgozassal kénnyen pakolhatunk.
A maradék targyak pedig a nehéz targyak.

1. Megallapitas. Mindkél benchmark osztdly esetében a nehéz targyak szima szd-
mottevden kisebb, mint a teljes tdargyhalmaz mérete.

Ez azt jelenti, hogy a pakoland6 targyak szama nagy mértékben csokkenthetd,
igy a komplexebb eljarasokat csak a nehéz targyak halmazan kell alkalmazni. Ter-
mészetesen minél kisebb a maradék targyak szdma, annal kénnyebb az optimaélis
megoldés elérése.

Emlékeztetiink arra, hogy a Schwerin osztalyban az optimélis megoldas megtalé-
lasanak aranya 100%, a Falkenauer U osztalyban pedig 91% volt. Algoritmusaink
kifejezetten erre a két osztalyra lettek kifejlesztve. A Skdldzhatésdg és komplexi-
tas fejezetben foglalkoztunk azzal, hogy a Schwerin algoritmusat hogyan lehet mas
feladatosztalyra alkalmazni és a 3.5. fejezet elején foglalkozunk azzal, hogy a Falke-
nauer osztalyra kidolgozott algoritmusokat hogyan lehet méas osztalyra alkalmazni.

2. Megallapitas. Létezik olyan mohdo algoritmus, amely a feladatosztalyban szerepld
feladatok tébbségében optimdlis pakoldst végez.

3.5.2. Tovabbi kutatasi lehetdségek

Ebben az alfejezetben néhany tovabbi lehetGséget mutatok be, amelyekkel a jové-
ben tovabbfejleszthets az FU algoritmus. A Schwerin osztaly esetében, mivel sike-
riilt megoldani az 6sszes feladatot optimalisan, igy nincs sziikség tovabbi kutatéasra.
Azonban a Falkenauer U osztaly esetében az arany 91% volt, igy itt van helye
tovabbi vizsgalatoknak:

1. A 3.5. és a 3.6. tablazatban bemutatott paraméterek helyett mas paraméte-
rek kivalasztasa. A paraméterek meghatarozasa lehet manualis, tapasztalaton
alapul6, vagy automatizalt, valamilyen keresd algoritmussal. A kiilonbozd be-
allitasok altal adott eredmények koziil végiil kivalasztjuk a legjobbat.

2. Tovabbi paraméterek bevezetése, pl. nem csak a nagy targyak meglétét vizs-
galjuk, hanem azok darabszamat is figyelembe vessziik.

Az is megvalaszolatlan kérdés jelenleg, hogy mi torténik, ha a targyak szama
novekszik.

Tételezziik fel, hogy a lada kapacitasa, azaz a C értéke egy rogzitett egész, igy
kovetkezésképpen a targyak mérete az [1, C] intervallumbol keriil ki. Ekkor Lenstra
eredménye szerint [98] a feladat polinomialis id6ben megoldhato, ahol n a targyak
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szama és n tetszGlegesen nagy lehet. A polinomialis id6ben vald6 megoldhatosag el-
lenére egy ilyen algoritmus lépéseinek szama nagyon nagy lenne, mivel n kitev§je
nagyon nagy, tovabba az O(.) kifejezés egyiitthatoja is szintén nagy lenne. Ezen
okok miatt egy ilyen algoritmus nem biztos, hogy hasznalhaté lenne a gyakorlat-
ban, esetleg valamilyen el6sziirés utan. Ezekkel a kérdésekkel dolgozatomban nem
foglalkoztam.

Tovabba, ez a tétel nem veszi figyelembe azt a tényt, ha a targyak mérete vé-
letlenszertien keriil ki egy adott intervallumbdl egyenletes eloszlassal. Ezek alapjan
tekintsiik a kovetkez6 sejtést.

1. Sejtés. Legyenek 1 < a < b < C rogzitett egész szamok, ahol C a ldda mérete.
Tételezziik fel, hogy a targyak mérete véletlenszeriien, egyenletes eloszlds mellett az
a,a+1,...,b egészek kizil kerilnek ki. Ekkor létezik egy olyan algoritmus, amelynek
futdsi ideje alacsony rendd polinommal felilrdl becsiilhetd és az O(.) kifejezés egytitt-
hatdja is megfelelden kicsi, tovdbbd a feladat optimdlis megolddsdnak valdszinisége
1-hez kdzelit midén n — oo.

Példaul, egy olyan algoritmus, amelynek futasi ideje 20n? és 0,9 valoszintiséggel
talalja meg az optimalis megoldast n = 1000 mellett, mar érdekes lehet. Az elgbbi
varakozasomat azért fogalmaztam meg sejtésként, mert valojaban keveset tudunk
arrol, hogy ilyen esetekben mit lehet csinalni. Ehhez tovabbi vizsgalatokra lenne
sziikség, ez azonban tulmutat dolgozatom keretein.

3.5.3. Moho algoritmusok alkalmazasanak korlatai

Ebben az alfejezetben azzal a kérdéssel foglalkozom, hogy melyek az algoritmusok
alkalmazasanak korlatai és, hogy az optimum értékét nem kell elére ismerni.

Természetesen a moh6 algoritmusoknak vannak korlataik, mivel a ladapakolasi
feladat NP-nehéz. Mik is ezek a korlatok pontosan?

Vegyiik észre, hogy mindkét vizsgalt feladatosztaly (Schwerin és Falkenauer U)
esetén a targyak méretei egy megadott intervallumbol keriiltek ki, rdadéasul egyen-
letes eloszlassal. A Schwerin feladatok esetében a lada kapacitasa 1000, a targyak
mérete pedig 150 és 200 kozott valtozik. Ez egy meglehetdsen szik intervallum. A
Falkenauer U esetében mar nem ilyen sztik. A lada mérete 150, a targyak méretei
pedig 20 és 100 kozott valtozik. Ezek alapjan a kovetkezd konkluzié vonhato le.

3. Megallapitas. Tegyiik fel, hogy az inputban minden tdrgy valamely, viszonylag
kicsi d szamndl kisebb méretd (példdul d = 0,2, mint a Schwerin osztdly esetén).
Ekkor, minél szikebb az az intervallum, ahonnan a tdrgyak méreter kertlnek kivd-
lasztdsra, anndl nagyobb az esélye annak, hogy hatékony mohd algoritmus adhatd a
feladatra.

Vegyiik észre, hogy mindkét feladatosztaly esetében a targyak méretei véletlen-
szertien keriilnek kivalasztasra egyenletes eloszlas mellett. Ez azt jelenti, hogy a
jovébeni kutatasokban érdemes megvizsgalni olyan példakat, ahol a targyak méretei
nem egyenletes eloszlas szerint vannak generdlva.

A bemutatott eredmények alapjan lathato, hogy a Falkenauer U osztaly eseté-
ben a bemutatott mohé algoritmus jol miikodik akkor, ha a tartalék (azaz a még
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fel nem hasznélt hely) mérete megfelelGen nagy. Ha a kezdeti tartalék kevés, akkor
annak az esélye, hogy a mohd algoritmus optimélis megoldést talal, nagyon kicsi.
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4. fejezet

Egy 1) feladat: ladafedés szallitassal

Ebben a fejezetben, amint a Bevezetéshen mar emlitettiik, egy 1j feladattal foglal-
kozom, amelynek neve ladafedés szallitassal, réviden BCD. Ebben a problémaban,
hasonléan a lddapakolési probléméhoz, targyakat pakolunk ladakba, amelyeket, ha
fedetté valnak, lezarunk és elszallitunk. A célfiiggvény meghatarozasa a fedett és
elszallitott ladak szama alapjan torténik. Azaz, minden elszallitott ladaért pénzt
kapunk és a cél az, hogy a profitot maximalizaljuk. A probléma els6ként a [42]-ben
szerepel. Most ebben a fejezetben a problémanak a kiterjesztésével és alapos vizs-
galataval foglalkozunk. A probléma offline valtozatéval a [43] foglalkozik, tovabba
néhany kapcsolodo probléma a [44]-ben keriil bemutatasra. A fejezetben szerepls
eredmények a [99] cikkben lettek bemutatva.

4.1. Problémafelvetés és néhany tulajdonsag az off-
line és online modellek esetében

A probléma a kovetkezGképpen fogalmazhato meg. A targyak egyenként érkeznek az
L lista alapjan. Sorrendben az ¢. targy mérete w; > 0 és feltételezziik, hogy végtelen
szamu lada all rendelkezésre ugyanazzal a C' kapacitassal. Tovabba adott egy K > 0
pozitiv egész szam, amely megadja, hogy egyszerre hany lada lehet nyitva. Azaz,
a pakolast végz6 algoritmus csak akkor nyithat 4j ladat, ha a nyitott ladak szama
kevesebb, mint K.

Egy ladat fedettnek tekintiink, ha a ladaba pakolt targyak ¢sszmérete legalabb
a C kapacitassal egyenld. Adott tovabba egy G célfiiggvény is, amelyre

G:{l,....K} > R". (4.1)

Ha adott idgpillanatban 1 < k < K darab lada van nyitva, és egy lada fedetté
valik és elszallitasra keriil, akkor a realizalt profit G(k). Minden fedetté valt és
elszallitott lada utan a k értéke eggyel csokken, de barmikor nyithatunk aj 1adat is,
feltéve, hogy nem lesz tobb nyitott lada, mint K. A G fiiggvény monoton csokkend,
pozitiv értéki fliggvény. A cél a profit maximalizalasa, amelyet a lezart és elszallitott
ladak utan kapunk.

Vegyiink egy egyszerd példat. Egy kiskereskedésben tobbféle gyiimolesot pa-
kolnak kis dobozokba. Minden dobozt egy minimum silyig meg kell tolteni, de a
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szitkséges mennyiségnél lehetdleg ne legyen tul sokkal tébb a dobozban (mert akkor
kevesebb dobozt fogunk tudni megtolteni). Ebben az esetben a kevesebb nyitott
doboz el6ny, mert igy konnyebb a dobozokat kezelni. A minimalis sily (amennyi-
nek mindenképp meg kell lenni) ebben az esetben a lada kapacitasat jelenti, és
szeretnénk, hogy ennél ne legyen sokkal tobb a ladaban (mert az nekiink vesztesé-
get jelent), tehat a lada ne legyen nagyon tultoltve. Azaz, megengedjiik, hogy a
kapacitas folé menjen a toltottség, de ne tiulsdgosan.

Az offline és az online algoritmusok hatékonysagat rendszerint versenyképessé-
gi analizissel vizsgaljuk. Ez azt jelenti, hogy a megoldas C4(I) értéke (ami egy A
offline vagy online algoritmus altal lett meghatarozva az I bemenetre) van 6sszeha-
sonlitva (elosztva) az offline C*(I) optimummal. A maximalizalas esetén az Osszes [
bemenetre vett g“((f)) arany also hatarat (infimuméat) az A algoritmus approximacios
aranyanak nevezziik offline esetben.

A probléma offline valtozata esetén a targyak sorrendje és mérete el6re ismert,
tovabba ismerjiik a G profit fiiggvényt is. Tovabba a targyak pakolasa az L lista
szerinti sorrendben torténik. Az offline algoritmust optimalisnak nevezziik, ha az
algoritmus megoldasahoz tartozd Gsszes haszon, amit a ladakért kaptunk az L lista
esetén, a lehet§ legnagyobb.

Az online valtozat esetén viszont a bemenetrsl nem tudunk el6re semmit. Nem
ismerjilk a targyak sorrendjét és a méreteiket sem. Azonban a G fiiggvény itt is
ismert, ugyanis ez nem része a bemenetnek. Online esetben minden dontést a ko-
vetkez§ targy érkezése el6tt kell meghozni. A dontés azt jelenti, hogy az aktuélis
targyat melyik ladédba pakolja az algoritmus.

Minden véges L listara (ami a pakolandé targyak listaja) és minden G profit
fiiggvényre legyen C4(L,G) a megoldas értéke, amit egy A offline vagy online al-
goritmus ért el a pakolas soran. Ezt az értéket dsszehasonlitjuk az C*(L, G) offline
optimummal. Egy A online algoritmus p-kompetitiv (0 < p < 1), ha a

CA(La G)

= > 4.2
feltétel teljesiil minden L listara és G profit fliggvényre. Online esetben a legnagyobb
olyan p-t, amelyre A algoritmus kompetitiv, versenyképességi aranynak nevezziik.

Masrészrél, ha létezik olyan L valamilyen G esetén, amelyre teljesiil a
m Z C(A(L7 G)
C*(L, Q)

feltétel minden A online algoritmusra, akkor i a probléma felsé korlatja. Egy online
algoritmus akkor optimalis, ha p értéke egyenls a p infimuméval.

(4.3)

4.1.1. Az offline modell tulajdonsagai

Mind a ladapakolési, mind a ladafedési feladat erGsen NP-nehéz, mert 3-particids
feladatra visszavezethets. (A 3-particios probléma esetén adott 3n targyunk (szé-
munk), amelyek 6sszege n x B, ahol B € R. A targyak méretei az (iB, %B) in-
tervallumbol keriilnek ki. A kérdés az, hogy lehet-e tigy n darab hdrmas csoportot
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létrehozni, hogy minden csoportban a harom darab targy méreteinek sszege ponto-
san B.) Tehat, ha nincs semmilyen specialis kikotés az L listara vagy a G fiiggvényre,
akkor a feladat mar er6sen NP-nehéz. Ha a G fiiggvény konstans, akkor a klasszikus
ladafedési problémat kapjuk. Ha G nem konstans, akkor a feladat megoldésa még
nehezebb lehet.

A kovetkezSkben két tételt adok meg, amelyek bizonyitasat a [43] tartalmazza.
Az elsé tétel szerint, az offline optimum hatékonyan megtalalhato, ha a targyak
méretei egy pozitiv alsé korlattal rendelkeznek (a fels§ korlatot a lada kapacitésa
jelenti) tetsz6legesen megvalasztott G fiiggvény mellett.

3. Tétel. [43] Legyen K és b rogzitett egészek, G : {1,..., K} — R™ tetszdleges
profit figguény, és ¢ > 0 eqy réogzitett valds szam. Ekkor

(i) ha az dsszes tdargy méretének legaldbb c-nek kell lennie, akkor barmilyen L lista
esetében az offline optimum polinomidlis iddben kiszdmithato. Nevezetesen, a
. K
sziikséges lépések szdma legfeljebb O(n'™e),

(ii) ha a bemenetben szerepld tdargyak méretei legfeljebb b kilonbozd érték kizil
kertilnek ki és eqyik sem kisebb, mint c, akkor barmilyen L esetében az Igﬁ‘lme
optimum linedris idében kiszdmithats. A futdsi idé nagysdgrendje nb®(c)

Tovabba az is megmutathato, hogy offline probléméra nem létezik APTAS (asymp-
totic polynomial time approximation scheme), azaz aszimptotikus polinomialis idejt
approximaciés séma. Pontosabban, a kévetkezs tétel igaz.

4. Tétel. [43] Van olyan vdlasztisa a K értéknek és a G figgvénynek, amelyek
esetén létezik olyan L listakat tartalmazo osztdly, amelyre nem létezik olyan poli-
nomidlis futdsi idejd algoritmus, amelynek az aszimptotikus approximdcids ardnya
g—nél jobb lenne, ha P #+ NP.

Fontos megjegyezni, hogy a 3. tétel szerint, a 4. tétel esetében emlitett L listanak
tetszélegesen kicsi méretii targyakat kell tartalmaznia.

4.1.2. Benchmark osztalyok

Az optimalizalasi problémak jelent&s részére jellemzd, hogy valamilyen benchmark
feladatot vesznek alapul. A ladapakolasi probléma esetében a bolognai egyetem ope-
raciokutatasi csoportja rendelkezik egy béséges feladatgytjteménnyel |76]. Az ebben
a fejezetben vizsgalt probléma nem tisztdn ladapakolasi vagy ladafedési probléma,
ugyanis egy profitfiiggvény is a modell része.

Egy nem régi publikicionkban [100] és a 3. fejezetben két tipust valasztottam ki a
benchmark feladatok koziil: Schwerin és a Falkenauer U. Most is ezekkel dolgoztam
(de ezeket ki kellett egésziteni megfelel6 G haszonfiiggvénnyel). A Schwerin osztaly
a |77]-ben keriilt definidlasra. A mésik feladatosztaly a Falkenauer U, amely a
[78]-ban definialt. A Schwerin és a Falkenauer U osztalyok tulajdonsagait a 3.2.
alfejezet részletezi.
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4.1.3. A feladatok elGkészitése

Ebben az alfejezetben bemutatom, hogy a meglévé feladatosztalyok esetében milyen
modositasokat hajtottam végre, definidlom az altalam létrehozott 0j feladatosztélyt,
valamint bevezetem a nyereségfiiggvényeket.

(2)

Rendezettség megbontisa. A feladatok esetében a targyak meéret szerint
csOkkend sorrendbe vannak rendezve. Ezért az elsé modositas az alkalmazott
feladatosztalyokon az volt, hogy a targyakat méretiik alapjan véletlenszertien
Osszekevertem.

Falkenauer osztaly normalizalasa. A Falkenauer osztily normalizalés-
ra keriilt tgy, hogy a lada kapacitasit 1000-nek vettem. Emiatt a targyak
méreteit is djra kellett szamolni. Minden targy méretét % értékkel kellett
megszorozni. Az (a) és a (b) lépések utan a bemenettipusokat S1, S2, F1, F2,
F3 és F4 jeloli (ahol az S betii a Schwerin tipusra, az F beti pedig a Falkenauer

tipusra utal).

Uj feladatosztaly. Ahogy korabban volt réla szo, a Schwerin osztaly eseté-
ben a targyak méretei egy sziik intervallumbol keriilnek ki, a 1ada mérete 1000.
A Falkenauer osztaly esetében a normalizalast kovetGen a lada kapacitasa 1000
és a targyak szdma immaron a [133,666] intervallumbol keriil ki. Az ehhez a
témahoz kapcsol6do, korabbi publikacioban [42] harom osztaly szerepelt, ahol
a targyak méretei egy szélesebb intervallumbol keriiltek ki. Emiatt 1étrehoz-
tam egy 1j osztalyt, ahol a targyak méretei az [1,1000] intervallumbol valok.
Lathato, hogy az intervallum maximuma megegyezik a lada kapacitasaval. Az
osztalyt LR-nek neveztem el, amely a Large Range réviditése. Ebben az osz-
talyban 6sszesen 400 darab feladat talalhatd, mindegyik esetében a targyak
szama legfeljebb 1000. Az egyik alosztalynak a neve LR4, ahol 100 darab
targy van. BEzutan még harom osztaly lett kialakitva tgy, hogy csak az elsG
120, 250 vagy 500 targyat tartottam meg. Fzek az alosztalyok az LR1, LR2 és
LR3 neveket kaptak. Az alabbiakban egy Osszefoglalo tablazat (4.1) lathato
az alkalmazott osztalyokrol.

Osztaly Feladatok szama Ladaméret Intervallum Targyak szdma

S1 100 1000 [150;200] 100
S2 100 1000 [150;200] 120
F1 20 1000 [133;666] 120
F2 20 1000 [133;666] 250
F3 20 1000 [133;666] 500
F4 20 1000 |133;666| 1000
LR1 100 1000 [1;1000] 120
LR2 100 1000 [1;1000] 250
LR3 100 1000 [1;1000] 200
LR4 100 1000 [1;1000] 1000

4.1. tablazat. A feladatosztalyok Gsszefoglalo tablazata
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4.1. abra. Nyereségfiiggvények

Nyereségfiiggvények. Az eredeti benchmarkok esetében nincs megadva
semmilyen nyereségfiiggvény. Emiatt harom fiiggvényt hoztam létre, ame-

lyeket az alabbiakban szeretnék bemutatni. k£ = 1,2,... esetén az alabbi
fliggvényeket alkalmaztam. A fiiggvények grafikus abrazolasa a 4.1 abran lat-
hato.

o G1(k)=10,1—0,1 x k, azaz G1(1) = 10, G1(2) = 9,9, G1(3) = 9,8 és

igy tovabb. Léathatd, hogy egy nagyon lassan csokkend fiiggvényrél van
Sz0.

G2(k) = 11 — k, azaz G2(1) = 10, G2(2) = 9, G2(3) = 8 és igy tovabb.
Lathato, hogy ez a fliggvény k egységnyi névekedése esetén meredeken
csokken.

G3(k) = 10,05 — 0,05 x k?, azaz G3(1) = 10, G3(2) = 9,85, G3(3) =
9,6 és igy tovabb. A fiiggvény kezdetben lassan cstkken, majd egyre

meredekebben. Ahogy a 4.1. abran is lathato, a G1 és a G2 kozott
helyezkedik el a cstkkenési iitemet vizsgalva.

Egy egyszeri gyakorlati példat az el6bb megadott kiilonb6z6 nyereségfiiggveé-
nyekre a kovetkez6képpen tudunk megadni: Tekintsiink megint egy kisiizemet,
ahol valamilyen aru csomagolésa folyik:

e (1 - egy preciz és gyors robot pakol
e (G2 - egy ember pakol
e (G3 - tobb ember pakol

Vagyis: Ha egy robot pakolja az arut, és feltételezziik, hogy maga a robot (a
mozgasa) gyors, valamint gyors a reagélasa is, tehat az informaciot gyorsan
tudja feldolgozni, akkor a robot szaméara nagyjabol mindegy, hogy hany lada
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van kinyitva, tobb lada esetén csak kicsit romlik a robot teljesitménye. Ezt
fejezi ki a G1 nyereségfiiggvény. Ellenkezs esetben egy ember (egy alkalmazott
van csak az adott helyen, aki a munkat végzi) pakol, neki (a 8 6ras miiszak
alatt) léenyeges hogy mennyit kell jarkdlnia a megnyitott ladak kozott, és nem
is konnyen latja at, hogy mit hova tegyen, mert ezeket fejben kell kiszamolnia.
Az &6 esetében tehat egy gyorsan csokkend haszonfiiggvény alkalmazhato, ezt
fejezi ki a G2 fiiggvény. A G3 eset pedig a kett§ kozdtt van, itt tobb ember
végzi a rakodast, kevés nyitott ladaval még jol elboldogulnak, de egy bizonyos
ladaszamon til mar hasonldéan problémas lesz az eset az § szamunkra is mint
egy ember esetén. Ez tehat a G3 fliggvény esete.

Targytipusok és a nyereségfiiggvények Gsszekapcsolasa.

Végezetiil, a feladatosztalyokat kombinaljuk a harom nyereségfiiggvénnyel az
alabbi jeloléseket alkalmazva:

o SiGu
e FiGu
e LRjGu

aholi=1,2, j=1,234ésu=1,2,3.

A kovetkez6 fejezetekben bemutatok néhany algoritmust, amelyeket a kutata-
som soran vizsgaltam. ElsGként az algoritmusok teljesitményét osztalyonként
csak egy feladatpéldanyon szemléltetem, de a 4.5. alfejezetben részletes vizs-
galatok mentén mutatom be az algoritmusok hatékonysdgat. Ez Gsszesen 680
feladatot jelent és figyelembe véve a harom nyereségfiiggvényt is, igy Osszesen
3 x 680 = 2040 esetre torténnek a vizsgalatok.

Vegyiik figyelembe, hogy az ehhez a teriilethez tartozo el6zetes publikacioban
[42] csak 6 darab alosztéalyt vettek figyelembe, amelyek mindegyike 10 darab
feladatot tartalmazott.

4.2. Természetesen ad6do online algoritmusok

Ebben a fejezetben néhany, természetesen adodo algoritmust mutatok be. Az algo-
ritmusok miikodése egyszeri, alkalmazasuk kényelmes és kénnyen implementalhato-

ak.

4.2.1. Dual Next Fit algoritmus

A Dual Next Fit, vagy roviden DNF algoritmus mtikédése rendkiviil egyszert. FEgy-
szerre csak egy ladat tart nyitva és a kovetkezGképpen miikodik:

o A kovetkez§ targy mindig az aktuélisan nyitott ladaba keriil. Ha a lada fedetté

valik, akkor az algoritmus lezarja és nyit egy tGjat a kovetkezd targyak szaméra.
Ha nincs tobb targy, az algoritmus megall.
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A DNF algoritmus esetében mindig csak egyféleképpen lehet pakolni a kovetkezs
targyat, hiszen egyszerre csak egy lada lehet nyitva. Az algoritmus az egyszertisége
ellenére is optimalis, abban az esetben ha az elszallitott ladakért kapott profit 0, ha
egynél tobb lada van nyitva.

1. Lemma. Tegyiik fel, hogy G(k) = 0 minden 2 < k < K esetén. Fkkor a Dual
Next Fit algoritmus optimdlis.

Bizonyitds. Nyilvanvaléan nem érdemes kett§ vagy tobb ladat nyitni. |

Akkor is optimélis az algoritmus, ha a targyak méretei megadott feltételeket
teljesitenek a kovetkezd lemma alapjan.

A kovetkez6 lemmak bizonyitasa egyszertibb gy, ha feltételezziik, hogy a lada-
méretek és a targymeéretek normalizalva vannak gy, hogy a ladamérettel elosztjuk
a targyméreteket és a ladaméretét C' = 1-nek vessziik.

2. Lemma. Teqgyiik fel, hogy % <w; < (1<;+1) feltétel minden w; tdrgyméretre igaz,
ahol k > 2 és a ladaméret normalizdlva van, azaz C = 1. Ekkor a Dual Next Fit

algoritmus optimdlis.

Bizonyitds. Minden fedett lada pontosan k targyat tartalmaz. Ezért a legjobb meg-
oldas, ha egyszerre csak egy lada van nyitva. |

Természetesen egyaltalan nem biztos, hogy a targyak méretei megfelelnek a 2.
lemmaban megfogalmazott feltételnek. FEzért altalaban néhany lada til lesz pakolva,
azaz néhany fedett lada toltottsége joval meghaladhatja majd a lada kapacitasat.

3. Lemma. A Dual Next Fit versenyképességi ardnya legaldabb % tetszdleges G nye-
reségfigguény mellett.

Bizonyitds. Az allitas alapja az a tény, hogy G(k) egy nem novekvd fiiggvény k
szerint. Tovabba, az egy ladaba pakolt targyak O0sszmérete nem lehet t6bb, mint 2,
mivel minden targy mérete legfeljebb 1. [

Vegyiik figyelembe, hogy az S1 és S2 tipusi inputok nagyon hasonléak ahhoz

az esethez, mint amikor a targyak méreteire igaz, hogy % <w; < ﬁ valamely k
esetében. A normalizalds miatt a Schwerin osztaly targyméretei az (%, %] interval-

lumba esnek. Ez azt jelenti, hogy a DNF némileg tulpakolhatja a ladat: minden
fedett lada toltottsége legfeljebb g. Legyen I egy feladatpélddny az S1 vagy S2 osz-
talybol. Tételezziik fel, hogy optimalis megoldas esetén a fedett ladadk szama C*.
Ekkor az optimum értéke legfeljebb C* x G(1). Tovabba konnyt belatni, hogy a
DNF legalabb |2 x C*] ladat nyit, tovabba G(1) profitot kap minden fedett ldda

6
utan, emiatt a kovetkezd allitasokat tehetjiik:

1. Allitas. A Schwerin osztdlyndl DNF esetén a célfigquény értéke legaldbb L% X
C*(I)], ahol C*(I) az optimum értéke az I input esetén.

A fenti allitast altalanos forméban is megfogalmazhatjuk az aldbbiak szerint:

A 112+ 2 . . . . 1.1 . . . .
2. Allitas. Tegyiik fel, hogy az dsszes targy mérete az (5, ;} intervallumbol keril ki,

valamilyen q ést egészekre. Ekkor a DNF célfiigguény értéke legaldbb Lﬁ xC*(1)].
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A DNF algoritmus ellenérzése céljabol szamos teszt futtatasa tortént, viszont
mivel minden esetben egymashoz nagyon hasonlé eredményeket kaptunk osztélyon
beliil, igy csak az S1Gu, F1Gu és LR1Gu (u = 1,2, 3) osztalyokat vessziik gorcss
ala, és ezekbdl is csak a legels6 feladatot.

A tesztek soran keletkezd megoldasok alapjan kiszamitottam a ladak atlagos tol-
tottségét (lefelé kerekitve), az elszallitott (azaz fedett) ladak szaméat és a nyereség-
fiiggvény értékét. Mivel a DNF egyszerre csak egy ladat tart nyitva és mindharom
nyereségfiiggvény értéke k = 1 esetén ugyanaz, ezért csak a G1 fiiggvény értékét
jelenitettem meg (G2 és G3 értéke ugyanaz, mint a G1 értéke).

Osztaly Ladaméret L:gﬁlé tizléaggeos Ladak szama OSSZ?Z??SZOH
S1G1 1000 1072 16 160
F1G1 1000 1228 38 380
F4G1 1000 1236 322 3220

LR1G1 1000 1470 43 430

LR2G1 1000 1424 98 980

LR3G1 1000 1377 192 1920

LR4G1 1000 1359 365 3650

4.2. tablazat. A DNF algoritmus eredményei (1 feladat/osztély)

Emlékeztetek arra, hogy a Schwerin osztaly esetében, a Schwerin 1 alosztaly
feladatainal tudjuk, hogy a targyak Osszmérete tobb, mint a lddaméret 17-szerese,
de kevesebb, mint 18-szorosa. Emiatt nyilvidnval6, hogy 17-nél tobb ladat biztosan
nem lehet lefedni a targyakkal. Ezt mar a korabbi publikiaciomban [100] tisztéztam
(hogy a targyakkal legfeljebb 17 lada fedhets). Tehat ehhez hasonlitva az S1G1
osztaly esetében a DNF 16 ladat fedett a targyakkal tigy, hogy egy nagyon egyszerd
algoritmusrol van sz6. Ez egy nagyon j6 eredmény. Az alosztaly sok inputja esetén az
optimum érték valojaban 17, mert amikor pakoljuk a targyakat (tehat nem a fedési,
hanem a pakolasi feladat esetében) a [100] publikacio vizsgalatai soran azt talaltuk,
hogy a megfelel6 pakolasi algoritmusom majdnem 17 lad&t pontosan megtolt és a
tobbi lada is majdnem tele van toltve a 17. ladaig és még vannak kicsi targyak a
18. ladaban. Emiatt a 18. lada kicsi targyaival le tudjuk fedni azt a néhany ladat,
amelyik nem lett teljesen telepakolva.

Visszatérve a DNF algoritmushoz, ezen a ponton a 4.2. tablazat alapjan még
nem eldonthets, hogy a DNF a tobbi osztaly esetében is ilyen hatékony-e.

Megfogalmazhato egy tovabbi allitas az optimum és a DNF' értékének Osszeha-
sonlitasaval. Legyen [ egy feladatpéldany. A fedett ladak atlagos toltottsége legyen
a, a ladak szama pedig n. Ekkor a targyak Osszmérete s = a x n plusz azon tar-
gyak Osszmérete, amelyek esetleg egy nem fedett ladaban vannak. Figyelembe véve
ezeket a targyakat is s < a x n + C adodik, és emiatt az optimalis megoldas értéke
legfeljebb (22 4+ 1) x G(1). A targyak dsszmérete minden fedett ladaban legalabb
C, a nyereségfiiggvény pedig nem noévekvs. Tovabba, a DNF Altal adott megoldas
értéke n x G(1) mert a G fiiggvény nem novekvs, ezért az alabbi allitas tehetd:

3. Allitas. DNF esetén a célfiigguény értéke nem lehet kisebb, mint ﬁ x C*(I).
C'n
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4.2.2. Dual Harmonic(K) algoritmus

Amennyiben a ladafedés soran okosabban szeretnénk kihasznalni a ladak kapaci-
tasat, igy érdemes egyszerre tobb ladat is nyitva tartani. Tekintsiik a kdvetkezd
klasszikus algoritmust, amely a Harmonic(K) algoritmus, vagy réviden H(K), ahol
K > 1 egy egész szam. Az algoritmus alapdtlete, hogy egy ladaba méretiikben
hasonlo targyak keriiljenek. FEgyidejtileg maximum K darab lada lehet nyitva. A
targyakat az algoritmus osztalyozza a méretiik alapjan, és minden lada egy osztalyt
reprezental. Azok a targyak, amelyeknek a mérete az [, = (%H, %] intervallumba
esik, azokat a k. tipusu ladaba pakolja az algoritmus, ahol £k = 1,..., K — 1. A
legkisebb méretd targyak, azaz amelyek mérete az I = (0, %} intervallumba esik,
azok a K. tipusiu ladaba keriilnek. Az algoritmus az aldbbiak szerint miikddik:

e Az algoritmus a kovetkez$ targyat a k. tipusu ladaba pakolja (k =1,..., K),
ha létezik ilyen nyitott lada és a targy mérete az [, intervallumba esik. Ha
a lada fedetté valik, az algoritmus lezarja. Ha nincs ilyen ldda nyitva, akkor
nyit egy ilyen tipusit. Ha nincs tobb elem, akkor az algoritmus megéall.

A H(K) algoritmus esetében is, hasonléan a DNF-hez, megtorténtek a tesztfutta-
tasok, K = 2,3,4,5 esetekre. Az alkalmazott osztalyok majdnem teljesen ugyanazok
voltak mint a DNF esetében. Viszont, mivel a H(K) esetében az algoritmus tobb
ladat is tarthat nyitva a futas soran, igy mindhérom nyereségfiiggvény be lett vonva
a futtatdsokba. Minden osztaly esetében mindhirom nyereségfiiggvény kiértékelés-
re keriilt. Az eredményeket tartalmazé tédblazatokban csak a nyereségfiiggvények
értékei szerepelnek, tovabbé a korabban a DNF esetében kiszamitott nyereségfiigg-
vény értékei is helyet kaptak az Osszehasonlithatosag végett. Minden érték lefelé
kerekitett. Minden sorban a legjobb értékeket szines hattérrel jeloltem.

Osztdly DNF H(2) H(3) H(4) H(5)
SIG1 160 160 160 160 160
S1IG2 160 160 160 160 160
SIG3 160 160 160 160 160

F1G1 380 385 382 368
F1G2 340 311 265
F1G3 381 373 349
F4G1 3314 3258 3214
F4G2 3183 2905 2613 2358
F4G3 3220 3276 3171 3064

4.3. tablazat. A H(K) algoritmus altal szerzett profit az S és F osztalyok esetében

2. Megjegyzés. A 4.3. tdblizatban az eredmények kozil az S1 osztalyndl minden
esetben a profit értéke 160. Ez meglepd lehet. Viszont vegyiik figyelembe, hogy itt a
Schwerin_ 1 osztdlyrol van szo, ahol a tdrgyak mérete 150 és 200 kiozitt vdltozik, a
ladaméret pedig 1000. Azaz minden tdrgy K tipusi ldddba keril, mivel csak egy lida
van haszndlatban egyszerre. Ez akkor valtozhatna, ha K > 6 lenne, azonban ekkor
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a nyereségfiigguény nagyon lecsikkenne €s sok nyitott ldda haszndlata nem lenne
eldnyds.

Ennél érdekesebbek az F1 osztdly eredményei mindhdrom nyereségfigguényt te-
kintve. Ldthatd, hogy H(2) jobb eredményt ért el, mint a DNF a G1 és G3 esetében.
Az is ldthatd, ahogy K értéke névekszik, gy mindhdrom nyereségfiigguény értéke
csokken. Azt mondhatjuk, ha a nyereségfiggvény lassan csokken (G1 csokken a
leglassabban, utina o G3), akkor eldényds tobb ldddt nyitva tartani, ugyanis igy az
algoritmus nagyobb eséllyel tud "jo" pakoldst csindlni.

A helyzet hasonlo az FJj osztalyok esetében is. Viszont itt sokkal tébb tdrgy van
feladatonként, mint az el6z6 osztdlyokndl. Emiatt van nagyobb kilonbség az értékek-
ben a DNF-hez hasonlitva.

Osszefoglalva elmondhatd, hogy a H(K) algoritmus jobban vagy sokkal jobban
képes teljesitent, mint a DNF abban az esetben ha K "nem til nagy"” és az elszdllitott
(lezdrt) laddk figguényében szamitott nyereségfiigguény nem csokken "tul gyorsan’.

Osztdly DNF H(2) H(3) H(4) H(5)

LR1G1 423 420 407
LR1G2 362 332 298
LR1G3 417 407 387
LR2G1 935 918 911
LR2G2 802 724 653
LR2G3 922 890 862
LR3G1 1841 1806 1792
LR3G2 1582 1418 1273
LR3G3 1815 1751 1694
LR4G1 3507 3459 3428

LR4G2
LR4G3

3036 2738 2427
3461 3358 3250

4.4. tablazat. A H(K) algoritmus altal szerzett profit az LR osztéaly esetében

Az LR1 alosztily esetében az eredmények hasonloak a 4.3. tédblazatban kozdl-
tekhez. Az LR2, LR3 és LR4 esetében azonban mas a helyzet. Tovabbra is igaz az
a megallapitas, hogy ha a K értéke novekszik, akkor a H(K) eredményei romlanak.
Lathato az is, hogy a H(K) az LR osztaly esetében nem tudja megverni a DNF
algoritmust. Még H(2) is rosszabbul teljesit, akkor is, ha G1 értékét vessziik, amely
a leglassabban csokkend fiiggvény a harom koziil. Az ok az lehet, hogy az LR osz-
talyban a targyak meéret szerinti diverzitdsa nagy, mivel a [1,1000] intervallumboél
keriilnek ki, a ladaméret pedig 1000. Szoval, példaul a H(2) esetében feltételezhe-
téen az torténik, hogy "mindig" két 1ladat tart nyitva az algoritmus. Ezért G1(1)
értékét nem éri el, csak G1(2)-t, de az kevesebb, mint G1(1).

4.2.3. Smart Dual Harmonic(K) algoritmus

Ebben az alfejezetben a H(K) algoritmus egy tovabbfejlesztését mutatom be, amivel
az eredeti eljards "okosabba" tehetd. Ezt az 4j algoritmust Smart Harmonic(K)-
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nak, vagy roviden SH(K)-nak nevezziik. Az algoritmus az alabbi egyszerii szabalyok
mentén miikodik.

e Ha a kovetkezs targy képes lefedni egy vagy tobb ladat, akkor abba a ladéba
keriil, amelynek a legalacsonyabb a toltottsége. Ezutén az algoritmus lezarja
a ladat.

e Egyéb esetben az SH(K) algoritmus a H(K) algoritmus szabélya szerint mii-
kodik.

Ahogy lathato, az SH(K) algoritmus majdnem ugyantgy miikodik, mint a H(K).
Az egyetlen kiilonbség akkor van, ha az algoritmus a kovetkezs targynak talél fedhetd
ladat. Ebbdl tobb is lehet, igy mindig a legkisebb toltottségiibe fogja pakolni. Ezzel
a lépéssel a nyitott ladak szamat szeretnénk leszoritani, hogy a profit értéke minél
nagyobb legyen.

Osztaly DNF SH(2) SH(3) SH(4) SH(5)
S1G1 160 160 160 160 160
S1G2 160 160 160 160 160
S1G3 160 160 160 160 160
F1G1 380 408 413 412
F1G2 380 393 360 341
F1G3 380 407 408 402
F4G1 3220 3359 3423 3431 [JEIEE
Fa4G2 3220 [JEEE 3187 2997 2822
F4G3 3220 3354 [NEEOOMN 3386 3369

4.5. tablazat. A SH(K) algoritmus altal szerzett profit az S és F osztalyok esetében

A 4.5. tablazatban lathato futasi eredmények ebben az esetben is a nyereségfiigg-
vény értékeit mutatjak. Lathato, hogy az S1 osztaly esetében ugyanazt az eredményt
kaptuk, mint a H(K) algoritmus esetében. Itt az SH(K) algoritmus 0j 1épése nem
hozott jobb eredményt. Ellenben az F1 osztaly esetében az SH(K) sokkal jobb ered-
ményt ért el, mint a H(K). Az F1G1 esetében K = 4 értékig a nyereségfiiggvény
értéke novekszik. A helyzet hasonlo az F1G3 esetében, itt a maximumot a K = 3
érték esetében éri el a fiiggvény. Az F4 osztéaly esetében is lathato, hogy az SH(K)
algoritmus szignifikdnsan jobb, mint a DNF és szintén jobb, mint a H(K) algorit-
mus. A legnagyobb profitot az F4 osztalyon beliil az F4G1 esetében tudta elérni az
algoritmus K = 5 esetén.

A H(K) algoritmus esetében azt mutattak az eredmények, hogy a H(K) algorit-
mus nem tudott jobb teljesitményt nyujtani az LR2, LR3 és LR4 esetében, mint
a DNF algoritmus. Azonban az SH(K) algoritmus jobb eredményeket hozott még
a gyorsan csokkend G2 nyereségfiiggvény esetében is. Az LR1 alosztalynal a leg-
nagyobb profitot a G1 fiiggvény produkalta K = 4 esetén. Az LR2, LR3 és LR4
esetében hasonl6 a helyzet.

Osszességében tehat elmondhato, hogy az 6sszes feladatot tekintve az SH(K)
algoritmus t6bbségében jobb eredményeket ért el, mint a H(K) algoritmus.
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DNF SH(2) SH(3) SH(4) SH(5)

Osztaly

LR1G1 430 478 487
LR1G2 430 465 460
LR1G3 430 477 485
LR2G1 980 1047 1074
LR2G2 980 1021 1023
LR2G3 980 1045 1071
LR3G1 1920 2023 2088
LR3G2 1920 1963 1987
LR3G3 1920 2019 2082
LR4G1 3650 3798 3928
LR4G2 3650 3694 3732
LR4G3 3650 3792 3915

4.6. tablazat. Az SH(K) algoritmus altal szerzett profit az LR osztéaly esetében

4.2.4. Az eredmények osszefoglalasa

Osztaly
S1G1
S1G2
S1G3
F1G1
F1G2
F1G3
F4G1
F4G2
F4G3

DNF H(2) H(3) H(4) H(5) SH(2) SH(3) SH(4) SH(5) | MAX

160 160 160 160 160 160 160 160 160

160 160 160 160 160 160 160 160 160

160 160 160 160 160 160 160 160 160
380 397 385 382 368 408 413 414 412 414
380 373 340 311 265 393 360 341 394
380 395 381 373 349 407 408 402 415
3220 3369 3314 3258 3214 3359 3423 3431 3459
3220 3183 2905 2613 2358 3187 2997 2822 | 3264
3220 3358 3276 3171 3064 % 3386 3369 | 3406

4.7. tablazat. Osszesitett eredmények az S és F osztalyok esetében

Ebben az alfejezetben Gsszegytijtottem az el6z6leg bemutatott algoritmusok ered-
ményeit, igy konnyebben Gsszehasonlithatok. (Annak érdekében, hogy a tablazatok
beférjenek, a H(2) és H(3) oszlopokat elhagytam, a maximalisak soha nem ezekbdl
az oszlopokbol keriiltek ki, emiatt a maximum értékét ezeknek az oszlopoknak az
elhagyasa nem érinti.) Minden sorban az adott alosztéalyokra vonatkozo, lefelé kere-
kitett eredmények vannak megadva algoritmusonként. Az utolsé oszlopban az adott
sorban taldlhaté maximum érték van megadva, azaz a legjobb eredmény az adott
alosztaly esetében.

4.3. Egy 1j, rugalmas, paraméteres algoritmus: MMask

4.3.1. Az algoritmus bemutatasa

Ebben az alfejezetben egy 1j algoritmuscsalad keriil definidlasra, amely megfelelGen
flexibilis ahhoz, hogy versenyképes legyen a korabban bemutatott algoritmusokkal.
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Osztdly DNF H(2) H(3) H(4) H(5) SH(2) SH(3) SH(4) SH(5)

MAX

LR1G1 430 437 423 420 407 478 487
LR1G2 430 415 362 332 298 465 460
LR1G3 430 436 417 407 387 477 485.2
LR2G1 980 953 935 918 911 1047 1074
LR2G2 980 900 802 724 653 1021 1023
LR2G3 980 951 922 890 862 1045 1071
LR3G1 1920 1877 1841 1806 1792 2023 2088
LR3G2 1920 1763 1582 1418 1273 1963 1987
LR3G3 1920 1870 1815 17561 1694 2019 2082
LR4G1 3650 3546 3507 3459 3428 3798 3928
LR4G2 3650 3333 3036 2738 2427 3694 3732
LR4G3 3650 3534 3461 3358 3240 3792 3915 4007

4.8. tablazat. Osszesitett eredmények az LR osztaly esetében

Az algoritmus miikodése kiilonb6z6 paraméterek beallitasatol fiigg. Az algoritmust
Modified Mask-nak, vagy roviden MMask algoritmusnak neveztem el. Els6 verzi-
0ja egy korabbi cikkben [42] mar megjelent. A modified kifejezés az algoritmus
tovabbfejlesztése miatt eszkozolt modositasok tényét jeldli.

Az MMask algoritmusnak harom paramétere van, amelyek az alabbiak:

e K - az egy id6ben nyitott laddk maximalis szamat meghatarozé pozitiv egész
szam (K > 0),

e o - K-dimenzios nemnegativ vektor (0 < oy < C Vk-ra),
e [3 - egy porzitiv egész szam (§ > 0).

Az MMask miikodésének alapja egy elfogado-elutasito politika. Az algoritmus
elfogadja a soron kovetkezs targy pakolasit, ha a pakolas utan az adott lada tol-
tottsége az elfogadd tartomanyba esik. Ellenkezs esetben elutasitja a pakolast. Az
elfogado és elutasitoé intervallumok az aldbbiak szerint keriiltek meghatarozasra:

e Elfogado tartomény a k. lada esetén (1 < k < K): [0;C — o] U [C;C + ]
e Elutasité tartomany a k. lada esetén (1 < k < K): (C — a; C) U (C + 3;00)

Mint lathato, nem csak az a célunk, hogy egy lada fedett legyen, hanem azt
szeretnénk, hogy a targyak Osszmérete csak '"kicsivel" legyen tébb, mint a lada
meérete.

A tartomanyok megadéasanal az « és [ paraméterek a lada kapacitasanak (C)
értékét modositva allitjak be az intervallumokat. A szakirodalomban a formalis defi-
niciok jellemzGen C' = 1 értéket hasznalnak. Az altalam vizsgélt feladatok esetében
azonban a ladak kapacitasa 1000 és a targyak méretei is aranyosak ezzel a kapaci-
téassal. A feladatok megoldisa sordan az eredeti értékeket hagytam meg, felesleges
lett volna a lada kapacitasat és ezzel egyiitt a targyak méretét a C' = 1 értékhez
normalni.
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Az elfogadd és elutasitd politikdval a cél az, hogy megfelel oy és [ értékek
megvalasztasaval egyrészt elkeriiljiik azt a helyzetet, hogy egy éppen pakolt targgyal
a lada nem lesz fedett, csak "majdnem". Ekkor a lada toltottsége az (1 — ay; 1)
intervallumba fog esni, tehat ez a pakolas elutasitasra keriill. A "majdnem" fedett
ladak magukban hordozzak azt a veszélyt, hogy késébb fedetté valnak, viszont egy
nagy méretid targgyal tulpakolt lesz a lada. Maéasrészt, azt is szeretnénk elkeriilni,
hogy a lada tulpakolt legyen, ezért az algoritmus nem engedi a pakolds mértékét
1+ § érték folé néni. Fzen stratégiak alkalmazéasaval azt reméljiik, hogy a ladak
toltottsége kiegyensiilyozott lesz, ezaltal pedig a profit is javulhat.

Ha t6bb olyan lada van, amelyik az aktuélis targy pakolaséaval elfogadotta valik,
hogy ezek koziil hogyan valasszunk, ezzel a kérdéssel majd késGbb részletesebben
foglalkozom (4.3.3. alfejezet).

Rendszerint az a vektor elemeit kiillonbdzének valasztjuk meg, amivel néhany
lada toltottséget alacsony (ha C alatt van) szinten tudjuk tartani, masokét pedig
magasan. Ennek azért van jelentésége, hogy a nagyobb méret targyak az alacsony
toltottségi ladakat, mig a kisebb targyak a jobban toltott ladakat toltsék meg. Ez
egyfajta egyensilyt biztosit a targyak elhelyezésében. Az algoritmus a kovetkezdk
szerint miikodik.

Algorithm 13: MMask (K, «, ) algoritmus
Input: L lista

1 Ha a kovetkezs targy egy olyan ladaba helyezhetd, ami ezaltal az elfogado
tartomanyban fedetté valik, akkor az aktualis targyat ebbe a ladaba kell
pakolni. Ha t6bb ilyen lada is van, akkor ezek koziil a legkisebb
toltottségibe. Ezutan az algoritmus lezarja a ladat és az 5. 1épésre ugrik.

2 Ha a kovetkez6 targy egy olyan ladaba helyezhets el, aminek a toltottsége
az elfogado tartoméanyba esik a pakolas utan, de nem lesz fedett, akkor
ebbe a ladaba kell pakolni. Ha t6bb ilyen is van, az algoritmus
véletlenszertien valaszt egyet. Ezutan az 5. 1épésre ugrik.

3 Ha k < K (ahol k az éppen nyitott ladak szama), akkor az algoritmus nyit
egy 1j ladat. A lada tipusa a legkisebb k érték, amelyikre nincs ilyen
tipust nyitott lada, és ide pakolja a targyat. Ezutan az 5. lépésre ugrik az
algoritmus.

4 Ha k = K teljesiil, akkor az aktualis targy a legkisebb toltottségi ladaba
keriil. Ha a lada fedett lesz, az algoritmus lezarja.

5 Ha nincs tobb targy, az algoritmus ledll. Egyébként az 1. lépésre ugrik.

Megjegyzem, hogy az 1. 1épés esetén a targy elfogadé tartomanyba keriil és a ldda
fedetté valik, a 2. 1épés esetén elfogad6 tartomanyba keriil, de nem valik fedetté. A
kovetkezd lépések esetén tehat a targy biztos, hogy nem elfogadé tartoméanyba keriil.
Ha k < K, akkor a targy uj ladaba keriil (3. 1épés). Ellenkezs esetben a 4. lépés
soran mar nem tudjuk novelni a ladak szdmat, és a targyat nem tudjuk elfogado
tartomanyba pakolni. Mivel jobbat nem tehetiink (a targyat muszaj pakolni), a
legkisebb toltottségii ladaba tessziik. Lehet, hogy lefedi, lehet, hogy nem.

Az algoritmus megértéséhez tekintsiink egy egyszert példat, amelynek a bealli-
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tasai a kovetkezdk:
e K =4
e (' =100
e a = [10,20, 30, 40]
o =230

A targyak méretei a [10;40] intervallumbol keriilnek ki és legyenek a kovetkezsk: 24,
35, 18, 22, 16, 29, 20, 17, 38, 14, 31, 28, 32. A targyak a felsorolas sorrendjében
érkeznek.

Az algoritmus indulasakor csak egy lada van nyitva, az alkalmazott paraméterek
pedig oy = 10 és 8 = 30. Ezek alapjan az elfogad6 tartomany [0; 90] U [100; 130}, az
elutasito tartoméany pedig (90; 100) U (130; 00) az aktualisan nyitott, egyetlen ladéara
nézve. Az MMask az els6 targyat (24) bepakolja a nyitott (és egyetlen) ladaba. A
kovetkez6 targyat (35) szintén ide pakolja, igy a lada toltottsége 24 + 35 = 59 lesz.
A harmadik targy (18) még mindig pakolhato ebbe a ladéba, hiszen igy a toltottség
59 4+ 18 = 77 lesz. Viszont a negyedik targy (22) méar nem pakolhaté ide, ugyanis
a pakolas utan a lada toltottsége 77 + 22 = 99 lenne, ami az elutasito tartomanyba
esik.

Emiatt a negyedik targynak (22) egy 1j ladat nyit az algoritmus. Az 1j lada
esetében ay = 20 és 5 = 30, igy az elfogado tartomany [0; 80]U[100; 130], az elutasito
tartomany pedig (80;100) U (130; 00). Immaron két nyitott lada van, az egyiknek
77, a masiknak 22 a toltottsége. Az 6todik targy (16) nem pakolhato az els6 ladaba,
mert 77+ 16 = 93, ami az els§ lada elutasito tartomanyaba esik. A masodik ladaba
viszont pakolhato, mivel 22 4+ 16 = 38 a méasodik lada elfogad6 tartomanyaba esik.
Ebben a pillanatban az elsé lada toltottsége 77, a masodiké pedig 38.

A hatodik targy (29) elég nagy, igy az els6 ladaba pakolhatd, aminek a t6ltottsége
igy 77+ 29 = 106 lesz és elszéllithato. A ldda zérasa el6tt a nyereségfiiggvényt
kiszamitja az algoritmus. Mivel két nyitott lada van, igy k = 2, azaz G(2) profitot
kapunk a lada elszallitasa utan. A megmaradt lada toltottsége 38 tovabbra is.

A kovetkez$ harom targy (20, 17, 38) pakolhaté a megmaradt nyitott ladaba,
ugyanis 38 4 20 = 58, 58 + 17 = 75 és 75+ 38 = 113. Mind a harom targy pakolasa
utan a lada toltottsége az elfogadd tartomanyban volt. A ldda elszallitasa el6tt az
algoritmus kiszamitja a G(1) profitot, majd elszallitja a ladat. Most nincs egyetlen
nyitott lada sem.

Még hatra van négy targy (14, 31, 28, 32), amelyhez az algoritmus nyit egy
ladat. Mind a négy targy ebbe a ladaba keriil, ugyanis 0 4+ 14 = 14, 14 4 31 = 45,
45+ 28 = 73 és 73+ 32 = 105. Azaz minden egyes targy pakolasa utan a toltottségi
szintek elfogadd tartomanyban voltak. A lada fedetté valt, amiért G(1) profit jar.
[gy 6sszesen a szerzett profit 2G(1) + G(2).

Abban az esetben, ha ugyanerre a példara az MMask helyett a DNF algoritmust
alkalmaztam volna, akkor a megszerzett profit csak 2 x G(1) lenne, valamint maradt
volna egy nyitott (azaz nem fedett) lada is, aminek a toltottsége 14 4+ 31 + 28 = 73
lenne. Tehat ebben a helyzetben az MMask algoritmus sokkal jobb teljesitményt
nytjtott, mint a DNF nytujtott volna. Természetesen az algoritmusok teljesitménye
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erGsen fiigg a konkrét feladattol, az oy (kK = 1,..., K) és a  paraméterek megva-
lasztéasatol.

A vizsgalatok soran az deriilt ki, hogy a K, oy és [ paraméterek megfelels meg-
valasztasa esetén az MMask versenyképes a kordbban bemutatott algoritmusokkal.

4.3.2. Az eredmények vizsgalata

Ebben az alfejezetben bemutatom, hogy a stratégiai paraméterek megfelel bealli-
tasa mellett milyen teljesitményre képes az algoritmus. Lathato lesz, hogy a meg-
felels értékek megvalasztédsaval az MMask majdnem minden feladatosztély esetén
képes tulteljesiteni a korabbi algoritmusokat. (Ebben az alfejezetben ezeket az ese-
teket jeloltiik zold hattérrel.) Az M0-M8 paraméterbeallitisok adatait nemsokara
megadom. Az algoritmus ugyanazokra a feladatosztalyokra lett alkalmazva, mint
amelyekkel az el6z6 algoritmusokat vizsgaltam. Ennek kdszénhetGen az MMask és a
kordbbi algoritmusok koziil a legjobb teljesitményt nytjté osszehasonlithatova valt
minden bemenet esetében.

Megjegyzem, hogy a paraméterek hangolasa soran érdemes lehet figyelembe ven-
ni, hogy a targyak mérete milyen intervallumban van. Jelenleg ezzel a kérdéssel nem
foglalkoztam, késébbi kutatas targya lehet. Azt azonban megjegyzem, hogy a 4.4.
fejezetben foglalkozom a paraméterek optimalizilasaval, és kideriil, hogy az opti-
maliz&ld algoritmus valdjaban implicit médon, "automatikusan" figyelembe veszi a
targyméreteket az a és [ értékek beallitasanal.

Osztaly | Max

S1G1 160
S1G2 160
S1G3 160
F1G1 414 417 417
F1G2 394 395 395

F1G3 415 418 416 416

F4G1 | 3459 : 3603 3517 3569 EEEIEEE 3503 3487 3496
F4G2 | 3264 | 3220 3182 3090 SsEIRRNSPACENRI0as RIS
F4G3 | 3406 | 3220 pEEBEEEELEIREELIEEELEYE 3304 ERELCYEEREYSRESYE)

4.9. tablazat. Osszesitett eredmények az S és F osztéalyok esetében

A korabbi legjobb eredményt a Max oszlop jeldli feladatosztalyonként. A para-
méterek beallitdsa itt még kézzel tortént, probalkozas utjan. A 4.9. tablazat az S
és F osztalyokon végzett futtatasok eredményét szemlélteti. A zolddel jelolt cellak
esetében az MMask feliilmilta a korabbi legjobb eredményt, a kék cellik esetében
pedig a korabbi legjobbal egyenlé az MMask eredménye. Az S1 osztily esetében
a korabbi legjobb eredményt a DNF allitotta els, és minden korabbi algoritmus is
ugyanazt az eredményt adta, mint a DNF. Ez amiatt volt, mert a targyak méretei
egy nagyon sz(ik intervallumbol keriiltek ki. Ennek kévetkezménye, hogy jobb ered-
ményt itt nem lehetett elérni, ha az MMask legalabb két 14dat nyitott. Viszont, ha
K =1 volt a beallitas (MO paraméter beallitas), akkor ugyanazt az eredményt érte
el, mint a korabbi algoritmusok.
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Lathato, hogy a paraméter-beallitasok (MO0-M8) nagyon valtozatosan képesek
befolyéasolni az MMask teljesitményét. Van ahol az adott bedllitas a vizsgalt feladat-
osztalyok tobb mint a felére jobb eredményt ért el, de volt olyan, ahol kevesebb, mint
a felénél ért el jobb eredményt. Ez teljesen természetes, hiszen a feladatosztalyok
kiilénboznek egymastol. Pontosan emiatt nem cél egy "univerzalis" beéllitas meg-
talalasa, amely minden feladatosztaly esetében jobb eredményeket ad. A cél az volt,
hogy minden feladatosztalyra talaljak egy olyan beallitast, amely jobb eredményt
ad, mint a korabbi algoritmusok. A tablazatban foglalt osztalyokra ez sikeriilt is.

Az alkalmazott beallitasok (M0-M8) az alabbiak voltak.

Beallitas K ak=1,... K 3
MO 1 [200] 200
M1 4 [100; 200; 300; 400] 200
M2 5 [100; 200; 300; 400; 500] 200
M3 2 [100; 100] 200
M4 3 [100; 100; 100] 200
M5 4 [100; 100; 100; 100] 500
M6 4 [225; 225; 230; 230] 560
M7 4 [200; 200; 200; 200] 600
M8 4 [200; 200; 300; 400] 350

4.10. tablazat. MMask kézi paraméter-beallitasai

Az LR osztaly esetében is elvégeztem a futtatasokat, ugyanazokat a paraméter-
beallitasokat alkalmazva. Mivel az M0 bedllitas a Schwerin osztalyra lett kitalalva,
ami azt jelenti, hogy csak egy lada lehet nyitva egyszerre, ezért nem alkalmazhato
a tobbi osztalyra. Igy nem keriilt be az LR osztalyon végzett futéasok eredményeit
tartalmazo tablazatba (4.11). Tovabba a futasok alapjan az M3 és M4 beallitasok
sem voltak versenyképesek egyik LR alosztaly esetében sem, igy azok is kimaradtak
az eredmények koziil.

Az eredményeket tartalmazé tablazatban lathato, hogy az LR2G2, LR2G3 és
LR3G2 esetében nem volt jobb eredmény a korabbi legjobbnal. Vegyiik figyelembe,
hogy a témahoz kapcsolodo kordbbi publikicioban [42] az SH algoritmus teljesitmeé-
nye nem volt vizsgdlva a K = 4 és K = 5 esetekre, most viszont ez megtortént.
Kideriilt, hogy az SH(4) algoritmus teljesitménye néhany esetben sokkal jobb, mint
akkor, ha K # 4 (4.5. és 4.6. tablazatok). Mivel most SH(4) teljesitménye is is-
mert, igy az MMask-nak egy sokkal jobb eredményt kell feliillmtlnia. Habar, a 4.11.
tablazatban a masik 9 feladat esetében sikeriilt jobb eredményeket elérni, ami az
alosztalyok 75%-at jelenti.

4.3.3. Tovabbfejlesztési lehetdségek

Néhany, az MMask algoritmus tovabbfejleszthetGségére vonatkozo lehetéséget sze-
retnék itt megadni.

e A fent bemutatott paraméter-beallitasok manuélisan keriiltek meghatarozasra.
Elsfordulhat, hogy méas beallitasokkal sokkal jobb eredmények is elérhetsk.
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Osztaly | Max | M1 M2 M5 M6 M7 MS8

LR1G1 | 516 533 Ul 517 524
LR1G2 | 481 | 414 485 498 491 |

LR1G3 | 513 | 503 516
LR2G1 | 1132 | 1122 [SEEL 1122 1103 1131
LR2G2 | 1060 | 876 846 1022 1059 1046 962
LR2G3 | 1126 | 1086 1091 1108 1116 1098 1109
LR3G1 | 2165 [PIRERIEEERY 2124 2127 2089 |EEEN
LR3G2 | 2035 | 1730 1625 1980 2015 1991 1911
LR3G3 | 2155 | 2130 2119

LR4G1 | 4086
LR4G2 | 3754
LR4G3 | 4046

4.11. tablazat. Osszesitett eredmények az LR osztaly esetében

e Kideriilt, hogy az LR osztily esetében az SH(4) algoritmus t6bb esetben is
nagyon hatékony a 4.6. tablazat alapjan. Ez alapjan megfontoland6 az SH(4)
és az MMask algoritmus fazioja (mindkét algoritmust kiilon-kiilon futtatjuk
és a jobb eredményt valasztjuk).

Az MMask algoritmus a 2. lépésében tetszélegesen valaszthatott a rendelke-
zésre 4llo, megfelels 1ladak koziil. Lehetséges, ha "okosabban" valaszt ladat,
akkor az MMask teljesitménye névelhetd lesz.

Egy masik modositasi lehet&ség az algoritmus 2. 1épésére vonatkozoan a kovet-
kez6 volt. Legyenek By, Bs, ..., B; azok a ladak, amelyekbe az aktuélis targy
pakolhatd. Ha t = 1, akkor egyértelmt, hogy melyik ladaba keriilt az aktuélis
targy, mivel csak egy lada van nyitva. Ha viszont ¢t > 1, akkor t&bb lada
koziil valaszthat az algoritmus. Minden megfelel6 ladara kiszamitottam, hogy
mennyi a benniik 16v6 targyak méretének atlaga, ezeket jeldlje x1, 2o, ..., x4,
az aktualis targy méretét pedig x. Ekkor minden lada esetében megadtam az
(x — x;)? kifejezés értékét, és a legkisebbet valasztottam, ami megadta, hogy
a B; ladaba kell pakolni, ahol 1 < ¢ < ¢. Sajnos ez a valasztasi stratégia
nem bizonyult hatékonynak. Néhany esetben javitott az eredményen, méskor
rontott, de Osszességében nem lett jobb az eljaras.

4.3.4. Osszefoglalas

Az eredmények alapjan az lathato, hogy megfelel6 paraméterek megvalasztasa ese-
tén az MMask igen hatékonyan mikodik, és a legtébb esetben jobb eredményt ad,
mint a kordbban vizsgalt algoritmusok. Lehetséges, hogy azoknal az alosztalyoknal,
ahol nem sikeriilt javitani a korabbi eredményeken, ott is van egy olyan paraméter-
beallitas, amivel sikeriilhet jobb eredményt produkalni. A kérdés csupan az, hogy
milyen stratégia mentén kell a paramétereket megvéalasztani, hogy jobb eredménye-
ket érjen el az algoritmus a korabbiaknal. A kdvetkez6 alfejezetben ezzel a kérdéssel

foglalkozom.
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4.4. Paraméter optimalizalas

A vizsgalatok soran kideriilt, hogy amennyiben az MMask algoritmus paraméterei
megfelel6en vannak megvélasztva, akkor az MMask igen jo eredményeket tud elérni.
Ezért, a legtobb problémaosztaly valasztasakor (amelynek ismertek a paraméterei:
ladaméret, a targyak méretének eloszlasa, a targyak szama és a G nyereségfiigg-
vény), az MMask képes messze tiilteljesiteni a korabban targyalt algoritmusokat
(DNF, H(K) és SH(K)). A nehézség viszont pont az MMask paramétereinek megva-
lasztasa. Az egyik megoldas a manudlis valasztas, amikor egyszertien probalgatjuk
a paramétereket és megvizsgaljuk, hogy az egyes beallitasokkal milyen eredményt
kaptunk. Ez nyilvdnvaléan nehézkes, lassi és nem biztos, hogy megtalaljuk azt a
paraméter-beallitast az adott feladatosztalyhoz, ami legalabb olyan eredményt ga-
rantal, mint a korabbi algoritmusok eredményei.

Ebben a fejezetben egy természetesen adodo eljarast mutatok be, amelynek fel-
adata a paraméterek automatizalt keresése. Az ilyen optimalizalast hiperparaméter
optimalizdlasnak nevezik. Az implementalt eljardst EoA-nak neveztem el (ugyan-
ilyen néven szerepel a mar korabban, a témahoz kapcsolédéan megjelent publikéci-
Oban [42] is).

Ezzel a modszerrel szeretném az MMask algoritmus paramétereit optimalizalni.
Ez azt jelenti a gyakorlatban, hogy az optimalizalo eljaras a paraméter-beallitasokat
vizsgalja, megvaltoztatja és a kapott futasi eredmények alapjan képes kiilonbsé-
get tenni az egyes bedllitdsok josidga kozott. A hiperparaméterek optimalizélasa
legtobbszor offline probléma, hiszen az optimalizalas el6re megadott (azaz ismert)
adathalmazokat alkalmazva torténik.

A megoldés soran szomszédsagi struktirat definidlunk a paraméter-beallitasok
kozott. Létezik hasonlo algoritmus az irodalomban, példaul [101], amely a legjobb
paraméter-beallitast igyekszik megtalalni. A megoldasom kulcsa az, hogy létrehozok
egy flexibilis algoritmuscsaladot, ahol az algoritmusok kozott definidlasra keriil egy
lehetséges szomszédsagi struktira. A megoldasok elGallitasara a lokalis keresést
alkalmazom, ahol a meta-algoritmus néhany szabaly betartidsa mellett lépked az
egyik algoritmusrol a masikra azért, hogy a lehets legjobb algoritmust megtalalja.
A lokalis keresés megallasi feltétele jelenleg 1000 iterdcié. Vizsgaltam magasabb
iteracioszamra is, azonban a tapasztalatok alapjan 1000 iteracié felett mar nem
javult a megoldas.

A szomszédsagi struktira a kiilonbozd MMask algoritmusok kozott természe-
tes modon definidlhato. Egy konkrét M Mask(K, o, 5) algoritmus szomszédjat ugy
kapjuk meg, hogy a K, o, f paraméterek koziil egyet modositunk. Legyen A egy
kis pozitiv konstans, ekkor minden «;, § paraméter a A értékével lesz névelve vagy
csOkkentve tgy, hogy az 14j érték pozitiv marad és kisebb lesz, mint a ladaméret.
A K értéke is valtozik 1 egységgel negativ vagy pozitiv iranyba. (Egy maésik le-
het6ség lehetne, hogy egyszerre tobb paramétert valtoztatunk. Ennek varhatoéan
az lenne a hatasa, hogy a keresés felgyorsul, viszont nagyobb eséllyel maradnanak
felderitetleniil a keresési tér egyes részei.)

Az MMask algoritmusra a lokalis keresést alkalmaztam a korabban bemutatott
feladatosztalyokat felhasznalva. A 4.12. tablazatban az F osztalyra vonatkozoan
lathato a korabbi algoritmusok (DNF, H(K), SH(K)) altal elért eredmények koziil a
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legjobb (MAX), az MMask altal kiszamitott legjobb eredmény (BMM, mint Best of
MMask roviditése). A fennmarado6 oszlopokban (O1-05) pedig az MMask 4j verzioi
altal elért legjobb eredmények lathatok a paraméterek optimalizaldsa utédn, amely
lokalis kereséssel valosult meg.

A 4.12. tablazatbol lathatoan kimaradt az S osztaly. Ennek oka, hogy korab-
ban a DNF méar megtalalta az optimélis megoldast, amit nyilvanval6an nem lehet
mar javitani, igy felesleges volna erre is futtatni az MMask algoritmust, kiegészitve
a paraméter optimalizalassal. Azonban az F osztalyra a fentebbi allitdAs mar nem
igaz. Igy elséként erre a feladatosztalyra probaltam elGszor manuélisan megfelels
paraméter-beéllitast talalni. Lathato, hogy az MMask alapbeallitasaval (BMM osz-
lop) mar sikeriilt feliilmualni a korabbi algoritmusok legjobb teljesitményét (MAX
oszlop) minden esetben. Az MMask kezdeti alapbeéllitasa a 4.10. tablazatban ol-
vashato.

Osztaly MAX BMM O1 02 03 04 O5
F1G1 414 424 436
F1G2 394 401

F1G3 415 419 427

F4G1 3459 3603 3625

F4G2 3287 3319 3331
F4G3 3406 3547 3593

4.12. tablazat. Az MMask optimalizalt paramétereinek eredménye az F osztaly
esetében

Az O1-O5 paraméter-beallitasok az egyes problémakra kiilon-kiilon lettek meg-
hatarozva. Példaul az O1 az F1Gl-re, az O2 az F1G3-ra és igy tovabb. Lathato,
hogy az F1G2 probléma kivételével mindegyikre sikeriilt paraméter optimalizalés-
sal olyan beallitasokat talalni, amely a korabbi legjobb MMask eredményt (BMM
oszlop) is javitottdk. A 4.13. tablazatban megadom az O1-O5 beallitdsok lokalis
keresés altal kapott pontos értékeit.

Beallitas K Qy 16
01 4 [113,222,286,388] 175
02 4 [94,221,316,410] 267

03 5 [64,197,286,395,495] 199

2
3

04 [100,101] 198
05 89,103,104] 218

4.13. tablazat. Az MMask paramétereinek lokélis kereséssel valo beallitasa (O1-O5)

A kovetkez6kben az LR osztalyra szeretném bemutatni a hasonléan elvégzett
vizsgalatot. Itt a paraméter-beallitasokat O6-O14 jeloléssel lattam el, az eredmé-
nyek a 4.14. tablazatban lathatok. Az egyéb oszlopok jelolése ugyanaz, mint a
4.12. tabla esetében. Lathato, hogy a BMM oszlopban olvashato érték a MAX
oszlop értékéhez viszonyitva az LR2G3 és LR3G2 esetében nem javult (ezt *-gal
jeloltem). Tovabba a BMM oszlop eredményét nem sikeriilt javitani semmilyen, a
lokalis kereséssel optimalizalt paraméter-beallitassal sem az LR1G2 esetében (ezt **
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karakterekkel jeloltem). Minden mas problémanal a BMM érték javult az optimali-
zalt paramétervalasztassal. A javulas 9 sort érintett a 12-bél, azaz 75%-ban sikeriilt
javitani az eredményeken.

Osztaly MAX BMM 06 O7 08 09 010 0O11 0O12 0O13 O14
LR1G1 016 538 539

LR1G2 481 498%**

LR1G3 013 521 227

LR2G1 1132 1146 1158

LR2G2 1060 1059 1060

LR2G3 1126 1116*

LR3G1 2165 2232 2245

LR3G2 2035 2015*

LR3G3 2155 2156 2166

LR4G1 4086 4242 4257

LR4G2 3754 3786 3788
LR4G3 4046 4086 4087

4.14. tablazat.

esetében

Az MMask optimalizalt paramétereinek eredménye az LR osztaly

A 4.15. tablazatban megadom az 06-O14 beallitasok lokalis keresés altal kapott
paraméterek pontos értékeit.

4.15. tablazat.

014)

Beallitas K oy, I}
06 5 [106, 205, 292, 413, 490] 238
07 5 [130, 204, 304, 303, 473] 238
08 5 [128, 194, 308, 414, 481] 241
09 4 [218, 197, 211, 185| 598
010 5 [100, 205, 299, 402, 498] 214
011 4 [220,224, 320, 409] 373
012 5 102, 199, 302, 399, 498] 214
013 4 [225,220, 206, 214] 563
014 4 [201, 199, 301, 400| 353

Az MMask paramétereinek lokalis kereséssel valo beallitasa (O6-

3. Megjegyzés. A fent bemutatott eredmények esetében az O1-01} bedllitisok a lo-
kdlis kereséssel lettek elddllitva gy, hogy a kitnduldst bedllitds a manudlisan megta-

lalt legjobb volt minden esetben. Tovabbd két alapbedllitdst is alkalmaztam, amelyeket
BASIC 1 és BASIC 2-nek neveztem el, amelyek a kdvetkezdk voltak:

e BASIC 1: K ne legyen se til kicsi, se tul nagy, azaz pl.: K =4, o; = 200
Vi-re, ahol 1 <1 < K, =200

e BASIC 2: K =4, o = [100,200, 300, 400], 8 = 200
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Az ok, amiért két kitintetett alapbedllitdst is alkalmaztam az, hogy a kordbbi manu-
dalis bedllitisok keresése sordn ez a két bedllitds 70 eredményeket hozott. FEllenben az
kiderilt, hogy ha a lokdlis keresést eqy kordabbi manudlis bedllitasbol inditom vagy az
eqyik alapbedllitasbol, az szignifikdnsan nem befolydsolja az optimalizdcic végeredmeé-
nyét.

A vizsgalatok alapjan az mondhat6, hogy a lokalis keresés segitségével egy "jo
paraméter-beallitas" megtaldlhato. Természetesen, fejlettebb eljarasokkal valdszint-
leg még jobb bedllitdsokat lehetne elérni, azonban ez egy jovébeni tovabbfejlesztési
lehetGség jelenleg. A téméahoz kapcsolodo korabbi publikacioban [42] a paraméterek
bedllitdsara a szimulalt hiitést alkalmaztak a szerzék, ami kicsit jobb eredményeket
mutatott, mint a lokalis keresés.

A jobb paraméter-beéllitasok megtalalasahoz jol alkalmazhato a lokélis keresés,
azaz képes megoldani a paraméterek automatikus keresését tgy, hogy a kordbbi
algoritmusok és a manudlisan bedllitott paraméterek eredményeitsl jobb eredmé-
nyeket ér el. Ez nagy konnyebbség, hiszen a paraméterek kézi bedllitdsat kivéltja.
Tovabbé, az MMask és a lokalis keresés, mint paraméteroptimalizalo fazidja haté-
konynak bizonyult. A paraméter beallitasokra vonatkozé tovabbi lehetGségekkel a
4.6. alfejezetben foglalkozom.

4.5. Részletes vizsgalat

Ebben az alfejezetben részletesebb vizsgalatokat szeretnék bemutatni az SH(K) és
MMask algoritmusok Osszehasonlitasaban. Itt az MMask algoritmusnak méar a loka-
lis kereséssel valo kiegészitett valtozatat tekintjiik. A vizsgalatok sordn a korabban
mar bemutatott feladatosztalyokat alkalmaztam. Tekintsiik az F1G1 osztalyt. Va-
lasszuk ki azt a korabbi algoritmust (DNF, H(K) és SH(K) koziil), amely a legjobb
eredményt adta ezen az osztalyon. A 4.7. tablazat alapjan ez az SH(K) algoritmus
volt, K = 4 beallitassal, azaz az SH(4). Az SH(4) eredménye 414 volt, a tobbi
algoritmusé rosszabb. Ezért a 4.16. tablazatban az SH(4) algoritmus eredményeit
hasonlitom Ossze az MMask eredményeivel az F1 osztalyban talalhato oOsszes fel-
adatra nézve a G1 nyereségfiiggvényt kiértékelve. Az MMask esetében az F1G1
osztalyra vonatkozoan a lokélis kereséssel megtalalt legjobb beallitas az O1 volt a
4.12. tablazat alapjan, igy ezt a beallitast alkalmaztam itt is. Az O1 beéllitassal
futtatott MMask eredménye 436 volt.

Fontos hangsilyozni, hogy ez az eredmény az F1 osztéily legels§ feladatara volt
csak érvényes, igy az O1 bedllitas csak erre a feladatra lett kiszamitva. A vizsga-
lat targya az, hogy az F1G1 osztidlyban az els6 feladatra optimalizalt paraméter-
beallitas a tobbi feladat esetében milyen eredményt hoz az SH(4) algoritmussal
Osszehasonlitva. Az eredmények itt is lefelé vannak kerekitve.

A 4.16. tablazatban foglalt eredmények igéretesek, ugyanis azt mutatjak, hogy
egy feladat kivételével (Falkenauer u120 19 G1) az MMask az optimalizalt paraméter-
beallitasokkal a 20 feladatbol 19 feladat esetén jobb eredményeket ért el, mint az
SH(4) ugy, hogy az Ol paraméter-beéllitasok csak a legelss feladatra (Falkenau-
er_ul20 00 G1) lettek optimalizalva. A Falkenauer ul20 19 G1 feladat ese-
tében az SH(4) kerekités nélkiili, eredeti értéke 423,1 volt, mig az MMask értéke
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Feladat példany SH(4) O1
Falkenauer ul120 00 G1 414
Falkenauer u120 01 G1 394
Falkenauer ul120 02 G1 385
Falkenauer ul20 03 G1 404
Falkenauer ul20 04 G1 414
Falkenauer ul20 05 G1 403
Falkenauer ul120 06 G1 413
Falkenauer u120 07 G1 405
Falkenauer ul20 08 Gl 435
Falkenauer ul20 09 G1 384
Falkenauer ul20 10 G1 444
Falkenauer ul120 11 G1 402
Falkenauer ul20_ 12 Gl 413
Falkenauer ul120 13 G1 413
Falkenauer ul20 14 G1 423
Falkenauer ul20 15 G1 404
Falkenauer ul20 16 G1 443
Falkenauer ul20 17 Gl 444
Falkenauer ul120 18 G1 405
Falkenauer ul20 19 G1 423 v

4.16. tablazat. SH(4) és az MMask Gsszehasonlitasa O1 beallitas mellett az F1G1
osztalyon

4229. Lathato, hogy a kiilonbség csupan 0,2. Az eredmények Osszességében azt
mutatjak, hogy a lokalis kereséssel valoban tudunk olyan bedllitast talalni, ami jobb
eredményeket hoz, mint a korabbi algoritmusok. Megjegyzendd, hogy a feladatosz-
talyban szerepld feladatok esetén ismeretes, hogy a targyak milyen intervallumbol
keriilnek ki és az, hogy a generalasuk egyenletes eloszlas mellett tortént. Mivel min-
den feladatban szerepls targyméretek azonos modszerrel keriiltek generalésra, igy a
feladatok hasonlosagot mutatnak egymaéssal.

Hasonlo vizsgalatot végeztem az F1G2 és F1G3 osztalyok esetében is. Itt a fel-
adatosztaly ugyanaz, mint az el6z6 esetben, viszont a nyereségfiiggvények nem, azaz
a profit kiszamitasara a G2 és G3 nyereségfiiggvényeket alkalmaztam. Az eredmény
hasonlo volt, azaz az MMask minden esetben jobb eredményt ért el, mint az SH(4).
Az alabbiakban egy Osszefoglalo tablazatot (4.17) ismertetek, amelyben az F1 és
F4 osztalyok eredményét mutatom be mindharom nyereségfiiggvény esetében. A
tablazatban a feladatosztélyok esetében a legjobb, legrosszabb és az atlagos ered-
meények keriiltek megadasra. Minden feladatosztaly esetében az MMask alkalmazasa
el6tti algoritmusok koziil (DNF, H(K), SH(K)) az SH algoritmus volt a legjobb, va-
lamilyen K beallitasa mellett. Az MMask esetében pedig a legjobbnak bizonyult
paraméter-beallitast adtam meg.

4. Megallapitas. Az MMask minden esetben jobb eredményeket ért el, mint az SH
algoritmus. Ez alapjdn kijelenthetd, hogy a lokdlis keresés alapi optimalizdlo eljdrds
hatékony.
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Osztaly SH MMask

K legrosszabb atlag legjobb bedllitas legrosszabb atlag legjobb
F1G1 4 384 413 444 01 403 437 474
F1G2 2 367 394 431 BASIC 1 386 406 440
F1G3 3 383 411 444 BASIC 1 404 433 464
F4G1 5 3372 3460 3555 03 3552 3623 3715
F4G2 2 3215 3301 3403 04 3272 3334 3479
F4G3 3 3381 3443 3528 BASIC 1 3528 3587 3678
4.17. tablazat. Az SH és az MMask osszehasonlitasa az F1 és F4 osztalyokon
5. Megallapitas. Az MMask még jobb eredményeket érne el, ha az adott feladatosz-
tdaly esetében nem csak az elsd feladatra, hanem mindegyikre, kilon-kilon elvégeznénk
a paraméterek bedllitdsat. Viszont ebben az esetben az algoritmust nem hivhatndnk
online algoritmusnak. Emiatt az aranykozépit az lehet, hogy eqy feladatosztdly ese-
tében nem eqy feladatra és nem is az dsszesre, hanem csak néhdanyra alkalmazzuk a
paraméterek optimalizdldsdt. Példdul, ha van 20 feladat eqy osztdlyban, akkor 5 fel-
adaton elvégezziik a paraméter-bedllitdst, majd a maradék 15 feladaton alkalmazzuk.
Az F osztély vizsgalata utan kdvetkezzen az LR osztaly vizsgélata is, amelynek
eredményei a 4.18. tablazatban lathatok. Zolddel van jeldlve az a néhany eset, ahol
MDMask nem javitott.
Osztaly SH MMask
K legrosszabb atlag legjobb beallitas legrosszabb atlag legjobb
LR1G1 4 510 548 06 460 530 565
LR1G2 4 481 530 M6 430 480 525
LR1G3 4 507 546 o7 447 508 545
LR2G1 4 993 1061 1132 08 1021 1110 1158
LR2G2 4 930 999 1061 09 945 999 1061
LR2G3 4 988 1056 M6 1009 1065 1120
LR3G1 4 1997 2099 2186 010 2106 2202 2295
LR3G2 4 1868 1964 2061 M6 1884 1977 2095
LR3G3 4 1988 2088 2176 011 2050 2142 2232
LR4G1 5 3934 4069 4196 012 4095 4259 4386
LR4G2 4 3569 3743 3872 013 3684 3795 3912
LR4G3 5 3525 3703 3850 014 3989 4120 4262

4.18. tablazat. Az SH és az MMask 6sszehasonlitasa az LR osztalyon

Ebben az esetben az MMask mar nem volt jobb minden esetben. A tablazatban
zolddel jeloltem azokat az eredményeket, ahol az SH algoritmus jobban teljesitett. A
4.17. és a 4.18. tablazatokban foglalt eredményekhez két fontos konkliazi6 tartozik.

6. Megallapitas. Csak néhdany esetben volt jobb az SH, mint az MMask. FEzekben
az esetekben rdaddsul az MMask nem sokkal maradt el az SH eredményeitdl. Ennek
oka lehet a nem megfeleld paraméter-bedllitds, vagy az SH algoritmus azon tulajdon-
sdga, hogy az azonos méretd targyakat igyekszik eqy ldddba pakolni. Rdaddsul az LR
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osztdalyban a targyak méretleit tekintve nagy a diverzitds. Valoszinidleg a paraméterek
tovdbbi javitdsdval az SH algoritmus ezen eldnye eltinne.

7. Megallapitas. Az LR1 osztdly esetében a 9 értékbil 5 érték esetében teljesitett
rosszabbul az MMask, mint az SH. Az LR2 esetében csak eqy ilyen érték ldathato, az
LR3 és LR/ esetében pedig az MMask volt a jobb minden tekintetben. FEz azt jelenti,
hogy ha az adott feladatndl a targyak mérete minél nagyobb, az anndl jobb az MMask
algoritmus teljesitményére nézve.

4.6. Tovabbi lehet6ségek

Ebben az alfejezetben néhany tovibbi lehetGséget emlitek meg, amely a téma jovo-
beni folytatasa is lehet. Els6ként a MMask algoritmusra vonatkozo tovabbfejlesztési
lehet6ségeket adom meg:

e Az alkalmazott paraméter optimalizalasi eljaras, a lokélis keresés egy konnyen
implementalhaté megoldas. Helyette alkalmazhato lenne maés eljarés is, példa-
ul a szimulalt hiités vagy tabukeresés. Az altalam alkalmazott lokalis keresés
megallasi feltétele jelenleg 1000 iteracio, mert azt tapasztaltam, hogy ennyi
elegendd a lokalis maximum eléréséhez.

e A szomszédsagon alapul6 keresés kivaltasara mas optimalizalo algoritmus tesz-
telése is érdekes lehet, példaul genetikus algoritmus alkalmazasa. Genetikus
Algoritmus (GA) esetén adott egy populacio, ebben a feladat megengedett
megoldasai az egyedek. Valamilyen szelekcios szabalyt alkalmazunk bizonyos
egyedek kivalasztasara, és a kivalasztott egyedeken valamilyen miiveleteket
(operéaciokat) alkalmazunk, ezek lényegében a mutacié (mutation) és a keresz-
tezés (crossover). Ezek utén feltoltiink az 0j egyedekkel egy 1j populéaciot, és
valamely populacié utan megallunk. A vizsgélt feladatunk esetén a mutacio
operator minden gond nélkiil alkalmazhat6. Ez ugyanis a kivalasztott megen-
gedett megoldas (egyed) kis mértékd megvaltoztatasat jelenti, épp tgy, mint
az altalunk alkalmazott lokalis keresés esetén. Fejlett genetikus algoritmusok-
nal egyébként gyakran el6fordul, hogy mutécié helyett lokalis keresést alkal-
maznak. A keresztezés miveletét vizsgaljuk meg részletesebben, hogy a fel-
adatunkra (az MMask algoritmus paraméterei optimalizalasara) hogyan lehet
alkalmazni. Csak akkor alkalmazunk keresztezést, ha a kivilasztott mindkét
egyed esetén a megengedett ladak szamat meghatarozo K paraméter ugyanaz
(legyen példaul K=4). Legyenek tehat a kivalasztott egyedek a kovetkezok:

— (K =4, aq1, ana, a3, g, B11)

— (K = 4, gy, gy, (a3, oy, Bo1)
A gyerek egyed (offspring) esetén is természetesen K = 4 lesz. Az alfa és
béta értékek kozott pedig alkalmazhatjuk azt a szabdlyt, hogy egyesével va-

lasztunk az elsg illetve a mésodik egyedbdl, a szokdsos médon: Egy véletlen
szamot generdlunk 0 és 1 kozott. Ha ez 0.5-nél kisebb, akkor az els6 vektorbol
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valasztjuk a megfelel6 értéket, egyébként pedig a masodikbol. Az alfa érté-
kek vélasztasa torténhet masképpen is, vilasztunk egy véletlen szamot 1 és 4
kozott (és kerekitjiik). Legyen példaul 2. Akkor az els6 kettd alfat az elss vek-
torbol valasztjuk, a maradék kett6t pedig a masik vektorbol. Osszefoglalva,
ugy gondolom hogy a paraméter optimalizalas lehetséges GA alkalmazasaval
is. Tovabba a lokalis keres6 helyettesithets lenne tabukereséssel vagy szimulalt
hiitéssel. Mindezekre kés6bb, tovabbi kutatas soran keriilhet sor.

e A vizsgalatok soran kideriilt, hogy az SH(K) algoritmus K = 4 esetében igen
hatékony volt szamos feladatra az LR osztalybdl (4.6. tablazat). Ez alapjan
érdekes lehet az SH(4) és az MMask algoritmusok valamilyen fazidja. Egy
egyszer lehet6ség lenne az, hogy mindkét algoritmust futtatjuk és a jobb
eredményt adot valasztjuk.

e Az MMask algoritmus a 2. lépésben az aktualis targyat véletlenszertien pa-
kolja valamelyik megfelelg ladaba. Lehetséges, hogy ha ebben a lépésben a
ladat nem véletlenszeriien valasztja az algoritmus, hanem valamilyen szabaly-
rendszer alapjan, akkor azzal novelhetd lesz az MMask teljesitménye. Két
modositast probdltam ki ezzel kapcsolatban:

1. Az aktualis targyat a megfelel6 ladak koziil a legnagyobb toltottségiibe
pakolta az algoritmus. Ennek a logikdja az lenne, hogy ezaltal a megenge-
dett ladatartomanyon beliil valtozatosabb lesz a 1adak szintje (novekszik a
maximalis és minimalis ladaszint kozotti kiilonbség). Ett6l a modositastol
azt vartam, hogy az algoritmus rugalmasabb lesz, jobban tudja kezelni
a kovetkezs targy pakoldsat: ha kicsi a mérete, olyan ladaba tessziik,
amelyik eléggé meg van méar toltve, ha pedig nagy a mérete, olyan ladaba
tessziik, amelynek kisebb a szintje. Tehat, ha valtozatosabb a ladak szint-
je, attol azt reméltem, hogy az algoritmus hatékonysaga javul. Viszont
a tapasztalat azt mutatta, hogy ez a moédositas semmilyen szignifikins
javulast nem mutatott. Néhany bemenetre kicsit jobb eredményt ért el,
més bemenetek esetében viszont rontott.

2. Legyenek B, Bs, ..., B; azok a ladak, amelyekbe pakolhato targy a 2.
lépésben. Ha ¢t = 1, akkor pontosan egy ilyen megfelel6 lada van és
ebbe keriil az aktudlis targy. Ha ¢ > 1, akkor az algoritmus kiszamolja
a By, By, ..., B, ladak mindegyikére a benniik 1év6 targyak atlagméretét,
amelyek rendre legyenek x1, o, ..., x;. Az aktuélis targyat abba a ladaba
pakolja az algoritmus, amely ladanak az atlagtoltottsége a "legkdzelebb
van" a targy = méretéhez, azaz amely lada esetében az (r—x;)? a legkisebb
1 <11 <t esetén. Sajnos ez a modositas sem javitott szignifikinsan az
eredményeken. Néhany feladat esetében kicsit jobb, masok esetében kicsit
rosszabb eredményt szamolt.

A bemutatott algoritmusok és eredmények a vizsgalat elsé szakaszat jelentették.
Természetesen lehetnek tovabbi opcidk is a tovabbfejlesztésre és a tovabbi vizsga-
latokra vonatkozoan. Fzenkiviil szamos kérdés felmeriil még, amely ugyancsak a
vizsgalatok kiterjeszthetGségére vonatkozik.
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o Az eredeti feladatosztalyokban szereplé problémak targysorrendjét megvaltoz-
tattam, ami azt jelenti, hogy az eredeti csokkenG sorrendet véletlenszerd sor-
rendre alakitottam at. Mi torténik, ha mas sorrendet valasztok? A rendezetlen
sorrend maradna, viszont nem véletlenszertien, hanem mas szabaly szerint ala-
kitandm ki azt. Vajon ugyanazok az eredmények sziiletnének, mint most?

e Mi torténne, ha az eredeti csokkend sorrendet novekvé sorrendé alakitanam?

A kordbban bemutatott algoritmusokon kiviil egy 6todik verzi6 is implementa-
lasra keriilt, amelyet DN-nel jeloltem, ugyanis ez az algoritmus a DNF algoritmus
parjanak is tekinthets. Megadott K érték esetén az algoritmus minden esetben k
ladat tart nyitva, és k = K. Az eredeti DNF algoritmus is igy mikédott, viszont
ott a K értéke minden esetben 1 volt, azaz egy lada lehetett csak nyitva egyszerre.
A DN algoritmus esetében a cél pedig az, hogy K > 1 esetekre vizsgéljuk meg az
eredményeket. Megjegyzem, hogy mivel mindig t6bb lada van nyitva, ez az algorit-
mus valtozat biztosan nem lehet hatékony abban az esetben, ha a haszonfliggvény
gyorsan csOkkend, de azt nem lehetett tudni el6re, hogy taldn més esetben hatékony
lehet-e. Az algoritmus minden targyat a nyitott ladak koziil abba pakol, amelynek
a legkisebb a toltottsége.

Az algoritmus tesztelése megtortént K = 2,3,4,5 értékekre. Az eredményeket
osszehasonlitottam a korabbi algoritmusok (DNF, H(K), SH(K)) eredményei koziil
a legjobbal. Az eredmények a 4.19. és a 4.20. tablazatokban lathatok. A K értékek
alatt a DN algoritmus futasi eredményei lathatok, a MAX oszlopban pedig az el6z6
algoritmusok eredményei koziil a legjobb, mellette pedig a DN algoritmus legjobb
eredménye.

Osztaly K MAX

2 3 4 5 |el6z6 DN
S1G1 148 137 135 124 148
S1G2 135 112 98 78 135
S1G3 147 134 129 114 147
F1G1 366 352 349 336 366
F1G2 333 288 252 210 333
F1G3 364 345 333 308 364
F4G1 3187 3145 3103 3071 3187
F4G2 2898 2568 2240 1920 2898
F4G3 3171 3081 2960 2816 3171

4.19. tablazat. A DN algoritmus eredményei az S és F osztalyokra

A tablazatokban foglalt eredmények alapjan lathatd, hogy a DN algoritmus a
DNF, H(K) és SH(K) legjobb eredményeit sem tudta javitani, ebbdl pedig az ko-
vetkezik, hogy az MMask eredményeitél is messze elmarad. A gyenge teljesitmény
oka az lehet, hogy az algoritmus feleslegesen tart nyitva sok ladat (pl. K = 4 esetén
mindig négyet) és emiatt a nyereségfiiggvény értéke minden fedett lada utan ugyan-
az. Azaz, ha pl. K = 4, akkor az algoritmus mindig négy ladat tart nyitva és egy
fedett ladaért mindig G(4) profitot kap. Ebbdl konnyen belathato, hogy a profit
értéke konstanssa valik, azaz nem tud tovabb novekedni (bar csokkenni sem).
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Osztaly K MAX

2 3 4 5 |el6z6 DN
LR1G1 425 411 397 384 425
LR1G2 387 336 287 240 387
LR1G3 423 403 379 352 423
LR2G1 970 950 931 912 970
LR2G2 882 776 672 570 882
LR2G3 965 931 888 835 965
LR3G1 1900 1871 1843 1814 1900
LR3G2 1728 1528 1330 1134 1728
LR3G3 1891 1833 1757 1663 1891
LR4G1 3613 3567 3521 3475 3613
LR4G2 3285 2912 2541 2172 3285
LR4G3 3595 3494 3357 3185 3595

4.20. tablazat.

A DN algoritmus eredményei az LR osztalyra
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5. fejezet

Osszefoglalas

Az alabbiakban egy Osszefoglalast kivanok adni az elvégzett munkarol és az Gj tudo-
manyos hozzajarulasokrol. A dolgozatban alapvet&en harom teriilettel foglalkoztam,
amelyek az litemezés, a ladapakolas és a ladafedés szallitassal voltak. Mindharom
teriilet NP-nehéz.

Az litemezés teriiletén a fiiggetlen gépek litemezése megel6zési relaciokkal tipusi
feladatokat igyekeztem megoldani megerdsitéses tanulas tamogatasaval. A megoldés
célja az eréforrdsok munkakhoz valo rendelése gy, hogy figyelembe vessziik a meg-
el6zési relaciokat és igyeksziink a teljes atfutési id6t (makespan) minimalizalni. A
megel6zési relaciok leirasa irdnyitott és egyszerd graf segitségével tortént, ahol a graf
diszjunkt utak és izolalt pontok uni6ja. A megel§zési relacio két tevékenység kozott
azt adja meg, hogy a tevékenységek végrehajtasa milyen sorrendben térténhet meg.
A megel6zési relaciok miatt a tevékenységek sorrendje fontos, befolyésolja a teljes
atfutasi id6t. Az altalam kifejlesztett megoldas két f6 komponensre bonthato fel: a
tevékenységek sorrendjét meghatarozo eljaras és a moho6 modon iitemezé algoritmus.
A sorrend meghatarozasat a megerdsitéses tanulés teriiletén ismert Q-tanulassal va-
lositottam meg. A kidolgozott algoritmus neve Q-Learning Motivated Algo-
rithm (QLM). A kidolgozott algoritmus tesztelésére négy feladatosztalyt hoztam
letre (Class #1, Class #2, Class #3 és Class #4), amelyek koziil a Class #1 és
Class #2 konnytinek tekinthetSk, a Class #3 kozepesen nehéz, a Class #4 pedig
extrém nehéz. Az algoritmus teljesitményét az LB1, LB2 alsé korlatokkal mértem,
tovabba megadtam ezek maximumét az LB = max{LB1, LB2} segitségével. A
QLM minden esetben megtalalta az optimélis megoldast, amikor a CPLEX is. Bi-
zonyos esetekben a CPLEX-nél jobb vagy lényegesen jobb megoldast adott a QLM,
a tobbi esetben pedig az optimalishoz kozeli megoldés sziiletett, azaz kozel volt az
LB értékéhez. Ezen a teriileten az alabbi tudomanyos hozzajarulasok valosultak
meg:

1. Az R, |prec|Cpq. feladat megoldasara létrehoztam egy megerdsitéses tanulas
altal tamogatott algoritmust (QLM).

2. Az algoritmus vizsgalatara létrehoztam 1j feladatosztalyokat.

3. A QLM algoritmus futasat dsszehasonlitottam az irodalomban levs, valamint
a CPLEX megoldo6 altal szolgaltatott eredményekkel. Az eredmények alapjan
a QLM algoritmus a vizsgalt feladatosztalyokon beliil hatékonyan mikodik.
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A ladapakolési feladat esetében targyakat pakolunk ladédkba tgy, hogy az egy la-
daba pakolt targyak osszmérete ne 1épje til a lada kapacitasat és a felhasznalt 1ladak
szama minimalis legyen. A problémat 1j megkozelitésben vizsgaltam, amely sze-
rint egy adott feladatosztalyba tartozo inputok koziil a lehets legtobbet igyeksziink
megoldani optimélisan moho algoritmusokkal. A cél a lehetd legtobb input optima-
lis megoldasa. Mivel a ladapakolas NP-nehéz, ezért nem elvarhat6, hogy az Gsszes
feladat esetén megkapjuk az optimélis megoldast. Feladat-osztalyoknak a Schwe-
rin és a Falkenauer U osztalyokat valasztottam. Mindkét feladatosztaly esetében
az optiméalis megoldésok az irodalombo6l mér ismertek, azonban az algoritmusaim
futdsdhoz nem sziikséges az optimumértékek elGzetes ismerete. A Schwerin és a
Falkenauer U feladat-osztalyokban taldlhaté inputok megoldaséra két algoritmust
készitettem: a Schwerin osztadlyhoz a REM SW, a Falkenauer U osztalyhoz az
FU algoritmust. Mindkét algoritmus a feladatosztalyok kiilonb6z6 tulajdonsagait
kihasznalva oldja meg az ott taldlhato inputokat. A REM SW algoritmus a Schwerin
feladatosztaly mind a 200 darab feladatat, mig az FU algoritmus a Falkenauer U
osztaly 80 feladatabol 73-at oldott meg optiméalisan. Ezen a teriileten az aladbbi
tudomanyos hozzajarulasok valésultak meg:

1. Megvizsgaltam, hogy a Schwerin és a Falkenauer U osztalyok milyen, a meg-
oldas szempontjabol kihasznalhaté tulajdonsagokkal rendelkeznek.

2. Moho algoritmusokat hoztam létre a Schwerin és a Falkenauer U osztalyok
szamara.

3. A REM SW algoritmus a Schwerin osztaly mind a 200 feladatat optimalisan
megoldotta.

4. Az FU algoritmus a Falkenauer U feladatosztaly 80 inputjabol 73 darabot
(91%) optimalisan megoldott.

A ladafedés széllitassal egy viszonylag 1j teriilet. Mint a ladapakolas esetében,
itt is targyakat pakolunk ladakba. Azonban itt ahelyett, hogy az egy ladaba pakolt
targyak Osszmérete ne lépje til a lada kapacitasat, az a feltétel van, hogy a targyak
Osszmérete legalabb akkora kell hogy legyen, mint a lada kapacitasa. Egy ladat fe-
dettnek tekintiink, ha a benne levé targyak osszmérete legalabb a lada kapacitasaval
egyenls. Minden elszallitott (azaz fedetté valt) lada utan profitot realizalunk el6-
re meghatarozott célfiiggvény alapjan. A cél a profit maximalizalasa. A megoldas
soran szamon tartunk egy K > 0 pozitiv egész szdmot, amely megadja, hogy hany
lada lehet nyitva egyszerre. A kutatas soran mér az irodalombdl ismert természetes
algoritmusokat implementéltam (DNF, H(K) és SH(K)), valamint kidolgoztam
egy Uj, rugalmas, paraméteres algoritmust is, amelynek az MMask nevet adtam.
Az algoritmusok tesztelésére a kordbban mér alkalmazott Schwerin és Falkenau-
er U osztalyokat, valamint egy altalam létrehozott Large Range (réviden: LR) ne-
vii feladatosztalyt hasznaltam. A nyereség-fliiggvényekbdl harmat definidltam: egy
lassan csokkend, egy elGszor lassan, majd négyzetesen csokkend és egy meredeken
csokkend valtozatot. A feladat-osztalyokon modositasokat hajtottam végre: meg-
bontottam a rendezettséget, normalizalast hajtottam végre és Osszekapcsoltam a
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feladat-osztalyokat a nyereség-fliggvényekkel. Az MMask algoritmus harom para-
méterrel dolgozik: K - az egyszerre nyitva tarthaté ladak maximdlis szama, o -
K-dimenzios vektor, [ - pozitiv egész szam. Az « és [ paraméterek az algoritmus
elfogado-elutasito politikajaban keriiltek felhasznalasra. Az MMask algoritmus pa-
ramétereinek beéllitdsa kezdetben kézzel, probélgatéassal tortént. Majd késébb ez
automatizalasra keriilt a lokalis kereséssel. Az eredmények alapjan az lathato, hogy
méar a manuéalis paraméter-beallitas mellett is az MMask az esetek dontd tobbségében
javitott a természetesen adddo algoritmusok altal elért addigi legjobb eredményeken,
a lokalis kereséssel optimalizalt paraméter-beéllitas pedig ezen az esetek tobbségé-
ben még tovabb javitott. Ezen a teriileten az alabbi tudoményos hozzéajarulasok
valosultak meg:

1. Reészletes vizsgalatokat folytattam a teriileten, és ennek érdekében létrehoztam
egy 1j benchmark feladatosztalyt Large Range (LR) néven.

2. Az irodalomban mar létez6 algoritmusokat implementéltam a feladatra (DNF,
H(K), SH(K)). Az implementalt algoritmusokra részletes vizsgalatokat végez-
tem, és megallapitottam, hogy hatékonyan oldjak meg a vizsgélt feladatosztaly
elemeit.

3. Egy j MMask-nak nevezett algoritmust dolgoztam ki (amely a korabbi Mask
javitott valtozata). Megéllapitottam, hogy a paraméterek megfelel§ beallité-
saval az MMask algoritmus a korabbiaknal is jobb eredményeket szolgaltat.

4. A paraméterek optimalizalasara létrehoztam egy lokalis keresés alapi metahe-
urisztikat, amely a legjobb eredményeket elérg beallitasokat hozta létre. Rész-
letesen megvizsgaltam a tovabbi javitasi lehet&ségeket.
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Fuggelékek



A. fuggelék

Gépi 1dék a QLM algoritmus
feladataihoz

A.1. Az els6ként generalt, alap feladatokhoz tartozo
gépi id6k és megel6zési relaciok

my | ™o | T3 | Ty | Ty | Mg | Ty | TNY
task; 2 (10 ] 4 9 1 4 1 10
tasky | 2 6 9 2 6 7 3 5)
tasks 7 9 6 2 8 1 5 4
tasky 6 | 10 | 8 3 8 5) 4 3
task; | 6 8 7 71101 5 10| 6
taskg | 3 5 2 1 110 9 1 3
task; | 2 7 1 5 10| 9 2 9
tasks | 2 8 6 | 10 | 8 6 2 7
tasky | 9 4 1 3 8 6 ) 9
taskyy | 8 1 8 7 9 5) ) 6
tasky; | 1 1 4 4 8 2 5 8
taskiy | 5 8 3 3 5) 7 110 | 10
taskys | 3 3 2 3 11010 3 2
taskyy | 2 7 3 3 2 7 6

A.1. tablazat. A #1 szamu feladat gépi id6 tablazata

tCLS]‘J4 — tCLSkn — tCLSklg
tasky, — tasks — task;
tasky — tasks

A 2. tablazat. A #1 szama feladat megel6zési relacioi
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my | Mo | Mg | My | My | Mg | Ty
taskl 6 3 4 9 2 8 | 10
task2 9 6 7 4 |10 | 8 3
task3 9 |10 ] 1 1 3 6 5
task4 1 1 4 1 6 4 3
taskb | 10 | 7 5 3 2 8 6
task6 7 4 110 4 | 10| 8 7
task7? | 4 7T 110 3 | 10| 7 3
task8 8 7 9 2 2 5 5
task9 5 6 9 2 6 6 4
task10 | 6 1 4 7 8 8 6
task1ll | 2 3 3 7 110 ] 6 2
taskl2 | 2 9 8 4 4 5 8
task1l3 | 6 4 2 6 9 6 2
taskl4 | 10 | 10 | 6 3 |10 | 4 7
task15 | 1 1 9 2 4 6 7
task1l6 | 9 7 8 9 6 3 9
task1l7 | 9 6 4 6 6 2 8
task1l8 | 5 | 10 | 5 8 4 5 2
task19 | 10 | 9 8 2 2 5) 5
task20 | 1 | 10 | 9 6 |10 | 5 4
task21 | 8 | 10 | 4 8 3 4 3
task22 | 5 1 8 5 9 7 6
task23 | 6 3 3 8 6 7 3
task24 | 6 2 1 7 3 5 | 10
task25 | 7 | 10 | © 2 5 4 2
task26 | 5 7 6 6 | 10 | 5 | 10
task27 | 8 9 9 2 2 6 2
task28 | 4 | 10 | 7 4 9 5) 6

A.3. tablazat. A #2 szamu feladat gépi id6 tablazata

task, — tasks — taskor

tasks — tCLSkg — tCLSklg — taSkQO
tasks — taskg

tCLSk’lg — taSk?lg — taSk?lg

A 4. tablazat. A #2 szama feladat megel6zési relacioi
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my | Ty | T3 | Ty
taskl 7 2 2 8
task?2 7 5 2 6
task3 | 10 | 1 4 5
task4d | 4 1 8 7
taskb 1 5 7 9
task6 8 3 7 2
task7?7 | 5 6 3 2
task8 3 4 7 1
task9 3 8 | 10 | 6
task10 | 3 | 10 | 8 7
taskll | 9 1 8 1
task12 | 2 7 3 3
task13 | 6 4 8 6
taskl4 | 9 6 3 1
taskl> | & | 10 | 7 9
task1l6 | 7 7 5) 7
task1l7 | 10 | 6 7 1
task18 | 4 2 6 8
task19 | 5 5 5 5)
task20 | 1 5 4 8
task21 | 9 6 5 5)
task22 | 6 3 5 6
task23 | 3 6 5 |10
task24 | 6 6 9 9
task25 | 10 | 3 1 2
task26 | 7 | 10 | 10 | 6
task27 | 1 | 10 | 1 1

A.5. tablazat. A #5 szamu feladat gépi id6 tablazata

tCLSklO — tCLSkQG

A.6. tablazat. A #5 szamu feladat megel6zési relacidja
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A.9. tablazat. A #28 sz
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tasks — tCLSl{?go — tCLSkgg — tCLSI{?34
tCLS]Cl() — t(lSl{Zlg — tCLSk?17

tCLSkﬁo — task:65 — tCLSl-CGG

tCLSk’67 — tCLSk’Gg — tCLS/{ZGQ

task; —  taskg

A.10. tablazat. A #28 szamu feladat megel&zési relacioi
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A.2. A boévitett feladatokhoz tartoz6é gépi idék és
megel6zési relacidk osszefoglalé tablazatai

A bdévitett feladatok esetében osztalyonként tiz feladatrol van szd, azaz Osszesen
negyven darabrol. Nyilvan mindegyikhez tartozik egy gépi id§ tablazat és megelGzési
relaciok. Ezen tablazatok teljes terjedelmi kozlése nem célszert helyhiany miatt.

A feladatosztalyokra vonatkozd Osszefoglald tablazatban megadom a gépi id6k
generalasdnak modjat, az alkalmazott diszkrét intervallumot és a megel6zési relaci-
okat.

4
tasks — taskg
tCLSklO — tCLS]{?H
tGSkll — tCLSklg
taskis — task;
task, — tasks

iok

laci

tCLS]CH — taSkZlg
task; — taskg
taske — taskg
task; — task,
task, — tasks

-

20

[1,10], diszkrét
egyenletes
6zési re

Class #1
Megel
tasky, — taskiy
tasks — tasks
tasks — tasks
taskiy — taskiy
task, — taskg

1
tasks — taskio
tCLSkZlQ — tCLSleg
tasks — tasky
tasks — tasks
task, — taskg

Feladatok
Intervallum
Eloszlas

A.11. tablazat. A Class #1 osztaly feladatainak gépi idé adatai és megelGzési relacioi
(els6 részlet)
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A.12. tablazat. A Class #1 osztély feladatainak gépi id§ adatai és megel
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maso
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Class #1 osztaly megel6zési relacioi (6sszevont diszjunkt utak

formajaban)

1. feladat:
tasks —
tasky, —
task;, —

2. feladat:
task, —
task, —
tCLSk’lO —
task; —

3. feladat:
tCLS]CH —
task; —
task; —

4. feladat:
tasks — taskyy —

tasksy — tasks

5. feladat:
tasks — tasksg — task;

6. feladat:
tasks —
tasky —
task, —
task13 —

7. feladat:
tasky, — tasks — tasks

8. feladat:
taskes — tasks — taskg

tCLSklg — tCLS]{Ilg
tasky — tasks
tasks

tCLSl{?14

tasks — taskg
taSkJn

taskqg

t(lSl{Zlg

taskqg

tasky, — tasks
tCLSkZH — tCLSklg —
—  tasks — taskg
tasks

tasky;

taske — taskg
tCLSl{Z14

—  tasky —  tasko
—  tasks — task

XI

task,

— tCLSklO

— tCZSkH

_>

tCLSk’lg



9. feladat:

tasky — tasks
tasks — taskis
task; — tasks — taskg
tasky —  taskio

10. feladat:

tasky, — tasks — task; — taskig — taskis — tasku
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A.14. tablazat. A Class #2 osztaly feladatainak gépi id6 adatai és megelGzési rel
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Class #2 osztaly megel6zési relacioi (6sszevont diszjunkt utak

formajaban)

1. feladat:
tasks
tasks
tasks
task:lg

2. feladat:

3. feladat:

4. feladat:

Ll

task;
tasks
taSk’lo
taskig
taskoy
tasks
task,

task,
taskg
taskqq
taSk’Qo
taskos
taskig
tasks

task,
tasks
taskor
tasks
taskoy
taskoo
taskis

tasks
taskg
taskqy
taskig

LIl 4Ll L 4Ll

LIl il

_>
_>

_>

task,
taskas
taskiy
taskor
taskag
task;;
tasks

tasks
taskoy
taskio
task;
taskor
taskis
task,

taskig
taskqq
tasks
tasko
taskag
tasko;
taskig

XV

tCLSk28
tCLSk?14 — taSkQ()

tCLS/{ZQQ
— task:14
— task15
— tCLSl{?15



5. feladat:

6. feladat:

7. feladat:

8. feladat:

tasks
tasks
taskqa
tasks
taskqs
taskis

taskio
tasksyy
taskos
tasks
taskig
taskis

L1l 4l

taskiy
taskoy
tasks
task;
taskqg
taskis
taskqg

AN

task;
tasko;
taskoy
tasks
taskqy
taskie

taskis
task,
taskiy
tasky
tasks
taskis
taskag
tasks,

L L Ll

taskyy
taskoy
taskas
taSk‘lo
taskig
task;;

A

tCLS]{?g
task,
tasks
taskg
taskoo
taskie
tasko;

XVI

— tCLSk'lg,

—  taskyy

tCLSk'l(] —

tasks
taskio
taskoy
taskg
taskqy
t(lSk?g
tasko;
taskie

— task‘lg

tCLSkH



9. feladat:

10. feladat:

tasky
tastQ
tasky
tCLSk’15
taskqy
tGSklg

tCLSk’m
tGSkl 1
taskg
task14
task,

Ll L4l

Ll 4l

tasks
tCLS]CQ(;
task,
task24
taSk'lg
task25

task,
taSklg
task,
tCLSl{Zlg
t(lSkgg

—  tasks
—  tasksg
— tCLSk’Ql

XVII

— t(lSklo

—  taskqy
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Class #3 osztaly megel6zési relacioi (6sszevont diszjunkt utak
formajaban)

1. feladat:

tCLSklO — t(J,Sl{Z4
2. feladat:

taskyy — tasks
3. feladat:

t(lSkZ24 — tCLSk?15
4. feladat:

tasksy —  taskis
5. feladat:

tasks — taskos
6. feladat:

tGSkZ15 — taSkQG
7. feladat:

task, — taskor
8. feladat:

tasks — taskis
9. feladat:

ta8k14 — tCLSk'lg
10. feladat:

taskyy — tasks
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Class #4 osztaly megel6zési relacioi (6sszevont diszjunkt utak
formajaban)

1. feladat:
tCLSk’3 — tCLSl{?gl — tCLSkZ34 — task35
tCLSkH — t(lSl{Zlg — tCLSklg
tCLSk’gl — task:66 — task:67
task’(;g — tCLSk’Gg — tCLSk’m
tasks — taskio
2. feladat:
task; — taskis
tasks — tasky — taskig
taskiy — taskor
tasky;; —  tasksy
tCLSkgg — tCLSng’]
task57 — tCLSk’48
tasks — taskss
taskss —  taskeg
tasks — tasks;
3. feladat:
tasksy — tasks — taskgy — taskss
taskis — taskg
taskry —  taskq
task37 —  taskas
tCLSk’lg — t(lSkZ41
tCLSk’58 — task%
taskyy, —  taskiy —  tasksy
4. feladat:
tasky; — t(lSkZ34 — tCLSk?35 — tCLSk’gﬁ
tCLSk’13 — task15
taski; —  taskio
tGSk'QQ — tGSkgg
tCLSkJ67 — tCLSl{Z64
task62 — t(lSkgﬁ
tCLSk’lg —  taskiy — task:56

XXIII



5. feladat:

6. feladat:

7. feladat:

8. feladat:

9. feladat:

tasks
taskg
tCLSk?g,g
tCLSklg

Ll

tCLSkJ34
tCLSk’58
tCLSk’Gg
tGSk(;g
taskqs
tasks
task18

task,
task,
taskio
tasks
tCLSk’19

taskq
tasks;
tCLSk’45
taskqs
taskeo
taskig

tasks
tasky;
task’60
task12

Lid 4Ll

taskoy
taskas
taskss
taske;
tasks
task,
tCLSk5
taskig

Ll

LIl didd

—

_>
_>

tCLSl{Z35
task;59
taSk"m
task,
taskqo
tasks
taSkGQ

A

tasks
tasksg
taskes
tasks
tCLSkﬁg

taskqe
tasks
tCLSk46
taskoy
taskg;
taskgs

task,

tCLSlﬂﬁl
task:56

—

_>

taskas
taskag
tasksg
taskgs
tasky;
taskiy
tCLSl{?G
taskgs

U

L1

XXIV

—

_>

tCLSk'24

tasks

—

—

tasks
tCLSk68
tCLSk?70

tCLSk?73
task12
t(LSk’47

tasks

tCLSk’57

—

taskqa

tCLSk’ﬁo

%
_>

_>

—

tCLSklo

taskag
taskq

tCLS]C74

tCLSk58



10. feladat:

taskqq
task,
taskq
tCLSk’47
tasksy
taskio
taskyo

Ll LL Ll

taskio
tasks
taskqs
task:51
taskes
tasko;
tasky

— tCLSkgg

—

XXV

tasks

— tCLSk’24



B. fuggelék

Futasi idok a QLM algoritmus
feladataihoz

B.1. Az els6ként generalt, alap feladatokhoz tartozo
futasi idok

Futasi id6k futasonként (mp)

Feladat 1 o 3 4 5 6 . 3 9 10 Atlag (mp)
#1 0,15 0,29 043 0,58 0,73 0,90 0,71 0,28 0,44 0,59 0,51
#2 091 085 066 046 0,32 0,20 0,62 097 0,81 0,59 0,64
#5047 085 0,11 038 0,70 092 055 021 096 0,13 0,53
#28 0,84 087 055 0,67 092 014 026 045 089 028 0,59

B.1. tablazat. Az alap feladatokhoz tartozo futasi idék

B.2. A Class #1, Class #2, Class #3 és Class #4

feladatosztalyokhoz tartozo futasi idék

Feladat- Futasi id6k futasonként (mp <

osztaly 1 2 3 4 5 6 7 ( a); 9 10 Atlag (mp)
0,16 0,29 044 0,59 0,71 0,83 095 0,84 0,21 0,33 0,54

Class #1 0,13 0,25 0,37 0,49 0,61 0,73 085 0,97 094 0,21 0,55
0,13 0,25 0,38 0,50 0,63 0,75 0,88 0,12 0,14 0,26 0,40
0,14 0,27 0,39 0,52 0,65 0,78 091 0,39 0,17 0,27 0,45

B.2. tdblazat. A Class #1 feladatokhoz tartozo futési idGk

XXVI



Feladat- Futasi id6k futdsonként (mp) "

osztily 1 2 3 4 5 6 7 8 9 10 Atlag(mp)
0,71 041 0,10 0,81 0,50 0,22 094 0,65 0,34 0,42 0,51

Class #2 0,73 048 0,20 093 0,65 0,04 0,12 0,83 0,53 0,24 0,47
0,73 047 021 0,55 0,77 048 0,21 094 0,64 0,37 0,54
0,74 0,47 020 097 0,71 045 022 092 0,63 0,33 0,56
B.3. tablazat. A Class #2 feladatokhoz tartozo futasi idék

Feladat- Futasi id6k futasonként (mp) "

osztily 1 2 3 4 5 6 7 8 9 10 Atlag(mp)
0,73 045 0,18 1,00 0,72 045 0,22 096 0,67 0,38 0,58

Class #3 0,76 0,53 0,26 098 0,70 041 0,15 0,99 0,79 0,51 0,61
0,86 0,64 037 011 084 064 037 089 0,80 0,54 0,61
0,73 0,48 0,23 098 0,74 048 0,29 0,83 0,82 0,57 0,62
B.4. tdblazat. A Class #3 feladatokhoz tartozo futési idGk

Feladat- Futasi id6k futasonként (mp) "

osztdly 1 2 3 4 5 6 7 8 9 10 Atlag(mp)
0,74 0,25 049 094 0,67 032 081 0,99 0,76 0,39 0,64

Class 4 049 079 015 025 040 065 017 056 035 035 0,42
0,44 0,17 0,40 0,59 0,89 0,53 0,25 0,67 0,17 0,66 0,48
0,67 0,48 0,52 098 0,53 090 046 090 0,31 041 0,62

B.5. tablazat.

A Class #4 feladatokhoz tartozo futéasi idék
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C. fuggelék

A CPLEXsz-el megoldott eredeti
optimalizalasi feladat modellje és a
GAMS kéd

C.1. Az eredeti modell

Min Cpee = Iglg}(F?}

m UB

YD wjm=1VjieJ

v=1 r=1
ijw <1L,Vre RYve M

j=1

n n
E Lipr — E xj,v,r—l S 07
i=1 j=1

Yo e M,Vr e {2,..., UB}

FJ} - FT’@ + L(2 - xjvr - xi,v,rfl) 2 pjv>
Vi,j e Jyi#j,Yve MNre{2,..., UB}

UB
FT; > Y pjujor,Vj € JVv € M

r=1

m UB
FT;— FT; >3 ) pjutjur, Vi € Py

v=1 r=1

T € {0,1}, FT; > 0,Vj € J,Yv € M,Vr € R
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J | munkak halmaza, J = {1,...,n}
M | gépek halmaza, M ={1,... ,m}
azon poziciok maximélis szdma minden gépen, ahové a feladatok keriilnek,
UB
UB=n—m+1
R | poziciok halmaza, R ={1,...,UB}
Pjo | @ j. munka végrehajtasi ideje a v gépen
P; | a j. munkat kozvetleniil megel6z6 munkak halmaza
L | egy nagy pozitiv szam
. 1 az értéke, ha a 7. munka az r. pozicibban keriilt
JUT 1 feldolgozésra a v. gépen, kiilénben 0
FT; | a j. munka befejezési ideje
C.1. tablazat. A modell paraméterei

(C.1) A célfiiggvény, a teljes atfutéasi idét minimalizaljuk, amely nem lehet kisebb
mint barmely munka befejezésének ideje.

(C.2) Minden munka esetén, a munkat pontosan egy gép fogja végrehajtani, és ezen
a gépen a munka az r-edik pozicioba fog keriilni, valamely r-re.

(C.3) Minden v munka és r pozicio esetén, ide legfeljebb egy munka titemezhetd.

(C.4) Az r-edik pozicioba csak akkor tesziink munkat, ha az r — 1-edik pozicioban is
van munka, egyébként nem (emiatt a munkak folyamatosan lesznek iitemezve a
gépeken, tehat pl. olyan nem fordulhat el§, hogy van munka az 1. poziciéban,
aztan a 2-ban nincs, de utana a 3-ban meg megint van).

(C.5) Ha valamely v gép esetén valamely j munka kézvetleniil az ¢ munka utani po-
zicibban van, akkor a j-edik munka befejezési ideje legalabb akkora mint az
elGtte levs (tehat az ¢ munka) befejezési ideje, plusz a j-edik munka megmun-
kéalasi ideje azon a gépen.

(C.6) A j-edik munka befejezési ideje legalabb akkora mint a v-edik gépen a j-edik
munka végrehajtasi ideje, ha a munka erre a gépre van iitemezve.

(C.7) A j-edik munka befejezési ideje legalabb akkora mint barmely azt kozvetleniil

megel6z6 munka befejezési ideje, plusz a j-edik munka megmunkalasi ideje.
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C.2. GAMS kod

Fets ¥ gep indexe Fowld = w7 f

i munka (task) f jO #
r pozicio (hanvadik a

tliazs (i,3):
lias (r,d):
Scalar L nagy szam / 100 /:

il3 f
sorrendben a munka

Takle plv,]) processing time v-edik gepen a

i0 il iz i3 J4 i5 ie i7 j8
w0 2 2 7 o o 3 2 2 9
vl 10 & 9 10 g 5 7 8 4
w2 4 9 & 8 7 2 1 & 1
v3 9 2 2 3 7 1 s 10 3
w4 1 & g g 10 10 10 g g
w5 4 T 1 5 5 9 9 & &
e 1 3 L 4 10 1 2 2 L
w7 10 5 4 3 o 3 9 7 9

Parameter precii,j) =z akkor
FIEC I:"jg"r Frjllrr:l =l;
prec("jll", "j12")=1;

E—'IEC irrjlrr‘_ rrj3rr:| =l:_

EIEC I:rrj3rr‘ rrj'?rr:l =l;
prec("jo","js5")=1;

1l ha i kozvetlenul

valamely gepen)

Jj-edik munka

9 jlo0 j11
8 1 5
1 1 8
8 4 3
7 4 3
g 8 5
5 2 7
5 5 10
€ g 10

megelozi Jj-t:

variables
X(3,¥v,r) akkor 1 ha a j manka a v-edik gepen az r-edik
c(i) a j-edik munka befejezesi ideje
makespan a teljes atfutasi ido

positive wvariakle c;
binary wvariable x;

C.1. abra. Az alapfeladatok koziil az #1 feladathoz hasznalt GAMS kod (elsé részlet)
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equations

okd (3) makespan minimization
valahol (j) minden munka wvalahol wvan
csakegy (v, ) minden helyen legf egy munka wvan
monoton (v, T, d) nincs lyuk az x vektorkan
legalakk(i,j,v,z,qd) nem kezdodhet korakbban mint ahogy az elotte levo befejezodik
elso(j,v) elso munka wvege
utanna (i, j) csak a kozvetlenul megelozo utan
ocbj (3) .. makespan =g= c{j} :
wvalahol (3).. sum | (v, )} , x(j,v,r) ) =g= 1;
csakegy (v, T) .. sum|{ Jj , =X(j,v,x) } =1= 1;
monoton (v, r,qls( ord(r) gt 1 and orxd(r)=oxdig)+l )..
sum( 3 , =(3,v,xr) ) =1= =sumi J , =x(J,v,d) )}
legalabb (i,3,v,r,g)$( oxd(i)<>oxd({j) and ordir) gt 1 and oxrd(r) = oxdig)+l )..
c{jl-cii) + L * ( Z2-=x(i,v,)-xii,v,q) } == p(v,J):
elso(d,v).. c(j) =g= sum( r , p(v,3) * =(1,v,I) P
ucanna (i, i) prec(i,ji)=1)..
c(i}-ci(i) =g= sum( (v,xr) , p(¥v,J) * =H(J,7V, 1) [

model Unrelated JF all f ;

option optcr=0.001;

option optca=0.1;

solve Unrelated using MIP minimizing makespan;
display x.1, c.l, makespan.l;

C.2. abra. Az alapfeladatok koziil az #1 feladathoz hasznalt GAMS kod (mésodik
részlet)
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C.3. Statisztika
Az #1 alapfeladat statisztikai adatai:

o [eltételek szama: 1625
e Valtozok szama: 239

e Binéiris valtozok szama: 224

R R R R R R R R R R R R

MODEL STATISTICS

BLOCKS OF EQUATICHNS 7 SINGLE EQUATIONS 1,825
BLOCKS OF VARIABLES 3 SINGLE VARIABLES 239
NCOH ZERC ELEMENTS 6,950 DISCRETE VARIABLES 224
SOLVE SUMMBARRTY

MODEL Unrelated CBJECTIVE makespan

TYPE MIP DIRECTICHN MINIMIZE

SOLVER CPLEX FRCHM LINE 74
#a&® SOLVER STATUS 1l Hormal Completion
k% %% MODEL STATUS 1 Cptimal
kx&% OBJECTIIVE VALUE 10.0000
RESOURCE USAGE, LIMIT 0.145 10000000000 .000
ITERATICN COUNT, LIMIT 95 2147483647

—-—— GAM5/Cplex Link licensed for continuous and discrete problems.
——— GMC setup time: 0.00s

——— Space for names approximately 0.05 Mb

——— Usze option "mames no' to turn use of names off

——— GMO memory 0.71 Mb (peak 0.71 Mb)

——— Dictionary memory 0.00 Mb

——— Cplex 22.1.0.0 link memory 0.02 Mb (peak 0.1lc Mb)

——— Starting Cplex

——— MIP status (101l): integer optimal solution.
——= Cplex Time: 0.13sec (det. 96.36 ticks)

——— Fixing integer wvariables and solving finmal LP...

——— Fixed MIP status (l1l): optimal.
——— Cplex Time: 0.00sec (det. 1.73 ticks)

Proven optimal solution

MTP Sclution: 10.000000 (99 iterations, 0 nodes)

Final Solwve: 10Q.000000 (11 iterations)

Best possible: 10Q.000000

absolute gap: Q.000000

Eelative gap: Q.000000

EXECUTICN TIME = 0.171 SECCHDS 5 MB 35.1.0 5f04cd7& LEX-LEG

R R R R R R R R R R R R

C.3. 4bra. Modellstatisztika
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A #2 alapfeladat statisztikai adatai:

o Feltételek szama: 21491
o Valtozok szama: 1009

e Biniris valtozok szama: 980

e A R R R R R

MCODEL STATISTICS

BLOCKS OF EQUATICNS 7 SINGLE EQUATIONS 21,4951
BLOCEKS OF VARIABLES 3 SINGLE VARIABLES 1,00%
HON ZERC ELEMENTS g9,728 DISCRETE VARIAEBLES =k 1]
GENERATICN TIME = 0.058 SECCHNDS le MB 35.1.0 5f04cd7&6 LEX-LEG
GAMS 39.1.0 5f04cd7e May 3, 2022 LEX-LEG x86 e4bit/Linux - 07/18/22 07:42:01 Pages 4
Unrelated gepek, chain tipusu megelozesi feltetelekkel
Solution Report SOLVE Unrelated Using MIP From line 76
SOLVE SUMMARTY
MCDEL Unrelated CBJECTIVE makespan
TYPE MIP DIRECTICN MINIMIZE
SCLVER CPLEX FRCM LINE T&
#&&% SOLVER STATUS 1 Normal Completion
#&%% MODEL STATUS 1 Cptimal
##%% QBJECTIVE VALUE 11.0000
RESCQURCE USAGE, LIMIT 28.651 10000000000.000
ITERATICN COUNT, LIMIT 194202 2147483647

- GAMS/Cplex Link licensed for continuous and discrete problems.
——— GMO setup time: 0.00s

—=—— Space for names approximately 0.72 Mb

——— Use option '"names no' to turn use of names off

——— GMC memory 7.00 Mb (peak 7.00 Mb)

——— Dictionary memory 0.00 Mk

——— Cplex 22.1.0.0 link memory 0.27 Mb (peak 2.05 Mb)

——— Starting Cplex
=== MTIP status (1l0l): integer optimal solution.
——— Cplex Time: 25.60sec (det. 42975.25 ticks)

——— Fixing integer variakles and solving final LP...

——— Fixed MIP status (1): optimal.
——— Cplex Time: 0.03sec (det. 22.16 ticks)

Proven optimal solution

MIP Solution: 11.000000 (194202 iterations, 12477 nodes)
Final Solve: 11.0Q00000 (26 iterations)

Best possibkble: 11.000000

Absolute gap: 0.000000

Relative gap: 0.000000

B R R R R R R R R R R R R R R R R R R

C.4. dbra. Modellstatisztika
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A #5 alapfeladat statisztikai adatai:

e Feltételek szama: 17060

o Valtozok szama: 784

e Biniris valtozok szama: 756

MIP Presolve eliminated 3 rows and 1 columns.
MIP Presolve modified 29 coefficients.
Reduced MIP has 17060 rows,

Elapsed time = 2Z8285.39% sec.

15856327 10826479 16.0000 33 18.
15861203 10830446 8.0000 34 8
15866386 10833208 16.0000 35 18
15871557 10837503 8.0000 38 18
15876900 10842164 16.0000 43 18
15881760 10843727 16.0000 22 18
15887486 10849539 16.0000 31 18
158525945 10854920 13.0000 37 18
158598162 10856795 16.0000 23 18
15803756 10859865 §.0000 44 18
Elapsed time = 28403.70 sec. (40337266.80 ticks,
15909088 10867410 12,0000 32 18
15914333 10869771 cutoff 18
15920140 10873097 cutoff 18
15925481 10879571 17.0000 15 18
15930738 10883578 17.0000 31 18
15936078 10887447 16.0000 23 18
15940620 10888415 17.0000 26 18
15945668 10893245 17.0000 40 18
15950873 10887715 16.0000 31 18
15956318 10900420 15.0000 8 18
Elapsed time = 28526.78 sec. (40489876.48 ticks,
15962245 10905415 17.0000 21 18
15967608 10912276 ©.0000 44 18
15972718 10914269 15.0000 21 18
15978313 10817753 14.0000 25 18
15983151 10923447 17.0000 31 18
15988107 10926011 10.0000 34 18
15953356 10925062 17.0000 30 18
15998437 10933758 14,0000 32 18
16003070 10937938 cutoff 18
16008186 1094086

784 columns, and 711
Reduced MIP has 756 binaries,

0 generals, 0 505s

(40184656.11 ticks,

C.5. 4bra. Modellstatisztika

03 nonzeros.
, and 0 indicators.

tree = 27376.25 MB)

0000 8.0000
.00oo &.0000
. 0000 8.0000
- 0000 8.0000
. 0000 8.0000
. 0000 8.0000
.00oo &.0000
. 0000 8.0000
-00oo 2.0000
. 0000 8.0000
tree = 27464.38 MB)
.00oo &.0000
. 0000 8.0000
-00oo 2.0000
. 0000 8.0000
. 0000 8.0000
- 0000 8.0000
. 0000 8.0000
. 0000 8.0000
.00oo &.0000
. 0000 8.0000
tree = 27564.14 MB)
. 0000 8.0000
. 0000 8.0000
.00oo &.0000
. 0000 8.0000
- 0000 8.0000
. 0000 8.0000
. 0000 8.0000
.00oo &.0000
. 0000 8.0000

XXXIV

WowwWw W W W W W W

WowowWwWWwWwwww

Nodefile size

25325.67 MB

25412.79 MB

Nodefile size = 25513.26 MB

12e+08 55.56%
.12e+08 55.56%
.12e+08 55.56%
12e+08 55.56%
13e+08 55.56%
13e=+08 55.56%
13e+08 55.56%
13e+08 55.56%
13e+08 55.56%
.13e+08 55.56%
Nodefile size =
.13e+08 55.56%
.13e+08 55.56%
.14e+08 55.56%
14=+08 55.56%
14=+08 55.56%
14e=+08 55.56%
14e+08 55.56%
.14e+08 55.56%
.14e+08 55.56%
.14e+08 55.56%
.15e+08 55.56%
.15e+08 55.56%
.15e+08 55.56%
.15e+08 55.56%
.15e+08 55.56%
.15e+08 55.56%
.15e+08 55.56%
.15e+08 55.56%
16e+08 55.56%

(3760.83 MB after compression)

(3772.37 MB after compression)

(3785.63 MB after compression)



A #28 alapfeladat statisztikai adatai:

o Feltételek szama: 412282

o Valtozok szama: 7105

e Binaris valtozok szama: 7030

MIF
MIF

ILCG CFLEX 39.1.0 5f04cd76 May 3, 2022

LEG x86 64bit,/Linux

GAMS/Cplex Link licensed for continuous and discrete problems.

GMO setup time: 0.04s

Space for names approximately 13.96 Mb

Use option 'mames no' to turn use of names off
GHMO memory 123.45 Mb (peak 123.50 Mb)

Dictionary memory 0.00 Mb

Cplex 22.1.0.0 link memory 4.85 Mb (peak 38.54 Mb)
Starting Cplex

Presolve eliminated 5 rows and 1 columns.
Presolve modified 964 coefficients.

Reduced MIP has 412282 rows, 7105 columns, and 1676805 nonzeros.

Elapsed time = 27755.68 sec. (21967597.07 ticks, tree =

Hodefile size = 1768.54 MB (267.17 MB after compression)

304531 73945 5.0000 54 6.0000
305208 73831 5.0000 58 6.0000
305480 73830 cutoff 6.0000
305777 T4057 cutoff 6.0000
306042 73987 cutoff 6.0000
306300 74125 5.0000 46 6.0000
306595 74146 5.0000 47 6.0000
306854 T4lel 5.0000 44 6.0000
307024 T4147 cutoff 6.0000
3071le5 T4137 cutoff 6.0000

Elapsed time = 28020.32 sec. (22120840.78 ticks, tree =

nononotnonothonotnonon

Hodefile size = 1745.52 MEB (263.79 MB after compression)

307365 T4205 cutoff 6.0000
307813 T43el 5.0000 (1] 6.0000
307807 T44el 5.0000 75 6.0000
308001 T4eZe 5.0000 51 6.0000
308263 T4eBZ cutoff 6.0000
308518 T4717 5.0000 1 6.0000
308765 T4e35 5.0000 59 6.0000
309001 T4e38 cutoff 6.0000
3089207 T4e3% 5.0000 55 6.0000
309442 T4e57 5.0000 55 6.0000

Elapsed time = 28247.17 sec. (222T73699.88 ticks, tree =

nononononononononoin

Hodefile size = 1757.91 MEB (265.66 MB after compression)

309693 T4840 5.0000 43 6.0000
309506 74978 5.0000 el 6.0000
310106 T750Ze 5.0000 54 6.0000
310351 75085 5.0000 51 6.0000
310596 75004 5.0000 53 6.0000

C.6. dbra. Modellstatisztika
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L)

5
5
5

38259.80 MB)

L0000 7529278
L0000 7510164
L0000 7520743
L0000 7545501
L0000 7540083
L0000 T565236
L0000 7566734
L0000 T56814%9
L0000 TET2TZ4
L0000 T5T4247
3852.49 MB)

L0000 7580852
L0000 75890516
L0000 7592071
L0000 TelO3TO
L0000 TelzZ305
L0000 Tel4eTs
L0000 TezZ34Zs
L0000 TezZb543e
L0000 TezT207
L0000 TezZgzZlo

3878.98 MB)

L0000
L0000
L0000
L0000

Te405942
Te55el7
TeTO2Z9
TeTlez0

1a.
1a.
1a.
1a.
1a.
1a.
1a.
la.
le.
le.

le.
le.
le.
le.
le.
le.
le.
le.
le.
le.

le.
le.
le.
le.

6T%
6T%
6T%
6T%
6T%
6T%
6T%
6T%
eTE
eTE

eTE
eTE
eTE
eTE
eTE
eTE
eTE
eTE
eTE
eTE

eTE
eTE
eTE
eTE



D. fuggelék

Az FU algoritmus

paraméter-beallitasal az algoritmus
kiilonboz6 verzidiban

D.1. Az FU algoritmus paraméter-beallitasai a vl
valtozat esetén

o Ti1 Ti2 T3 T4 Ti5 Th20 7Tv21 Tv22 TH23 Th24 T25

U120 o o0 o0 o0 0 0 0o 7 7 70 70 70
U250 o o0 o0 o0 0 0 0o 7 7 70 70 70
U500 o o0 o0 o0 0 0 o 70 7 70 70 70
vgwoo o o 0 0 0 O o 70 7 70 70 70

D.1. tablazat. A Falkenauer U osztaly paraméter-beéllitasa

Tn20 Tn21 Tn22 Tn23 Tn24 Tn2s T30 731 732
U120 0 0 0 0 0 0 0 0 0
U250 0 0 0 0 0 0 0 0 0
U500 0 0 0 0 0 0 0 0 0
U1000 0 0 0 0 0 0 0 0 0

D.2. tablazat. A Falkenauer U osztaly paraméter-beéllitasa
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D.2. Az FU algoritmus paraméter-beallitasai a v2
valtozat esetén

o Ti1 Ti2 T3 Tia Tis Te20 Te21 Tw22 Th23 724  Th25
U120 0 5 10 15 20 25 0 5) 10 15 20 25
U250 0 5 10 15 20 25 0 ) 10 15 20 25
U500 0O 10 20 30 40 50 O 15 20 30 35 40
Uu1000 0 5 15 25 35 0 0 15 20 25 30 35

D.3. tablazat. A Falkenauer U osztaly paraméter-beéllitasa

Th20 Tn21 Tn22 Th23 Tn24 Thn2s T30 731 732

w

U120 0 ot 15 30 30 30 0 0 O
U250 0 10 20 30 40 50 0 0 O
U500 0 5 10 25 3 45 0 0 O
U1000 0 20 30 40 50 60 O O O

D.4. tablazat. A Falkenauer U osztaly paraméter-beéllitasa
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