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Tartalmi kivonat

Az értekezésben három olyan problémával foglalkoztam, amelyek az ütemezés és a
ládapakolás területéhez tartoznak. Mindhárom területnek számos alkalmazása van
a gyakorlatban, többek között az iparban, gazdasági életben vagy éppen optimali-
zálásban. Az ütemezési feladat megoldásában egy, a meger®sítéses tanulás területén
ismert és népszer¶ algoritmust vettem alapul. A ládapakolási feladatok megoldása
során ún. el®feldolgozó algoritmusok segítségével igyekeztem megoldani benchmark
feladatokat. Továbbá egy viszonylag új területtel is foglalkoztam, amelynek ládafe-
dés szállítással (angolul: Bin Covering with Delivery, röviden BCD) a neve. Ezen a
területen természetesen adódó algoritmusokkal oldottam meg a benchmark felada-
tokat, valamint bemutattam egy új, rugalmas algoritmust is. Mindhárom feladat
meglehet®sen nehéz, bonyolult kombinatorikus optimalizálási feladat.

A 2. fejezetben egy nehéz ütemezési feladattal foglalkoztam, amely a független
gépek ütemezése megel®zési relációkkal. Ez egy klasszikus ütemezési probléma, ahol
az egyes feladatok között megel®zési relációk vannak és a feladatok végrehajtási ideje
a hozzárendelt er®forrástól függ. (Megel®zési reláción a következ®t értjük: ha az i.
munka megel®zi a j. munkát, akkor a j. munka végrehajtása csak akkor kezd®dhet el,
ha az i. munka végrehajtása már befejez®dött. Az i. és a j. munkák akár különböz®
gépeken is végrehajthatóak.) Az ütemezési feladat megoldásában a meger®sítéses
tanulás területér®l ismert Q-tanulást alkalmaztam. Az algoritmus célja egy olyan
feladatsorrend kialakítása a megel®zési relációkat �gyelembe véve, hogy ebben a
sorrendben ütemezve a feladatokat az LS algoritmus által, a teljes átfutási id® minél
kisebb legyen. Az eredmények alapján sikerült hatékony algoritmust el®állítani.

A 3. fejezetben bizonyos típusú ládapakolási feladatok mohó módszerekkel törté-
n® megoldásával foglalkoztam. El®bb bizonyos fajta el®feldolgozást hajtunk végre,
amelyek a probléma egyes tulajdonságait kihasználva egyszer¶sítik a megoldást úgy,
hogy az optimalitás nem sérül, vagyis továbbra is lehetséges optimális megoldást
kapnunk. Azaz, ha például van 120 pakolandó tárgy, amelyb®l valamilyen tulajdon-
ságot felhasználva rögtön 60 tárgy pakolható "gondolkodás" és összetett eljárások
nélkül, akkor máris felére csökkent azon tárgyak száma, amelyeket ügyesen, óvatosan
kell pakolni további ládákba. A vizsgált feladatosztályok a Schwerin és a Falkena-
uer voltak. A megmaradt tárgyak pakolására mohó algoritmusokat fejlesztettem
ki. Összefoglalva, mindkét feladatosztályra mohó algoritmusokat fejlesztettem,
amelyek a Schwerin osztály esetén minden feladat, a Falkenauer osztály esetében
pedig a feladatok 91%-a esetén találtak optimális megoldást, és gyorsan.

A 4. fejezetben egy új feladat került de�niálásra, amely egy bonyolult ládapa-
kolási feladat egy bizonyos célfüggvénnyel kombinálva. A megoldás során korábbi,
természetesen adódó algoritmusok kerültek kifejlesztésre és vizsgálatra a megadott



benchmark példákon. Megjegyezzük, hogy új benchmark osztályok (LR) is de�ni-
álásra kerültek. Továbbá, bemutattam egy új, �exibilis algoritmuscsaládot. Az
algoritmus paramétereinek automatikus beállítása paraméter optimalizálással tör-
tént. Az új algoritmus a vizsgált feladatosztályokon jó eredményeket ért el.



Abstract

In the thesis three problems were considered belong to the area of scheduling and
bin packing. All three areas have many applications in practice, including industry,
economics or optimization. To solve the scheduling problem, I used an algorithm
known and popular in the �eld of reinforced learning. During the solution of the
bin packing problems, I used the so-called preprocessing algorithms to solve the
benchmarks. I also dealt with a relatively new area called Bin Covering with Delivery
(BCD for short). In this �eld, I solved the benchmark problems with already known
algorithms, and I also presented a new, �exible algorithm. All three problems belong
to the �eld of combinatorial optimization and �nding their optimal solution is
di�cult.

In Chapter 2, I dealt with a di�cult scheduling task, which is called unrelated
machine scheduling with precedence constraint. This is a classic scheduling problem
where there are precedence constraints between tasks and the execution time of the
tasks depends on the assigned resource. (Precedence constraint means the following:
if task i preceeds task j then the execution of task j can only be started the task
i is already �nished. Task i and j can be assigned to di�erent machines.) In
the solution of the scheduling problems, I used Q-learning known from the �eld
of reinforced learning. The goal of the algorithm is to create a sequence of tasks,
taking into account the precedence constraints, so that by scheduling the tasks in
this order, the makespan is kept to minimum. Based on the results, it was possible
to achieve an e�cient algorithm.

In Chapter 3, I dealt with certain preprocessing algorithms for bin packing prob-
lems. Preprocessing algorithms simplify the solution by exploiting some properties
of the problem so that optimality is not compromised. That is, if, for example,
there are 120 items to be packed, of which 60 items can be packed immediately wit-
hout any "thinking" and complex procedures using some property, the number of
items to be examined has already been halved. The examined problem classes were
Schwerin and Falkenauer. The remaining items are packed with FFD. I developed
greedy algorithms for both problem classes, which solved all problems optimally and
quickly for the Schwerin class and 91% of the problems for the Falkenauer class.

In Chapter 4, a new problem was de�ned, which is a complex bin packing prob-
lem combined with a certain objective function. The benchmark instances belong
to the Schwerin, Falkenauer, and LR classes (LR was created by me). During the
solution, previously known algorithms were implemented, and a new, �exible family
of algorithms was introduced. The automatic setting of the parameters of the algo-
rithm was optimized by parameter optimization technique called local search. The
new algorithm achieved good results on the examined problem classes.



Auszug

In der Doktorarbeit wurden drei Probleme betrachtet, die zum Bereich Termin-
planung und Bin Packing gehören. Alle drei Bereiche haben viele Anwendungen in
der Praxis, sei es in der Industrie, in der Wirtschaft oder in der Optimierung. Um
das Scheduling-Problem zu lösen, habe ich einen Algorithmus verwendet, der im
Bereich des verstärkten Lernens bekannt und beliebt ist. Bei der Lösung der Bin-
Packing-Probleme habe ich die sogenannten Preprocessing-Algorithmen zur Lösung
der Benchmarks eingesetzt. Auÿerdem beschäftigte ich mich mit einem relativ neuen
Bereich namens Bin Covering with Delivery (kurz BCD). In diesem Bereich habe ich
die Benchmark-Probleme mit bereits bekannten Algorithmen gelöst und auch einen
neuen, �exiblen Algorithmus vorgestellt. Alle drei Probleme gehören zum Gebiet der
kombinatorischen Optimierung.

In Kapitel 2 habe ich mich mit einer schwierigen Scheduling-Aufgabe befasst,
die als unabhängiges Maschinen-Scheduling mit Präzedenzbeschränkung bezeichnet
wird. Dies ist ein klassisches Planungsproblem, bei dem Prioritätsbeschränkungen
zwischen Aufgaben bestehen und die Ausführungszeit der Aufgaben von der zu-
gewiesenen Ressource abhängt. Bei der Lösung der Scheduling-Probleme habe ich
das aus dem Bereich des Reinforced Learning bekannte Q-Learning eingesetzt. Das
Ziel des Algorithmus ist es, unter Berücksichtigung der Vorrangbeschränkungen ei-
ne Abfolge von Aufgaben zu erstellen, so dass durch die Planung der Aufgaben in
dieser Reihenfolge die Makespan auf ein Minimum reduziert wird. Basierend auf den
Ergebnissen war es möglich, einen e�zienten Algorithmus zu entwickeln.

In Kapitel 3 habe ich mich mit bestimmten Vorverarbeitungsalgorithmen für
Bin-Packing-Probleme beschäftigt. Vorverarbeitungsalgorithmen vereinfachen die
Lösung, indem sie einige Eigenschaften des Problems ausnutzen, sodass die Op-
timalität nicht beeinträchtigt wird. Das heiÿt, wenn beispielsweise 120 Artikel zu
verpacken sind, von denen 60 Artikel ohne Nachdenken und aufwändige Proze- du-
ren unter Verwendung einiger Eigenschaften sofort verpackt werden können, hat
sich die Anzahl der zu untersuchenden Artikel bereits halbiert. Die untersuchten
Problemklassen waren Schwerin und Falkenauer. Für beide Problemklassen habe
ich Greedy-Algorithmen entwickelt, die alle Probleme optimal und schnell lösen
konnten.

In Kapitel 4 haben wir ein neues Problem de�niert, nämlich ein komplexes Bin-
Packing-Problem in Kombination mit einer bestimmten Zielfunktion. Die Benchmark-
Instanzen gehören zu den Klassen Schwerin, Falkenauer und LR (LR wurde von mir
erstellt). Bei der Lösung wurden bereits bekannte Algorithmen implementiert und
eine neue, �exible Familie von Algorithmen eingeführt. Die automatische Einstel-
lung der Parameter des Algorithmus wurde durch eine als lokale Suche bezeichne-



te Parameteroptimierungstechnik optimiert. Der neue Algorithmus erzielte bei den
untersuchten Problemklassen gute Ergebnisse.
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Jelölések

Meger®sítéses tanulás (2. fejezet)
s állapot
a akció
s′ következ® állapot
a′ következ® akció
S összes nem végállapot halmaza
S+ összes állapot halmaza (végállapotok is)
A(s) s állapotban elérhet® akciók halmaza
R lehetséges jutalmak halmaza
t diszkrét id®pillanat/epizód
T egy epizód utolsó id®pillanata
St állapot a t pillanatban
At akció a t pillanatban
Rt jutalom a t pillanatban
Gt kumulatív jutalom a t pillanat után
π stratégia
π∗ optimális stratégia
π(a|s) a akció kiválasztásának valószín¶sége s állapotban π szerint (sztochasztikus)
v(s) állapotértékel® függvény s állapotra
vπ(s) s állapot értéke a π stratégia mellett
v∗(s) s állapot értéke a π optimális stratégia mellett
qπ(s, a) a akció kiválasztásának értéke s állapotban a π stratégia mellett
q∗(s, q) a akció kiválasztásának értéke s állapotban a π optimális stratégia mellett
Qt(s, a) qπ(s, a) vagy q∗(s, a) becsült értéke
Q mátrix a Q-értékek tárolására
γ diszkontálási paraméter
α tanulási paraméter
ϵt valószín¶ségi változó a t. id®pillanatban
E várható érték
P valószín¶ségi érték
P állapotátmenet mátrix
τ h®mérséklet
pi Boltzmann valószín¶ség az i iterációban
n tevékenységek száma
m er®források száma
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mi az i. er®forrás
taski az i. tevékenység
tsum a végrehajtási id®k összege
selectedRes kiválasztott er®forrás indexe
M er®források (gépek) halmaza
T tevékenységek halmaza
I egységmátrix
G irányított gráf diszjunkt utakkal és izolált pontokkal
Lt tevékenységek egy permutációjának listája a t. epizód után
H megel®zési relációban résztvev® tevékenységek indexhalmaza
B választható tevékenységek indexhalmaza
D permutációba már beválasztott tevékenységek indexhalmaza
zt ütemezés eredményeként kapott átfutási id® a t epizódban
Z eddigi legjobb ütemezés
R approximációs arány (legrosszabb eset)
Rm er®források halmaza
Cm legkés®bb befejez®d® tevékenység befejezési ideje
LB1, LB2 alsó korlátok
CPLEXLB a CPLEX által kiszámolt alsó korlát
CPLEXUB a CPLEX által kiszámolt fels® korlát
NC megel®zési relációk száma
QLM a QLM algoritmus által kiszámított megoldás
QLM − freq tíz futásból hányszor találta meg a QLM az optimumot

Ládapakolás (3. fejezet)
n tárgyak száma
z célfüggvény
OPT egy optimális o�ine algoritmus
A egy tetsz®leges ládapakolási algoritmus
OPT (L) OPT által generált ládák száma
A(L) A által generált ládák száma
LB1, LB2, LB3 alsó korlátok
Rabs abszolút közelítési arány
R aszimptotikus közelítési arány
L pakolandó tárgyak listája
C láda, hátizsák kapacitása
Lb láda, hátizsák töltöttsége
K tárgyhalmaz összmérete
k aktuálisan nyitott ládák száma
ni i. csomópont a gráfban
li i. csomópont címkéje
wi az i. tárgy súlya (mérete)
gi az i. tárgy haszna (nyereség)
xij az i. tárgy a j. ládában van-e
yj a j. láda használatban van-e
r tartalékra vonatkozó alsó korlát
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res0 kezdeti tartalék (kihasználatlan helyek a ládákban)
res a teljes feladatra vonatkozó tartalék

Ládafedés (4. fejezet)
n tárgyak száma
C láda, hátizsák kapacitása
K nyitott ládák megengedett maximális száma
k aktuálisan nyitott ládák száma
wi az i. tárgy súlya (mérete)
G célfüggvény
I bemenet (input)
CA az A o�ine algoritmus eredménye
C∗ o�ine optimum
ρ versenyképességi arány
µ a probléma fels® korlátja
S Schwerin bemenet típus
F Falkenauer bemenet típus
LR Large Range bemenet típus
SiGu Schwerin osztály összekapcsolása a G célfüggvénnyel
FjGu Falkenauer osztály összekapcsolása a G célfüggvénnyel
LRjGu Large Range osztály összekapcsolása a G célfüggvénnyel
α K-dimenziós nemnegatív vektor
β egy pozitív egész szám
∆ kis pozitív konstans, amelynek mértékével az α és β paraméterek változnak

1. táblázat: Jelölések jegyzéke
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1. fejezet

Bevezetés

Dolgozatomban három olyan feladattal foglalkoztam, amelyek mindegyike az üte-
mezés elmélet vagy a ládapakolás területéhez tartozik. Ezeken a területeken sok és
jelent®s alkalmazás van, többek között az iparban, gazdasági folyamatok elemzésé-
ben, optimalizálásában és egyéb területeken. Az ütemezési feladatot meger®sítéses
tanulás alapú algoritmussal oldottam meg. Emiatt az ütemezési feladatokról és a
meger®sítéses tanulásról adunk az alábbiakban egy bevezet® áttekintést. Utána kö-
vetkezik majd a bevezetésben egy általános ismertet® a ládapakolási feladatokkal
kapcsolatban.

1.1. Ütemezés

Általánosságban egy ütemezési probléma esetén adottak tevékenységek (munkák) és
er®források (a mi esetünkben gépek). Az ütemezés során azt határozzuk meg, hogy
melyik tevékenységet melyik gép mett®l meddig hajtja végre. A tevékenységek vagy
munkák az elvégzend® feladatok, ezeknek a száma változó. Az er®források pedig
olyan egységek, amelyek a tevékenységek végrehajtására szolgálnak. A cél pedig
az, hogy ezeket az er®forrásokat a tevékenységekhez rendeljük úgy, hogy valamely
célfüggvényt optimalizáljuk. Az általunk vizsgált esetben a cél a teljes átfutási id®
minimalizálása.

Az er®forrásoknak különböz® típusai lehetségesek. Egy er®forrás lehet valami-
lyen gép, feldolgozó egység, ember, valamilyen szoftver, megújuló és nem megújuló
er®forrás. A gépek típus szerint lehetnek identikusak (identical machines), az ilyen
típusú gépek m¶ködésükben azonosak, egymás másolatainak is tekinthet®k. Továb-
bá, lehetnek hasonló gépek (uniform machines), amelyek ugyanazt a munkát tudják
elvégezni, csak a sebességük eltér®. Végül pedig beszélhetünk független gépekr®l
(unrelated machines), ahol egy munka elvégzési ideje attól függ, hogy melyik gép
fogja elvégezni. Az általunk tárgyalt esetben összesen m darab független gép áll
rendelkezésre. Egy gép egyszerre csak egy munkát végezhet, minden munkát el kell
végezni és a végrehajtás során a megszakítás nem lehetséges.

A tevékenységek atomi m¶veletek (amelyek további altevékenységekre nem bont-
hatók), amelynek végrehajtása az er®források segítségével történik. Az egyes tevé-
kenységek általában különböz® paraméterekkel rendelkezhetnek, pl. prioritás, a vég-
rehajtás legkorábbi id®pontja (release time), a végrehajtás befejezésének lehetséges
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legkés®bbi id®pontja (due date vagy deadline, a kett® között az a különbség, hogy
az els® esetben szeretnénk, hogy addig befejez®djön a munka, ha lehet, a másik eset-
ben eddig az id®pontig mindenképpen be kell fejezni a munkát). A munkák között
lehetnek megel®zési relációk (precedence constraints). Továbbá, minden munkának
adott a végrehajtási ideje (processing time). Az általunk vizsgált esetben tehát m
független gép van és bizonyos munkák között vannak megel®zési relációk. Emlékez-
tetünk arra, hogy ha el® van írva, hogy az i. munka megel®zi a j. munkát, azon azt
értjük, hogy a j. munkát csak akkor szabad elkezdeni (valamely gépen), ha az i.
munka végrehajtása már befejez®dött.

A célfüggvény általában többféle lehet, az egyik leggyakrabban vizsgált célfügg-
vény a teljes átfutási id® (makespan), amit minimalizálunk. A 2. fejezetben tárgyalt
ütemezési probléma esetén is a teljes átfutási id® minimalizálása a cél. A teljes át-
futási id®n azt az id®intervallumot értjük, ami az els® tevékenység végrehajtásának
kezdetét®l az utolsó tevékenység befejezési id®pontjáig tart.

Az ütemezésr®l részletes áttekintést például [1]-ben találunk. A könyv az üte-
mezéshez kapcsolódó elméleti modelleket és a különböz® ütemezési problémákat tár-
gyalja igen részletesen. Az igen b®séges irodalomból e helyütt még megemlítjük Ro-
nald L. Graham két alapvet® munkáját [2, 3]. Mindkét munkában a többprocesszoros
rendszerekben el®forduló, az ütemezésekhez kapcsolódó anomáliákkal foglalkozott.
Cikkeiben többek között azt vizsgálta, hogy melyek azok az anomáliák, amelyek
befolyásolhatják a teljes átfutási id®t. Ezekben a cikkeiben de�niálta a híres LS
(List Scheduling, vagyis lista szerinti ütemezés) algoritmust, amely az els® online
ütemezési algoritmusnak tekinthet®; valamint ennek a rendezett változatát, az LPT
(Longest Processing Time) algoritmust. Az LS algoritmus valamilyen sorrendben
ütemezi a munkákat, a következ® munkát arra a gépre teszi, amelyik azt a legko-
rábban képes befejezni. Az LPT esetén a munkák a hosszúságaik szerinti monoton
csökken® sorrendbe vannak rendezve.

Megjegyezzük, hogy a Graham által vizsgált Pm||Cmax feladat esetén a munkák-
nak nincs kibocsájtási ideje sem és határideje sem, nem megszakíthatóak a munkák
és amennyiben megel®zési reláció is van, az csak id®belit jelent, attól lehetnek a
munkák külön gépeken.

Valamely ütemezési algoritmus approximációs aránya (approximation ratio, leg-
rosszabb eset aránya) az R szám, ha az algoritmus által kapott célfüggvényérték
legfeljebb R-szerese az optimális megoldás értékének, tetsz®leges input esetén. Köz-
tudott, hogy az LS algoritmus approximációs aránya 2 − 1

m
m gép esetén, míg az

LPT algoritmusnak az approximációs aránya 4
3
− 1

3m
.

Mivel a 2. fejezetben egy ütemezési feladatot gépi tanulási módszerrel oldok
meg, a gépi tanulásról is megadok egy rövid általános ismertet®t az alábbiakban.

1.1.1. A mesterséges intelligencia

A mai értelemben mesterséges intelligenciának nevezett tudományterület nagyon
�atal, keletkezése formálisan az 1956-os évre datálható; ekkor alkották meg a tu-
dományterület nevét. Azonban azon tudományok fejl®dése, amelyek ezt a területet
megalapozták, már id®számításunk el®tt elkezd®dött.

A mesterséges intelligencia a számítógép-tudomány azon részterülete, amely az-
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zal foglalkozik, hogyan lehetne hardver és szoftver rendszerekkel a lehet® legjobban
lemásolni az ember kognitív képességeit. Egy nagyon általános területr®l van szó,
amely alapvet®en az intelligencia megértéséhez és mesterséges lemásolásához szüksé-
ges eszközöket kutatja azzal a céllal, hogy ezt a képességet a szoftverb®l és hardverb®l
felépül® gépeknek átadja.

A mesterséges intelligencia leírása alapvet®en négy oldalról közelíthet® meg:

� emberi módon cselekv® rendszerek,

� emberi módon gondolkodó rendszerek,

� racionálisan gondolkodó rendszerek,

� racionálisan cselekv® rendszerek.

Az emberi módon cselekv® rendszereknek képesnek kell lenniük a természetes
nyelvek feldolgozására, a tudásreprezentációra, az önálló következtetésre, a gépi ta-
nulásra, a gépi látásra és a robotikára. Azok a gépek, amelyek ezekkel a képességek-
kel rendelkeznek már intelligens viselkedést mutathatnak. Ennek mérésére 1950-ben
Alan Turing javasolta a Turing-tesztet [4]. A teszt lényege, hogy a gép tud-e olyan
intelligens viselkedésmintákat mutatni, amely alapján az ember elhiszi, hogy egy
másik emberrel kommunikál. Ha igen, a teszt sikeres, ha nem, akkor a teszt nem
sikeres.

Az emberi módon való gondolkodás területével a kognitív tudományok foglal-
koznak, azonban még ma sem tudjuk pontosan, hogy hogyan m¶ködnek a kognitív
funkciók. A mesterséges intelligencia és a kognitív tudományok összefonódnak és
egymás fejl®dését serkentik, jelenleg leginkább a látás, a természetes nyelvek feldol-
gozása és a tanulás területén.

A racionális gondolkodás fontos alapja a formális logika, amely logikai kifejezé-
sekkel leírt problémák megoldását igyekszik megadni következtetések útján. Olyan
programok, amelyek egy logikai kifejezésekkel reprezentált problémát megoldottak,
már 1965-ben léteztek.

A racionális cselekvés nem más, mint egy meghatározott cél elérése érdekében
megtett cselekvés. A mesterséges intelligenciában a racionálisan cselekv® entitásokat
ágenseknek nevezzük. Fontos, hogy a racionális cselekvéshez szorosan hozzátarto-
zik a racionális gondolkodás is. Azaz a legtöbb esetben a racionális következtetés
eredménye a racionális cselekvés.

Ez tehát az a négy szempont, amelyek mentén könnyebben és érthet®bben lehet
megfogalmazni, hogy mi is az a mesterséges intelligencia. Ez egy nagyon általános és
szerteágazó terület, amely több más tudományterülettel összefonódva fejl®dik. Az
alapvet® cél az intelligensen gondolkodó és viselked® hardver- és szoftverrendszerek
létrehozása, amelyek lényegében az ember kognitív képességeit próbálják másolni.

1.1.2. Gépi tanulás

A gépi tanulás fogalmát Alan Turing veszette be az 1950-ben megjelent cikkében
[4]. A gépi tanulás a mesterséges intelligenciának egy, ma nagyon népszer¶ rész-
halmaza, amely olyan algoritmusokkal foglalkozik, amelyek képesek az általánosítás
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elvével tanulni anélkül, hogy explicit módon programozva lennének konkrét feladat
megoldására.

A mesterséges intelligencia az összes olyan algoritmus gy¶jt®helye, amelyek ké-
pesek a tanulásra és a következtetésre, hasonlóan az emberekhez. Ezen algoritmu-
sok részhalmaza a gépi tanulás, amelyr®l már volt szó az el®z®ekben, majd ennek
sz¶kebb részhalmaza a mély tanulás. A gépi tanulás módszereit három csoportba
sorolhatjuk alapvet®en: felügyelt tanulás, nem felügyelt tanulás és a meger®sítéses
tanulás.

A felügyelt tanulás esetében rendelkezésre állnak a bemenetek és a hozzájuk
tartozó elvárt kimenetek, vagy más néven a tanítóminták. Ezek alapján a cél egy
leképezés, azaz egy függvény megtanulása a bemeneti és a kimeneti halmaz kö-
zött. A bemeneti és kimeneti attribútumok lehetnek diszkrétek vagy folytonosak.
Ha a kimeneti attribútumok diszkrétek, akkor osztályozásról, ha folytonosak, akkor
regresszióról van szó. Az osztályozás esetében gyakorlati alkalmazásként említhe-
t® a képek osztályozása, diagnosztika vagy a detektálás (pl. csalás detektálása) .
A regressziónál a jellemz®en felmerül® feladatok közé tartozik például az id®járás
el®rejelzés, az árak és árfolyamok meghatározása, különböz® becslések elvégzése.

A felügyelet nélküli tanulásnál a bemeneti minták tanulása történik úgy, hogy
nincs tanítóhalmaz, azaz nem áll rendelkezésre címkézett kimenet. Ez azt jelenti,
hogy az algoritmus nem tudja eldönteni a kimenetr®l, hogy az jó, vagy nem jó. A
nem felügyelt tanulás esetében az algoritmusok a bemeneti adathalmazon próbálnak
szabályokat és mintákat felismerni. A két nagy algoritmuscsoport a klaszterez® és az
összefüggéseket keres® algoritmusok. A klaszterez® algoritmusok célja, hogy a beme-
neti adatok alapján a kimeneteket csoportokba (klaszterekbe) sorolják hasonlósági
minták alapján. Másképpen fogalmazva, az egymáshoz hasonló kimenetek azonos
klaszterbe kerülnek. Az összefüggési szabályokat keres® algoritmusok célja pedig,
hogy olyan szabályokat keressenek, amik egy nagy adathalmazt leírnak. Például,
ha az emberek megvásárolják az A terméket, akkor valószín¶leg a B terméket is
megveszik, viszont aki a C terméket választja, az szinte biztos nem fogja megvenni
az A-t.

A meger®sítéses tanulás a gépi tanulás harmadik csoportja. A meger®sítéses
tanulás feladata egy ágens dinamikus környezetben történ® döntéshozatalának az op-
timalizálása úgy, hogy a döntések után kapott jutalmak összege maximális legyen.
A környezetben végrehajtott döntések után, mint visszajelzés vagy meger®sítés, az
ágens egy jutalomnak nevezett értéket kap, ami lehet negatív vagy pozitív. A ju-
talom értéke, valamint az állapotokat és az akciókat értékel® függvények kimenetei
alapján az ágens iterációk alatt képes megtanulni egy stratégiát arra vonatkozóan,
hogy a dinamikus környezetben hogyan kell viselkednie a jutalom maximalizálása és
ezáltal egy cél elérése érdekében. A meger®sítéses tanulást tipikusan olyan problé-
máknál alkalmazzák, ahol valós id®ben, azonnal döntéseket kell hozni. Ilyen lehet
például egy játékot játszó ágens, egy robotot vagy járm¶vet irányító ágens vagy
valamilyen logikai rejtvényt (pl. labirintus) megfejt® ágens.

Az általam tárgyalt ütemezési feladatra a meger®sítéses tanulásból ismert Q-
tanulás (Q-Learning) algoritmusát alkalmazva egy olyan eljárást dolgoztam ki, amely
a tevékenységeknek egy olyan sorrendjét próbálja meghatározni, amely sorrendben
a tevékenységeket ütemezve minimális átfutási id®t kapunk. A tevékenységek kö-
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zött megel®zési relációk adottak. Az eljárás kifejlesztésekor a Q-Learning módszerét
alkalmaztam (viszonylag szabadon), emiatt az algoritmust "Q-Learning Motivated
Algorithm" vagy röviden QLM-nek neveztem. A Q-Learning és az algoritmus rész-
letes ismertetése az 2. fejezetben található.

1.2. Ládapakolás

A dolgozat 3. fejezetében ládapakolási feladatokkal foglalkozom, emiatt itt röviden,
általánosan ismertetem a ládapakolási (bin packing) feladatkört.

A ládapakolási feladatok esetében tárgyakat szeretnénk ládákba pakolni úgy,
hogy a pakolt ládák száma minimális legyen és az egy ládába pakolt tárgyak mé-
rete ne lépje át a láda kapacitását. A probléma NP-nehéz [5, 6]. A ládapakolási
problémát a hetvenes évek elején de�niálták és kezdték vizsgálni. Az ún. approxi-
mációs algoritmusokat ezen a területen fejlesztették ki. Olyan algoritmust nevezünk
approximációs algoritmusnak, amelyt®l nem várjuk el, hogy feltétlenül optimális
megoldást adjon egy feladatra, de egyrészt gyors (polinomiális idej¶), másrészt az
általa szolgáltatott megoldás garantáltan "nincs túl messze" az optimum értékt®l.
Az approximációs arányt a következ® alfejezetben pontosan de�niáljuk.

D.S. Johnson disszertációja [7] a ládapakolásról (és Graham munkája [2]) azokhoz
a korai munkákhoz tartoznak, amelyek elindították és formálták az approximációs
algoritmusok vizsgálatát és megszabták a további kutatások irányát. A ládapakolás
területén megkülönböztetünk online és o�ine eseteket. Online esetben a tárgyak
adatai el®re nem ismertek, o�ine esetben viszont igen.

A ládapakolási probléma témakörében már ismert benchmark feladatokat hasz-
náltam az algoritmusok tesztelésére. Ebben a kutatási témában a cél az volt, hogy
olyan, a ládapakoláshoz kapcsolódó el®feldolgozó algoritmusokat adjak meg, amelyek
egyszer¶sítik az egyes feladattípusok megoldását. Az általam kidolgozott el®feldol-
gozó algoritmusok esetén a következ® történik. A feladatosztály elemeire bizonyos,
a 3. fejezetben részletesen ismertetend® mohó módszerrel pakoljuk a tárgyakat. Ki-
derül, hogy bizonyos esetekben sikerül optimális pakolást készíteni (annak ellenére,
hogy a ládapakolási feladat NP-nehéz). Természetesen nincs arra garancia, hogy
minden inputra m¶ködik a módszer, de ez nem is cél. Azt fogjuk látni, hogy ha a
benchmark feladatosztály 100 inputot tartalmaz, akkor a 100-ból 80 vagy akár több
esetben optimális megoldást tudunk kapni mohó algoritmusok segítségével. Emiatt
elegend® csak a maradék inputra alkalmazni valamilyen összetettebb algoritmust.

1.2.1. Approximációs eljárások

Johnson a disszertációjában számos "Fit-típusú" algoritmust vizsgált, mint például
a First Fit (FF) vagy a Best Fit (BF). Ebben a munkámban az ismert algoritmusok
közül a First Fit algoritmust használtam, amely feltehet®leg els®ként 1971-ben jelent
meg Ullman munkájában [8].

A First Fit algoritmus a tárgyakat valamilyen adott sorrendben pakolja. A so-
ron következ® tárgy mindig az els® olyan ládába kerül, amelybe a láda kapacitását
�gyelembe véve belefér. Amennyiben egyik nyitott ládába sem pakolható, úgy új
ládát nyit és a tárgyat ebben helyezi el. Az algoritmust First Fit Decreasing-nek
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nevezzük abban az esetben, ha a tárgyak a méretük alapján csökken® sorrendben
következnek egymás után.

Egy ládapakolási algoritmus hatékonyságát általában az approximációs aránnyal
jellemzik, amelynek két f® fajtája van: aszimptotikus (asymptotic approximation
ratio) és abszolút approximációs arány (absolute approximation ratio). Legyen L
a pakolandó tárgyak halmaza. Legyen OPT egy optimális o�ine algoritmus és A
egy tetsz®leges ládapakolási algoritmus. OPT (L) és A(L) jelölje a ládák számát,
amelyeket a két fenti algoritmus generál. Az abszolút és aszimptotikus közelítési
arány a következ®képpen de�niálható:

Rabs(A) = sup
L

{
A(L)

OPT (L)

}
, (1.1)

és

R(A) = lim sup
n→∞

{
sup
L

{
A(L)

OPT (L)
| OPT (L) = n

}}
. (1.2)

Ullman munkájában már bebizonyította, hogy az R(FF ) értéke legfeljebb 1,7.
Garey és társai [9] valamint Johnson és társai [10] pedig erre vonatkozó alsó korlátot
is megadtak. Ezek az eredmények az approximációs algoritmusokkal kapcsolatos
els® eredményekhez tartoznak. Simchi-Levi 1994-ben megjelent munkájában [11]
bebizonyította, hogy Rabs(FF ) ≤ 1, 75. Az FF esetében az éles korlát Rabs(FF ) =
1, 7, amelynek bizonyítása a [12] és a [13] munkákban található. Az FFD esetében
az éles korlát a [14] és [15] alapján az FFD(L) ≤ 11

9
·OPT (L)+ 6

9
formában adható

meg. Az éles jelz® azt jelenti, hogy a 6
9
érték nem csökkenthet®.

Az FF és FFD algoritmusok a mai napig nagyon népszer¶ek ládapakolási fel-
adatok megoldásához, mert egyszer¶ek és sok esetben hatékonyak. Természetesen
ezenkívül más algoritmusok is léteznek, mint pl. aszimptotikus polinomiális idej¶
approximációs sémák [16, 17]. Az approximációs séma azt jelenti, hogy bármilyen
ε > 0 esetén létezik olyan Aε algoritmus, amelyre Aε(L) ≤ (1 + ε) · OPT (L) + C
teljesül, ahol a C az inputtól független, univerzális konstans, és az algoritmus futási
ideje polinomiális ε-ban. Ezek az algoritmusok inkább elméleti jelent®ség¶ek.

1.2.2. Egzakt eljárások

Számos egzakt algoritmust publikáltak a ládapakolási probléma megoldására, töb-
bek között dinamikus programozáson alapulót, LP-relaxáción alapulót (utófeldol-
gozással), branch-and-bound, branch-and-price vagy constraint programming alapú
módszereket. Egzakt eljárásnak olyan módszert nevezünk, amelyik minden esetben
megtalálja az optimális megoldást, azonban hátrányuk ezeknek, hogy relatíve kis
méret¶ (ládapakolási) feladatokat tudnak csak megoldani elfogadható id®n belül.
Alább néhány kapcsolódó publikációt adok meg.

Delorme és társai [18] górcs® alá vették a legfontosabb matematikai modelleket
és algoritmusokat, amelyek a ládapakolási probléma megoldását egzakt módon ál-
lítják el®, majd tesztelték a legjobbnak vélt szoftverek teljesítményét. Carvalho [19]
lineáris programozási modellekkel foglalkozott a ládapakolási probléma megoldásá-
ra. Wei és társai [20] egy új branch-and-price-and-cut algoritmussal oldották meg a
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ládapakolási problémát. Ez az egzakt eljárás a klasszikus osztályozási modellen és
egyéb módszereken alapult.

A ládapakolási probléma MILP (mixed-integer linear programming, kevert egész-
érték¶ lineáris programozási feladat) modellje meglehet®sen egyszer¶. A ládapako-
lási feladathoz egy ilyen MILP modellt adok meg.

Legyen n db tárgy, amelyek w1, w2, . . . , wn mérettel rendelkeznek. A tárgyak
méretei a racionális számok halmazából kerülnek ki, továbbá 0 és C között helyez-
kednek el. A ládáknak C a kapacitása és feltesszük, hogy n db ládánk van. Továbbá
legyenek xij és yj változók az alábbiak szerint.

xij =

{
1 ha az i. tárgy a j. ládában van

0 különben
(1.3)

yj =

{
1 ha a j. láda használatban van

0 különben
(1.4)

Az yi változó megadja, hogy a j. láda használatban van-e vagy sem. Az xij

változó pedig azt írja le, hogy az i. tárgy a j. ládában van-e vagy sem. A cél nem
más, mint a felhasznált ládák számának a minimalizálása néhány feltételt �gyelembe
véve.

A probléma formális leírása a követk®képpen adható meg.

z = min
n∑

j=1

yj (1.5)

s. t.

n∑
i=1

wixij ≤ yjC, j = 1, . . . ,m (1.6)

n∑
j=1

xij = 1, i = 1, . . . , n (1.7)

yi, xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . ,m (1.8)

Az (1.6) feltétel megköveteli, hogy a j. láda töltöttsége nem lehet nagyobb C kapa-
citásnál, továbbá rákényszeríti az yj változót, hogy 1 legyen ha van tárgy a ládába
pakolva. Az (1.7) pedig azt írja le, hogy az i. tárgy pontosan egy ládába van
bepakolva.

1.2.3. Metaheurisztikák, a f® változatok

A ládapakolási probléma NP-nehéz és emiatt az egzakt algoritmusoknál problémák
adódhatnak, mint pl., hogy nem adnak optimális eredményt elfogadható id®n be-
lül. Emiatt a problémát a metaheurisztikák oldaláról is indokolt volt megközelíteni
és számos eljárás látott napvilágot, úgy mint genetikus algoritmusok (genetic algo-
rithms), részecske raj optimalizálás (particle swarm optimization) vagy tabu keresés
(tabu search). Ezek az eljárások közel optimális megoldásokat találnak, azonban
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néhány esetben képesek az optimális megoldás felderítésére is. Dokeroglu és Cosar
munkájukban [21] összesen 1318 benchmark feladatot vizsgáltak meg a cikkükben
bemutatott genetikus algoritmusokkal. A megoldott feladatok 88,5%-ban sikerült
optimális megoldást találni.

Loh és társai [22] egy másfajta, egyszer¶ és gyors heurisztikus megoldást fejlesz-
tettek. Az algoritmus teszteléséhez egy 1584 feladatból álló benchmarkot alkalmaz-
tak. A feladatok kapcsán ismert legjobb illetve optimális megoldásokat az algoritmus
megtalálta, valamint három további feladat esetén talált optimális megoldást (amely
feladatokra nem tudták korábban, hogy mi az optimális megoldás).

Kucukyilmaz és társai [23] szintén egy genetikus algoritmust mutattak be. 1318
benchmark feladatot vizsgáltak és 99,6%-ban optimális megoldást találtak. A Hard28
teszthalmaz esetében 28 feladatból 23 alkalommal találták meg az optimális megol-
dást. Azonban a szép eredmények ellenére az algoritmus nagyon magas futási id®vel
dolgozik.

Borgulya [24] egy hibrid evolúciós algoritmust (evolutionary algorithm) fejlesz-
tett, ahol egy egyed a megengedett megoldás és tartalmazza a ládák leírását is. Az
algoritmus két új mutációs operátorral dolgozik és a megoldás min®ségét lokális ke-
resési eljárással javítja. A szerz® 1615 benchmark feladatot oldott meg és 99,7%-ban
optimális megoldást kapott. A Hard28-as teszthalmaz mind a 28 feladatára sikerült
optimális megoldást találni.

1.2.4. Állatok viselkedésén alapuló, különböz® metaheuriszti-
kus változatok

Érdekességként megemlítem, hogy számos olyan metaheurisztika létezik, amely az
állatok viselkedését próbálja lemásolni. Az els® ilyen volt a hangya kolónia algorit-
mus (ant colony algorithm), ami számos optimalizálási probléma megoldásában [25]
hatékonynak bizonyult. Hasonló eljárás a részecske raj optimalizálás is [26]. Szá-
mos egyéb, az állatok viselkedését utánzó algoritmus létezik ma már. Ilyen például
a bálna optimalizálás (whale optimization algorithm), amelyet a ládapakolási prob-
lémára is alkalmaztak [27]. További hasonló algoritmusok, amelyek m¶ködésének
ötlete a természetb®l való, a kakukk (cuckoo search) [28] és mókus keresés (squirrel
search) [29]. A szentjánosbogár (�re�y search) és a kakukk kereséssel, valamint a
mesterséges méh kolónia algoritmussal (arti�cial bee colony algorithm) a [30]-ban
foglalkoztak. Létezik még a denevér optimalizálás (bat optimization) [31], az afrikai
bivaly optimalizálás (african bu�alo optimization) [32, 33] vagy a kenguru keresés
(kangaroo search) [34] és a szöcske algoritmus (grasshopper algorithm) [35].

1.2.5. Kapcsolódó, további releváns publikációk

Ebben az alfejezetben a ládapakolási probléma területéhez kapcsolódó, releváns pub-
likációkat mutatom be. A ládapakolási feladatokkal kapcsolatos áttekint® cikkek
például a következ®k [5, 18, 36]. Az irodalmi áttekintésb®l látható lesz, hogy a láda-
pakolás, mint kutatási terület jelenleg is aktív, továbbá számos, egymással verseng®
kutatási irány létezik. Emellett az elméleti eredményeket számos ipari területen
alkalmazzák.
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A [37]-ben a szerz®k egy ládapakolási keretrendszert mutatnak be.
A [38]-ban a szerz®k két új ládapakolási problémát mutatnak be néhány hasznos

alkalmazási lehet®séggel, els®sorban logisztikai területen. Mindkét probléma eseté-
ben a hagyományos láda kiválasztási költség mellett számos más költség is meg-
jelenik. Újfajta heurisztikákat vezettek be, amelyeket számos feladatra teszteltek.
Az eredmények alapján a bemutatott heurisztikák teljesítménye jó, továbbá az új
modellek gyakorlati alkalmazásának lehetnek el®nyei.

A [39]-es publikációban a szerz®k repül®gépek karbantartási feladatainak üte-
mezésével foglalkoznak, amelyek szükségesek ahhoz, hogy a gépek biztonságosak
legyenek minden repülés során. Ez egy összetett kombinatorikus feladat, amelyet
minden nap el kell végezni. A probléma egy id®függ®, változó méret¶ ládapakolási
feladatként adható meg. Az új megközelítés képes hatékonyan megoldani a több-
éves feladatkiosztási problémát néhány perc alatt. A probléma megoldásához egy, a
Worst Fit Decreasing-en alapuló heurisztikus módszert alkalmaznak. A heurisztikát
egy európai légitársaságtól származó adatokkal tesztelték és validálták. A korábban
használt módszerhez képest az új algoritmus 30%-al gyorsabb volt minden elvég-
zett tesztesetre és a legtöbb esetben az optimális eredményt®l való eltérés 3% alatt
maradt.

A [40]-es publikációban bemutatják az egydimenziós ládapakolási probléma meg-
oldó algoritmusainak legújabb implementációit, különös tekintettel a populációalapú
metaheurisztikus algoritmusokra.

A [30]-ban a szerz®k egy szisztematikusan elvégzett teljesítmény kiértékelést mu-
tatnak be néhány reprezentatív algoritmuson. A teszthez három standardnak szá-
mító ládapakolási adathalmazt használtak, amelyekben összesen több mint 1210
feladat található. A vizsgált heurisztikák által adott eredményeket a best �t és más
heurisztikák eredményeivel hasonlították össze.

A [41]-es publikációban a szerz®k egy dinamikus ládapakolási probléma egy konk-
rét változatát alkalmazták, amely egy ütemezési feladat részfeladataként fordul el®.
A feladat megoldására a szerz®k különböz® el®feldolgozó technikát javasolnak a vál-
tozók és a feltételek számának csökkentése érdekében. Az elvégzett számítások alap-
ján az új megközelítés a korábbiaknál jobb teljesítményt eredményezett mind a meg-
oldások, mind pedig a futási id® tekintetében.

1.3. Ládafedés

A 4. fejezetben egy viszonylag új területtel foglalkozom, amelynek a neve ládafedés
szállítással (Bin Covering with Delivery, BCD). Ebben a problémában, hasonlóan a
ládapakolási problémához, tárgyakat pakolunk ládákba, amelyeket, ha fedetté vál-
nak, lezárunk és elszállítunk. A célfüggvény meghatározása a fedett és elszállított
ládák száma alapján történik. Azaz, minden elszállított ládáért pénzt kapunk és a cél
az, hogy a pro�tot maximalizáljuk. A probléma els®ként a [42]-ben lett bemutatva.
A 4. fejezetben ennek a problémának a kiterjesztésér®l és alapos vizsgálatáról lesz
szó. A probléma o�ine változatával a [43] foglalkozik, továbbá néhány kapcsolódó
probléma a [44]-ben kerül bemutatásra.

Emlékeztetünk arra, hogy a klasszikus ládapakolási probléma esetében a tár-
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gyakat be kell pakolni valamelyik ládába úgy, hogy a tárgyak összmérete a láda
kapacitását nem lépheti túl, és a cél a felhasznált ládák számának minimalizálása.
A ládafedési feladat esetében viszont a lehet® legtöbb ládát akarjuk lefedni. A lá-
dát fedettnek tekintjük, ha a ládába bepakolt tárgyak összmérete legalább a láda
kapacitásával egyenl®. Ismert, hogy mindkét probléma (ládapakolás és ládafedés)
NP-nehéz [6]. Ez azt jelenti, hogy az optimális megoldás eléréséhez akár exponenci-
álisan sok lépés is szükséges lehet (rossz esetben). Azonban számos olyan eset van,
amikor rövid id®n belül sikerült optimális megoldást találni.

A BCD probléma online változatában a tárgyak el®re nem ismertek, és egyesével
érkeznek egymás után. Az éppen érkez® tárgyat azonnal be kell pakolni egy ládába.
A célfüggvény a nyitott ládák számának függvényében változik. Minél több láda
van nyitva egyszerre, a célfüggvény értéke annál jobban csökken. A cél az, hogy a
célfüggvényt, azaz a pro�tot maximalizáljuk. A ládapakolási és ládafedési problé-
ma o�ine és online változataival többek között az [5], [45] és [46] áttekint® cikkek
foglalkoznak.

A kutatásom ezen területén a ládafedési probléma online változatával foglalkoz-
tam. Ahogy fentebb volt róla szó, a megoldás nem csak a pakolás min®ségén (azaz,
hogy az egyes tárgyakat milyen másik tárgyakkal együtt pakoljuk), hanem a fel-
használt ládák számán is múlik. A feladat megoldása során "gyors és jó" pakolást
szeretnék elérni az algoritmussal, amely esetében a célfüggvény bünteti azt, ha túl
sok láda van nyitva egyszerre. Ez az ötlet természetesen adódik abból a megállapí-
tásból, hogy minél több láda van nyitva, annál nehezebb ®ket kezelni.

Megjegyezzük, hogy a "Scheduling with delivery" témakör (pl. [47]) hasonló
probléma a mostanihoz. Vannak olyan munkák is ([48], [49]), amelyek a várakozási
id®t büntetik. Azaz azt az id®t, amely a láda nyitása és elszállítása között telik el.

Az általam alkalmazott modell eltér az utóbbi két munkától, ugyanis ebben az
esetben nem az eltelt id®t bünteti a célfüggvény, hanem egyebek mellett a túl sok
nyitott ládát.

A 4. fejezetben pontosan meghatározom a probléma de�nícióját és néhány, az
o�ine modellre vonatkozó tulajdonságot is megadok. Bemutatom azokat a feladat-
osztályokat, amelyekre vonatkozó vizsgálatokat végeztem. Ezután ismertetek né-
hány természetesen adódó online algoritmust, majd ezek alapján bemutatok egy új,
rugalmas algoritmus osztályt, amit MMask-nak neveztem el. Az új algoritmushoz
kapcsolódóan bemutatok egy metaheurisztikus megoldást Evolution of Algorithms
(EoA) néven, amelynek korábbi változata a [42] cikkben már megtalálható. A fe-
jezet végén az új algoritmus hatékonyságát számítógépes futásokból származó ered-
ményekkel demonstrálom, majd konklúziók levonása mellett összegzem az elvégzett
munkát.

1.4. A dolgozat szerkezete

A dolgozat négy f® fejezetre tagolódik, amelyek közül az 2., 3. és 4. fejezetek a
három kutatási területet foglalják magukba, a dolgozat elején pedig egy általános
bevezetés olvasható.

A 2. fejezet a meger®sítéses tanulás területér®l ismert Q-tanulás algoritmusát
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alkalmazza egy bizonyos, bonyolult ütemezési feladat megoldására. A megoldás
alapötlete az, hogy az algoritmus a tevékenységeknek egy sorrendjét határozza meg,
amely sorrendben az ütemezés végrehajtásra kerül. A sorrend kialakításában játszik
nagy szerepet a Q-tanulás. Az algoritmusban a meger®sítést az ütemezés végered-
ménye, a teljes átfutási id® jelenti.

A 3. fejezetben ládapakolási feladatoknak bizonyos mohó algoritmusait vizs-
gáltam. A mohó algoritmusok a feladatok különböz® tulajdonságait használják ki,
ezáltal egyszer¶ és könnyen implementálható eljárásokkal a megoldandó probléma
bizonyos esetekben optimálisan megoldható.

A 4. fejezet a ládafedési feladat egy bizonyos általánosításával foglalkozik. A
megoldás során korábbi, természetesen adódó algoritmusokat vizsgáltam, továbbá
bevezettem és vizsgáltam egy új, �exibilis algoritmuscsaládot, amelynek optimali-
záltam a paramétereit.
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2. fejezet

Egy meger®sítéses tanulás által
motivált algoritmus alkalmazása
bizonyos típusú ütemezési feladatra

2.1. Q-tanulás által motivált algoritmus (QLM)

A Q-tanulás egy olyan meger®sítéses tanulási módszer, amely az élet számos terü-
letén felmerül® helyzet kezelésére alkalmas. Ebben a fejezetben a Q-tanulást bizo-
nyos fajta ütemezési feladat megoldására fogjuk alkalmazni. A feladat jellemzésére
lássunk néhány példát. Els® példaként a hivatali ügyintézést említhetném (pl. adó-
hivatal, bevándorlási hivatal, önkormányzati hivatal stb.), ahol naponta rengeteg
dokumentumot kell feldolgozni. A példa kedvéért a dokumentumokat különböz-
tessük meg. Az els® típusú dokumentumok feldolgozása egyszer¶, azt bármilyen
hivatali dolgozó képes elvégezni. A második típusú dokumentum feldolgozását már
csak a megfelel® képzettséggel rendelkez® dolgozók tudják elvégezni. Tehát, azoknál
a munkáknál, amelyet mindenki el tud végezni, a pj id®k azonosak. Azon mun-
kák esetében, amelyeket nem mindenki tud elvégezni, ott a dolgozók egy részénél
azonosak csak a pj id®k. A feladatok pedig nem megszakíthatóak, ugyanis a do-
kumentumok feldolgozása gyorsan történik és feltételezzük, hogy egy dokumentum
feldolgozását nem hagyják félbe. Továbbá itt nincs megel®zési reláció. A cél a
dokumentumok feldolgozási idejének a minimalizálása.

Egy másik példa lehet az építkezési munkálatok. A munkálatok több alfeladatra
oszthatóak fel, pl. alapozás, falak felhúzása, mérnöki feladatok stb. Természetesen
ezen részfeladatok között megel®zési relációk vannak. Például a falak felhúzása
el®tt nyilvánvalóan az alapnak kell elkészülnie. Ebben a példában az er®források az
építkezésen dolgozó emberek. A munkások különböz® feladatokat tudnak elvégezni
(pl. a segédmunkás keveri a betont, viszont villanyt nem szerelhet, de a villanyszerel®
tudja felügyelni a beton keverését, de ® inkább a villanyszereléshez ért). Az épitkezési
munkálatok elvégzését napokban mérjük. A munkások egyszerre csak egy helyen
dolgoznak, és addig nem mennek máshova, amíg az adott helyen el nem készülnek.
Ebb®l a szempontból a munka nem megszakítható. A cél pedig az, hogy a dolgozókat
vagy azoknak a csoportjait úgy osszuk szét a feladatok között, hogy egyrészt azt az
adott dolgozó vagy dolgozók képesek legyenek elvégezni, másrészt pedig a munka

15



ideje minimális legyen.
A harmadik példa egy családi ház felújítása. Itt is hasonló a megoldandó problé-

ma az el®z® példához. Egy cég, amely a felújítást végzi, munkásokat küld a feladat
elvégzésére. Azonban mind a cégnek, mind pedig a ház tulajdonosának érdeke, hogy
olyan munkások végezzék el a munkát, akiknek megvan hozzá a megfelel® kvalitá-
suk, azaz precízen, szakszer¶en el tudják végezni azt. Továbbá az egyes munkások
elosztása a feladatok között úgy történjen, hogy a munkavégzés hatékony és minél
gyorsabb legyen.

Természetesen, ha egy megel®zési reláció van, akkor ha az egyik munkás befe-
jezi az adott részfeladatot, akkor a tervben következ® feladat más munkás által is
végezhet®. Mint láttuk, bizonyos esetekben feltehet®, hogy a munkák végzése nem
megszakítható, ez a munkafolyamat szervezéséb®l, vagy a munkák jellegzetességeib®l
következik. (Pl. porszívózás az megszakítható, de piskóta sütése az nem megszakít-
ható.) Megjegyezzük, hogy sok esetben a munkavégzés esetén kibocsátási és elvárt
befejezési id®k is vannak. Ez azt jelenti, hogy például valamely munkáknak egy bi-
zonyos határid®re el kell készülnie. Kétfajta határid® van a szakirodalomban. Egyik
esetben eddig az id®pontig a munkának mindenképp el kell készülnie. Például, taxi-
val megyünk a reptérre. Akkor a repül®t mindenképp el kell hogy érjük, különben
nem �zetünk. Másik esetben "jó lenne" ha a munka egy adott id®pontra befejez®dne,
de nem történik tragédia akkor sem, ha kicsit csúszik a munka, legföljebb valamennyi
kötbért �zetünk majd. Kibocsátási id® pedig azt jelenti, hogy az adott munkát nem
kezdhetjük el ennél az id®pontnál korábban. Ebben a dolgozatban ilyen kibocsátá-
si id®kkel és elvárt befejezési id®kkel nem foglalkoztam, egyrészt mert a vizsgálat
enélkül is eléggé bonyolult, másrészt azért, mert a kapcsolódó cikkekben sem voltak
sem kibocsátási, sem befejezési id®k.

A fenti példák segítségével egy könnyen érthet® áttekintést kívántam adni arról,
hogy a felvetett problémának mi a lényege. A problémát olyan ütemezési problé-
maként modelleztem, ahol az egyes tevékenységek között megel®zési relációk vannak
de�niálva, valamint az egyes tevékenységek végrehajtásának ideje a hozzárendelt er®-
forrástól függ. Ezeket az er®forrásokat független er®forrásoknak nevezzük. Az els®
példában a második típusú dokumentum feldolgozása két tevékenységre bontható
fel: feldolgozás és ellen®rzés. Látható, hogy a két tevékenység között egyértelm¶
megel®zési reláció van, ugyanis a dokumentum feldolgozását el®bb kell elvégezni,
mint az ellen®rzést.

Tehát a felvetett probléma az ütemezés területéhez tartozik. Az egyes tevékeny-
ségek végrehajtását az er®forrásokkal tudjuk elvégezni, amelyeket hozzá kell rendel-
ni a tevékenységekhez úgy, hogy az el®re meghatározott feltételek teljesüljenek. A
munkámban a cél az, hogy a teljes átfutási id®t minimalizáljam.

Az ütemezési feladatok általában számításigényes, nehéz feladatok. Ezeket a
problémákat gyakran valamilyen heurisztikus módszerrel oldják meg. Az ebben a
fejezetben bemutatott munkám egy, a meger®sítéses tanulással kiegészített ütemez®
eljárás. A következ® alfejezetekben részletesen bemutatom a felvetett problémát, a
meger®sítéses tanulást, és azon belül a Q-tanulást, a kidolgozott eljárást. Kitérek az
alkalmazott példákra és azok eredményeinek kiértékelésére, végül összefoglalásként
összegzem az elért eredményeket.

A problémával és annak megoldásával az els® impakt faktoros cikkemben [50]
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foglalkoztam.

2.1.1. Kapcsolódó munkák a meger®sítéses tanulás ütemezés-
ben való alkalmazására

Orhean és szerz®társai [51] egy, a meger®sítéses tanuláson alapuló, elosztott felh®
rendszerhez alkalmazható ütemez® eljárást mutattak be. A cél egy rendszer telje-
sítményének az optimalizálása volt az er®források ütemezésén keresztül. Aydin és
Öztemel [52] egy ágens alapú ütemezési módszert dolgoztak ki, amelyben az ágens
különböz® feltételek mentén szabályokat választ ki, amelyek alapján az ütemezés
végbemegy. Az ágens tanítására a Q-tanulás egy továbbfejlesztett változatát alkal-
mazták. Stefán [53] a Q-tanulás algoritmusát alkalmazta egy permutációs �ow shop
problémára, ahol a cél a gépek üresjárati idejének a minimalizálása volt. Stefán
a disszertációjában [54] b®vebb leírást adott az algoritmusról, amely a �ow shop
típusú probléma megoldására készült. A cikk [53] és a disszertáció [54] az általam
bemutatott probléma meger®sítéses tanulás oldalról való megközelítésében segített.
Gabel és Riedmiller [55] szintén a Q-tanulást alkalmazták, viszont ®k egy job shop
típusú problémára, amelynél a Q-függvényt neurális háló segítségével közelítették.
Shahrabi és szerz®társai [56] a meger®sítéses tanulást alkalmazták egy job shop típu-
sú problémára kifejlesztett eljárás továbbfejlesztéséhez. További példákat találunk
a meger®sítéses tanulás alkalmazására az ütemezés területén az [57�59] cikkekben.
A [60]-ban például a Q-tanulásnak a neurális hálózatokkal összekapcsolt változatát
alkalmazták, amelyet Deep Reinforcement Learning-nek hívnak.

2.2. Meger®sítéses tanulás

A meger®sítéses tanulás [61] a gépi tanuláson belül a harmadik terület a felügyelt és a
nem felügyelt tanulás mellett. A meger®sítéses tanulás olyan technikák, algoritmusok
gy¶jteménye, amelyek segítségével a tanuló azt tanulja meg, hogy adott szituációban
mit tegyen. A döntéseket stratégiák megtanulásával hozza meg. A stratégia az adott
állapot leképezése egy akcióra, cselekvésre. A meger®sítéses tanulással megoldható
problémák jellemz®je, hogy adott állapotban a választott akció pontos meg�gyelésére
nincs lehet®ség, csak az ún. késleltetett jutalmakon keresztül, amely egy becslés. A
cél az, hogy ezen jutalmakat a tanuló ágens maximalizálja.

Formálisan, egy meger®sítéses tanulási probléma Markov döntési folyamattal ír-
ható le. Az érthet®ség kedvéért a Markov folyamatok bemutatását a Markov tu-
lajdonságtól kezdem, és megmutatom, hogy ezek a folyamatok hogyan épülnek fel
attól függ®en, hogy milyen új komponenseket veszünk be a rendszerbe.

2.2.1. A meger®sítéses tanulás általános modellje

A tanuló entitást vagy döntéshozót ágensnek nevezzük. Az ágens lehet bármi (em-
ber, robot, járm¶ . . . ), ami érzékeli a környezetét, az érzékelt információk alapján
döntést hoz és visszahat a környezetére. Környezet az, amelyben az ágens m¶köd-
ni képes. Az ágens a meghozott döntések hatására a környezetével interakcióba
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lép, azaz valamilyen cselekvést végrehajt. Ezekre az akciókra a környezet válaszol,
amelynek hatására az ágens új állapotba kerül. Továbbá a környezet az ágens szá-
mára egy meger®sítést, egy ún. jutalmat is biztosít. Ez a jutalom egy számérték,
amelyet az ágens igyekszik maximalizálni. Természetesen a jutalom értéke lehet
negatív, pozitív vagy éppen nulla is.

2.1. ábra. A meger®sítéses tanulás általános modellje

Formálisan megfogalmazva a fentieket, az ágens minden diszkrét t = 1, 2, 3, 4 . . .
id®pillanatban kapcsolatba kerül a környezetével. Minden egyes t id®pillanatban
az ágens egy adott St ∈ S állapotban van, ahol S a lehetséges állapotok halmaza.
Az aktuális állapotban választ egy At ∈ A(St) akciót, ahol A(St) az St állapotban
elérhet® akciók halmaza. Egy id®pillanattal kés®bb a végrehajtott akció hatására a
környezett®l kap egy Rt+1 ∈ R ⊂ R jutalmat, és egy új St+1 állapotba kerül. Az
el®bbi képletben R a lehetséges jutalmak halmaza.

Adott állapotban az akció kiválasztása valamilyen el®re de�niált mechanizmus
szerint történik. Ezt a mechanizmust az ágens stratégiájának vagy politikájának
nevezzük. A stratégia nem más, mint egy függvény, amely egy valószín¶ségi eloszlást
ír le az akciók felett. A függvényt π-vel jelöljük. A π(a|s) kifejezés azt adja meg, hogy
az At = a akció mekkora valószín¶séggel kerül kiválasztásra az St = s állapotban.
Az el®bbi kifejezésekben a szokásos, egyszer¶ jelöléseket használtuk.

2.2.2. Célok és jutalmak

Ahogy a korábbiakban volt róla szó, az ágens célja az, hogy a környezett®l kapott
jutalmat maximalizálja. Itt nem az azonnal megkapott jutalomra kell gondolni,
hanem a hosszútávon szerzett jutalmakra. Ezt nevezzük kumulatív jutalomnak.
A kumulatív jutalom formális felírásakor könnyebb dolgunk van abban az esetben,
ha az ágens-környezet páros közötti interakciók száma véges, azaz az ágens futása
véges lépésben befejez®dik. Egy ilyen szekvenciát epizódnak nevezünk és az epizód
akkor fejez®dik be, amikor az ágens egy speciális állapotba, a végállapotba kerül. A
végállapotokat is tartalmazó halmazt S+ szimbólummal jelöljük. Ebben az esetben
a Gt kumulatív jutalom a t id®pillanatban nem más, mint a t id®pillanat után kapott
jutalmak összege. Az ágens célja pedig a várható kumulatív jutalom maximalizálása.
Mivel nem tudjuk el®re, hogy mennyi lesz a tényleges jutalom a folyamat végén, a
hangsúly a "várhatón" van.

1. De�níció. Várható kumulatív jutalom

Gt = Rt+1 +Rt+2 +Rt+3 + · · ·+RT , (2.1)
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ahol a T <∞ az utolsó id®pillanat.
Azonban vannak olyan helyzetek, amikor egy probléma nem bontható fel egy-

értelm¶en epizódokra, tehát a folyamat nem fejez®dik be véges számú lépésben.
Ezeket a problémákat folytonos vagy végtelen id®horizontú feladatoknak nevezzük,
ahol a T = ∞. Ekkor könnyen látható, hogy a (2.1) összegzés végtelenné válhat,
azaz egy olyan végtelen sort kapunk, ami divergens. Ennek a problémának a fel-
oldására egy új módszert kell bevezetnünk, amit diszkontálásnak hívunk. Innent®l
kezdve az ágens célja a várható diszkontált kumulatív jutalom maximalizálása. A
(2.1) kifejezés az alábbiak szerint módosul.

2. De�níció. Várható diszkontált kumulatív jutalom

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1, (2.2)

ahol a γ a diszkontálási paraméter és γ ∈ [0, 1]. A diszkontálásnak köszönhet®en
a végtelen sor konvergenssé válik. A diszkontálási paraméter másik alkalmazása a
jöv®ben esedékes jutalom jelenértékének a kiszámítása, azaz, hogy mennyit ér most
a k id®pillanat múlva kapott jutalom. Pontosabban kifejezve a k id®pillanat múlva
esedékes jutalom most, a jelenben az eredeti érték γk−1-szeresét éri, ahhoz képest
mintha azt most, azonnal megkapnánk. Ezzel az ágens viselkedését lehet befolyá-
solni. Ha a γ értéke nullához közelít, úgy az ágens egyre mohóbb, és egyre nagyobb
mértékben csak az azonnali jutalmat veszi �gyelembe. Ha a γ értéke egyhez közelít,
úgy az ágens egyre nagyobb mértékben veszi �gyelembe a jöv®beni jutalmakat is.

2.2.3. Markov tulajdonság

Egy probléma Markov tulajdonságú [62] akkor, ha a jöv®beni állapotok nem függe-
nek a múltbéli állapotoktól, csak a jelent®l.

A meger®sítéses tanulás esetében azt mondjuk, hogy egy probléma (és a környe-
zet is) Markov tulajdonságú, ha a rendszer minden jöv®beni állapotára igaz az, hogy
csak a jelent®l függ, a múltbéli állapotoktól nem.

3. De�níció. Markov tulajdonság

P[St+1|St] = P[St+1|S1, S2, . . . , St] (2.3)

Ha a (2.3) tulajdonság igaz, akkor az St állapotot Markov állapotnak nevezzük. A
Markov tulajdonsággal rendelkez® állapot minden hasznos információt tartalmaz a
múltban megtörtént eseményekr®l, kompakt formában.

2.2.4. A rendszer dinamikája

A rendszer dinamikáját az állapotok közötti átmenetek valószín¶ségét leíró, ún.
átmenet valószín¶ség mátrix adja meg. Bármely tetsz®leges két szomszédos állapot
közötti átmenet az alábbi valószín¶séggel írható le.

Pss′ = P[St+1 = s′|St = s] (2.4)
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A valószín¶ségeket a P állapotátmenet mátrix tartalmazza minden s állapotból
minden s′ állapotba. A mátrix egy sorában található valószín¶ségek összege pon-
tosan 1. Ez azt jelenti, hogy valamilyen szomszédos s′ állapotba biztosan átlép az
ágens.

P =

P11 · · · P1n
...

...
Pn1 · · · Pnn

 (2.5)

n∑
j=1

Pij = 1, i = 1, . . . , n (2.6)

Ahhoz, hogy egy probléma értelmezhet® és megoldható legyen, minden esetben el®re
de�niálni kell az állapotátmenet mátrixot. Bonyolultabb feladatok esetében ennek
a de�niálása kényelmetlen és nehézkes lehet.

Markov döntési folyamat

Az olyan meger®sítéses tanulási problémát, amely Markov tulajdonságú, Markov
döntési folyamatnak nevezzük. Az alábbiakban áttekintést nyújtok az egyszer¶
Markov lánctól indulva az összetettebb Markov döntési folyamatig a meger®sítéses
tanulás szemszögéb®l.

Markov-lánc

A Markov-lánc egy memória nélküli, véletlenszer¶ állapotok sorozatából álló folya-
mat.

4. De�níció. Markov folyamat: A Markov folyamat egy ⟨S,P⟩ rendezett kettes,
ahol:

� S az állapotok véges halmaza

� P az állapotátmenet valószín¶ségi mátrix
Pss′ = P[St+1 = s′|St = s]

Markov-folyamat jutalmazással

Annak a Markov-láncnak a neve, amelyben megjelenik a jutalomfüggvény, Markov-
folyamat jutalmazással (Markov Reward Process), vagy röviden MRP. Ez nem más,
mint a Markov-lánc kiterjesztése, ahol az egyes állapotváltásokra a környezet egy
jutalomfüggvény segítségével visszajelez.

5. De�níció. Markov Reward Process: A Markov Reward Process egy ⟨S,P ,R, γ⟩
rendezett négyes, ahol:

� S az állapotok véges halmaza

� P az állapotátmenet valószín¶ségi mátrix
Pss′ = P[St+1 = s′|St = s]
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� R a jutalomfüggvény
Rs = E[Rt+1|St = s]

� γ ∈ [0, 1] a diszkontálási faktor (leszámítolási tényez®)

Megjegyezzük, hogy ittR nem függ a választott lépést®l csak az adott állapottól.
A várható diszkontált jutalom a (2.2) képlet alapján számítható. A 2.2.2. fe-

jezetben már volt róla szó, hogy miért szükséges a jutalom értékeit diszkontálni
az id® függvényében. Egyrészt, a folytonos feladatok esetében ezzel biztosítható a
végtelen sor konvergenciája, másrészt pedig a jöv®beni jutalmak fontossága is beál-
lítható. Utóbbi esetben, ha a γ értéke nullához közelít, akkor az ágens rövidlátó, ha
az egyhez közelít, akkor a jöv®beni jutalmak egyre jobban felértékel®dnek.

6. De�níció. Állapotértékel® függvény MRP esetén: Az MRP állapotértékel® függ-
vénye, v(s) egyenl® az elvárt diszkontált jutalommal az s állapotból indulva.

v(s) = E[Gt|St = s] (2.7)

Az állapotok hasznosságát a bel®le kiinduló állapotsorozatok várható hasznos-
ságának összegével tudjuk leírni. Az állapotok hasznosságának meghatározására
a Bellman-egyenletet [63] alkalmazzák, amely Richard Bellmantól származik. A
Bellman-egyenlet szerint egy adott állapot hasznossága a benne tartózkodás értéke
és a szomszédos állapotok várható hasznosságának az összege. A Bellman-egyenlet
szerint az értékel® függvény két részre bontható fel:

� az azonnali jutalomra (Rt+1)

� a szomszédos állapot diszkontált hasznosságára (γv(St+1))

Az MRP esetében az értékel®függvény Bellman-egyenlete a következ®.

7. De�níció. Bellman-egyenlet

v(s) = E[Gt|St = s]

= E[Rt+1 + γRt+2 + γ2Rt+3 + . . . |St = s]

= E[Rt+1 + γ(Rt+2 + γRt+3 + . . . )|St = s]

= E[Rt+1 + γGt+1|St = s]

= E[Rt+1 + γv(St+1)|St = s]

(2.8)

azaz,

v(s) = Rs + γ
∑
s′∈S

Pss′v(s
′). (2.9)

Az MRP esetében egy állapot hasznosságának kiszámítása a (2.9) kifejezés alapján
történik. A kifejezésben az Rs az azonnali jutalom az s állapotban, a Pss′ annak
a valószín¶sége, hogy s állapotból az s′ állapotba kerül az ágens, a v(s′) pedig a
szomszédos állapot hasznossága. A szumma m¶velet pedig amiatt kell, mert egy
adott állapotnak több szomszédja is lehet.
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A Bellman-egyenlet lineáris, így közvetlenül is megoldható. Ehhez a (2.9) kife-
jezést mátrixok segítségével kell felírni. Így kapunk egy lineáris egyenletet, amelyet
átrendezve megkapjuk a megoldást.

v = R+ γPv
(I − γP)v = R

v = (I − γP)−1R
(2.10)

Az el®bbi képletben feltételezzük, hogy a megfelel® mátrix invertálható. A direkt
megoldás csak kis méret¶ MRP-k esetén lehetséges. Továbbá számos iteratív mód-
szer is rendelkezésre áll:

� Dinamikus programozás

� Monte-Carlo kiértékelés

� TD (Temporal Di�erence - Id®beni különbség) tanulás

Markov döntési folyamat

A Markov döntési folyamat (Markov Decision Process, MDP) egy Markov Reward
Process (MRP), ahol már megjelenik a döntés akciók formájában. Azaz a modell
egy újabb taggal b®vül.

8. De�níció. Markov Decision Process: A Markov Decision Process egy ⟨S,A,P ,R, γ⟩
rendezett ötös, ahol:

� S az állapotok véges halmaza

� A az akciók véges halmaza

� P az állapotátmenet valószín¶ségi mátrix
Pss′ = P[St+1 = s′|St = s]

� R a jutalomfüggvény
Rs = E[Rt+1|St = s]

� γ ∈ [0, 1] a diszkontálási faktor (leszámítolási tényez®)

Az akciók olyan elemei a rendszernek, amelyek az ágens cselekvéseit írják le.
Minden állapotban az ágens valahány akció közül választhat, amelynek hatására
átkerül egy új állapotba. Az akció kiválasztása is valószín¶ségek alapján történik.
Az, hogy milyen a valószín¶ségek eloszlása az akciók felett, azt a stratégia vagy más
néven a politika határozza meg. Egy stratégia teljes mértékben meghatározza az
ágens viselkedését.

9. De�níció. Stratégia: Egy π stratégia egy valószín¶ségi eloszlás az adott állapotban
elérhet® akciók felett.

π(a|s) = P[At = a|St = s] (2.11)
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Tehát a fenti de�níció szerint egy stratégia azt írja le, hogy az ágens egy adott s
állapotban mekkora valószín¶séggel választja az a akciót. Az MRP-hez hasonlóan az
MDP esetében is az állapotok a hasznosságukkal jellemezhet®ek. Azonban az MDP
de�níciója szerint itt már megjelennek az akciók is, mint döntés. Ezért itt nem csak
állapotértékel®, hanem akcióértékel® függvényr®l is beszélhetünk. Az MDP esetében
az értékel® függvények de�níciója a következ®.

10. De�níció. Állapotértékel® függvény MDP esetén: Az MDP állapotértékel® függ-
vénye, vπ(s) egyenl® az elvárt diszkontált jutalommal az s állapotból indulva és a π
stratégiát követve.

vπ(s) = Eπ[Gt|St = s] (2.12)

11. De�níció. Akcióértékel® függvény MDP esetén: Az MDP akcióértékel® függvé-
nye, qπ(s, a) egyenl® az elvárt diszkontált jutalommal az s állapotból indulva, az a
akciót végrehajtva és a π stratégiát követve.

qπ(s, a) = Eπ[Gt|St = s, At = a] (2.13)

Az MRP-hez hasonlóan az MDP értékel® függvényei is két részre bonthatóak.
Viszont, itt az MRP-hez képest az ágens úgy próbálja meghatározni egy állapot vagy
akció hasznosságát, hogy egy π stratégiát követ. Emiatt itt a Bellman-egyenletet
Bellman várhatóérték-egyenletnek [64] nevezzük. A két függvény dekompozíciója a
következ®képpen írható fel.

12. De�níció. Bellman várhatóérték-egyenlet

vπ(s) = Eπ[Rt+1 + γvπ(St+1)|St = s] (2.14)

qπ(s, a) = Eπ[Rt+1 + γqπ(St+1, At+1)|St = s, At = a] (2.15)

Az el®bbiek, vagyis az állapotértékel® és az akcióértékel® függvény között rekurzív
összefüggés van. Kés®bb megmutatjuk, hogy kölcsönösen, egyikb®l a másik levezet-
het®. Az s állapot értéke az elérhet® akciók hasznosságának súlyozott összege.

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a) (2.16)

Egy akció értékének a súlya az adott akció kiválasztásának a valószín¶sége. A vá-
lasztott a akció hasznossága függ azon s′ utódállapotok hasznosságától, amelyekbe
az ágens a környezet dinamikája alapján kerülhet. Továbbá függ az Ra

s azonnali
jutalomtól is.

qπ(s, a) = Ra
s + γ

∑
s′∈S

Pa
ss′vπ(s

′) (2.17)

Az Ra
s az s állapotban végrehajtott a akció után kapott azonnali jutalom. A

Pa
ss′ annak a valószín¶ségét adja meg, hogy s állapotban az a akciót végrehajtva az

s′ állapotba kerül az ágens.
Ha a (2.16) kifejezésbe behelyettesítjük a (2.17) kifejezést, az állapotértékel® függ-
vény alábbi alakját kapjuk.
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vπ(s) =
∑
a∈A

π(a|s)(Ra
s + γ

∑
s′∈S

Pa
ss′vπ(s

′)) (2.18)

Tehát az s állapot értéke (hasznossága) függ a választott akció értékét®l (ennek
kiválasztása az adott stratégia mentén történik) és azon utódállapotok értékét®l,
amelyekbe az adott akció végrehajtása után a rendszer az el®re de�niált dinamika
alapján vihet. Továbbá az akció kiválasztásáért kapott azonnali jutalomtól.

Ha a (2.17) kifejezésbe behelyettesítjük a (2.16) kifejezést, az akcióértékel® függvény
alábbi alakját kapjuk.

qπ(s, a) = Ra
s + γ

∑
s′∈S

Pa
ss′

∑
a′∈A

π(a′|s′)qπ(s′, a′) (2.19)

Az MDP-k esetében a Bellman-egyenlet lineáris, így a (2.10) alapján közvetlenül is
megoldható.

Az értékel® függvény optimalitása MDP-ben

13. De�níció. Állapotértékel® függvény optimalitása: Az optimális állapotértékel®
függvény v∗(s) a maximális állapotértékel® függvény minden π stratégia felett.

v∗(s) = max
π

vπ(s) (2.20)

14. De�níció. Akcióértékel® függvény optimalitása: Az optimális akcióértékel® függ-
vény q∗(s, a) a maximális akcióértékel® függvény minden π stratégia felett.

q∗(s, a) = max
π

qπ(s, a) (2.21)

15. De�níció. Stratégiák összehasonlítása: Két tetsz®leges stratégia közül π leg-
alább olyan jó, mint π′ (π ≥ π′) ha

vπ(s) ≥ vπ′(s), ∀s (2.22)

Megjegyezzük, hogy az optimális stratégia nyilvánvalóan legalább olyan jó, mint
bármelyik másik.

Az optimális értékel® függvény garantálja az ágens legjobb teljesítményét az
MDP-ben, és egy MDP akkor megoldott, ha ismerjük ezt az optimális függvényt.

1. Tétel. [61] Bármely Markov döntési folyamat esetében

� létezik legalább egy optimális π∗ stratégia, ami legalább olyan jó, mint a többi,
π∗ ≥ π, ∀π,

� minden optimális stratégia megadja az optimális állapot- és akcióértékel® függ-
vényt, vπ∗(s) = v∗(s) és qπ∗(s, a) = q∗(s, a).
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Az optimális stratégia megtalálható, ha q∗(s, a) felett maximalizálunk.

π∗(a|s) =

1 ha a = argmax
a∈A

q∗(s, a)

0 egyébként
(2.23)

Azaz adott s állapotban az a akció kiválasztásának valószín¶sége pontosan 1, ha az
az akció kerül kiválasztásra, amelyik a legnagyobb jutalmat eredményezi. Ha ismert
q∗(s, a), akkor ismert az optimális stratégia is. Az optimális értékel®függvények
rekurzívan kapcsolódnak egymáshoz a Bellman optimalitási egyenlet [61] alapján.

v∗(s) = max
a

q∗(s, a) (2.24)

q∗(s, a) = Ra
s + γ

∑
s′∈S

Pa
ss′v∗(s

′) (2.25)

ebb®l behelyettesítéssel,

16. De�níció. Bellman optimalitási egyenlet

v∗(s) = max
a

(
Ra

s + γ
∑
s′∈S

Pa
ss′v∗(s

′)

)
(2.26)

q∗(s, a) = Ra
s + γ

∑
s′∈S

Pa
ss′ max

a′
q∗(s

′, a′). (2.27)

A Bellman optimalitási egyenlet a max operátor miatt nem lineáris, így közvetlenül
nem megoldható.

2.2.5. Q-tanulás

A Q-tanulás a meger®sítéses tanuláson belül az ún. id®beli különbség tanulás, azon
belül pedig az irányítási eljárások csoportjába tartozó, modell-független eljárás. Az
algoritmus kidolgozása Christopher J.C.H. Watkins nevéhez f¶z®dik [65].

Azokat az MDP-ket, amelyeknél ismert a rendszer dinamikája és a jutalomfügg-
vény is, jellemz®en az értékiteráció vagy a stratégia iteráció eljárásokkal oldjuk meg,
amelyek a dinamikus programozás témakörébe tartoznak és modell-függ®ek.

Az id®beli különbség tanulás módszer lényege, hogy egy adott s állapot esetében
az értékel® függvények frissítése kizárólag csak a meg�gyelt szomszédos s′ állapoto-
kat veszi �gyelembe. Az id®beli különbség tanulása módszernél az ágensnek nincs
szüksége sem a rendszer dinamikájának, sem pedig a jutalomfüggvénynek az isme-
retére, ezért ezt a módszert modell-függetlennek nevezzük. Megjegyezzük, hogy
semmilyen tréning adatbázis nem szükséges, mert a kapott jutalmak alapján tanul
az ágens.
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Eljárás

A Q-tanulás egy irányítási eljárás, amely azt jelenti, hogy egy meglév® stratégiát
igyekszik javítani. Azaz olyan π stratégiát keres, amelyre igaz a 15. De�níció. Az
eljárás egy Q akcióértékel® függvényt tanul meg, azaz minden állapot esetében az
ott végrehajtható akciók hasznosságát. Továbbá a Q-tanulás az optimális q∗ függ-
vényt közelíti, függetlenül attól, hogy milyen viselkedési stratégiát követ. Legyen
(S1, A1, R1)(S2, A2, R2) . . . a meg�gyelt St állapotok, At akciók és Rt jutalmak so-
rozata és t = 1, 2, 3, . . . diszkrét id®pillanatok. Az optimális akcióértékel® függvény
közelítése az alábbi szabállyal történik.

Qt+1(St, At) = (1− αt)Qt(St, At) + αt(Rt + γt max
a

Qt(St+1, a)), (2.28)

ahol

Qt+1(s, a) = Qt(s, a). (2.29)

A (2.28) kifejezésben az α ∈ [0, 1] a tanulási paraméter (vagy bátorsági faktornak
is hívják), amely azt határozza meg, hogy az utódállapot becsült maximális akció-
értéke, amelyet a környezetb®l vett minta alapján kaptunk, és az azonnali jutalom
összege mekkora mértékben lesz �gyelembe véve. Amennyiben az α = 0, úgy az
ágens nem tanul semmit; ha α = 1, akkor pedig az aktuális Qt(s, a) érték teljesen
felülíródik. A Q-értékek egy kétdimenziós Q mátrixban kerülnek eltárolásra, ahol a
sorok jelentik az állapotokat, az oszlopok pedig az akciókat. A Q-tanulás további
fontos tulajdonsága az o�-policy tanulás. Ez azt jelenti, hogy a (2.28) kifejezés két
stratégia mentén m¶ködik. Ebb®l az egyik az ún. célstratégia (π), a másik pedig a
viselkedési stratégia (µ). Ebben az esetben a π stratégia a (2.28) kifejezésben a max
operátor, amely egy mohó stratégia. Azaz, a következ® állapotban az akció válasz-
tásának értékét úgy becsüli, hogy a választható akciók közül a legnagyobb érték¶t
választja. Ez a stratégia �x, a frissít® szabály része. A µ stratégia pedig az akció
kiválasztását végz® stratégia, amely az eljárást implementáló személy választása (pl.
ϵ-mohó, softmax . . . ).

Watkins a publikációjában [65] megmutatta, hogy a Qt függvény p = 1 valószí-
n¶séggel konvergál a q∗ optimális akcióértékel® függvényhez adott feltételek mellett.

2. Tétel. [61] Adott, véges id®horizontú MDP esetén a Q-tanulás algoritmusa az
optimális q∗ függvényhez konvergál, ha

�

∑
t αt =∞ és

�

∑
t α

2
t <∞ és

� minden (s, a) pár végtelen sokszor megjelenik az (S1, A1)(S2, A2) . . . sorozat-
ban.
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Az els® két feltétel azt írja le, hogy az αt paraméterek négyzetösszege véges, de a
paraméterek nullához tartása ne legyen túl gyors. Azaz az αt paraméterek négyze-
tének összege már ne végtelenhez tartson. Az utolsó feltétel pedig azt követeli meg,
hogy minden akciónak az adott π stratégia mellett bármely állapotban nem lehet
0 a kiválasztási valószín¶sége. Az utolsó feltételt nem a Q-tanulás frissít® szabálya
vezérli, hanem egy megfelel® π stratégia. Számos stratégia létezik, amelyek közül
a legnépszer¶bbek az ϵ-mohó és a Boltzmann felfedezési (softmax) stratégiák. Az
ϵ-mohó stratégia m¶ködése nagyon egyszer¶. A stratégia szerint az ágens minden t
id®pillanatban 1 − ϵt valószín¶séggel a legjobbnak gondolt a akciót választja, azaz
ami maximalizálja a Qt(St, a)-t, és ϵt valószín¶séggel egy véletlenszer¶ akciót vá-
laszt egyenletes eloszlás mellett. A munkámban a Boltzmann felfedezési stratégiát
alkalmaztam, amelyet a következ® részben nagy vonalakban tárgyalok.

Boltzmann felfedezési stratégia

Az akciók kiválasztása során alkalmazott akcióválasztó stratégia két f®, id®ben és
viselkedésben eltér® szakaszra bontható. Az egyik a felfedezés, a másik pedig a ki-
aknázás szakasz. A felfedez® szakaszban az ágens véletlenszer¶en választ akciókat,
ezzel megadva az esélyt, hogy addig még nem próbált cselekvéseket is végrehajt.
Ennek el®nye, hogy egyre több információja lesz a környezetér®l, ami hosszútávon
megtérül, rövidtávon azonban nyilván veszteséget is okozhat, ha éppen olyan cse-
lekvést választott. A másik szakasz, a kiaknázás azt jelenti, hogy a már meglév®
információkra támaszkodva mindig a legjobb (mohó) akciót választja az ágens.

A Boltzmann felfedezési stratégia pl. az ϵ-mohó stratégiával szemben az egyes
akciók kiválasztását eltér® valószín¶ségi értékek alapján végzi.

P(a|St) =
e

Q(St,a
′)

τt∑
a′ e

Q(St,a
′)

τt

(2.30)

Az egyes akciók valószín¶ségének kiszámítása függ az akció becsült értékét®l és a
τt ∈ R+ paramétert®l. A felfedezés és a hasznosítás közötti átmenet a τt paraméter
függvénye. Ha a τt értéke magas, akkor az akciók kiválasztása közel azonos eloszlás
mellett történik. Alacsonyabb τt esetén ezek a valószín¶ségi értékek a jobb (ma-
gasabb érték¶) akciók esetében nagyobbak lesznek, míg a rosszabb (alacsonyabb
érték¶) akciók esetében alacsonyabbak. Minél jobban közelíti a nullát, az akciók
kiválasztása egyre jobban mohó lesz. A (2.30) kifejezés az a akció kiválasztásának
valószín¶ségét adja meg az St állapotban a Boltzmann eloszlásfüggvény segítségével.
Másképpen fogalmazva, a függvény bemenete egy vektor, amely az adott St állapot-
ban elérhet® akciók értékeit tartalmazza, a kimenet pedig minden akció számára egy
valószín¶ség.

Epizodikus Q-tanulás

Egy MDP-t epizodikusnak tekintünk, ha minden egyes

(S1, A1, R1), (S2, A2, R2), . . . , (Sn, An, Rn), Sn+1 (2.31)
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epizód után újraindul a megoldás a kiinduló állapotból. Az Sn+1 az epizód végállapo-
ta. Egy epizód vége meghatározható egy maximális lépésszámban vagy valamilyen
leállási feltételként is. Az epizodikus Q-tanulás epizodikusan alkalmazza a (2.28)
frissít® szabályát, azaz csak az adott epizód befejezése után történik meg a frissítés.
Az általam fejlesztett algoritmus is epizodikus Q-tanulást alkalmaz. Ez azt jelenti,
hogy egy következ® St+1 állapot nem egy akció végrehajtásával áll el®, hanem akció-
sorozatok végrehajtásával, amely egy teljes epizódot ölel fel. Az epizód befejez®dése
az állapotsorozat végrehajtásának a befejez®dése, amelynek eredménye egy új St+1

következ® állapot.

2.3. Problémafelvetés

Ebben a fejezetben részletesen bemutatom az általam felvetett ütemezési problémát.
Az ütemezési feladat típusa független gépek ütemezése megel®zési relációk �gyelem-
bevételével (unrelated machine scheduling with precedence constraints), amely az
alábbiak szerint írható le:

Rm|prec|Cmax (2.32)

ahol Rm a gépek halmaza (m darab független gép), prec jelöli azt, hogy az egyes
tevékenységek között megel®zési relációk vannak és Cmax = max(C1, . . . , Cn) jelöli
a legkés®bb befejez®d® tevékenység befejezési idejét a rendszerben, amit minimali-
zálunk. A Cj jelöli a j. munka befejezési idejét. A j. feladat végrehajtási idejét az
Mi gépen pij jelöli, a cél pedig az átfutási id® minimalizálása (kibocsátási id®k nin-
csenek a modellben). Lenstra és szerz®társai [66] az Rm||Cmax problémára (vagyis
az általunk vizsgált feladatnak arra a speciális esetére, amikor nincsenek megel®zési
relációk) egy polinomiális idej¶, 2-approximációs algoritmust adtak meg. Továbbá
azt is megmutatták, hogy ezen probléma esetén nem létezik olyan polinomiális idej¶
algoritmus, amelynek az approximációs aránya 3

2
-nél kisebb, feltéve, hogy P ̸= NP .

Ez már mutatja, hogy a feladat (megel®zési relációk nélkül is) nagyon nehéz, hiszen
a feladatot összehasonlítva a hasonló (uniformly related) gépek ütemezésével, erre
viszont létezik polinom idej¶ approximációs séma. Lenstra és szerz®társai [66] azt
is megmutatták, hogy az Rm||Cmax problémának még az a speciális esete is NP-
nehéz, amikor a végrehajtási id®k kétfajták lehetnek csak, vagyis pij ∈ {p, q} ahol
p < q, 2p ̸= q. Lenstra és szerz®társai [66] eredményét Shchepin és Vakhania [67]
kicsit tudta javítani úgy, hogy m gép esetében 2− 1

m
approximációt értek el.

Az általam felvetett problémában azonban még a tevékenységek közötti meg-
el®zési relációk is megjelennek. Ezek a megel®zési relációk egy irányított G grá�al
adhatók meg. A gráf csomópontjai a tevékenységek, az irányított élek pedig a vég-
rehajtási sorrendet de�niálják. Azaz, a megel®z® tevékenységnek minden esetben
el®bb be kell fejez®dnie, miel®tt az utódtevékenység végrehajtása elkezd®dhetne.
Egy gép egyszerre csak egy tevékenységet hajthat végre és a végrehajtás nem meg-
szakítható. Továbbá, a megel®zési relációban résztvev® munkák külön gépekre is
ütemezhet®ek. Nincs kibocsájtási és befejezési határid®. Csak olyan relációkat vet-
tem �gyelembe, ahol minden csomópont bemen® és kimen® éleinek száma legfeljebb
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egy. Ez azt jelenti, hogy a gráf diszjunkt utak és izolált csomópontok uniója.
Herrmann és szerz®társai [68] valamint Liu és Yang [69] publikációi azok, ame-

lyek a független gépek ütemezésével foglalkoznak úgy, hogy a modellbe beépítik a
megel®zési relációkat, amelyek az én munkámhoz hasonlóan diszjunkt utak és csomó-
pontok uniója. A [68]-ban három alsó korlát (LB1, LB2 és LB3) kerül de�niálásra.
Az esettanulmányban 33 input végeredményét hasonlítja a szerz® a három alsó kor-
lát közül a legnagyobbhoz. A [69]-ben Liu és Yang egy hatékonyabb heurisztikát
közöl, amely általánosabb problémák esetén is alkalmazható. A szakirodalomban
ehhez a problémakörhöz még számos más publikáció található, azonban a probléma
specialitását tekintve az [68] az, amely az általam vizsgált problémához leginkább
hasonlítható, ugyanis ez olyan munka, amely kizárólag diszjunkt utak formájában
veszi �gyelembe a megel®zési relációkat. A [69] esetében viszont a megel®zési re-
lációk nem feltétlenül diszjunkt utak és csomópontok uniója, ugyanis a modelljük
megengedi, hogy egy tevékenység több másik tevékenységgel álljon megel®zési re-
lációban egyszerre. A modelljükben ezt tetsz®leges megel®zési relációnak nevezik
(arbitrary standard precedence constraints). Liu és Yang a bemutatott algoritmust
a Herrmann és szerz®társai [68] által kidolgozott heurisztikával hasonlítják össze. Az
input azonos a Herrmann munkájában bemutatottal. Az eredmények azt mutatták,
hogy sikerült egy hatékony algoritmust létrehozni.

Az elmúlt években megn®tt az érdekl®dés olyan új modellek iránt, amelyek a
független gépek ütemezésével valamilyen módon kapcsolatosak. Alább néhány re-
leváns publikációt szeretnék felsorolni. [70]-ben a szerz®k egy nehéz problémával
foglalkoznak, amelyet Team Work Scheduling-nek hívnak. Ebben a feladatban van-
nak munkások, amelyek egy halmazt alkotnak. Ebb®l a halmazból munkacsapatokat
hozhatunk létre és néhány feltétel mellett adott, hogy a csapat milyen hatékony bi-
zonyos munkák elvégzésében. Egy munkás egyszerre csak egy csapatba tartozhat.
De ha ez a csapat elvégzett egy adott munkát, a munkás másik csapathoz is csat-
lakozhat. A csapatok uniója bármely pillanatban részhalmaza az összes munkásból
álló halmaznak. Minden egyes munkára választunk egy csapatot. Az, hogy melyik
csapatot választjuk, befolyásolja a munkavégzés id®tartamát, pl. egy nagyobb csa-
pat ugyanazt a munkát gyorsabban tudja elvégezni. Minden csapat egy id®ben csak
egy munkán dolgozhat, és minden egyes munkát valamelyik csapatnak el kell végez-
nie. A csapatokat úgy kell megválasztani, hogy a munkák minél hamarabb készen
legyenek. Ez a modell a független gépek ütemezésének az általánosítása.

Egy másik, ide vonatkozó modell az ún. Multiprofessor Scheduling [71]. Ebben
a modellben adottak a professzorok, a tanársegédek és néhány oktatói munka. A fel-
adat az, hogy ezeket a munkákat a professzorokhoz és a tanársegédekhez rendeljük
meghatározott feltételek betartása mellett. Ez a probléma egy újabb általánosí-
tása a független gépek ütemezésének, ugyanis a professzoroknak eltér® a tudásuk
az egyes szakterületeket tekintve. Például az egyiknek az algebra a szakterülete, a
másiknak pedig a geometria. Továbbá, néhány oktatási tevékenységben a tanárse-
gédeknek is részt kell vennie (pl. azért, hogy megtanulja, hogyan is kell oktatni a
tárgyat). A publikáció approximációs algoritmusokat és komplexitással kapcsolatos
eredményeket közöl.

A Multiprofessor Scheduling problémának egy speciális esetével foglalkozik a
[72], ahol az er®forrásokra vonatkozó korlátozások is megjelennek. Ez a publikáció
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is approximációs algoritmusokat és komplexitással kapcsolatos eredményeket közöl.
Az én esetemben a feladat modellje a

⟨T ,M, G⟩ (2.33)

rendezett hármassal írható le, ahol T = {task1, . . . , taskn} az összes tevékenység
halmaza, M = {m1, . . . ,mm} az összes er®forrás halmaza és G = (V,E) egy gráf,
ahol V a csúcsok véges halmaza, E ⊆ V × V az élek halmaza. A gráf egy élét a
(vi, vj) ∈ E alakban írjuk és az alábbiakat követeljük meg:

� irányított gráf, azaz E ⊆ V ×V a csúcsokból alkotott rendezett párok halmaza,

� egyszer¶ gráf, azaz (vi, vj) ∈ E esetében i ̸= j (hurokélmentes) és (vj, vi) /∈ E
(nincs többszörös él) ∀i, j-re,

� diszjunkt utak és izolált pontok uniója.

Továbbfejlesztési lehet®ségként meg lehet vizsgálni, hogy némileg más struktúrák
esetén pl. fa struktúra esetén hogyan m¶ködik a módszerünk. Természetesen ezekre
is új tesztfeladatokat kellene generálnunk. Speciális esetek (például két gép vagy
kevés számú lánc, vagy csak kétfajta feldolgozási id®) vizsgálata is érdekes lehet.
Ezekkel a kérdésekkel a 2.3. fejezet, vagyis a jelen fejezet végén foglalkozom. Mindez
további kutatásnak lehet a tárgya. El®fordulhat, hogy egy út csak egy tevékenység-
b®l áll. A csomópontok közötti irányított él pedig a megel®zési reláció. Az ütemezés
célja a teljes átfutási id® minimalizálása.

2.2. ábra. Egy példa a modell alapján

A 2.2. ábrán egy egyszer¶ példa látható a modell alapján felépítve. Látható,
hogy van egy er®forráshalmaz, azazM = {m1,m2,m3,m4} és egy tevékenységhal-
maz, azaz T = {task1, task2, task3, task4, task5}. Az er®források pontozott vonallal
kapcsolódnak azokhoz a tevékenységekhez, amelyeket egy lehetséges ütemezés sze-
rint végrehajtanak. Az egyes tevékenységek között meg�gyelhet®ek a megel®zési
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relációk, pl. task1 → task2. Ezek a relációk szigorúan meghatározzák a tevékeny-
ségek egymáshoz viszonyított végrehajtási sorrendjét, az ezekt®l való eltérés nem
megengedett. A task5 → task3 reláció nem megengedett, ugyanis ez megsérti a
diszjunkt utak feltételét.

Ezen az ábrán (2.2. ábra) még nem tüntettük fel a különböz® feldolgozási id®ket
a gépeken. Egyel®re csak azt mutatja az ábra (esetleg meglehet®sen ad-hoc módon),
hogy már hozzá vannak rendelve a munkák a gépekhez.

A probléma illusztrálására ugyanazon példa két különböz® ütemezési megoldása
látható a 2.3. és a 2.4. ábrákon. A két megoldás között egy apró különbség volt,
azonban a végeredményt nagyban befolyásolta. Az ábrákon a sárga kivételével az
azonos szín¶ tevékenységek között a nyilak jelzik a megel®zési relációkat. Értelem-
szer¶en, ahonnan indul a nyíl, az a megel®z® tevékenység, ahová tart, az pedig a
kés®bbi. A feladat az alábbiak szerint írható fel.

� T = {task1, task2, task3, task4, . . . , task20}

� M = {m1,m2,m3,m4}

� G gráf (diszjunkt utak és izolált pontok)

� diszjunkt utak:

* task1 → task2 → task3 → task4 → task5 → task6

* task8 → task9 → task10 → task11

* task16 → task19 → task20

� izolált pontok:

* task7, task12, task13, task14, task15, task17, task18

Összesen 20 tevékenység van, amelyek végrehajtására 4 gép áll rendelkezésre. A
tevékenységekb®l felépül® utak a precedencia relációkkal vannak leírva. Az olyan
utat, ami csak egy tevékenységb®l áll, az egyszer¶ség kedvéért egységesen jelöl-
tem (sárga: task7, task12, task13, task14, task15, task17, task18), ugyanis ezek eseté-
ben a precedencia reláció nem értelmezett, azaz nem függnek más tevékenységek-
t®l, így nem szükséges ezeket a tevékenységeket egymástól élesen megkülönböz-
tetni. Továbbá még három lánc van (kék: task8 → task9 → task10 → task11,
zöld: task1 → task2 → task3 → task4 → task5 → task6, narancssárga: task16 →
task19 → task20), ahol a tevékenységek között megel®zési relációk találhatóak. A
függ®leges tengelyen a gépeket, a vízszintes tengelyen az id®t ábrázoltam. Az egyes
tevékenységek végrehajtási ideje a gépekt®l függ. A cél az, hogy a teljes feladat
átfutási ideje minimális legyen. A tevékenységeknek a gépeken történ® végrehajtási
idejeit itt most nem adjuk meg, tegyük fel, hogy egy bizonyos ütemezés a következ®
(2.3 ábra).

A 2.3. ábrán a feladat egy megengedett megoldása látható. Ez a megoldás 27
id®egységet jelent® átfutási id®t mutat. Ahhoz, hogy egy jobb megoldást megkap-
junk, egyszer¶en fel kell cserélni a task19 és a task1 tevékenységek sorrendjét az m4

gépen. Ennek hatására a végrehajtási id®k nem változnak, azonban a precedenciák
miatt mégis 4 id®egységet sikerül nyerni. Ha megnézzük a zöld színnel jelölt út
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2.3. ábra. Egy példafeladat megengedett ütemezése

tevékenységeit, azonnal látható, hogy ez a leghosszabb út, ami azt jelenti, hogy az
átfutási id®t ez határozza meg. Természetesen mindez csak az adott inputra vonat-
kozik, általában a helyzet sokkal bonyolultabb lehet. Az is látható, hogy a többi út
(beleértve a sárga tevékenységeket is) mindegyik jócskán a zöld út el®tt már befeje-
z®dik, így ezeknek nincs túl sok jelent®ségük az átfutási id® tekintetében. Azonban
(lásd: 2.4. ábra), ha a két említett tevékenységet felcseréljük az m4-es gépen, úgy a
teljes zöld út átfutási ideje 4 id®egységet fog csökkenni az id®tengelyen való balra-
tolódás miatt. Megjegyezzük, hogy a feladatra vonatkozó alsó korlátok kérdésével
pl. a 2.5. alfejezetben részletesebben foglalkozunk.

2.4. ábra. A példafeladat egy másik lehetséges ütemezése

A 2.4. ábrán már egy jobb megoldás látható, ami 23 id®egység. Mivel a task1
tevékenység az m4-es gépen legelöl került a sorba, így a t®le közvetlenül és közvetet-
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ten függ® többi zöld tevékenység is eltolódott balra. Látható ebb®l a példából, hogy
az ütemezés során a tevékenységek beütemezési sorrendje kritikus pont lehet. Egy
egyszer¶ sorrendcsere két tevékenység között egy megengedett megoldásból rögtön
jobb megoldást generált.

Az el®z® ábrákon (2.3., 2.4. ábrák) láthatjuk, hogy ha van egy hosszú utunk,
amelyet mindenütt a leggyorsabb gépre ütemezünk, az egy alsó korlát a feladatra.
És ha ráadásul az is teljesül, hogy amikorra a hosszú útban szerepl® munkák befe-
jez®dnek, addig a többi munka is elkészül, akkor a makespan-t ez a hosszú út adja,
tehát ez fels® korlát is a feladatra. Amint látjuk, a többi munkát jó koránra üte-
mezve a végére már alig marad. Ez persze csak egy speciális input volt szemléltetés
végett, az általános eset ennél sokkal bonyolultabb lehet.

A következ® fejezetben egy olyan általam kidolgozott módszert mutatok be,
amely a tevékenységeket mohó módon, az el®re meghatározott sorrendjük szerint
ütemezi. A tevékenységek sorrendjének kiszámítását pedig egy, a meger®sítéses ta-
nulás területér®l ismert algoritmus által inspirált eljárás végzi.

Megjegyzend®, hogy az algoritmus a fentebb megadott megel®zési reláció helyett
más struktúrákra (pl. fa) is m¶köd®képes lenne. Annyi különbség van csak, hogy a fa
(illetve erd®) típusú megel®zési relációk esetén a sorban következ® munka esetén több
olyan munka is lehet (nem csak legfeljebb egy), amelyek az ® közvetlen megel®z®i,
és csak ezek befejezése után szabad az aktuális feladatot elkezdeni. Ez a kutatási
irány további vizsgálatokat igényel, emiatt kés®bbi kutatás tárgya.

2.4. A javasolt módszer

A 2.3. alfejezetben felvetett ütemezési probléma megoldására egy, a meger®sítéses
tanuláson belül ismert Q-tanulási eljárás által támogatott heurisztikus algoritmust
fejlesztettem. Az eljárást Q-Learning Motivated Algorithm-nek (QLM) neveztem
el. Ebben az alfejezetben az algoritmus m¶ködését mutatom be.

Az eljárás két komponensre bontható fel. Az egyik egy mohó algoritmus, amely
az ütemezést végzi a tevékenységek egy megadott sorrendjében. A másik pedig
maga a Q-tanulással támogatott komponens, amelynek feladata ennek a permutáci-
ónak az el®állítása. A cél az, hogy olyan permutációt találjon az algoritmus, amely
szerint mohón ütemezve az átfutási id® minimális lesz. Az algoritmus megpróbál-
ja megkeresni a legjobb sorrendet, de nem garantálja az optimális megoldást. A
mohó algoritmus m¶ködése a soron következ® tevékenységhez mindig azt a gépet
rendeli hozzá, amellyel az addig elért átfutási id® a legkisebb mértékben növekszik,
természetesen a megel®zési relációkat is �gyelembe véve. A 2.5. ábrán egy egysze-
r¶ szemléltet® példa látható a mohó algoritmus m¶ködésére. Tegyük fel, hogy a
task1, task2 és task3 tevékenységek már ütemezésre kerültek. Most a task4 követ-
kezik, amely esetében �gyelembe kell venni a task1 → task2 → task4 relációt. A
task4 tevékenység nélkül az addig elért átfutási id® 10 egység. A megel®zési reláció
�gyelembevételével azt a gépet kell választani, ahol az eddig elért átfutási id® mi-
nimálisan növekszik. Az m1 gépen a task4 végrehajtási ideje 2 id®egység. Az m2

gépen 3 id®egység. A jó választás az m2 gép, annak ellenére, hogy ott a tevékenység
végrehajtási ideje (3) nagyobb mint az m1 gép esetén (2). Ugyanis ezzel a választás-
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sal a teljes, addig elért átfutási id® csak 1 id®egységgel növekszik. Az m1 esetében
viszont a kisebb végrehajtási id® ellenére is 2 id®egységet növekedne. Azaz, a task4
mindkét gépre tehet®: az m1 gépen így a teljes átfutási id® 12 egység lesz, az m2

gépen pedig 11 egység.

2.5. ábra. A mohó algoritmus m¶ködése

Látható tehát, hogy a mohó algoritmus nem az alapján választ, hogy melyik
gépen a legkisebb a végrehajtási ideje az adott tevékenységnek, hanem az alapján,
hogy az adott gépre ütemezve a tevékenységet az addig elért átfutási id® mennyivel
növekszik meg.

Algorithm 1: A mohó algoritmus m¶ködése

Result: Átfutási id®
Input: Lt permutáció

1 tsum ← 0
2 M - er®források halmaza
3 Lt - tevékenységek egy permutációja
4 min← maxInt;
5 selectedRes;
6 for i← 0 to n do
7 for j ← 0 to m do
8 if mj(taski) + tsum < min then
9 min← mj(taski) + tsum;
10 selectedRes← j;
11 end
12 end
13 az i. tevékenység hozzárendelése az selectedRes er®forráshoz
14 tsum ← tsun + mselectedRes(taski);
15 min← maxInt;
16 end
17 Átfutási id® kiszámítása az ütemezés alapján

Graham [2, 3] által tekintett modell a Pm|prec|Cmax, ami különbözik az általam
vizsgált feladat modelljét®l.

A tevékenységek permutációjának el®állítása az [53] publikációban közölt öt-
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letek alapján történik. Az általam fejlesztett algoritmus implementációja az [53]
cikkben bemutatott logikát követi (lásd a [73] cikket is). Az implementált algo-
ritmus azonban Stefán munkájával (�ow-shop scheduling) ellentétben egy teljesen
más, speciális feladat (unrelated machine scheduling) megoldására készült, amely
egyrészt tevékenységek végrehajtási idejével dolgozik, másrészt pedig kezeli a meg-
el®zési relációk által leírt megszorító szabályokat. Stefán munkájában a �ow shop
ütemezéshez kapcsolódóan a tevékenységek egy olyan sorrendjének kiszámításával
foglalkozott, amelynek eredményeképpen a végrehajtás közben keletkez® üresjáratok
ideje minimálisra csökkenthet®. Ennek a sorrendnek a kiszámításához a meger®sí-
téses tanulást, azon belül pedig a Q-tanulást alkalmazta. A megoldás lényege, hogy
minden taski és taskj párra az eljárás kiszámítja a Qt(i, j) értéket a (2.28) szabály
segítségével, amely azt reprezentálja, hogy a kiszámítandó permutációban mennyire
hasznos, ha taski tevékenységet a taskj tevékenység követ. Másképpen fogalmazva,
annak az akciónak a hasznosságát keresi az eljárás, amely szerint a taski után a
sorrend következ® tagjának a taskj tevékenységet választjuk. A QLM algoritmusnál
a megállási feltétel 2000 iteráció volt. A vizsgálatok alapján 2000 iteráció felett már
nem javult az el®állított megoldás.

Az algoritmus az alábbi öt lépésben összegezhet®, amelyeket a következ® alfeje-
zetekben részletesen bemutatok.

Algorithm 2: QLM algoritmus

Result: Ütemezett tevékenységek
Input: M, T , precConstraints, epoch (iterációk száma)

1 for i← 0 to epoch do
2 Permutáció meghatározása (Algorithm 3 és Algorithm 4)
3 Mohó algoritmussal az ütemezés megvalósítása és az átfutási id®

kiszámítása (Algorithm 1)
4 A Q-mátrix értékeinek frissítése (Algorithm 5)
5 end

2.4.1. A tevékenységek egy permutációjának generálása

A tevékenységek permutációjának generálása a (2.30) Boltzman felfedezési stratégia
alapján történik. Ahhoz, hogy a sorrendet az eljárás generálni tudja, már rendelkez-
nünk kell Q-értékekkel. Ez már az els® lépésben biztosítva van, ugyanis a Q-értékek
tárolására alkalmazott mátrix kezdeti értékei nullák, azaz Qt(i, j) = 0,∀i, j. Legyen
Lt = (i1, . . . , in) a tevékenységek permutációjának indexhalmaza a t. epizód után.
Továbbá legyen H = {j1, . . . , jl} azon tevékenységek indexhalmaza, amelyek vala-
melyik megel®zési relációban részt vesznek és a megel®zési relációk függvényében a
taskj tevékenység kiválasztása csak akkor lehetséges, ha a taski1 , . . . , taskik tevé-
kenységek, mint megel®z® tevékenységek már szerepelnek az Lt listában. Amennyi-
ben olyan taski tevékenységr®l van szó, amely nem vesz részt megel®zési relációban,
azaz i /∈ H, az automatikusan választható.
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Algorithm 3: A permutáció els® elemének a kiválasztása
Result: Lt permutáció els® eleme
Input: Q, B, D, τ

1 Q - Q mátrix
2 B ← ∅ - a választható tevékenységek indexhalmaza
3 D ← ∅ - a beválasztott tevékenységek indexhalmaza
4 τ - a h®mérséklet
5 for i← 0 to n− 1 do
6 if i /∈ H or (i ∈ H and taski az els® elem a láncban) then
7 B ← B ∪ {i};
8 end
9 end

10 for i← 0 to n− 1 do
11 if i ∈ B then

12 pi ← e
Q(i,i)

τ∑
i∈B e

Q(i,i)
τ

13 end
14 end
15 A permutáció els® elemének kiválasztása a pi értékek alapján;
16 i hozzáadása az Lt listához;
17 selectedTaskIndex← i;
18 B ← B \ {i};
19 D ← D ∪ {i};

Az 3. algoritmus feladata a tevékenységek permutációjának els® elemét kiválasz-
tani. Az algoritmus bemenetei (1-4 sorok) a kezdetben nullára inicializált Q mátrix,
a választható tevékenységek B indexhalmaza, a beválasztott tevékenységek D index-
halmaza, amelyek kezdetben üresek és a τ h®mérséklet paraméter. Els® lépésben
(5-9 sorok) az eljárás az összes tevékenység közül kiválasztja azok indexeit, amelyek
a permutációba beválaszthatóak. Ez azt jelenti, hogy az adott tevékenység nem
vesz részt megel®zési relációban, vagy ha igen, akkor a lánc legels® eleme. Ezek a
tevékenységek a B indexhalmazba kerülnek. A második lépésben (10-14 sorok) azon
tevékenységekhez, amelyeknek az indexei a B halmazban vannak, a Boltzmann felfe-
dezési stratégia szerint kiszámolja a választási valószín¶ségeket. Harmadik lépésben
(15-19 sorok) a kiszámolt pi valószín¶ségek mentén kiválaszt egy tevékenységet és
annak indexét hozzáadja az Lt listához, mint els® elem. A kiválasztott tevékenység
indexét elmenti a selectedTaskIndex változóba, törli az indexet a B halmazból,
ugyanis ez a tevékenység már nem választható és hozzáadja a már beválasztott te-
vékenységek D indexhalmazához.
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Algorithm 4: A permutáció maradék elemeinek a kiválasztása
Result: Az összes tevékenységek Lt permutációja
Input: Q, B, D, τ

1 Q - Q mátrix
2 B ̸= ∅ - a választható tevékenységek indexhalmaza
3 D ̸= ∅ - a beválasztott tevékenységek indexhalmaza
4 τ - a h®mérséklet
5 while length of Lt < n do
6 for j ← 0 to n− 1 do
7 if j /∈ D and (j /∈ H or (j ∈ H and taskj-t megel®z® tevékenységek

(ha vannak) már kiválasztásra kerültek)) then
8 B ← B ∪ {j};
9 end

10 end
11 for j ← 0 to n− 1 do
12 if j ∈ B then

13 pj ← e
Q(selectedTaskIndex,j)

τ∑
j∈B e

Q(selectedTaskIndex,j)
τ

14 end
15 end
16 A permutáció következ® elemének kiválasztása a pj értékek alapján;
17 j hozzáadása az Lt listához;
18 selectedTaskIndex← j;
19 B ← B \ {j};
20 D ← D ∪ {j};
21 end
22 Mohó ütemezés az Lt permutáció szerint;

A 4. algoritmus a fennmaradó tevékenységek kiválasztását végzi, logikailag a
3. algoritmus folytatása. A szétválasztás oka a jobb átláthatóság. Az algoritmus
bemenete ugyanaz, mint az 3. algoritmus esetében, azonban látható, hogy mivel már
a permutáció els® eleme kiválasztásra került, így a B és D halmazok nem üresek.
A B halmaz tartalmazza a választható tevékenységek indexeit, a D halmaz pedig a
beválasztott els® tevékenység indexét.

Mivel itt az összes fennmaradó tevékenységet beválasztja az eljárás, így a tel-
jes m¶velet egy while ciklusban foglal helyet, amely addig fut, amíg az Lt lista
számossága kisebb, mint a tevékenységek száma, azaz n. A ciklus els® lépésében
(6-10 sorok) az algoritmus frissíti a B halmazt, azaz a választható tevékenységek
indexeit. Erre azért van szükség minden egyes iteráció elején, mert a tevékenységek
beválasztása új választható tevékenységeket eredményez. Tehát, pl. ha egy lánc
els® eleme beválasztásra kerül, úgy a következ® iterációban a második eleme vá-
laszthatóvá válik és így tovább. Második lépésben (11-15 sorok) minden, az aktuális
iterációban választható tevékenységhez az algoritmus hozzárendel egy valószín¶ségi
értéket a Boltzmann felfedezési stratégia alapján. Harmadik lépésben (16-20 so-
rok) megtörténik a kiválasztás, j index hozzáadása az Lt listához és elmentése a
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selectedTaskIndex változóban. Majd az index törl®dik a B halmazból, és hozzá-
adásra kerül a D halmazhoz.

Az eljárás kimenete az összes tevékenység Lt = (i1, . . . , in) permutációja, azaz
egy sorrendje, amelynek számítása a Q mátrix alapján történt. Az Lt permutáció ki-
számítása után következik a mohó algoritmus alkalmazása, amely a tevékenységeket
a permutációnak megfelel® sorrendben ütemezi be az Algorithm 1 mohó algoritmus
szerint.

2.4.2. Q-értékek kiszámítása

A Q-tanulás és a bemutatott ütemezési probléma fúziójában egy állapotnak a tevé-
kenységek egy teljes Lt permutációja felel meg, az akcióknak pedig egy tevékenység
permutációba való beválasztása a megel®zési relációkat �gyelembe véve.

Ezt a Q-tanulást epizodikusnak nevezzük, ugyanis egy következ® St+1 állapot ki-
számításához az epizód végéig kell várakozni, azaz addig, amíg a permutáció minden
eleme nem kerül meghatározásra, majd az új állapot alapján frissíteni kell a Q mát-
rix értékeit. A frissítéshez a (2.28) szabályt alkalmazza az eljárás. Az alábbiakban
bemutatom az értékek frissítésének menetét és a jutalom értékének kiszámítását.

Tegyük fel, hogy az algoritmus permutációt generáló szakaszában a következ®
Lt = (taskt,2, taskt,4, taskt,1, taskt,3) permutáció adódott. A négy tevékenység között
a taskt,2 → taskt,3 és a taskt,4 → taskt,1 megel®zési relációk vannak de�niálva. A t
epizódban a Q mátrix állapota legyen a következ®.

Q task1 task2 task3 task4
task1 2.21 6.67 1.13 0
task2 3.39 5.53 8.81 7.76
task3 2.24 0 1.17 5.90
task4 3.33 5.58 4.02 7.48

2.1. táblázat. Példa Q mátrix értékekkel

A 2.1. táblázatban a pirossal jelölt cellák értékei soha nem frissülnek a de�niált meg-
el®zési relációk miatt. Azaz, soha nem lehet olyan permutációt generálni, amelyben
a megel®zési relációk sérülnek, azaz, hogy taskt,3 megel®zi taskt,2 tevékenységet,
vagy taskt,1 megel®zi taskt,4 tevékenységet. Az Rt jutalom a t epizódban az alábbi
függvénnyel van de�niálva.

Rt =


−1 ha zt > Z

0 ha zt = Z

10 ha zt < Z

(2.34)

ahol Z az eddigi legjobb átfutási id®, zt pedig a t epizódban az ütemezés által adott
átfutási id®. Az α = 0.8 és a γ = 0.7.

A jutalmazási stratégia paraméterei a vizsgálatok alapján csak enyhén befolyá-
solják a nehéz feladatok megoldását. A megválasztásuk egyrészt próbálgatással tör-
tént, másrészt pedig szimulált h¶téssel. Az utóbbi megoldás során a paramétereket
véletlenszer¶en változtattam 1 egységgel. A változtatás iránya is véletlenszer¶en
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történt, de úgy, hogy a büntetés értéke negatív maradjon, a jutalom pedig pozi-
tív. A megválasztott paraméterekkel ezután az algoritmus el®állított egy megoldást.
Ha ez jobb volt, mint az addigi legjobb, akkor az új paraméter-beállítás rögzítésre
került, ellenkez® esetben egy adott valószín¶séggel elfogadta a rosszabb megoldást
is. Tapasztalatunk szerint a szimulált h¶tés alkalmazása nem javított lényegesen
a megoldáson, emiatt maradtam az egyszer¶, el®re beállított paramétereknél. A
paraméterek optimalizálásával a [74]-ben foglalkoztam.

Algorithm 5: A Q mátrix értékeinek frissítése
Result: Frissített Q értékek az Lt permutáció alapján
Input: Q, Lt

1 Q - Q mátrix
2 Lt - permutáció a t epizódban
3 for i← 0 to n− 2 do
4 if i+ 1 < n− 1 then
5 maxQ← Q[Lt[i+ 1]][Lt[i+ 2]];
6 else if i+ 1 == n− 1 then
7 maxQ← 0;
8 for j ← i+ 2 to n− 1 do
9 if Q[i+ 1][j] > maxQ and prec. szabályok nem sérülnek then
10 maxQ← Q[Lt[i+ 1]][Lt[j]];
11 end
12 Q mátrix értékeinek frissítése a (2.28) szabállyal;
13 end
14 maxQ← Q[Lt[0]][Lt[0]];
15 A permutáció els® eleméhez tartozó Q érték frissítése a (2.28) szabállyal;

A 5. algoritmus feladata, hogy a Q mátrix értékeit frissítse a (2.28) szabály
alapján. Az algoritmusnak két bemenete van; a frissítend® Q mátrix, és az el®z®
lépésben kiszámított Lt permutáció. A kimenet pedig a frissített Q mátrix lesz. Az
algoritmust a fentebb bevezetett példán keresztül mutatom be a könnyebb érthet®ség
miatt. Az algoritmus 4-11 soraiban történik a frissít® szabály max operátora által
de�niált m¶velet végrehajtása. A max operátor segítségével a Q-tanulás az aktuális
állapotban kiválasztott akció hatására kapott következ® állapotban megbecsüli a
legjobb akciót, azaz a választható akciók közül azt választja, amelynek az értéke
maximális.

A 2.6. ábrán a max operátor vizualizációja látható. Egy adott állapotban az
a akció kerül kiválasztásra, amely egy s′ következ® állapotba viszi az ágenst. A
(2.28) szabályban található max operátor az s′ utódállapotban visszaadja az ott
választható akciók közül a legnagyobb érték¶t. Ezzel a Q-tanulás mohó módszerrel
igyekszik becsülni az aktuális s állapotban választott a akció jóságát.

A taskt,2 és taskt,4 egymásutániságának az értéke

Legyen az aktuális legjobb átfutási id® Z = 15, és legyen az aktuális Lt permutáció
alapján kapott új ütemezés zt = 12. Mivel zt < Z, ezért Rt = 10. Az adott Lt
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2.6. ábra. Q-tanulás max operátorának m¶ködése

2.7. ábra. A taskt,2 és taskt,4 sorrend Q értékének a számítása

permutáció esetében az els® lépés a taskt,2 és taskt,4 tevékenységek egymásutánisá-
gát leíró Q érték kiszámítása. A sorrendet a 2.7. ábrán a kék nyíl szimbolizálja. A
két narancssárga nyíl pedig a max operátor vizualizációja. Azaz, ha a sorrendben
a taskt,2 után a taskt,4 tevékenység következik, akkor a frissít® szabály értelmében
ki kell számítani azt is, hogy a taskt,4 tevékenység után milyen tevékenységek kö-
vetkezhetnek a sorrendben (természetesen a precedenciákat nem megsértve), és ezek
közül melyik tevékenység választása (akció) adja a maximális értéket. A példában
a taskt,4 tevékenység után következhet majd a taskt,1 és a taskt,3 is.

Az algoritmus els®ként amax operátor értékét számítja ki. Ehhez tekintsük a 2.1.
táblázatban példaként megadott Q mátrixot. Ebben az esetben az algoritmusnak azt
kell eldöntenie, hogy a taskt,4 után melyik tevékenység választása adja a nagyobb ak-
cióértéket. Ehhez a Q mátrixban a (taskt,4, taskt,1) és a (taskt,4, taskt,3) cellákat kell
kiolvasni, és a maximálisat kiválasztani. Azazmax((taskt,4, taskt,1), (taskt,4, taskt,3)) =
max(3.33, 4.02) = 4.02. Tehát a maxQ = 4.02. Ezután következik a frissít® szabály
alkalmazása.

Qt+1(taskt,2, taskt,4) = (1− 0.8) ∗ 7.76 + 0.8 ∗ (10 + 0.7 ∗ 4.02) = 11.8032

A taskt,4 és taskt,1 egymásutániságának az értéke

A második lépésben az algoritmus a permutáció következ®, egymás utáni párját
vizsgálja. Azaz annak az akciónak a hasznosságát, hogy taskt,4 után a taskt,1 követ-
kezik. Ahogy az el®z® lépésben is, itt is a max operátor által meghatározott érték
kinyerése az els®. Ebben az esetben a taskt,1 után már csak egy tevékenység maradt,
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2.8. ábra. A taskt,4 és taskt,1 sorrend Q értékének a számítása

így a max operátor által visszaadott érték a (taskt,1, taskt,3) = 1.13 lesz. Tehát a
maxQ = 1.13. Ezután a Qt+1(taskt,4, taskt,1) értékének számítása következik.

Qt+1(taskt,4, taskt,1) = (1− 0.8) ∗ 3.33 + 0.8 ∗ (10 + 0.7 ∗ 1.13) = 8.6328

A taskt,1 és taskt,3 egymásutániságának az értéke

2.9. ábra. A taskt,1 és taskt,3 sorrend Q értékének a számítása

Harmadik lépésben a permutáció utolsó egymás utáni párját vizsgálja az algo-
ritmus, azaz annak az akciónak a hasznosságát, hogy taskt,1 után a taskt,3 kerül
kiválasztásra. Mivel a taskt,3 tevékenység az utolsó a permutációban, így nincsenek
következ® kiválasztható tevékenységek. Emiatt a max operátor nem használható
már, tehát a maxQ = 0. Ezután a Qt+1(taskt,1, taskt,3) értékének számítása követ-
kezik.

Qt+1(taskt,1, taskt,3) = (1− 0.8) ∗ 1.13 + 0.8 ∗ (10 + 0.7 ∗ 0) = 8.2260

A taskt,2 tevékenység, mint els® elem Q értékének kiszámítása

A Q értékek frissítésének befejez® lépése az, hogy a permutáció els® elemére az
algoritmus kiszámolja annak Q értékét. Azaz azt az értéket, amely leírja, hogy az
adott tevékenységet tekintve (a példa esetében a taskt,2) mennyire hasznos, hogy a
sorrend els® tagja.

A maxQ értéke ekkor a (taskt,2, taskt,2) értékkel lesz egyenl®, amely nem más,
mint a taskt,2 tevékenység önmagával vett Q értéke. Azaz maxQ = 5.53. Ezután a
Qt+1(taskt,2, taskt,2) értékének számítása következik.

Qt+1(taskt,2, taskt,2) = (1− 0.8) ∗ 5.53 + 0.8 ∗ (10 + 0.7 ∗ 5.53) = 12.2028
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2.10. ábra. A taskt,2 (mint a permutáció els® eleme) Q értékének a számítása

Tehát az adott Lt permutáció alapján az algoritmus frissítette a Q értékeket a
mátrixban, amely ezek után az alábbiak szerint néz ki.

Q task1 task2 task3 task4
task1 2.21 6.67 8.2260 0
task2 3.39 12.2028 8.81 11.8032
task3 2.24 0 1.17 5.90
task4 8.6328 5.58 4.02 7.48

2.2. táblázat. Példa frissített Q mátrix értékekkel

2.5. Eredmények

Emlékeztetek arra, hogy az általam kifejlesztett algoritmus két komponensb®l áll.
A Q-tanulás alapú keret megállapítja a munkáknak egy sorrendjét és utána a mun-
kákat ebben a sorrendben ütemezzük a klasszikus LS algoritmussal természetesen
a megel®zési relációkat is �gyelembe véve. Megjegyzem, hogy sok más lehet®ség is
lenne a tárgyalt megoldáson kívül.

Els®ként a [68]-ban és a [69]-ben közölt kis méret¶ feladatot oldottam meg, amely
összesen hét tevékenységb®l (task1−task7), két gépb®l (m1, m2) és három megel®zési
relációból áll, továbbá a gépi id®k is ismertek. A megel®zési relációkat megadó láncok
a következ®k:

� task1 → task3 → task7

� task2 → task6

A kis méret¶ példában használt gépi id®k a [68] és [69] cikkekb®l származnak.
A fenti példát optimálisan oldották meg a [69]-ben. Az optimális megoldás 13.

Azonban a [68]-ban alkalmazott heurisztikus eljárás megoldása csak 15 lett. A QLM
algoritmusom szintén megtalálta az optimális megoldást.

Megjegyezzük, hogy ez a feladat akár "kézzel" megoldható, mert viszonylag kevés
kombináció jöhet szóba. Ha mindegyik munkát arra a gépre tesszük, ahol rövidebb
id® alatt végrehajtható, el®ször az m1 gépnek 17 lesz az átfutási ideje, az m2 gépnek
kevesebb. Ha tudjuk, hogy 13 a feladat optimum értéke, akkor elég a task2 munkát az
m1 gépr®l áttenni az m2 gépre. Ha a megel®zési relációkat nem vesszük �gyelembe,
máris optimális ütemezést kaptunk. A gépek átfutási ideje 13 illetve 11. Ha azt
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m1 m2

task1 3 9
task2 4 5
task3 8 2
task4 2 6
task5 5 10
task6 9 4
task7 3 8

2.3. táblázat. A kis méret¶ példában használt gépi id®k

akarjuk, hogy a megel®zési relációk is teljesüljenek, ehhez elég a gépeken a munkákat
megfelel® sorrendbe tenni.

Általában viszont könnyen lehetséges az, hogy az az ütemezés, amelyik a meg-
el®zési relációkat nem veszi �gyelembe nem javítható ki olyanná, amelyik esetén a
megel®zési relációk is teljesülnek, pusztán azáltal, hogy az egyes gépeken a munkák
sorrendjét megcseréljük. Tehát ebb®l a szempontból ez a kisméret¶ feladat nem
jellemz®, de mindenképp fontosnak tartottam ennek a feladatnak a megoldását is,
mert az említett cikkek is megoldják ezt a feladatot. Érdekes, hogy a [68] cikkbeli
algoritmus erre a könny¶ feladatra se találta meg az optimális megoldást.

Az általam fejlesztett algoritmus hatékonyságának vizsgálatára további feladatok
megoldására került sor. Ehhez a [68]-ban és a [69]-ben megoldott további feladatokat
vettem alapul. A [68]-ban 33 ütemezési problémát oldottak meg a szerz®k, azon-
ban a feladatok részletei, mint a gépi id®k és a megel®zési relációk, egyáltalán nem
kerültek közlésre, csak a gépek, tevékenységek és a megel®zési relációk száma. A
[69]-ben a problémákat osztályokba sorolták a gépek száma, a tevékenységek száma
és a megel®zési relációk száma alapján. Azonban a gépi id®k és a megel®zési reláci-
ók ebben az esetben sem ismertek. Emiatt a gépi id®ket és a megel®zési relációkat
én hoztam létre. A gépi id®k generálása véletlenszer¶en történt diszkrét, egyenletes
eloszlás szerint. A megel®zési relációk megadása is véletlenszer¶ volt. Mivel a cikkek-
ben megoldott feladatok részletei nem kerültek közlésre, így nem tudtam pontosan
ugyanazokat a gépi id®ket és megel®zési relációkat alkalmazni. Próbáltam felven-
ni a kapcsolatot a szerz®kkel mindkét cikk esetében a feladatok konkrét adatainak
megismerése céljából, de sajnos egyik esetben sem kaptam választ a megkeresésre.

A módszer teszteléséhez a [68]-ban található 33 problémából hármat választot-
tam úgy, hogy ezek a rendelkezésre álló adatok (gépek száma, tevékenységek száma
és a megel®zési relációk száma) alapján különbözzenek egymástól. A feladatok [68]-
ban használt számozását megtartva a #1,#2 és #5 került kiválasztásra. Ezek kis
méret¶ feladatok. A [69]-b®l pedig egy nagy méret¶ feladatot választottam, az ere-
deti számozás szerint a #28-at. Az alábbi táblázatban megadom a feladatokhoz
tartozó, a fenti cikkekb®l származó adatokat.
A 2.4. táblázatban n a tevékenységek, m a gépek és NC (number of chains) a
megel®zési relációk száma. Ezen adatok alapján négy osztályt hoztam létre.

� Class #1→ n = 14, m = 8 és NC = 5

� Class #2→ n = 28, m = 7 és NC = 8
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#1 #2 #5 #28
n 14 28 27 74
m 8 7 4 19
NC 5 8 1 10

2.4. táblázat. A kiválasztott feladatok ismert adatai

� Class #3→ n = 27, m = 4 és NC = 1

� Class #4→ n = 74, m = 19 és NC = 10

Minden feladatosztályhoz generáltam 10 db feladatot a megfelel® gép, tevékeny-
ség és megel®zési reláció számmal. A gépi id®k generálása egyenletes eloszlás mellett
történt az {1, 2, . . . , 10} halmazból. Továbbá az eredmények egyszer¶bb elemzéséhez
két alsó korlátot számoltam, amelyek számítási módszerét a [68]-ból vettem át és
LB1-gyel és LB2-vel jelölöm a cikk alapján. Az LB1 alsó korlát segítségével a prob-
lémában a megel®zési relációk által leírt láncokat vizsgálom. Ez az alsó korlát azt
adja meg, hogy ha az egyes láncokban szerepl® tevékenységekhez a végrehajtási id®
szerint leggyorsabb gépet rendeljük, mekkora a végrehajtásban legtovább tartó lánc
átfutási ideje. Az LB2 esetében pedig minden tevékenységhez azt a gépet rendel-
jük, amely a tevékenységet a leggyorsabban hajtja végre, ezeknek a minimumoknak
vesszük az összegét és elosztjuk a gépek számával. A két alsó korlát informatívnak
tekinthet® a következ®k miatt. Egyrészt, ezek egyszer¶en kiszámíthatók, emiatt
könnyen alkalmazhatóak. Ezeknél jobb alsó korlátot nem találtam az irodalomban.
Magunk is igyekeztünk ezeknél er®sebb alsó korlátot el®állítani, azonban nem sike-
rült. Ennek az az oka, hogy a munkák p(i, j) végrehajtási idejei változatosak, nem
találtam semmilyen egyszer¶ szabályszer¶séget köztük, nem is lehet ilyet találni,
mert egyenletes eloszlás szerint, véletlenszer¶en vannak a végrehajtási id®k megvá-
lasztva. Továbbá, eléggé er®s alsó korlátokról van szó, amit az is bizonyít, hogy
sok esetben az algoritmus által talált megoldás értéke megegyezik, vagy majdnem
megegyezik az LB1 és LB2 alsó korlátok maximumával, és sok esetben ez a maxi-
mum er®sebb alsó korlátot biztosít, mint a CPLEX megoldó által szolgáltatott alsó
korlát. Ezen okok miatt, az LB1 és LB2 alsó korlátok használatát alkalmaztam.
Megjegyezhet®, hogy bizonyos feladatosztály esetén az LB1, mások esetén az LB2

szolgáltatja az er®sebb alsó becslést, de van olyan feladatosztály is, amikor néha az
egyik, néha a másik adja az er®sebb becslést. Továbbá a probléma speciális eseteire
semmilyen fels® korlát nem ismert a legjobb tudásom szerint.

Minden feladat esetén a QLM algoritmus tíz, egymástól független futást haj-
tott végre, így minden egyes problémára tíz eredmény született. Az algoritmuson
belül egy futás esetén a Q-tanuló fázis iterációszáma (azaz az epizódok, vagy más
néven az epoch száma) 2000 volt. Az optimális megoldások meghatározására a [69]-
ben alkalmazott kevert egész érték¶ modellt használtam, a megoldásokat pedig a
CPLEX megoldóval állítottam el®. A feladat modelljét a teljesség kedvéért megad-
juk a C függelékben. A [68]-ban és a [69]-ben közölt algoritmusokkal, HH és SS, a
QLM összehasonlítása nem lett volna korrekt úgy, hogy nem ismerem azon feladatok
részleteit, amelyeket a szerz®k a saját algoritmusaikkal megoldottak a cikkben. (A
szerz®k sajnos nem publikálták az általuk megoldott feladatok részletes adatait és
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ez irányú megkeresésemre sem reagáltak. Az én általam generált új feladatok adatai
megtalálhatók itt: [75].) A QLM algoritmus eredményeit a CPLEX által adott ered-
ményekkel hasonlítottam össze. A CPLEX egy széles körben ismert és alkalmazott
kereskedelmi szoftver, amely (többek között) kevert egész érték¶ lineáris modellek
megoldására alkalmazható.

A négy feladatosztályon belül összesen 44 feladatot hoztam létre és oldottam
meg a QLM algoritmussal, majd a CPLEX megoldóval. A következ® alfejezetekben
az eredményeket és azok értékelését mutatom be.

2.5.1. Eredmények kiértékelése

Els® alkalommal mind a négy feladatosztályhoz egy-egy feladatot generáltam, majd
ezek QLM-mel és CPLEX-szel való megoldásával teszteltem az algoritmusom. Meg-
jegyzem, hogy a CPLEX úgynevezett "fekete dobozként" funkcionál, mivel keres-
kedelmi szoftverr®l van szó, nem tudhatjuk pontosan milyen algoritmusok vannak
beépítve. Az biztos, hogy ezen belül van lineáris programozási programcsomag re-
laxáció kezelésére, B&B illetve Branch and Price típusú algoritmusok, valamint he-
urisztikus megoldók is. Ezeket a feladatokat tekintsük az alap feladatoknak. Az
ezekhez a feladatokhoz tartozó gépi id®k és megel®zési relációk az A.1. függelékben
találhatók. A megoldásokat tartalmazó táblázatban a következ® jelöléseket alkal-
mazom:

� n - a tevékenységek száma,

� m - a gépek száma,

� NC - a megel®zési relációk száma,

� LB1, LB2 - a két alsó korlát értéke,

� CPLEX LB, CPLEX UB - a CPLEX által kiszámított alsó és fels® korlát,

� QLM - a QLM algoritmus által kiszámított megoldás,

� QLM-freq - a tíz futásból hányszor találta meg a QLM az optimumot.

Megjegyzem, hogy csak akkor tudható pontosan hogy mekkora az optimum érté-
ke, ha az alsó korlátok maximuma megegyezik a fels® korlátok minimumával. Tehát
az LB1, LB2 illetve a CPLEX által szolgáltatott alsó korlát maximuma megegyezik
a CPLEX által talált megoldás, illetve a QLM 10 futásából származó megoldások
értékeinek minimumával. Mint látható az #1 feladat esetén például LB1 = CPLEX
LB = 10, valamint CPLEX UB = QLM = 10. Itt a QLM mindegyik futása 10-es
értéket adott. Vagy például a #28 feladat esetén LB2 = CPLEX LB = 5, a CPLEX
UB értéke ennél nagyobb (6), de a QLM 10 futásból 9-szer szintén 5-ös értéket adott.
Most lássuk a feladatok megoldásának részletes kiértékelését.

Az els® feladat (#1) könny¶nek bizonyult mind a QLM, mind pedig a CPLEX
számára. Mindkét esetben sikerült megtalálni az optimális megoldását, továbbá
látható, hogy a QLM a 10 futásból tízszer találta meg az optimumot. A feladat
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Feladatok: #1 #2 #5 #28
n 14 28 27 74
m 8 7 4 19
NC 5 8 1 10
LB1 10 11 7 4
LB2 4 9 18 5
CPLEX LB 10 11 8 5
CPLEX UB 10 11 18 6
QLM 10 11 18 5
QLM-freq 10/10 3/10 1/10 9/10
CPLEX id® (s) 0,188 28,8 28 526 28 247

2.5. táblázat. Az els®ként generált négy feladat megoldásának eredménye

optimális megoldása 10 volt. A CPLEX alsó és fels® korlátjai és az LB1 is ezt
mutatja. A CPLEX nagyon gyorsan megtalálja a megoldást, 0,188 másodperc alatt.
A CPLEX eredményeire vonatkozó statisztikai adatok a C függelékben találhatóak.
A feladat modelljében összesen 1625 feltétel, 239 változó található, utóbbiból 224 a
bináris változók száma.

A második feladat (#2) nehezebb volt, látható, hogy a tíz futásból csak három
alkalommal találta meg az optimumot a QLM. Az optimális megoldás 11 volt. Ez
a feladat a CPLEX-nek is nehéz volt, 28 másodperc alatt oldotta meg. A CPLEX
eredményeire vonatkozó statisztikai adatok a C függelékben találhatóak. A feladat
modelljében összesen 21491 feltétel, 1009 változó található, utóbbiból 980 a bináris
változók száma.

Ezekkel kapcsolatban megjegyzem a következ®ket: vannak olyan tanuló algorit-
musok, amelyeket többször futtatva az algoritmus fölhasználja a korábbi futások
eredményeit. Az én általam fejlesztett QLM algoritmus nem ilyen, minden egyes
új futás esetén a Q értékeket újraszámolja. Ki lehetne próbálni azt a változatot,
amelyik a korábbi futás által kapott legjobb célfüggvényértéket úgy használja fel
egy kés®bbi futásnál, hogy ha az aktuális célfüggvényérték ennél nagyobb, akkor ott
megnöveli a büntetést, ha pedig kisebb, akkor megnövelt jutalmat ad. Ez kés®bbi
kutatás tárgya lehet.

A harmadik feladat (#5) már jelent®sen nehezebb az el®z® kett®nél. A QLM
algoritmus csak egy alkalommal találta meg az optimális megoldást a tíz futásból.
Látható, hogy a CPLEX-nek is nehéz volt a feladat megoldása, ugyanis bár hamar
megtalálja az optimális megoldást, de mivel a NEOS szerver úgy van beállítva, hogy
nagyjából 28 000 másodperc (ami nagyjából 8 óra) után leáll, ennyi id® nem volt elég
az optimum veri�kálásához. A CPLEX által talált 18-as célfüggvény érték valójában
optimális, de ezt a CPLEX nem tudta veri�kálni (mert 8 óra futás után CPLEX UB
nem egyenl® CPLEX LB-vel). Csak onnét tudható, hogy a 18-as célfüggvényérték
az optimum, hogy megegyezik LB2-vel, de a CPLEX erre "nem jött rá", ennél
sokkal gyengébb alsó korlátot (8) talált csak. A CPLEX eredményeire vonatkozó
statisztikai adatok a C függelékben találhatóak. A feladat modelljében összesen
17060 feltétel, 784 változó található, utóbbiból 756 a bináris változók száma.

A negyedik feladat (#28) az el®z® háromtól eltér®en jóval nagyobb probléma. Ez
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a gépek számában, a tevékenységek számában és a megel®zési relációk számában is
látható. Azonban a feladat mérete ellenére nem volt nehéz a QLM számára, ugyanis
a tíz futásból kilencszer megtalálta az optimális megoldást. A CPLEX számára
azonban nehéz volt a feladat, ez látható a CPLEX UB és CPLEX LB értékekb®l, a
kett® között nagy az eltérés. A CPLEX eredményeire vonatkozó statisztikai adatok
a C függelékben találhatóak. A feladat modelljében összesen 412282 feltétel, 7105
változó található, utóbbiból 7030 a bináris változók száma.

Mind a 4 alapfeladatra lefuttattam 10-szer a QLM algoritmust. A futási id®k
0,1 másodperc és 1 másodperc között mozognak, egy feladaton belül is változatosak,
de mindig 1 másodperc alatt maradtak. A futásid®k átlaga feladatonként 0,5, 0,64,
0,53 és 0,59.

A feladatokhoz tartozó részletes gépi id® táblázatok és megel®zési relációk az
A.1 függelékben találhatók. A futási id®k részletes adatai a C függelékben vannak
megadva.

Mivel a QLM futásideje 1 másodperc alatt marad mind a négy alapfeladat esetén,
a 2.5. táblázatban csak a CPLEX futásidejét adtam meg, mert az viszont er®sen
függ a feladattól.

2.6. Részletesebb vizsgálatok

A 2.5.1. fejezetben bemutatott eredményeken túl mind a négy osztály esetében
további feladatokat generáltam, természetesen �gyelembe véve az adott osztály pa-
ramétereit. Minden egyes osztály további tíz darab feladattal b®vült. Ebben a feje-
zetben az ezekre a feladatokra vonatkozó eredményeket mutatom be. Az ezekhez a
feladatokhoz tartozó, a gépi id®kre és a megel®zési relációkra vonatkozó információk
az A.2 számú függelékben találhatók. Az alábbi táblázatokban az egyes osztályokba
tartozó feladatpéldányokat 1-10 számokkal jelöltem. Tehát minden inputhoz tarto-
zik egy oszlop. Négy feladatosztály esetén ez összesen 40 input. Megjegyzem, hogy
minden inputra a QLM 10-szer van futtatva. Ez összesen 400 futás. Minden oszlop
alján a QLM* szám azt jelenti, hogy a 10 futásból az algoritmus hányszor találta
meg az általa talált legjobb értéket. Ez bizonyos esetekben egyenl® az optimummal
(ha a legjobb LB egyenl® a legjobb UB-vel) más esetekben csak annyit tudunk, hogy
a legjobb fels® korlát. Mivel a QLM futásideje mindig 1 másodperc alatt maradt,
ezért azt a táblázatokban nem adtam meg. A CPLEX futásidejét a folyószövegben
ismertetem.

A Class #1 osztályhoz generált 10 feladat esetében a QLM algoritmusa a 10
futásból 10 alkalommal találta meg az optimális megoldást. Mind a CPLEX, mind
a QLM algoritmus esetén a futás gyors, kevesebb, mint 1 másodperc alatt ment
végbe.
A 2.6. táblázatban látható, hogy minden feladat esetében sikerült megtalálni az op-
timális megoldást, amelyet a CPLEX is meger®sített. A CPLEX által kiszámított
alsó és fels® korlátok minden feladatnál megegyeznek. A QLM esetében számított
korlátok közül az LB1 korlát értékei minden oszlopban megegyeznek a CPLEX kor-
látaival. Mind a QLM, mind a CPLEX átlagosan 1 másodpercen belüli futási id®vel
dolgozott.
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n = 14, m = 8, NC = 5
Feladatok: 1 2 3 4 5 6 7 8 9 10
LB1 9 5 9 8 8 4 9 17 7 10
LB2 3 3 3 3 3 2 3 5 3 3
CPX LB 9 5 9 8 8 4 9 17 7 10
CPX UB 9 5 9 8 8 4 9 17 7 10
QLM 9 5 9 8 8 4 9 17 7 10
QLM* (/10) 10 10 10 10 10 10 10 10 10 10

2.6. táblázat. A b®vített feladatok Class #1 osztályának eredményei

A Class #2 feladatai esetében már változóak az eredmények. A CPLEX mind-
össze egy esetben tudta meger®síteni az optimális megoldást, méghozzá a 6-os számú
esetében. Ha a feladatok közül például az 1-es számút tekintjük, akkor látható, hogy
a 10 futásból a QLM 6 alkalommal számolt 9-es érték¶ átfutási id®t. Ugyanezen
feladat esetében az LB1 = 8 és LB2 = 7. Ebb®l látható, hogy az optimális megoldás
legfeljebb 9 és legalább 8.

n = 28, m = 7, NC = 8
Feladatok: 1 2 3 4 5 6 7 8 9 10
LB1 8 6 5 8 7 7 6 6 5 9
LB2 7 7 7 8 9 6 7 6 7 9
CPLEX LB 8 6 5 8 7 7 6 6 5 9
CPLEX UB 9 8 8 9 12 7 7 8 7 11
QLM 9 8 8 9 12 7 7 8 7 11
QLM* (/10) 6 10 10 3 6 2 6 7 9 6

2.7. táblázat. A b®vített feladatok Class #2 osztályának eredményei

A CPLEX is ugyanezeket az értékeket számolta, azaz az alsó korlát 8, a fels® kor-
lát pedig 9 volt. A CPLEX által számított alsó korlátok a 2-es, 3-as, 5-ös, 7-es
és 9-es feladatok esetében rosszabbak, mint a max(LB1, LB2). A 6-os számú fel-
adat esetében a CPLEX alsó korlátja és fels® korlátja megegyeznek, így itt sikerült
meger®síteni az optimális megoldást, amelyet a QLM is megtalált. A 7-es és 9-es fel-
adatoknál látható, hogy az LB1 és LB2 értékei megegyeznek a CPLEX alsó és fels®
korlátjával, továbbá a QLM által számított eredmények mindkét esetben egyenl®k az
LB2 értékével, így a megoldás optimális, azonban ezt a CPLEX nem er®sítette meg.
A CPLEX átlagosan 12 másodperc alatt megtalálja az általa legjobb megoldást,
de ezen utána nem tud már javítani. A 8 órás id®keretben nem képes a megoldás
optimalitását veri�kálni (kivéve az említett 6-odik input esetén.)

A Class #3 feladataihoz tartozó eredmények a 2.8. táblázatban láthatók. Meg-
állapíthatóak a következ®k:

� a CPLEX alsó korlátja mindig az LB1-el egyezik meg, de ennél lényegesen jobb
az LB2 érték, érdekes, hogy ezt a CPLEX nem találta meg,

� a CPLEX soha nem ad jobb megoldást, mint a QLM, azonban egy feladat
esetén a QLM jobb megoldást ad (3. feladat).
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n = 27, m = 4, NC = 1
Feladatok: 1 2 3 4 5 6 7 8 9 10
LB1 5 8 5 7 6 8 5 8 6 6
LB2 16 18 15 18 16 19 17 18 19 16
CPLEX LB 5 8 5 7 6 8 5 8 6 6
CPLEX UB 18 20 18 19 16 20 17 19 21 17
QLM 18 20 17 19 16 20 17 19 21 17
QLM* (/10) 10 9 7 8 2 10 1 8 9 10

2.8. táblázat. A b®vített feladatok Class #3 osztályának eredményei

A CPLEX itt sem képes garantáltan optimális megoldást találni 8 órás futásid®
alatt.

n = 74, m = 19, NC = 10
Feladatok: 1 2 3 4 5 6 7 8 9 10
LB1 6 4 4 5 5 4 4 6 5 4
LB2 5 5 5 5 5 5 5 5 5 5
CPLEX LB 6 4 4 5 5 4 3 5 5 4
CPLEX UB 13 9 11 9 9 15 9 9 8 10
QLM 6 5 6 6 6 5 6 6 5 5
QLM* 6 1 7 10 10 1 10 8 1 3

2.9. táblázat. A b®vített feladatok Class #4 osztályának eredményei

A Class #4 feladataihoz tartozó eredmények a 2.9. táblázatban láthatók. Az
eredményekb®l látható, hogy a QLM algoritmus az esetek több, mint a felében
(1-es, 2-es, 6-os, 8-as, 9-es, 10-es feladatok) ugyanazt az eredményt adta, mint a
max(LB1, LB2). A 3-as, 4-es, 5-ös és 7-es feladatok esetében a QLM eredménye
csak eggyel nagyobb, mint max(LB1, LB2). Az 1-es, 2-es, 6-os, 8-as, 9-es és 10-
es feladatok esetben a QLM eredményei egyben az optimális megoldások is. Az
is látható, hogy a CPLEX számára nehezek voltak ezek a feladatok, mert nagyon
magas fels® korlátokat számolt ki, egyúttal egyik esetben sem tudta meger®síteni az
optimális megoldást. A CPLEX átlagosan 9 másodperc alatt találja meg az általa
talált legjobb megoldást, és a 8 órás id®keret nem elég annak eldöntésére, hogy ez
optimális-e.

A vizsgálatok alapján elmondható, hogy a megoldások min®sége nem a QLM
paraméterein múlik. Ezek a feladatok felépítésükb®l ered®en nehezek. Nem arról
van szó, hogy a megoldások nem sikeresek, hanem a feladatok nehézsége folytán a
CPLEX nem tudta igazolni, hogy az optimális megoldást kaptuk-e meg vagy sem.

A feladatokhoz tartozó összefoglaló gépi id® táblázatok és megel®zési relációk az
A.2 függelékben találhatók.

2.7. Összefoglalás

Ebben a témakörben egy olyan, speciális ütemezési probléma megoldásával foglal-
koztam, amelyben a tevékenységek között el®re meghatározott megel®zési relációk
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szerepelnek, és az egyes tevékenységek végrehajtási ideje a hozzájuk rendelt gépi
er®forrástól függ. A feladat specialitását a megel®zési relációk adják, amelyek rövid,
diszjunkt utakat de�niálnak. A szakirodalomban csak kevés számú olyan algorit-
mus van, amely az általam bemutatott modellek esetében egyáltalán releváns lenne.
Az általam létrehozott algoritmus azon kevés megoldások közé tartozik, amely ezen
speciális probléma megoldására lett kidolgozva.

Megmutattam, hogy a QLM eljárás alkalmas az ebben a fejezetben bemutatott
ütemezési probléma megoldására.

Az állapottér egyszer¶sítésével sikerült megmutatni, hogy a kifejlesztett eljárás
hatékony a felvetett ütemezési probléma megoldásában. Az algoritmus kifejezetten
azokra az ütemezési problémákra lett kifejlesztve, ahol a tevékenységek végrehaj-
tási ideje az er®forrástól függ, a végrehajtás nem megszakítható, továbbá az egyes
tevékenységek között megel®zési relációk lehetnek. Az általam megadott problé-
ma megoldásával a meger®sítéses tanulás témakörében nem találtam publikációt.
Összehasonlítási alap lehetett volna a [68]-ban és a [69]-ben közölt megoldás, de az
itt megoldott feladatok részletei nem ismertek. Így alapvet®en saját magam által
generált feladatokkal teszteltem a QLM algoritmust, továbbá ugyanezeket a felada-
tokat a CPLEX-szel is megoldottam. Az eredmények alapján látható, hogy a QLM
minden esetben, amikor a CPLEX is, megtalálta az optimális megoldást. A többi
esetben csak sejtjük, hogy a QLM optimális megoldást talált, de ezt a CPLEX nem
tudta meger®síteni. Ez alapján látható, hogy a kidolgozott feladatokra szorítkoz-
va, a QLM algoritmus hatékony és a feladatok megoldásában felveszi a versenyt a
CPLEX megoldójával, hiszen a QLM által adott eredmények összhangban vannak
a CPLEX megoldója által kiszámított eredményekkel.

Emellett érdekes és továbbra is nyitott kérdés az, hogy a Q-tanulás vagy más
meger®sítéses tanulási módszer hogyan és milyen hatékonysággal alkalmazható egyéb
ütemezési problémák megoldására.

Jelenleg nincsen semmilyen eredmény a legrosszabb esetre vonatkozó közelítési
arányról a bemutatott ütemezési problémával kapcsolatban. Ez is egy érdekes és
nyitott terület, amely a jöv®beni kutatások részét képezheti.

További vizsgálat tárgya lehet, hogy bizonyos speciális esetekben (például m = 2
gép esete, vagy csak kétfajta végrehajtási id® esete) nem kaphatnánk-e jobb alsó
korlátokat illetve, hogy m¶ködik ezekben az esetekben a QLM algoritmus vagy ennek
valamilyen módosított változata.
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3. fejezet

Mohó algoritmusok ládapakolási
benchmark feladatokhoz

3.1. Bevezetés

A ládapakolás egy klasszikus területe a kombinatorikus optimalizálásnak, amelynek
számos felhasználási területe van a mindennapok során. A ládapakolási feladatok
megoldásakor a rendelkezésre álló kapacitás optimális felhasználására törekszünk,
legyen szó tárolásról vagy éppen szállításról. A minél hatékonyabb kapacitáski-
használásnak az eredménye a kevesebb számú tároló alkalmazása, ezáltal például a
szállítás is kevesebb járm¶vel oldható meg, ez pedig a környezet terhelésének csök-
kenéséhez vezet. Továbbá sokkal olcsóbbá tehet® ezáltal a tárolás vagy a szállítás,
hiszen kevesebb er®forrást kell felhasználni.

3.1.1. Az új megközelítés

A Bevezetésben (1. fejezet) nagyon röviden áttekintettem, hogy a ládapakolási
feladatnak milyen f®bb változatai vannak és ezekre milyen megoldásokat javasoltak.

Ebben az alfejezetben bemutatom az általam bevezetett új megközelítést. En-
nek lényege, hogy a ládapakolási problémák megoldása el®tt egy ún. el®feldolgozást
végzek el, amellyel igyekszem egyszer¶síteni a megoldandó feladatot. Ha van egy
ládapakolási feladat, amelyet szeretnénk optimálisan megoldani, akkor az nehéz le-
het, ugyanis a ládapakolási probléma NP-nehéz. De ez nem jelenti azt, hogy az
optimális megoldás megtalálása minden feladat esetében nehéz. Például, ha min-
den tárgy w > 0 mérete egyforma, akkor a feladat megoldása triviális. Ebben az
esetben minden ládába pontosan ⌊ 1

w
⌋ tárgy pakolható és a feladatot megoldottuk

optimálisan. Természetesen a valóságban a ládapakolási feladatok nehezebbek vagy
sokkal nehezebbek. A kés®bbiekben azonban látni fogjuk, hogy bizonyos benchmark
feladatok esetén tudunk olyan "trükkös" algoritmusokat javasolni, amelyek az esetek
java részében mégis képesek megtalálni az optimális megoldást.

Az új módszer a következ®képpen fogalmazható meg. Megpróbáljuk meghatá-
rozni az adott feladat optimális megoldását egy mohó algoritmussal; ha ez sikerült,
a feladat megoldásával készen vagyunk. Ha viszont nem sikerült, akkor más, szo-
�sztikáltabb megoldó algoritmus szükséges (amellyel itt most nem foglalkozom). A
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mohó algoritmus alkalmazásának lényege, hogy egyszer¶ algoritmussal az adott osz-
tályon belül a lehet® legtöbb feladatot optimálisan oldjuk meg. Így a megoldott
feladatokkal már nem kell foglalkozni, azaz a problémák száma csökken. A mo-
hó algoritmusok ilyesfajta alkalmazása a mindennapi életben is jelen van, például
rövidebb útvonalak megtalálása, két város között olyan útirány választása, ahol a
forgalom kisebb. Az operációkutatás sok területén szintén alkalmaznak mohó mód-
szereket segédalgoritmusként.

A következ® alfejezetben részletes áttekintést nyújtok a vizsgált benchmark fel-
adatokról.

3.2. A vizsgált benchmarkok

Ebben a fejezetben bemutatom azokat a benchmark feladatokat, amelyeket hasz-
náltam az algoritmusok fejlesztése és tesztelése során. A feladatosztályok például a
Bologna Egyetem Operációkutatás Csoportjának a weboldalán [76] elérhet®k.

A feladatok a következ® formában vannak megadva. A tárgyak számát n, a
láda kapacitását pedig C jelöli. A tárgyak mérete wi és a feladatok különböz®
osztályokba vannak sorolva. A weboldalon összesen 6195 db feladat érhet® el és
mindegyik feladat esetében a tárgyak méretük szerint csökken® sorrendbe vannak
rendezve. A benchmarkok dönt® többségénél ismertek az optimális megoldások,
azonban vannak olyan osztályok, ahol még vannak a feladatok között olyanok, ahol
nem ismerjük az optimális megoldást. A Schwerin és a Falkenauer osztályok esetében
minden feladathoz ismertek az optimális megoldások.

3.2.1. Schwerin benchmark

A Schwerin [77] benchmark két halmazra oszlik; Schwerin1 és Schwerin2. Mindkét
halmazban 100 feladat található. A Schwerin1 esetében a tárgyak száma n = 100,
a Schwerin2 esetében pedig n = 120. A ládák kapacitása egységesen C = 1000
és a tárgyak méretei a [150, 200] intervallumból kerülnek ki egyenletes eloszlással.
(Tehát minden ládába vagy 5 vagy 6 darab tárgy fog kerülni.) A Schwerin 1 esetében
valamennyi feladat optimális megoldása 18, a Schwerin 2 esetében pedig 21 vagy 22.

Összes feladat: 200 db.

3.2.2. Falkenauer benchmark

A Falkenauer [78] benchmark két osztályra oszlik, amelyek mindegyikében 80 feladat
található.

Az els® osztály, a Falkenauer_U további négy alosztályra bomlik, mindegyik
alosztályban 20 feladat van. Az alosztályokban a tárgyak száma n = 120, n = 250,
n = 500 és n = 1000. A tárgyak mérete a [20, 100] intervallumból kerül ki egyenletes
eloszlással, a ládák kapacitása C = 150.

A második osztály, a Falkenauer_T ugyancsak négy alosztályra oszlik és mind-
egyik alosztályban 20 feladat van. A tárgyak száma n = 60, n = 120, n = 249 és
n = 501. A tárgyak mérete a [250, 500] intervallumból kerül ki egyenletes eloszlással,
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a ládák kapacitása C = 1000. A Falkenauer_U esetében az optimális megoldások
értékei feladatonként változó.

Összes feladat: 160 db.

3.2.3. További benchmarkok

Scholl

A Scholl benchmark [79] esetében a feladatok három részre oszlanak: DataSet1,
DataSet2 és DataSet3. Ezekben a halmazokban 720, 480 és 10 feladat található.
A tárgyak száma (n) az [50, 500] intervallumból kerül ki. A ládák kapacitása (C)
DataSet1 esetén az [100, 150] intervallumból kerül ki, DataSet2 esetén C = 1000 és
a DataSet3 esetén C = 100000. A DataSet1 esetében a tárgyak mérete az [1, 100], a
DataSet2 esetében az [1, 500] és a DataSet3 esetében a [20000, 35000] intervallumból
kerül ki.

Összes feladat: 1210 db.

Wäscher

A Wäscher benchmark [80] feladatai az egyik legnehezebbek az összes benchmark
közül. A tárgyak száma (n) a [57, 239] intervallumból kerülnek ki, a ládák kapa-
citása C = 10000. A legnagyobb tárgyméret kicsivel 5000 alatti és egészen kicsi
tárgyméretek is vannak (40). Mivel a kés®bbiekben csak a Schwerin és Falkena-
uer_U osztály inputjaival fogunk részletesen foglalkozni, ezért a többi benchmark
osztályok tárgyméreteit a hely kímélése végett nem adjuk meg.

Összes feladat: 17 db.

Schoen�eld Hard28

A Hard28 benchmark [81] 28 nehéz feladatot tartalmaz, ahol a tárgyak száma (n)
160 és 200 között alakul, a ládák kapacitása C = 1000. A tárgyak mérete változatos.

Összes feladat: 28 db.

RGI, Augmented Non-IRUP, Augmented IRUP, GI

Az RGI benchmarkban [18] a tárgyak száma n ∈ [50, 1000], a ládák kapacitása (C)
pedig 50 és 1000 között. A legkisebb tárgy mérete a [0.1C, 0.2C] intervallumból, a
legnagyobb tárgy mérete pedig a [0.7C, 0.8C] intervallumból származik. Összesen
3840 feladat található ebben a csomagban.

Ugyanez a publikáció [18] mutatja be az Augmented Non-IRUP (ANI) és az
Augmented IRUP (AI) benchmarkokat. Mindkét benchmark 250 feladatot tartal-
maz, így összesen 500 feladatról van szó. Az ANI esetében a feladatok öt halmazra
vannak bontva és a tárgyak száma az öt alosztályban n ∈ {201, 402, 600, 801, 1002},
továbbá a tárgyak méretei az [1, 2500], [1, 10000], [1, 20000], [1, 40000] és az [1, 80000]
intervallumokból kerülnek ki. A ládák kapacitása az öt halmaz esetén sorra 2500,
10000, 20000, 40000, és 80000. Az AI osztály az ANI osztályból lett generálva annyi
módosítással, hogy minden alosztály esetében a tárgyak száma n+ 1.
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A harmadik benchmark a GI [82], amely nagyon változatos feladatokat tartalmaz,
összesen 240 darabot.

3.3. Algoritmusok

Ebben a fejezetben korábban már létez®, illetve az általam kifejlesztett algoritmu-
sokat mutatom be. Az FFD algoritmust arra használtam, hogy a lehet® legtöbb
feladatot megoldja az osztályból. Ez azért fontos, mert ha egy olyan egyszer¶ algo-
ritmus, mint az FFD a feladatok egy jelent®s részét optimálisan képes megoldani,
akkor a teljes problémakör gyorsan egyszer¶södik, ugyanis az FFD-vel megoldott
feladatokkal már nem kell foglalkozni. Természetesen ez az el®bbi megjegyzés csak
akkor igaz, ha a tekintett feladatra létezik olyan alsó becslés, amelynek az értéke
egyenl® az FFD eredményével. Viszont az említett benchmarkok jelent®s részében
ez igaz. A legegyszer¶bb alsó korlát a következ®: a tárgyak összméretét elosztjuk a
ládamérettel és a kapott számot fölfelé kerekítjük. Ez a triviális alsó korlát is elég
er®s volt ahhoz a benchmarkok jelent®s részében, hogy az FFD által kapott megoldás
optimalitását bizonyítsa. Tehát egy természetesen adódó lehet®ség, hogy egy adott
benchmark osztályon belül az inputokra el®ször lefuttatjuk az FFD algoritmust, ha
ez optimális megoldást ad, akkor kész is vagyunk. Mivel ez nem minden esetben
történik meg, szükségünk van más, bonyolultabb algoritmusokra is.

Következ® lépésként a ládapakolási feladatot egyszer¶sítjük az alábbi módszerrel.
Ahelyett, hogy arra �gyelnénk, hogy sok ládát hogyan lehet egyszerre jól megtölteni,
egyesével fogunk ládákat megtölteni. Vagyis egymás után fogunk hátizsák feladato-
kat megoldani. Egy hátizsák megfelel egy ládának. Azt �gyeltük meg, hogy (leg-
alábbis a Schwerin osztályon belül) ha "jól" telepakolunk egyesével ládákat, akkor
így globálisan is jó megoldást kapunk. Vagyis más szóval mohó döntések sorozatát
lehet alkalmazni. A hátizsák "jó" megtöltésére pedig egy egyszer¶ útkeres® segéd-
algoritmust alkalmaztam.

3.3.1. First Fit Decreasing (FFD)

Az FFD algoritmus az FF algoritmus módosított változata oly módon, hogy az els®
lépés egy el®feldolgozás. Ahogy az algoritmus nevében is benne van, a bemeneti
elemeket méret szerinti csökken® sorrendbe rendezzük, majd ezen a sorrenden al-
kalmazzuk a First Fit algoritmust. Tulajdonképpen az ismertetett benchmarkok
esetében erre már nincs szükség, ugyanis alapértelmezetten csökken® sorrendben
szerepelnek a tárgyak a méretük alapján minden feladat esetében. A továbbiakban
az FFD teljesítményét mutatom be a fenti benchmarkok esetén.

Az FFD algoritmussal kapcsolatos els® tapasztalat az volt, hogy a fentebb emlí-
tett benchmarkok közül néhányra elég jó eredményeket adott. Els®ként az AI és az
ANI benchmarkok FFD-vel történ® megoldásait mutatom be. Ezek olyan feladat-
osztályok, amelyek esetében a bennük található feladatok között vannak még meg
nem oldottak, azaz az optimális megoldásuk nem ismert, csak a megoldás alsó (LB)
és fels® (UB) korlátja. Néhány esetben igaz, hogy LB = UB.

A 3.1. táblázatban az FFD algoritmus teljesítménye látható az AI és az ANI
osztályokon. Látható, hogy az FFD algoritmus a fels® korláttal megegyez® ered-
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AI ANI
# % # %

FFD = UB 131 52,4 250 100
FFD >UB 119 47,6 0 0
Összes 250 100 250 100

3.1. táblázat. Az FFD teljesítménye az AI és az ANI feladatosztályokon

ményt hozott az AI osztályban található feladatok 52,4%-ra és az ANI osztályban
található feladatok 100%-ra. A fels® korlát az ismert legjobb megoldást jelenti. Te-
hát ezzel az egyszer¶ algoritmussal az AI osztály feladatainak több, mint a felét, az
ANI osztály feladatai közül pedig mindet sikerült megoldani. Azaz a megoldandó AI
osztálybeli feladatok aránya 47,6%-ra csökkent, az ANI feladatoké pedig 0%-ra. Így
drasztikusan csökkentettük a megoldatlan feladatok számát mindenféle bonyolult
algoritmus alkalmazása nélkül. Természetesen továbbfejlesztési lehet®ségként felme-
rül, hogy jobb alsó korlátot is lehetne alkalmazni, azonban dolgozatom e részében
csak azt szeretném illusztrálni, hogy nagyon sok benchmark feladatra már a klasszi-
kus és általánosan ismert FFD algoritmus is hatékony. Általánosságban a különféle
benchmarkok vizsgálatát viszont itt nem részletezem, tehát az FFD-vel kapcsolatos
vizsgálatok itt csak illusztráció céljából vannak. Két benchmark osztályt (Schwerin
és Falkenauer_U) viszont részletesen megvizsgálok a következ®kben. Ezekben az
FFD nem elég hatékony, emiatt újonnan kifejlesztett algoritmusokat mutatok be.

A fejezet további részében a maradék benchmarkok eredményeit tekintem át.
Ezek az osztályok a megoldás szempontjából abban különböznek az AI és ANI osz-
tálytól, hogy itt minden egyes feladatnak ismert az optimális megoldása.

DataSet1 DataSet2 DataSet3 Falkenauer_U Falkenauer T
# % # % # % # % # %

FFD = UB 546 75,8% 236 49,2% 0 0% 6 7,5% 0 0%
FFD >UB 174 24,2% 244 50,8% 10 100% 74 92,5% 80 100%
Összes 720 100% 480 100% 10 100% 80 100% 80 100%

3.2. táblázat. Az FFD teljesítménye a többi feladatosztályon (I)

GI Instances RGI Instances Schwerin Wäscher Hard28
# % # % # % # % # %

FFD = UB 1 0,4% 1601 41,7% 0 0% 2 11,8% 5 17,9%
FFD >UB 239 99,6% 2239 58,3% 200 100% 15 88,2% 23 82,1%
Összes 240 100% 3840 100% 200 100% 17 100% 28 100%

3.3. táblázat. Az FFD teljesítménye a többi feladatosztályon (II)

A 3.2. és a 3.3. táblázatokban láthatók a többi feladatosztály esetén kapott
eredmények. Ezek közül a DataSet1 esetében volt a leghatékonyabb az FFD. Itt a
feladatok több mint 75%-át sikerült optimálisan megoldani. A DataSet2 esetében
közel a feladatok felében optimális megoldás született. A harmadik legjobb ered-
mény az RGI feladatoknál látható, itt a feladatok 41,69%-át sikerült optimálisan
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megoldani. Sajnos a többi feladatosztály jócskán elmarad ezekt®l az eredményekt®l.
A Falkenauer T és a Schwerin esetében 0 feladat esetében találta meg az FFD az
optimális megoldást. A GI esetében 1

240
, a Wäscher-nél 2

17
, a Falkenauer_U-nál 6

80
,

a Hard28-nál pedig 5
28

ez az arány.
Amennyiben az FFD nem talált optimális megoldást, úgy jellemz®en egy ládával

többet töltött meg a kelleténél. Összesítve a 6195 feladatból az FFD-nek sikerült
2778 darabot optimálisan megoldani, ami 44,84%-os teljesítmény. Mint említettem,
az FFD-vel kapcsolatos vizsgálataim itt csak illusztrációként szerepelnek, azt mutat-
ják be, hogy sok esetben nem szükséges bonyolult algoritmus alkalmazása. Megjegy-
zem, hogy amikor az FFD a "szükségesnél" egy ládával többet használ, várhatóan,
lokális cserék alkalmazásával sok esetben el lehet jutni az optimális megoldásig. Ez
azonban nem képezte vizsgálatok tárgyát.

A [83]-as publikációban egy új, viszonylag bonyolult algoritmust mutatnak be,
amely a Scholl feladatosztályból 120 feladatot optimálisan megold az összes 1210
feladatból. Ugyanezt a 120 feladatot az FFD is megoldja optimálisan. Adódik a
kérdés, hogy akkor miért használjunk bonyolult eljárásokat, ha sokkal egyszer¶bb
módszerekkel is megoldhatjuk ugyanazt? Feltehet®, hogy a cikk szerz®i az 1210
feladatból olyan 120-at választottak (három alosztály a sok alosztály közül), ame-
lyekre az FFD hatékony, mert nem túl nehezek a feladatok. Az alábbi konklúziókat
vonhatjuk le.

� Az FFD algoritmus nem minden esetben hatékony, de jó ötletnek t¶nik el®ször
az FFD-t futtatni. Látható, hogy az összes feladat közel felét megoldotta
optimálisan.

� Ezek után két feladatosztályt választottam: Schwerin és Falkenauer_U. Ezekre
az FFD nem hatékony. Viszont a kés®bbiekben megmutatom, hogy összetet-
tebb, de még mindig mohó algoritmusok képesek lesznek megoldani vagy az
összes feladatot vagy a feladatok jelent®s részét ezekb®l az osztályokból. Mint
kés®bb részletesen bemutatom, ennek az az oka, hogy ezekben az osztályok-
ban található feladatok tárgyméretei véletlenszer¶en és egyenletesen vannak
kiválasztva valamely intervallumból.

3.3.2. El®feldolgozó eljárások az irodalomban

Az el®feldolgozás egy jól ismert és gyakran alkalmazott technika az optimalizálás-
ban. Ez lényegében azt jelenti, hogy az adott feladat megoldása el®tt megpróbáljuk
egyszer¶síteni a problémát, amennyiben lehetséges. Például, ha egy lineáris optima-
lizálási problémáról van szó, akkor els® lépésben eltávolítják a redundáns korlátozá-
sokat, azaz egyszer¶sítik a modellt. Vélhet®en a legels®, a lineáris programozásban
alkalmazott el®feldolgozó módszerrel foglalkozó publikáció [84], amely 1975-ben je-
lent meg. Majd ezt több hasonló publikáció is követte; 1983-ban Tomlin és Welch
[85, 86], 1995-ben Andersen és Andersen [87] vagy 1997-ben Gondzio [88] munkája.

Savelsbergh munkájában [89] javasolja az el®feldolgozást a kevert érték¶ progra-
mozási problémákra. A témában néhány további publikáció [90�92].

Mészáros és Suhl [93] a lineáris és kvadratikus programozás kapcsán foglalkozott
az el®feldolgozással. [94] pedig egy olyan publikáció, amely különböz® el®feldolgozási
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technikákkal foglalkozik az egész érték¶ programozás kapcsán.
Az egyes tárgyak méret szerinti rendezése is el®feldolgozásnak tekinthet®, ami

láthatóan nagyon hatékony tud lenni. Ha a First Fit algoritmust futtatjuk egy adott
L tárgylistával, akkor a legrosszabb esetben az FF (L) = 1, 7 ·OPT (L), függetlenül
attól, hogy milyen nagy OPT (L) [12]. Viszont, ha az elemek nem növekv® sorrendbe
vannak rendezve, és a rendezés után alkalmazzuk az First Fit algoritmust (ami
innent®l kezdve tulajdonképpen First Fit Decreasing), akkor a legrosszabb esetben
FFD(L) ≈ 11

9
·OPT (L) nagy OPT (L) értékek esetén [7, 15].

3.3.3. Segédalgoritmusok

Ebben a fejezetben néhány kiegészít® algoritmust mutatok be. Ezek nem újak,
gyakran alkalmazott algoritmusokról van szó. Az itt bemutatott algoritmusokat a
különböz® feladatosztályok (Schwerin és Falkenauer) megoldása során alkalmaztam.

A hátizsák feladat és kapcsolata a ládapakolással

A hátizsák feladat a következ®: adott n tárgy, minden i-re az i. tárgynak van egy
wi súlya és egy gi haszon értéke. Továbbá a hátizsák rendelkezik egy C kapacitással
is. A cél az, hogy a tárgyak egy részhalmazát úgy pakoljuk a hátizsákba, hogy a
tárgyak méreteinek összege legfeljebb C legyen, a nyereség pedig a lehet® legnagyobb.
Köztudott [95], hogy a hátizsák probléma NP-nehéz, a ládapakolási probléma pedig
er®sen NP-nehéz. Természetesen adódik a következ® ötlet. Tekintsünk egy ládát egy
hátizsáknak, azt pakoljuk "jó alaposan" tele, zárjuk le ezt a ládát, aztán pakoljunk
meg hasonlóképpen egy újabb ládát és így tovább. Az algoritmust az egyszer¶ség
kedvéért Hátizsáknak nevezzük és pontos leírása a következ®:

Algorithm 6: Hátizsák
Input: a ládapakolási feladat elemei
Output: az elemek pakolása C méret¶ ládákba

1 Amíg valamely megállási feltétel nem teljesül do
2 Néhány elemet kiválasztunk a még nem pakoltak közül, valamely kés®bb

meghatározandó elv alapján. Ezeket bepakoljuk a hátizsákba (ládába).
3 A hátizsákba (ládába) pakolt tárgyak megjelölése "már pakolt" tárgyként,

majd folytatás az 1. lépéssel.

Fontos leszögezni, hogy nincs garancia arra, hogy a fenti algoritmus optimális
megoldást ad egy adott ládapakolási feladatra. Azonban, kés®bb látható lesz, hogy
egy ilyen egyszer¶ mohó algoritmus mégis képes sok esetben optimális megoldást
el®állítani. Az algoritmus mohó, ugyanis egyszerre egy ládával dolgozik, és arra
törekszik, hogy a még nem pakolt tárgyakkal a lehet® legjobb pakolást érje el.

Ami a tárgyak hasznosságát illeti a hátizsák problémában, számos lehet®ség van
ennek az értéknek a megállapítására. Erre az egyik legegyszer¶bb, ha a tárgyak mé-
retével azonos haszonértékeket választunk, azaz minden i. tárgy esetében gi = wi. A
haszonfüggvény vagy más néven pro�tfüggvény ekkor arányos költség (proportional
cost).
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1. Meg�gyelés. Tegyük fel, hogy a láda kapacitása C > 0 (egész érték) és minden
tárgy mérete egy pozitív egész szám az [1, C] intervallumból, a haszonfüggvény pedig
gi = wi. Ez esetben a Hátizsák feladat egy speciális esetét kapjuk, amelynek neve
Subset Sum. Figyeljük meg, hogy ilyen módon csak egy ládát �gyelünk egyszerre.

Ha úgy akarjuk pakolni a tárgyakat a ládákba, hogy azok minél jobban fel le-
gyenek töltve, akkor a fenti haszonfüggvény (gi = wi) is egy jó választás lehet.
Azonban annyi hátránya van, hogy nem tesz különbséget két pakolás között, ha pél-
dául mindkett® teljesen megtölti a ládát, de az egyik kevesebb, a másik több tárgyat
használ ehhez. Nyilvánvaló, hogy két ilyen pakolás közül jobb egy olyat választa-
nunk, ahol kevés nagy tárgyat pakolunk a ládába, mint ha sok kicsit. Azért van így,
mert akkor a sok kicsi tárgy megmarad a kés®bbi ládák pakolásához és így nagyobb
mozgásterünk marad a kés®bbi ládák ügyes pakolására.

Emiatt az el®z®nél jobb választás lehet a gi = wi− 1. Ezzel a haszonfüggvénnyel
az algoritmus inkább a nagyobb tárgyakat fogja választani a kisebbek helyett, ha
lehetséges. Például legyen a ládaméret 10 és legyen hét tárgy, amelyek méretei
6, 4 és öt darab 2 méret¶. Többféleképpen is fel lehet tölteni a hátizsákot, de
csak egy esetben lesz a haszon maximális. Mégpedig akkor, ha a lehet® legkevesebb
tárggyal töltjük fel. Azaz, a gi = wi haszonfüggvény minden teljes feltöltést azonosan
jónak venne, azonban a gi = wi − 1 haszonfüggvény esetében az algoritmus a {6,4}
választást fogja preferálni ahelyett, hogy pl. öt darab 2 méret¶ tárggyal töltse fel a
hátizsákot.

Útkeres® algoritmus alkalmazása

A következ® algoritmus egy jól ismert útkeres® algoritmus. Az algoritmus olyan
tárgyhalmazokat keres, amelyek együttesen beleférnek egy ládába és az összméretük
pontosan K, ahol K ≤ C. Az algoritmus ennek megfelel®en keres irányított utakat
egy gráfban. Van egy kezd®csúcs: k0, amely az üres ládának felel meg. A k0-
ból egy másik kj csúcsba vezet® irányított útnak pedig megfelel egy olyan pakolás a
ládába, ahol a pakolt tárgyak összmérete éppen j. Az algoritmus ügyes szervezésével
(visszafelé keresés) biztosítható, hogy minden tárgy csak egyszer van �gyelembe
véve. Megjegyzem, hogy C, vagyis a láda mérete egész szám, és minden tárgyméret
is egész.

Kezdetben adottak az i = 1, 2, . . . , n tárgyak. Az algoritmus egy irányított
gráfot épít fel, ahol minden csúcs rendelkezik egy címkével. Induláskor a gráf C + 1
csúccsal rendelkezik, élek nélkül. A gráf j-edik csúcsa a számegyenesen a j egész
számnál van. A leginkább balra lev® csúcs a 0 helyen, a leginkább jobbra lev® a C
helyen található. Kezdetben minden kj csomópont lj címkéje -1, a k0 csomóponté
pedig 0. Azaz lj = −1 ∀j > 0 esetén és l0 = 0. Ha egy csomópont címkéje -1,
az azt jelenti, hogy a csomópontot még nem értük el. Ha a címke értéke nem -1,
akkor a csomópontot már elértük. Ha egy kj csomópontot már elértünk, akkor az
lj címke értéke a k0-ból induló és a kj csomópontban végz®d® irányított út utolsó
élszakaszának a hossza, ami nem más, mint az utolsóként pakolt tárgy mérete. Az
algoritmus egymás után tekinti a tárgyakat az adott sorrendben. Az aktuális, i.
tárgy esetén megvizsgálja, hogy milyen összméret pakolása lehetséges, ahol az els® i
darab tárgyat vesszük csak �gyelembe. Ezt úgy teszi, hogy az i. tárgynak megfeleltet
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egy olyan élt, amelynek a hossza ugyanakkora mint az i. tárgy mérete, és ezt az élt
minden már elért csúcshoz hozzáilleszti, és így új csúcsokat érhetünk el.

Algorithm 7: Útkeres® algoritmus
Input: a ládapakolási feladat elemei
Output: az elemek pakolása C méret¶ ládákba

1 Az i. tárgynak megfeleltetünk egy el®re mutató (→) irányított élt,
amelynek a hossza ugyanakkora, mint a tárgy mérete.

2 Tekintsük a már elért kj csúcsokat jobbról balra haladó sorrendben. Adjunk
a gráfhoz egy irányított élt a kj-b®l a kt csúcsba (kj → kt), ahol t = j + wi

(ha t ≤ C és wi az i. tárgy mérete). Ha a kt csúcsot még korábban nem
értük el, akkor legyen kt címkéje lt = i. Ha a kt csomópontot korábban
már elértük, akkor vagy változatlanul hagyjuk az lt korábbi címkét, vagy
felülírjuk.

3 Ha van még tárgy, akkor menjünk az 1. lépésre, ha nincs, akkor megáll az
algoritmus.

Az útkeres® algoritmusnak többféle implementációja is létezik. Mi egy egyszer¶
változatot alkalmaztunk. Megjegyzem, hogy az el®bb ismertetett útkeres® algo-
ritmus a kés®bbi 8. algoritmusnak (REM SW algoritmus) egy segédalgoritmusa,
amelynek segítségével pakoljuk egyesével a ládákat.

Alsó korlátok

A ládapakolási feladatok megoldása során az ún. alsó korlátoknak fontos szerepe
van. Például, ha ismerjük a feladatnak egy megengedett megoldását és a meg-
oldás értékével megegyezik valamely alsó korlát értéke, akkor ebb®l arra tudunk
következtetni, hogy a megengedett megoldásunk optimális megoldás is egyben. A
ládapakolási feladat alsó korlátainak b®séges irodalma van, két releváns publikáció
a következ®: [96, 97].

Nézzünk meg két, jól ismert alsó korlátot, amelyeket az egyszer¶ség kedvéért
LB1-gyel és LB2-vel jelölünk. Az alábbi LB1 úgy adódik, hogy vesszük a tárgyak
összméretét, elosztjuk a ládamérettel és ezt felfelé kerekítjük. Ez egy természetesen
adódó alsó korlát.

LB1 =

⌈∑n
i=1 wi

C

⌉
(3.1)

Az LB2 is egy triviális alsó korlát, ami nem más, mint azoknak a tárgyaknak a
száma, amelyek a ládakapacitás felénél nagyobbak. Nyilvánvalóan ezek mind külön
ládába kerülnek.

LB2 =
n∑

i=1

1 ha wi >
C

2
(3.2)

LB2 általánosításaként kapjuk a következ® alsó korlátot: vesszük azon tárgyak szá-
mát, amelyek mérete nagyobb, mint C

k
valamilyen k > 1 esetén, és az el®bbi számot
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elosztjuk (k − 1)-gyel, és ezt a hányadost felfelé kerekítjük. Ugyanis az ilyen tár-
gyakból (amelyek mérete nagyobb, mint C

k
) legfeljebb k−1 darab férhet egy ládába.

Így kapjuk tehát az alábbi alsó korlátot:

LBk
3 =

⌈∑n
i=1 1 ha wi >

C
k

(k − 1)

⌉
(3.3)

3.4. Egyes benchmark feladatok megoldása

3.4.1. Schwerin osztály

A Schwerin feladatosztály tulajdonságai a 3.2. alfejezetben kerültek ismertetésre.

Schwerin 1: Az els® 100 feladat

A Schwerin 1 csoportba tartozó feladatok esetében a láda kapacitása C = 1000 és a
tárgyak száma n = 100. A tárgyak méretei a [150, 200] intervallumból kerülnek ki
véletlenszer¶en, egyenletes eloszlással. Az ebbe a csoportba tartozó feladatok mind-
egyikénél az optimális megoldás 18 darab felhasznált láda. Emiatt, ha közelebbr®l
megvizsgáljuk a feladatokat, akkor látható, hogy a 100 tárgyból 40 darabot auto-
matikusan, "gondolkodás nélkül" tudunk pakolni, és csak 60 azon tárgyak száma,
ahol már �gyelni kell a pakolásokra. Ennek az oka a láda kapacitása, valamint a
tárgyméretekhez tartozó alsó és fels® korlát. Ugyanis a következ® két tulajdonságot
tudjuk észrevenni:

� semelyik hét tárgyat nem tudjuk egy ládába pakolni, ugyanis ha a legkisebb
tárgyméretb®l (150) hetet veszünk, akkor 7× 150 = 1050 > 1000, és

� bármely öt tárgyat tudjuk egy ládába pakolni, ugyanis ha a legnagyobb tárgy-
méretet vesszük (200), akkor 5× 200 = 1000.

Ezért minden láda 5 vagy 6 darab tárgyat fog tartalmazni. Következésképpen 8
láda (a 18-ból) 5 tárgyat tartalmaz. Így a 40 legnagyobb tárgy elpakolható 8 ládába
úgy, hogy az optimalitás nem sérül. A más feladatosztályokra való általánosítási le-
het®ségekkel a néhány oldal múlva következ® Skálázhatóság és komplexitás részben
foglalkozom. Ezután már csak a maradék 60 tárgyat kell elpakolni, itt viszont már
jól meg kell gondolni az eljárást. Fontos kiemelni, hogy már ezen a ponton egy-
szer¶södött a feladat, hiszen a tárgyak 40%-át máris sikerült a ládákba bepakolni
kevés id® befektetésével, hiszen csak két egyszer¶ tulajdonságot kellett felismerni a
láda kapacitása és a tárgyak mérete alapján, valamint az optimális megoldás isme-
retében. Mint nemsokára látni fogjuk ezek az inputok olyanok, hogy az alsó korlát
megegyezik az optimum értékével. Emiatt valójában nincs szükség arra, hogy el®re
ismerjük az optimumot: megpróbáljuk annyi ládába pakolni a tárgyakat, amennyi
az alsó korlát. Mivel azt tapasztaljuk, hogy ez sikerül, tudjuk, hogy optimális meg-
oldást kaptunk. Hangsúlyozom, hogy ez nem minden feladatosztályra igaz, de mint
látni fogjuk a Schwerin feladatosztály esetén teljesül ez a szerencsés tulajdonság.
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Mivel ismerjük a feladatok optimális megoldását, ami 18, így tudjuk, hogy a
maradék 60 tárgyat 10 darab ládába kell elosztani, hiszen így jutunk el az optimális
megoldáshoz. Az ezt a célt megvalósító algoritmust Algorithm Rem SW-nek nevez-
tem el. A "Rem" jelz® az angol "remaining" szó rövidítése, amely ebben az esetben
a maradék elpakolandó tárgyakat jelenti, az "SW" pedig a Schwerin típusra utal.

Algorithm 8: REM SW algoritmus
Input: a ládapakolási feladat elemei
Output: az elemek pakolása C méret¶ ládákba

1 Legyen k a legnagyobb olyan szám, amelyre 0 ≤ k ≤ 6, továbbá teljesül az,
hogy a k legnagyobb és 6− k legkisebb tárgy belefér egy ládába. (Ha nincs
ilyen k, az algoritmus megáll.)

2 Pakoljuk a k darab legnagyobb tárgyat egy ládába.
3 Alkalmazzuk az útkeres® algoritmust a ládában fennmaradó hely lehet®

legjobb betöltésére.
4 A pakolt tárgyak eltávolítása a rendszerb®l.
5 Ugorjunk az 1. lépésre, ha van még tárgy, egyébként az algoritmus leáll.

Megjegyezzük, hogy az algoritmus általában nem a k legnagyobb és 6− k legki-
sebb tárgyat pakolja, hanem a k legnagyobb tárgy pakolása után 6−k olyan további
tárgyat pakol, amelyek a fennmaradó helyet a lehet® legjobban megtöltik a ládában.
A Schwerin 1 osztállyal történ® futtatásból származó tapasztalatok azt mutatták,
hogy a k értéke kezdetben 3, majd innen növekszik egészen 6-ig. Ritkán, de el®for-
dult, hogy a k értéke kezdetben 2 volt és innen növekedett 6-ig. Soha nem fordult
el® olyan eset, hogy a 6 legkisebb tárgy ne fért volna bele egy ládába. Emlékeztetek
arra, hogy a Schwerin 1 halmaz esetén minden input 100 darab tárgyat tartalmaz
és minden inputra az alsó korlát 18. Emiatt megpróbáljuk a tárgyakat 18 ládába
pakolni. El®ször a 40 legnagyobb tárgyat ötösével 8 ládába pakoljuk. A megmaradt
60 tárgyat pedig megpróbáljuk hatosával 10 ládába pakolni. Arra azonban nincs
semmi garancia, hogy ez sikerülni fog! Vagyis a k szám de�niálásakor "optimista"
módon járunk el, feltételezzük, hogy van ilyen k szám. Valójában az történik, hogy
a 100 input esetén minden egyes alkalommal sikerült a maradék 60 tárgyat 6 ládába
pakolni, ilyen értelemben a k szám jól de�niált volt, tehát az algoritmus soha nem
állt meg amiatt, hogy nem talált volna megfelel® k számot. Az algoritmus beágya-
zottan tartalmazza az útkeres® algoritmust. Az Algorithm Rem SW eljárás futási
ideje polinomiális n tárgy esetében, mert k értéke legföljebb 6 és az útkeres® algo-
ritmus lépésszáma C függvényében lineáris. 60 tárgyra vetítve a futási id® nagyon
alacsony, milliszekundumokban mérhet®.

A futási eredmények alapján a fenti egyszer¶ algoritmus segítségével mind a 100
feladatra sikerült megkapni az optimális megoldást. Az általánosítási lehet®ségeket
a kicsit kés®bb következ® Skálázhatóság és komplexitás alfejezetben tárgyalom.

Schwerin 2: A második 100 feladat

A Schwerin 2 esetében a láda kapacitása a Schwerin 1-hez hasonlóan C = 1000,
viszont a tárgyak száma n = 120. A tárgyak méretei a [150, 200] intervallumból
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kerülnek ki. A feladatok esetében itt is ismertek az optimális megoldások, amely
a feladattól függ®en 21 vagy 22 felhasznált láda. Az LB1 értéke minden feladat
esetében megegyezik az optimális megoldással. Ha a Schwerin 1 esetében bemuta-
tott algoritmust alkalmaztam a Schwerin 2 feladatainak megoldására, akkor a 100
feladatból 99-et tudott megoldani optimálisan. Egy apró módosítással azonban elér-
het® volt, hogy minden feladat esetén megtalálja az optimális megoldást. A k értékét
kellett korlátozni 2 és 3 közé, azaz 2 ≤ k ≤ 3 (ahelyett, hogy 0 ≤ k ≤ 6). Továbbá,
ha az algoritmust ezzel a megszorítással a Schwerin 1 feladatokra alkalmaztam, ott
is mind a 100 esetben sikerült optimális megoldást találni. Így ezzel a beállítással
sikerült mind a 200 feladatot optimálisan megoldani. A feladatok lépésr®l lépésre
való megoldásának menete megtekinthet® a következ® honlapon [75].

A következ® alfejezetben foglalkozunk kicsit részletesebben általánosítási lehe-
t®ségekkel. Már itt megjegyzem a következ®t: a tárgyméretek intervalluma er®sen
meghatározza, hogy alkalmazható-e valamilyen fajta mohó algoritmus a tárgyak
ügyes pakolására. Mint láttuk, ha a tárgyméretek a [0, 15; 0, 2] intervallumból kerül-
nek ki (a C ládamérethez viszonyítva), az el®bb ismertetett algoritmus jól m¶ködik.
Ha ez az intervallum például (1

3
; 1], akkor ismert, hogy az FFD algoritmus optimális

pakolást határoz meg. Még egy példát véve, ha az intervallum (1
4
; 1
2
], akkor pe-

dig a jól ismert 3-partíciós feladatot kapjuk (további feltételek mellett), ami er®sen
NP-nehéz.

Skálázhatóság és komplexitás

Felvet®dik a kérdés, hogy a kidolgozott algoritmus csak erre a benchmark osztályra
alkalmazható, vagy esetleg másokra is. A kérdésre a válasz els® közelítésben az,
hogy a kidolgozott mohó módszer sajnos nagyon speci�kus, tehát er®sen kihasználja
a Schwerin osztály jellemz®it. Melyek ezek a jellemz®k? A tárgyak mérete egyen-
letes eloszlás szerint van választva egy viszonylag sz¶k intervallumból, és a tárgyak
száma nem túl kevés. Ezen feltételek mellett az algoritmus b®vebb osztályon is
alkalmazható az alább ismertetett módon.

Tehát nézzük, mi történik akkor, ha a fent bemutatott algoritmus bemenete nem
a Schwerin osztályba tartozó feladat? Például, ha a láda kapacitása nem 1000, vagy
a tárgyak mérete nem a [150, 200] intervallumból kerülnek ki. Másképpen, a kérdés
az, hogy az algoritmus miképpen skálázható, hogy eltér® bemenetekre is megfelel®en
m¶ködjön? Ha a tárgyak mérete egyenletes eloszlás mentén véletlenszer¶en kerül
kiválasztásra egy "sz¶k" intervallumból (ilyen volt például a [150, 200] intervallum
is), akkor az optimális megoldás megtalálása rendszerint egyszer¶. A következ®
lépésekben adjuk meg az algoritmus általánosabb osztályon való m¶ködését:

1. Az LB1 alsó korlát kiszámítása.

2. Az egy ládába pakolható tárgyak minimális és maximális számának meghatá-
rozása. Feltételezzük, hogy ez a szám csak K − 1 vagy K lehet. (A Schwerin
osztály esetében K = 6).

3. Néhány láda megtöltése a legnagyobb méret¶ tárgyakkal, K−1 tárgy pakolása
minden ládába. Ezután már csak a még nem pakolt tárgyakkal kell foglalkozni.
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4. Az Algorithm Rem SW alkalmazása úgy, hogy k értéke egy korlátozott in-
tervallumból kerüljön ki a 0 ≤ k ≤ K helyett. Például, mint a Schwerin 2
esetében, ahol 2 ≤ k ≤ 3.

A 2. lépésben feltételeztük, hogy az egy ládába pakolható tárgyak száma vagy
K vagy K − 1. Ha több eset lehetséges, a pakolás sokkal bonyolultabb lehet, ilyen
esettel nem foglalkoztam. Ez további kutatás tárgya lehet.

Visszatérve a K = 6 esetre, nézzük meg az Algorithm Rem SW eljárás becsült
lépéseinek a számát, ahol a tárgyak száma n = 100 Schwerin 1 esetében és n = 120
Schwerin 2 esetében. Függetlenül attól, hogy mekkora n értéke, az 1. lépésben
az algoritmus konstans számítást végez, mivel maximum K darab tárgy méretét
összegzi. A 2. és 4. lépés esetében is konstans számításról van szó, hiszen csak K
darab tárgyat kell kezelni. A 3. lépés viszont már több id®t vesz igénybe, amely
függ n értékét®l. Ennek a lépésnek a futási ideje O(C · n), ugyanis legfeljebb C
darab csomópont tartozik minden i elemhez. Mivel ez a lépés körülbelül n

6
-szor

kerül futtatásra (�gyelmen kívül hagyva azt a tényt, hogy az algoritmus által kezelt
tárgyak száma a 2. lépésben redukálásra kerül), így a futási id® nem lehet több,
mint O(C

6
· n2). Ha K értéke szabadon változhat, akkor is hasonló számítási id®

�gyelhet® meg, ezzel garantálva az algoritmus futási idejének fels® korlátját. A
feladatok megoldása egy Intel Core i5-4300M processzorral és 8 GB RAM-mal szerelt
számítógépen történt.

A következ®kben összehasonlítom algoritmusom eredményeit egy másik, haté-
kony (state-of-the-art) algoritmuséval.

Osztály Összes (s) Átlag (s) HEA átlag (s)
Schwerin 1 0,3817811 0,003817811 0,34
Schwerin 2 0,408763 0,00408763 0,47

3.4. táblázat. Schwerin futási id®k összehasonlítása a HEA átlaggal

A HEA algoritmus Borgulya [24] munkájában került bemutatásra (és implemen-
tálásra). Ez az algoritmus az egyik leghatékonyabb (és az egyik legújabb) ezen
benchmark feladatok megoldására. A HEA algoritmus egy Intel Core i5 processzor-
ral és 16 GB RAM-al szerelt iMAC számítógépen került futtatásra. A 3.4. táblázat
alapján az alábbi következtetések vonhatók le. A teljes futási id® az én algorit-
musom esetében a Schwerin 1 osztályra nézve 0,3817811 másodperc, a Schwerin 2
esetében pedig 0,408763 másodperc. Az átlagid®t tekintve a saját algoritmusom
futási ideje 0,003817811 másodperc volt a Schwerin 1, és 0,00408763 másodperc volt
a Schwerin 2 esetében. A HEA algoritmus átlagos futási ideje a Schwerin 1 ese-
tében 0,34 másodperc, a Schwerin 2 esetében pedig 0,47 másodperc. Az átlagos
futási id®ket összehasonlítva látható, hogy az algoritmusom futási ideje a Schwerin
1 esetében 90Ö, a Schwerin 2 esetében pedig 115Ö gyorsabb. Viszont fontos meg-
jegyezni, hogy a HEA egy sokkal általánosabb eljárás, amely az összes benchmark
feladatra alkalmazható, míg az Algorithm Rem SW specializált eljárás, amely kife-
jezetten a Schwerin osztályra lett kifejlesztve, és ezen az osztályon m¶ködik nagyon
hatékonyan. Továbbá az általam kidolgozott algoritmusok nem ugyanabban a prog-
ramozási környezetben készültek, mint a HEA, emiatt a futásid®k tekintetében csak
hozzávet®leges összehasonlítás volt készíthet®.
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3.4.2. Falkenauer_U osztály

A Falkenauer_U feladatosztály tulajdonságai a 3.2. alfejezetben kerültek ismerte-
tésre. A Falkenauer_U feladatosztály és a Schwerin feladatosztály között a két nagy
különbség az intervallum, ahonnan a tárgyak méretei származnak és a láda kapaci-
tása. Pontosabban, hogy a tárgyak intervalluma hogyan aránylik a láda méretéhez.

Az arány a legnagyobb és a legkisebb méretek között a Schwerin esetében 200
150

= 4
3
,

a Falkenauer_U esetében pedig 100
20

= 5. Ez azt jelenti, hogy a tárgyak mérete az
utóbbi esetben sokkal változatosabb. A Falkenauer_U esetében tehát, a változa-
tosság miatt, nem jelenthet® ki az, hogy a megoldásban minden láda nagyjából
azonos számú tárgyat fog tartalmazni. Ennek ellenére ennél a feladatosztálynál is
megadható egy nagyon egyszer¶, de fontos meg�gyelés.

2. Meg�gyelés. Tételezzük fel, hogy van két tárgy, i. és j. úgy, hogy wi +wj = C,
azaz a két tárgy méretének összege pontosan a láda kapacitásával egyenl®. Feltéte-
lezhet®, hogy az optimális megoldásban ez a két tárgy egy ládába fog kerülni.

A fenti meg�gyelésben szerepl® két tárgyat nevezzük el "jó pár"-nak. A megoldás
során, ha egy "jó pár" egy ládába kerül, akkor az nem rontja el a feladat megoldá-
sának min®ségét, azaz megmarad az optimális megoldás megtalálásának lehet®sége.

A részletesebb vizsgálathoz tekintsük a Falkenauer_u120_00 feladatot a Falke-
nauer_U120 alosztályból. Ebben a feladatban 15 darab "jó pár" található. Ez azt
jelenti, hogy a 120 darab tárgyból már csak 90 tárggyal kell foglalkozni. Ez egy
jelent®s egyszer¶sítése a feladatnak. A többi Falkenauer_U120 feladat is nagyon
hasonló ehhez, azok is hordozzák ezt a tulajdonságot.

1. Megjegyzés. Megjegyzem, hogy a "jó pár" fogalma egyszer¶en általánosítható.
Tegyük fel tehát, hogy a ládaméret c = 1000 és van például egy 600-as méret¶ tár-
gyunk. Ha találunk ehhez egy "jó párt", amelynek a mérete 400, azt láttuk, hogy
jobban járunk, hogy ha ezt a 400-as tárgyat tesszük ebbe a ládába a 600-as tárgy
mellé, minthogy ha több kicsi tárgyat tennénk ide, amelyeknek az összmérete 400.
Ugyanakkor, az is igaz (elemi úton belátható), hogy ha például egy 390 méret¶ tár-
gyat teszünk a 600-as méret¶ tárgy ládájába, az is optimális választás akkor, ha
nincsenek olyan kicsi tárgyak, amelyeknek az összmérete 391 és 400 között van. A
következ®kben bevezetjük a tartalék fogalmát, ahol mint látni fogjuk akkor is megen-
gedünk párokat (vagy hármasokat, négyeseket) pakolni, ha nem teljesen töltik meg a
ládát, de a tartalék elég nagy; implicit módon pontosan ezt az általánosítást fogom
alkalmazni.

A feladat megoldásához vezessük be a kezdeti tartalék fogalmát. Ez a mér®szám
megmutatja, hogy mennyi hely marad kihasználatlanul az optimális megoldásban,
ha az OPT = LB1 egyenl®ség fennáll, azaz az optimális megoldás egyben az alsó
korlát is (szerencsére a Falkenauer_U osztályban szerepl® legtöbb feladatra ez igaz).
Jelölje a kezdeti tartalékot res0.

17. De�níció. A kezdeti tartalék kiszámítása

res0 = LB1 · C −
n∑

i=1

wi (3.4)
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Ahol wi a tárgy mérete, C pedig a láda kapacitása. Emlékeztetek arra, hogy
ugyan tudjuk, hogy az optimum érték megegyezik az alsó korláttal, de ezt az al-
goritmus futása során nem használjuk. Emiatt van az el®z® képletben LB1, nem
pedig OPT. A feladatok vizsgálata során kiderült, hogy, mivel a tárgyak mérete
egyenletes eloszlás mellett, véletlenszer¶en lett generálva, így jellemz®, hogy jelen-
t®s mennyiség¶ tartalék keletkezik. Ez azt jelenti, hogy nem szükséges minden
esetben telepakolni a ládákat. Azaz, ha van egy elempár, amik nem teljesen, de
"majdnem teljesen" megtöltik a ládát, akkor ez a két elem is pakolható a "jó pár"
helyett, ami ugyancsak jó választás lehet. Így, néhány esetben elegend®, ha a ládák
csak egy megadott Lb szintig vannak megtöltve, ahol Lb értéke közel van a láda C
kapacitásához. A tartalék értéke a feladat megoldása közben dinamikusan generált
érték, amely kezdetben a res0 a (3.4) alapján, mint kezdeti tartalék, majd a kés®bbi
lépésekben már res-ként hivatkozok rá.

Értelemszer¶en, ha egy láda legfeljebb Lb szintig feltöltésre kerül, akkor a tartalék
értéke C−Lb mennyiséggel lesz csökkentve. Például, ha a kezdeti tartalék res0 = 50,
és egy láda Lb = 146 szintig feltöltésre kerül, akkor, mivel C = 150 a fennmaradó
tartalék res = 46 lesz. Ez azért van, mert a fennmaradó 4 szabad egység már
semmivel sem tölthet® ki, nincs ilyen kis méret¶ tárgy a feladatban, így ez a hely
elveszik.

18. De�níció. Az i. tárgyat nagynak tekintjük, ha

wi >
C

2
(3.5)

A (3.5) feltétel alapján egy tárgyat akkor tekintünk nagynak, ha annak a tárgy-
nak a mérete nagyobb, mint a láda kapacitásának a fele. A Falkenauer_U osztály
esetében egy tárgy akkor nagy, ha a mérete nagyobb, mint 75. Ebb®l könnyen lát-
ható, hogy két nagynak min®sített tárgy már nem fér bele egy ládába. Ugyanis, a
legkisebb méret¶, de már nagynak tekintett tárgy mérete 76, amib®l ha kett® van,
az már 152, ez pedig a C = 150 kapacitást túllépi. Emiatt nem célszer¶ a pakolás
végére túl sok nagy tárgyat hagyni, jobb t®lük már a pakolás elején megszabadulni,
amikor még a kis méret¶ tárgyakkal összepakolhatók.

A Falkenauer_U osztályhoz készült algoritmus tulajdonképpen jól elhatárolha-
tó eljárásokból épül fel. Ezek azonban szekvenciális sorrendben vannak, emiatt az
algoritmus nem párhuzamosítható. Az algoritmus bemenete a feladathoz tartozó
összes tárgy. A már pakolt tárgyakat az eljárás eltávolítja a listából. Amint egy
láda pakolt lesz, a res értéke, azaz a tartalék a fentebb bemutatott módon csök-
ken. Ahogy korábban már volt róla szó, a tárgyak minden esetben nem növekv®
sorrendben vannak és az algoritmus is így dolgozza fel ®ket.

Az els® eljárás a Pair(Lb, r). Az eljárás olyan (i, j) elempárokat keres, amelyek
méretének összege pontosan Lb, továbbá, ha a tárgyat pakolnánk, akkor az azután
megmaradó tartalék értékének legalább akkorának kell még lennie, mint az r korlát.
Az r a tartalékra vonatkozó alsó korlát. Az algoritmus minden esetben olyan párt
keres, amelynek a nagyobbik tagja a lehet® legnagyobb még nem pakolt elem.
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Algorithm 9: Pair(Lb, r)
Input: Lb, r
Output: a megtalált elempárok pakolása

1 Legyen az i. a legnagyobb még nem pakolt tárgy.
2 Ha wi <

Lb

2
vagy a pakolás után a tartalék res < r lenne, akkor az

algoritmus leáll.
3 Ha létezik olyan j. tárgy, ahol wi + wj = Lb, akkor pakoljuk ezt a két

tárgyat egy új ládába. Töröljük a tárgyakat a még nem pakolt tárgyak
halmazából és csökkentjük res értékét C −Lb mértékével. Majd lépjünk az
1. lépésre.

4 Legyen i = i+ 1 a következ® nem pakolt tárgy indexe és lépjünk a 2.
lépésre.

A következ® segédalgoritmus a Triplet(Lb, r). Az algoritmus a futása során elem-
hármasokat keres és pakol új ládákba. Ha egy megfelel® hármas megvan, akkor
ezeket egy új ládába pakoljuk, töröljük ®ket a még nem pakolt tárgyak közül és a
tartalék értékét csökkentsük. A megfelel® hármas kiválasztásánál a három tárgy
együttes méretét és a tartalék pakolás utáni értékét veszem �gyelembe.

Algorithm 10: Triplet(Lb, r)
Input: Lb, r
Output: a megtalált elemhármasok pakolása

1 Legyen az i. a legnagyobb még nem pakolt tárgy.
2 Ha wi <

Lb

3
vagy a pakolás után a tartalék res < r, akkor az algoritmus leáll.

3 Ha léteznek olyan j. és k. különböz® tárgyak, ahol wi + wj + wk = Lb,
akkor pakoljuk ezt a három tárgyat egy új ládába. Töröljük a tárgyakat a
még nem pakolt tárgyak halmazából és csökkentjük res értékét C − Lb

mértékével. Majd lépjünk az 1. lépésre.
4 Legyen i = i+ 1 a következ® nem pakolt tárgy indexe és lépjünk a 2.

lépésre.

Az utolsó segédalgoritmus a Quadret(Lb, r). Ez a segédalgoritmus már négyesé-
vel pakolja az elemeket egy ládába, az el®z®ekben látott feltételek mentén. Ha van
olyan négy tárgy, amely megfelel a feltételeknek, akkor ezeket a tárgyakat egy ládá-
ba pakoljuk, töröljük a még nem pakolt tárgyak közül mind a négyet és csökkentjük
a tartalék res értékét. Az algoritmus kiválasztja a két legnagyobb, még nem pakolt
tárgyat. Ha a két tárgy méretének összege (wi+wj) és a tartalék (res) értéke megfe-
lel a feltételeknek, akkor ehhez a két legnagyobb elemhez keres egy párt úgy, hogy a
négy elem összege pontosan Lb legyen. (Mivel az algoritmusok futása során bizonyos
tárgyakat kiválasztunk és pakolunk, mások még pakolásra várnak, ezért a pakolat-
lan tárgyak sorrendjében "lyukak" keletkeznek.) Emiatt kell az el®bbi képletben
(wi + wj) különböz® indexeket alkalmazni, vagyis nem biztos, hogy j = i+ 1.
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Algorithm 11: Quadret(Lb, r)
Input: Lb, r
Output: a megtalált elemnégyesek pakolása

1 Legyen az i. a legnagyobb még nem pakolt tárgy.
2 Ha wi + wj <

L
2
vagy a pakolás után a tartalék res < r, akkor az algoritmus

leáll.
3 Ha létezik olyan k. és l. különböz® tárgy, ahol wi +wj +wk +wl = L, akkor

pakoljuk ezt a négy tárgyat egy új ládába. Töröljük a tárgyakat a még
nem pakolt tárgyak halmazából és csökkentjük res értékét C − L
mértékével. Majd lépjünk az 1. lépésre.

4 Legyen i = j és j a következ® nem pakolt tárgy indexe, majd lépjünk a 2.
lépésre.

Még egy de�nícióra van szükségünk. Megkülönböztetünk "kicsi" és "nagy" tár-
gyakat. Egy tárgy akkor nagy, ha a mérete nagyobb mint a ládaméret fele, egyébként
kicsi. Ezt a megkülönböztetést azért tesszük, mert nyilvánvaló módon minden nagy
tárgyat külön ládába kell tenni. Az el®bb felsorolt segédalgoritmusokat fogom alkal-
mazni egy Master algoritmusban. Ennek során, ha van még hátra pakolatlan nagy
tárgy, akkor óvatosabbak kell, hogy legyünk, ha már nincs hátra pakolatlan nagy
tárgy, akkor "bátrabban" alkalmazhatjuk a segédalgoritmusokat.

Most, hogy a segédalgoritmusok ismertek, összeállítható a f® (master) algorit-
mus, ami az FU nevet kapta. Az algoritmus els®dlegesen a Falkenauer_U_120
alosztályhoz készült, azonban a paraméterek módosításával a további Falkenauer
alosztályokra is alkalmazható. Az alábbiakban a segédalgoritmusokból felépítve,
röviden bemutatom a teljes algoritmus m¶ködését. Els®ként, az algoritmus megpró-
bálja "jól" megtölteni a ládákat a lehet® legnagyobb elempárokkal. Itt igyekszik az
algoritmus megszabadulni a nagy méret¶ tárgyaktól, ugyanis ha ezek a tárgyak a
legvégén kerülnek pakolásra, akkor nem biztos, hogy már nyitott ládába még bele-
férnek. Ha a tartalék értéke "nagy", az algoritmus jobban engedi az olyan ládákat
használni, amelyekben a töltöttség nem éri el a kapacitást, azaz a láda nincs tele.
Ahogy a tartalék értéke csökken, az algoritmus egyre szigorúbb a ládák töltöttségével
kapcsolatban, azaz egyre kevésbé engedi meg a nem telepakolt ládákat. Amennyiben
az elempárokkal sikerült a lehet® legtöbb ládát "jól" megtölteni, utána következnek
az elemhármasok, majd az elemnégyesek. Ezután a maradék (rendszerint csak né-
hány) tárgyat az algoritmus az FFD-vel pakolja. Az algoritmus pontos leírását az
alábbi pszeudokód (Algorithm 12) szemlélteti. A második lépésben, rb2(j+1) a tarta-
lék éppen aktuális értékét jelöli úgy, hogy a nem pakolt tárgyak között még van nagy
méret¶. (Ezt jelenti a b index, mint big.) Hasonlóan az rn2i is a tartalék aktuális
értékét jelöli úgy, hogy már nincs a még nem pakolt tárgyak között nagy méret¶.
Erre utal az n index, mint no. A 2(j + 1) pedig azt jelenti, hogy a második lépés
tartaléka (2-es index) és a tartalékokat tartalmazó vektor hányadik elemér®l van szó
(j + 1).

Az FU algoritmus hatékonysága a következ® alfejezetben kerül tárgyalásra. Itt,
most csak annyit érdemes megjegyezni, hogy az algoritmus a második lépésben (7-
22. sorok) sokkal szigorúbb, ha még vannak nem pakolt nagy tárgyak. A harmadik
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lépésben (23-30. sorok) az algoritmus egyáltalán nem szigorú a tartalék értékét
illet®en. Ez azt jelenti, hogy bármi is a tartalék értéke, a ládák pakolva lesznek, ha
a töltöttség szintje minimum 148.

Az FU algoritmus kiértékelése

A 3.5 és 3.6. táblázatokban a Falkenauer_U osztályhoz készült algoritmusban al-
kalmazott paramétereket tartalmazzák alosztályok szerint. Az algoritmus leírásában
az U120-as csoport paraméterei szerepelnek, de természetesen, ahogy a táblázatból
is látható, minden alosztályra eltér® beállításokat alkalmaztunk. Az algoritmus m¶-
ködése minden beállítás esetében természetesen ugyanaz.

Algorithm 12: FU algoritmus

1 for i = 0, . . . , 5 do
2 Pair(150 - i, r1i)
3 end
4 while még van nem pakolt "nagy" tárgy do
5 for i = 0, . . . , 5 do
6 Triplet(150 - i, rb2i)
7 end
8 end
9 if nincs már nem pakolt "nagy" tárgy then
10 for i = 0, . . . , 5 do
11 Triplet(150 - i, rn2i)
12 end
13 end
14 if nincs már nem pakolt "nagy" tárgy then
15 for i = 0, . . . , 2 do
16 Quadret(150 - i, r3i)
17 end
18 end
19 A maradék tárgyak pakolása FFD-vel történik

r10 r11 r12 r13 r14 r15 rb20 rb21 rb22 rb23 rb24 rb25
U120 0 1 2 3 4 5 0 5 10 15 20 26
U250 0 1 2 30 40 50 0 5 10 30 30 30
U500 0 10 15 30 30 30 0 5 10 15 20 25
U1000 0 30 45 60 90 100 0 10 10 10 10 10

3.5. táblázat. A Falkenauer_U osztály paraméter-beállítása (v3)
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rn20 rn21 rn22 rn23 rn24 rn25 r30 r31 r32
U120 0 5 10 15 30 30 0 0 0
U250 0 5 10 30 30 30 0 0 0
U500 0 5 15 30 30 30 0 0 0
U1000 0 30 40 50 60 70 0 0 0

3.6. táblázat. A Falkenauer_U osztály paraméter-beállítása (v3)

Vegyük észre, hogy az r11, r12, . . . , r32 értékek optimalizálhatók. Az értékek au-
tomatizált optimalizálása nem történt meg, csupán manuális beállítással kerültek
kipróbálásra az értékek, amelynek a célja az volt, hogy "elég jó" eredményt érjünk
el. Lehetséges, hogy egy optimalizáló eljárással még jobb eredményeket kaphatunk.
További, a paraméterek beállításával, és általánosítási lehet®ségekkel kapcsolatos
észrevételek a 3.4.2.1. alfejezetben szerepelnek.

A 3.7. táblában az FU algoritmus eredményei láthatók a Falkenauer_U120 osz-
tályra vonatkozóan, különböz® beállítások mellett. A zöld színnel jelölt értékek azt
jelentik, hogy ebben az esetben az algoritmus megtalálta az optimális megoldást. A
piros jelölés esetében pedig nem találta meg. Minden sorra igaz, hogy OPT = LB1.

v1 v2 v3
FFD Útkeres®

150 149 148 150 149 148 145 145 LB Kezdeti tartalék
u120_00 49 48 48 50 48 49 48 48 48 122
u120_01 49 49 49 49 49 49 49 49 49 145
u120_02 46 46 46 46 46 46 46 46 46 106
u120_03 50 49 49 50 49 49 49 49 49 65
u120_04 50 50 50 50 50 50 50 50 50 146
u120_05 48 48 48 48 48 48 48 48 48 78
u120_06 48 48 48 48 48 48 48 48 48 63
u120_07 50 50 49 50 49 49 49 49 49 55
u120_08 51 50 50 51 50 50 51 50 50 22
u120_09 47 46 46 47 46 46 47 46 46 30
u120_10 52 52 52 52 52 52 52 52 52 120
u120_11 50 49 50 51 50 50 49 49 49 103
u120_12 48 48 48 48 48 48 48 48 48 20
u120_13 49 49 49 49 49 49 49 49 49 148
u120_14 50 50 50 50 50 50 50 50 50 127
u120_15 48 48 48 48 48 48 48 48 48 98
u120_16 52 52 52 52 52 52 52 52 52 112
u120_17 53 52 52 54 52 52 52 52 52 97
u120_18 49 49 49 49 49 49 49 49 49 95
u120_19 50 50 50 50 50 50 50 49 49 28

3.7. táblázat. A Falkenauer_U120 osztály feladatainak megoldásai

Az eredmények alapján az alábbi konklúziókat és megfontolásokat teszem.
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3.4.2.1. Észrevételek

1. Az els® tapasztalat a ládák töltöttségére vonatkozik. A 2-4. oszlopban (vagy-
is az FFD-re vonatkozó eredmények oszlopaiban) látható, hogy minél szigo-
rúbb, azaz nagyobb a töltöttségre vonatkozó Lb értéke, az FU algoritmus annál
rosszabb eredményeket produkál. Így annak tiltása, hogy 149-nél alacsonyabb
töltöttséget is elfogadok, nem hatékony. Emiatt a töltöttségi szinteket egészen
145-ös értékig engedtem akkor, ha a tartalék mértéke "nem túl kicsi".

2. Az FU algoritmust úgy módosítottam, hogy az utolsó lépésben (31. sor) nem
az FFD pakolta a maradék tárgyakat, hanem a korábban bemutatott útkeres®
algoritmus. Ennek az eredményei a 5-7. oszlopokban láthatók. Látható, hogy
nincs túl sok különbség az FFD-hez képest, azaz az algoritmus nem igazán
érzékeny arra, hogy az utolsó elemeket milyen módon pakoljuk. Azaz, az
utolsó tárgyak pakolása nem igazán befolyásolja az eredményt, ha a tárgyak
többsége a korábbi lépésekben már "jól lettek pakolva". Emiatt kés®bb a
sokkal egyszer¶bb FFD került vissza az utolsó lépésbe a bonyolultabb útkeres®
algoritmus helyett.

3. A v2 és v3 algoritmusverziók esetében az Lb értékét tovább csökkentettem,
egészen 145-ig. (Már ez a csökkentett érték szerepel az FU algoritmus leírása-
kor.) Látható, hogy a v3 verziójú algoritmus (9. oszlop) sikeresen megoldotta
az összes feladatot. A v2 és a v3 közötti különbséget az eltér® paraméter-
beállítás jelenti.

4. Fontos megjegyezni, hogy a Fakenauer U osztály majdnem minden feladata
esetében az ismert optimális megoldás egyenl® az LB1 értékével. Ez alól csak
a Falkenauer_U250-es osztály 13-as számú feladata a kivétel, ahol LB1 = 102
és OPT = 103.

5. A táblázatból látható, hogy számos esetben az algoritmus összes verziója meg-
találta az optimális megoldást. Például ilyen a Falkenauer_u120_01. El-
lenpéldaként a Falkenauer_u120_19 említhet®, ahol az optimális megoldást
(OPT = 49) csak a v3 verziójú algoritmus találta meg. Kiemelend®, hogy a
Falkenauer_u120_12 esetében meglehet®sen kicsi a tartalék mértéke, mind-
össze 20. Ennek ellenére az összes algoritmus megtalálta az optimális megol-
dást. Ezzel szemben a Falkenauer_u120_00 és a Falkenauer_u120_11 eseté-
ben sokkal több a tartalék, de mégsem talált optimális megoldást az algoritmus
minden esetben.

6. Az itt bemutatott algoritmus a 80 feladatból 73 feladatot tudott optimálisan
megoldani. Az u120-as csoportból mindet. A maradék 60 feladat esetében
hasonló a helyzet, de néhány esetben az algoritmus egyik változata sem képes
megtalálni az optimális megoldást. Ezeket nem részleteztük úgy, mint az U120-
at a 3.7. táblázatban.

7. A futási id® meglehet®sen kicsi. A 80 feladat megoldásához 31,8 másodpercre
volt szükség. Az algoritmus komplexitása O(n3), a rejtett együttható a O(.)
szimbólumban körülbelül 20.
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8. Látható, hogy a v3 változat az els® alosztály (u120) esetében mindenhol opti-
mális megoldást talált. A vizsgálatok alapján ez nem járt a futási id® megnöve-
kedésével: a különböz® változatok futásideje lényegében megegyezik. Azonban
a v3-as változat csak az els® alosztály esetében optimális. Sajnos nincs olyan
univerzális beállítás, amely mindegyik alosztályra optimális lenne. Bizonyos
beállítás az egyik alosztály esetén jobb, másik beállítás pedig másik alosz-
tály esetén. Mivel a futási id® kicsi, ezért több változatot is kipróbálhatunk,
amelyek közül a legjobbat választjuk.

9. Az FU algoritmus hatékonyságát a különböz® paraméter beállítások kipróbá-
lásával és mindig a legjobb beállítás rögzítésével lehetne növelni. Az is egy
lehet®ség, hogy a különböz® alosztályok esetén más és más beállítást alkalma-
zunk.

A 3.8. táblázatban a Falkenauer_U osztály futtatásának futási idejei látha-
tók összehasonlítva a HEA algoritmussal. Az FU algoritmus átlagos futási ideje
az összes feladatosztályra nézve közel 0,4 másodperc, a HEA algoritmusé viszont
1,48 másodperc. Az FU algoritmus teljes futási ideje mindössze 31,8683809 másod-
perc, míg a HEA teljes futási ideje 118,4 másodperc. Az új algoritmus a jelenlegi
implementációban 3,7-szer gyorsabb mint a HEA, és ez továbbfejlesztéssel még vár-
hatóan növelhet® lesz a jöv®ben. Fontos tudni, hogy a jelenlegi implementáció az
els® verzió, így b®ven van továbbfejlesztési lehet®ség. Azt is jegyezzük meg, hogy
a Falkenauer_U osztály esetén ugyan a HEA algoritmus lassabb, de minden eset-
ben megtalálja az optimumot, míg az FU algoritmus az esetek 91%-ban. Korábban
megjegyeztem (az el®bbi észrevételek 8. pontjában), hogy mivel egyik paraméter-
beállítás sem ad minden esetben optimális megoldást, emiatt több (például 4 féle)
paraméterbeállítással is próbálkozhatunk. Ez azonban nem jelent négyszeres futási
id®t! Ugyanis, mint láttuk a v3 beállítással a 80 feladatból 73-at sikerül optimálisan
megoldani. Akkor más paraméterbeállítással csak a maradék hét feladat esetén kell
próbálkoznunk. Így összességében csak némileg lesz nagyobb futásid®, mintha csak
egy paraméterbeállítással futtatjuk az algoritmust.

Osztály FU Összes (s) FU Átlag (s) HEA átlag (s)
Falkenauer_U120 0,241859 0,01209295

1,48
Falkenauer_U250 1,1633459 0,058167295
Falkenauer_U500 4,1469928 0,20734964
Falkenauer_U1000 26,3161832 1,31580916
Falkenauer_U 31,8683809 0.3983548 1,48

3.8. táblázat. Az FU algoritmus és a HEA futási ideje

Az FU algoritmus v1 és v2 verzióinak részletes paraméter-beállításai a D függe-
lékben olvashatók.

3.5. Összefoglalás

A f® konklúzió az, hogy az el®feldolgozás egy nagyon hasznos eljárás, amelyet de-
monstráltam is ebben a fejezetben, felhasználva 2 ládapakolási benchmark feladat-

71



osztályt. Jól ismert, hogy a ládapakolási feladat NP-nehéz, így ebb®l az következ-
hetne, hogy egy ládapakolási feladat megoldása szükségszer¶en nehéz. De ez nem
így van. Néhány konkrét feladat vagy akár egy teljes feladatosztály els® ránézésre
nehezen megoldható, azonban kiderül, hogy mégis viszonylag egyszer¶en megoldha-
tó.

Másképpen megfogalmazva, a ládapakolási feladatok egy részét egyszer¶ trük-
kökkel könnyen megoldhatjuk. Nagyon érdekes probléma, hogy milyen módszerek-
kel lehet hatékonyan kisz¶rni azt, hogy melyik feladat a nehéz. Jelenleg nem tudok
ilyen általános módszert, amely hatékonyan eldönti a feladatokról, hogy azok nehe-
zek vagy sem. A nehéz feladatok kisz¶résével a [80] foglalkozik. Ezzel ellentétben
munkámban a könny¶ feladatok kisz¶résével foglalkoztam.

A bemutatott mohó eljárások gyorsak, egyszer¶ek és a legtöbb esetben olyannyi-
ra segítenek a feladat egyszer¶sítésében, hogy az algoritmus végül megtalálja az
optimális megoldást. Összetettebb algoritmus alkalmazása csak abban az esetben
indokolt, ha az egyszer¶bb módszerek nem adnak optimális vagy elfogadhatóan jó
megoldást.

Továbbá, az ismertetett algoritmusok (Rem SW és FU) általános alkalmazható-
sága eltér®. A Schwerin algoritmusa kihasználja, hogy a tárgyméretek nagyon közel
vannak egymáshoz és minden ládában 5 vagy 6 db tárgy van. Viszont az algorit-
mus alkalmazható olyan esetben is, amikor továbbra is 150 és 200 között vannak a
tárgyméretek, de a ládaméret nem 1000, hanem például 1200. Ekkor minden ládába
6 vagy 7 tárgy fog kerülni. (Csak akkor kerülhet 8 tárgy, ha ezek mindegyikének a
mérete 150, ennek azonban nagyon kicsi az esélye.)

A Falkenauer algoritmusa általánosan is jó lehet, ha 0 és C között van a tárgyak
mérete. Párokat pakolunk, utána hármasokat, majd négyeseket. Ezeket úgy, hogy
jól megtöltik a ládát. A maradékot pedig FFD-vel. Ennek részletezése szerepel a
3.5.2. és 3.5.3. fejezetekben.

Az optimális megoldás ismeretére vonatkozóan kijelenthet®, hogy nem kell is-
merni az optimális megoldást. A Falkenauer osztály esetében 80 esetb®l 1 esetben
az OPT nem egyenl® az LB-vel. A Schwerin 1 esetében véletlenszer¶en vannak vá-
lasztva a tárgyak méretei 150 és 200 között. Emiatt átlagosan 175 a méretük. A 100
tárgy mérete összegének várható értéke 17 500. Nagyon kicsi a valószín¶sége (elemi
úton kiszámolható, hogy ez a valószín¶ség kisebb, mint 0,0003), hogy az összeg leg-
feljebb 17 000 vagy több mint 18 000. Emiatt mindig 18 lesz az alsó korlát. Ez igaz
az osztály többi feladatára is.

3.5.1. A f® konklúzió részletesen bemutatva

Ahogy a fejezet korábbi szakaszában bemutattam, a Schwerin és Falkenauer_U osz-
tályok esetében számos olyan tárgy volt a konkrét feladatokban, amelyek könnyen
pakolhatók voltak úgy, hogy ezáltal nem sértettük az optimalitást, azaz a pakolá-
sukkal továbbra is elérhet® maradt az optimális megoldás lehet®sége.

A Schwerin osztály esetében ez úgy nézett ki, hogy mindig az öt legnagyobb
tárgyat pakolta az algoritmus egy ládába. Ezzel a módszerrel a tárgyak körülbelül
40%-a nagyon gyorsan pakolható volt az optimalitás megsértése nélkül.

A Falkenauer_U osztály esetében "jó párokat" keresett. Ezek olyan párok vol-
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tak, amelyek mérete pontosan a láda kapacitásával volt egyenl®. Ezzel a módszerrel
a tárgyak körülbelül 30%-a volt pakolható, és azok a ládák, amikbe pakolásra ke-
rültek, pont tele lettek. A 3.4.2. fejezetbeli 1. Megjegyzés szerint a "jó párok"
általánosabban is de�niálhatók, és ezáltal esetleg további tárgyak pakolása is lehet-
séges.

Az egyszer¶ség kedvéért vegyük ketté a tárgyak csoportját könny¶ és nehéz tár-
gyakra. A könny¶ tárgyak azok, amelyeket el®feldolgozással könnyen pakolhatunk.
A maradék tárgyak pedig a nehéz tárgyak.

1. Megállapítás. Mindkét benchmark osztály esetében a nehéz tárgyak száma szá-
mottev®en kisebb, mint a teljes tárgyhalmaz mérete.

Ez azt jelenti, hogy a pakolandó tárgyak száma nagy mértékben csökkenthet®,
így a komplexebb eljárásokat csak a nehéz tárgyak halmazán kell alkalmazni. Ter-
mészetesen minél kisebb a maradék tárgyak száma, annál könnyebb az optimális
megoldás elérése.

Emlékeztetünk arra, hogy a Schwerin osztályban az optimális megoldás megtalá-
lásának aránya 100%, a Falkenauer_U osztályban pedig 91% volt. Algoritmusaink
kifejezetten erre a két osztályra lettek kifejlesztve. A Skálázhatóság és komplexi-
tás fejezetben foglalkoztunk azzal, hogy a Schwerin algoritmusát hogyan lehet más
feladatosztályra alkalmazni és a 3.5. fejezet elején foglalkozunk azzal, hogy a Falke-
nauer osztályra kidolgozott algoritmusokat hogyan lehet más osztályra alkalmazni.

2. Megállapítás. Létezik olyan mohó algoritmus, amely a feladatosztályban szerepl®
feladatok többségében optimális pakolást végez.

3.5.2. További kutatási lehet®ségek

Ebben az alfejezetben néhány további lehet®séget mutatok be, amelyekkel a jöv®-
ben továbbfejleszthet® az FU algoritmus. A Schwerin osztály esetében, mivel sike-
rült megoldani az összes feladatot optimálisan, így nincs szükség további kutatásra.
Azonban a Falkenauer_U osztály esetében az arány 91% volt, így itt van helye
további vizsgálatoknak:

1. A 3.5. és a 3.6. táblázatban bemutatott paraméterek helyett más paraméte-
rek kiválasztása. A paraméterek meghatározása lehet manuális, tapasztalaton
alapuló, vagy automatizált, valamilyen keres® algoritmussal. A különböz® be-
állítások által adott eredmények közül végül kiválasztjuk a legjobbat.

2. További paraméterek bevezetése, pl. nem csak a nagy tárgyak meglétét vizs-
gáljuk, hanem azok darabszámát is �gyelembe vesszük.

Az is megválaszolatlan kérdés jelenleg, hogy mi történik, ha a tárgyak száma
növekszik.

Tételezzük fel, hogy a láda kapacitása, azaz a C értéke egy rögzített egész, így
következésképpen a tárgyak mérete az [1, C] intervallumból kerül ki. Ekkor Lenstra
eredménye szerint [98] a feladat polinomiális id®ben megoldható, ahol n a tárgyak
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száma és n tetsz®legesen nagy lehet. A polinomiális id®ben való megoldhatóság el-
lenére egy ilyen algoritmus lépéseinek száma nagyon nagy lenne, mivel n kitev®je
nagyon nagy, továbbá az O(.) kifejezés együtthatója is szintén nagy lenne. Ezen
okok miatt egy ilyen algoritmus nem biztos, hogy használható lenne a gyakorlat-
ban, esetleg valamilyen el®sz¶rés után. Ezekkel a kérdésekkel dolgozatomban nem
foglalkoztam.

Továbbá, ez a tétel nem veszi �gyelembe azt a tényt, ha a tárgyak mérete vé-
letlenszer¶en kerül ki egy adott intervallumból egyenletes eloszlással. Ezek alapján
tekintsük a következ® sejtést.

1. Sejtés. Legyenek 1 ≤ a < b ≤ C rögzített egész számok, ahol C a láda mérete.
Tételezzük fel, hogy a tárgyak mérete véletlenszer¶en, egyenletes eloszlás mellett az
a, a+1, . . . , b egészek közül kerülnek ki. Ekkor létezik egy olyan algoritmus, amelynek
futási ideje alacsony rend¶ polinommal felülr®l becsülhet® és az O(.) kifejezés együtt-
hatója is megfelel®en kicsi, továbbá a feladat optimális megoldásának valószín¶sége
1-hez közelít mid®n n→∞.

Például, egy olyan algoritmus, amelynek futási ideje 20n4 és 0,9 valószín¶séggel
találja meg az optimális megoldást n = 1000 mellett, már érdekes lehet. Az el®bbi
várakozásomat azért fogalmaztam meg sejtésként, mert valójában keveset tudunk
arról, hogy ilyen esetekben mit lehet csinálni. Ehhez további vizsgálatokra lenne
szükség, ez azonban túlmutat dolgozatom keretein.

3.5.3. Mohó algoritmusok alkalmazásának korlátai

Ebben az alfejezetben azzal a kérdéssel foglalkozom, hogy melyek az algoritmusok
alkalmazásának korlátai és, hogy az optimum értékét nem kell el®re ismerni.

Természetesen a mohó algoritmusoknak vannak korlátaik, mivel a ládapakolási
feladat NP-nehéz. Mik is ezek a korlátok pontosan?

Vegyük észre, hogy mindkét vizsgált feladatosztály (Schwerin és Falkenauer_U)
esetén a tárgyak méretei egy megadott intervallumból kerültek ki, ráadásul egyen-
letes eloszlással. A Schwerin feladatok esetében a láda kapacitása 1000, a tárgyak
mérete pedig 150 és 200 között változik. Ez egy meglehet®sen sz¶k intervallum. A
Falkenauer_U esetében már nem ilyen sz¶k. A láda mérete 150, a tárgyak méretei
pedig 20 és 100 között változik. Ezek alapján a következ® konklúzió vonható le.

3. Megállapítás. Tegyük fel, hogy az inputban minden tárgy valamely, viszonylag
kicsi d számnál kisebb méret¶ (például d = 0, 2, mint a Schwerin osztály esetén).
Ekkor, minél sz¶kebb az az intervallum, ahonnan a tárgyak méretei kerülnek kivá-
lasztásra, annál nagyobb az esélye annak, hogy hatékony mohó algoritmus adható a
feladatra.

Vegyük észre, hogy mindkét feladatosztály esetében a tárgyak méretei véletlen-
szer¶en kerülnek kiválasztásra egyenletes eloszlás mellett. Ez azt jelenti, hogy a
jöv®beni kutatásokban érdemes megvizsgálni olyan példákat, ahol a tárgyak méretei
nem egyenletes eloszlás szerint vannak generálva.

A bemutatott eredmények alapján látható, hogy a Falkenauer_U osztály eseté-
ben a bemutatott mohó algoritmus jól m¶ködik akkor, ha a tartalék (azaz a még
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fel nem használt hely) mérete megfelel®en nagy. Ha a kezdeti tartalék kevés, akkor
annak az esélye, hogy a mohó algoritmus optimális megoldást talál, nagyon kicsi.
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4. fejezet

Egy új feladat: ládafedés szállítással

Ebben a fejezetben, amint a Bevezetésben már említettük, egy új feladattal foglal-
kozom, amelynek neve ládafedés szállítással, röviden BCD. Ebben a problémában,
hasonlóan a ládapakolási problémához, tárgyakat pakolunk ládákba, amelyeket, ha
fedetté válnak, lezárunk és elszállítunk. A célfüggvény meghatározása a fedett és
elszállított ládák száma alapján történik. Azaz, minden elszállított ládáért pénzt
kapunk és a cél az, hogy a pro�tot maximalizáljuk. A probléma els®ként a [42]-ben
szerepel. Most ebben a fejezetben a problémának a kiterjesztésével és alapos vizs-
gálatával foglalkozunk. A probléma o�ine változatával a [43] foglalkozik, továbbá
néhány kapcsolódó probléma a [44]-ben kerül bemutatásra. A fejezetben szerepl®
eredmények a [99] cikkben lettek bemutatva.

4.1. Problémafelvetés és néhány tulajdonság az o�-
line és online modellek esetében

A probléma a következ®képpen fogalmazható meg. A tárgyak egyenként érkeznek az
L lista alapján. Sorrendben az i. tárgy mérete wi > 0 és feltételezzük, hogy végtelen
számú láda áll rendelkezésre ugyanazzal a C kapacitással. Továbbá adott egy K > 0
pozitív egész szám, amely megadja, hogy egyszerre hány láda lehet nyitva. Azaz,
a pakolást végz® algoritmus csak akkor nyithat új ládát, ha a nyitott ládák száma
kevesebb, mint K.

Egy ládát fedettnek tekintünk, ha a ládába pakolt tárgyak összmérete legalább
a C kapacitással egyenl®. Adott továbbá egy G célfüggvény is, amelyre

G : {1, . . . , K} → R+. (4.1)

Ha adott id®pillanatban 1 ≤ k ≤ K darab láda van nyitva, és egy láda fedetté
válik és elszállításra kerül, akkor a realizált pro�t G(k). Minden fedetté vált és
elszállított láda után a k értéke eggyel csökken, de bármikor nyithatunk új ládát is,
feltéve, hogy nem lesz több nyitott láda, mint K. A G függvény monoton csökken®,
pozitív érték¶ függvény. A cél a pro�t maximalizálása, amelyet a lezárt és elszállított
ládák után kapunk.

Vegyünk egy egyszer¶ példát. Egy kiskereskedésben többféle gyümölcsöt pa-
kolnak kis dobozokba. Minden dobozt egy minimum súlyig meg kell tölteni, de a
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szükséges mennyiségnél lehet®leg ne legyen túl sokkal több a dobozban (mert akkor
kevesebb dobozt fogunk tudni megtölteni). Ebben az esetben a kevesebb nyitott
doboz el®ny, mert így könnyebb a dobozokat kezelni. A minimális súly (amennyi-
nek mindenképp meg kell lenni) ebben az esetben a láda kapacitását jelenti, és
szeretnénk, hogy ennél ne legyen sokkal több a ládában (mert az nekünk vesztesé-
get jelent), tehát a láda ne legyen nagyon túltöltve. Azaz, megengedjük, hogy a
kapacitás fölé menjen a töltöttség, de ne túlságosan.

Az o�ine és az online algoritmusok hatékonyságát rendszerint versenyképessé-
gi analízissel vizsgáljuk. Ez azt jelenti, hogy a megoldás CA(I) értéke (ami egy A
o�ine vagy online algoritmus által lett meghatározva az I bemenetre) van összeha-
sonlítva (elosztva) az o�ine C∗(I) optimummal. A maximalizálás esetén az összes I
bemenetre vett CA(I)

C∗(I)
arány alsó határát (in�mumát) az A algoritmus approximációs

arányának nevezzük o�ine esetben.
A probléma o�ine változata esetén a tárgyak sorrendje és mérete el®re ismert,

továbbá ismerjük a G pro�t függvényt is. Továbbá a tárgyak pakolása az L lista
szerinti sorrendben történik. Az o�ine algoritmust optimálisnak nevezzük, ha az
algoritmus megoldásához tartozó összes haszon, amit a ládákért kaptunk az L lista
esetén, a lehet® legnagyobb.

Az online változat esetén viszont a bemenetr®l nem tudunk el®re semmit. Nem
ismerjük a tárgyak sorrendjét és a méreteiket sem. Azonban a G függvény itt is
ismert, ugyanis ez nem része a bemenetnek. Online esetben minden döntést a kö-
vetkez® tárgy érkezése el®tt kell meghozni. A döntés azt jelenti, hogy az aktuális
tárgyat melyik ládába pakolja az algoritmus.

Minden véges L listára (ami a pakolandó tárgyak listája) és minden G pro�t
függvényre legyen CA(L,G) a megoldás értéke, amit egy A o�ine vagy online al-
goritmus ért el a pakolás során. Ezt az értéket összehasonlítjuk az C∗(L,G) o�ine
optimummal. Egy A online algoritmus ρ-kompetitív (0 ≤ ρ ≤ 1), ha a

CA(L,G)

C∗(L,G)
≥ ρ (4.2)

feltétel teljesül minden L listára és G pro�t függvényre. Online esetben a legnagyobb
olyan ρ-t, amelyre A algoritmus kompetitív, versenyképességi aránynak nevezzük.
Másrészr®l, ha létezik olyan L valamilyen G esetén, amelyre teljesül a

µ ≥ CA(L,G)

C∗(L,G)
(4.3)

feltétel minden A online algoritmusra, akkor µ a probléma fels® korlátja. Egy online
algoritmus akkor optimális, ha ρ értéke egyenl® a µ in�mumával.

4.1.1. Az o�ine modell tulajdonságai

Mind a ládapakolási, mind a ládafedési feladat er®sen NP-nehéz, mert 3-partíciós
feladatra visszavezethet®. (A 3-partíciós probléma esetén adott 3n tárgyunk (szá-
munk), amelyek összege n × B, ahol B ∈ R. A tárgyak méretei az (1

4
B, 1

2
B) in-

tervallumból kerülnek ki. A kérdés az, hogy lehet-e úgy n darab hármas csoportot
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létrehozni, hogy minden csoportban a három darab tárgy méreteinek összege ponto-
san B.) Tehát, ha nincs semmilyen speciális kikötés az L listára vagy aG függvényre,
akkor a feladat már er®sen NP-nehéz. Ha a G függvény konstans, akkor a klasszikus
ládafedési problémát kapjuk. Ha G nem konstans, akkor a feladat megoldása még
nehezebb lehet.

A következ®kben két tételt adok meg, amelyek bizonyítását a [43] tartalmazza.
Az els® tétel szerint, az o�ine optimum hatékonyan megtalálható, ha a tárgyak
méretei egy pozitív alsó korláttal rendelkeznek (a fels® korlátot a láda kapacitása
jelenti) tetsz®legesen megválasztott G függvény mellett.

3. Tétel. [43] Legyen K és b rögzített egészek, G : {1, . . . , K} → R+ tetsz®leges
pro�t függvény, és c > 0 egy rögzített valós szám. Ekkor

(i) ha az összes tárgy méretének legalább c-nek kell lennie, akkor bármilyen L lista
esetében az o�ine optimum polinomiális id®ben kiszámítható. Nevezetesen, a
szükséges lépések száma legfeljebb O(n1+K

c ),

(ii) ha a bemenetben szerepl® tárgyak méretei legfeljebb b különböz® érték közül
kerülnek ki és egyik sem kisebb, mint c, akkor bármilyen L esetében az o�ine
optimum lineáris id®ben kiszámítható. A futási id® nagyságrendje nbO(K

c
).

Továbbá az is megmutatható, hogy o�ine problémára nem létezik APTAS (asymp-
totic polynomial time approximation scheme), azaz aszimptotikus polinomiális idej¶
approximációs séma. Pontosabban, a következ® tétel igaz.

4. Tétel. [43] Van olyan választása a K értéknek és a G függvénynek, amelyek
esetén létezik olyan L listákat tartalmazó osztály, amelyre nem létezik olyan poli-
nomiális futási idej¶ algoritmus, amelynek az aszimptotikus approximációs aránya
6
7
-nél jobb lenne, ha P ̸= NP .

Fontos megjegyezni, hogy a 3. tétel szerint, a 4. tétel esetében említett L listának
tetsz®legesen kicsi méret¶ tárgyakat kell tartalmaznia.

4.1.2. Benchmark osztályok

Az optimalizálási problémák jelent®s részére jellemz®, hogy valamilyen benchmark
feladatot vesznek alapul. A ládapakolási probléma esetében a bolognai egyetem ope-
rációkutatási csoportja rendelkezik egy b®séges feladatgy¶jteménnyel [76]. Az ebben
a fejezetben vizsgált probléma nem tisztán ládapakolási vagy ládafedési probléma,
ugyanis egy pro�tfüggvény is a modell része.

Egy nem régi publikációnkban [100] és a 3. fejezetben két típust választottam ki a
benchmark feladatok közül: Schwerin és a Falkenauer_U. Most is ezekkel dolgoztam
(de ezeket ki kellett egészíteni megfelel® G haszonfüggvénnyel). A Schwerin osztály
a [77]-ben került de�niálásra. A másik feladatosztály a Falkenauer_U, amely a
[78]-ban de�niált. A Schwerin és a Falkenauer_U osztályok tulajdonságait a 3.2.
alfejezet részletezi.
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4.1.3. A feladatok el®készítése

Ebben az alfejezetben bemutatom, hogy a meglév® feladatosztályok esetében milyen
módosításokat hajtottam végre, de�niálom az általam létrehozott új feladatosztályt,
valamint bevezetem a nyereségfüggvényeket.

(a) Rendezettség megbontása. A feladatok esetében a tárgyak méret szerint
csökken® sorrendbe vannak rendezve. Ezért az els® módosítás az alkalmazott
feladatosztályokon az volt, hogy a tárgyakat méretük alapján véletlenszer¶en
összekevertem.

(b) Falkenauer osztály normalizálása. A Falkenauer osztály normalizálás-
ra került úgy, hogy a láda kapacitását 1000-nek vettem. Emiatt a tárgyak
méreteit is újra kellett számolni. Minden tárgy méretét 1000

150
értékkel kellett

megszorozni. Az (a) és a (b) lépések után a bemenettípusokat S1, S2, F1, F2,
F3 és F4 jelöli (ahol az S bet¶ a Schwerin típusra, az F bet¶ pedig a Falkenauer
típusra utal).

(c) Új feladatosztály. Ahogy korábban volt róla szó, a Schwerin osztály eseté-
ben a tárgyak méretei egy sz¶k intervallumból kerülnek ki, a láda mérete 1000.
A Falkenauer osztály esetében a normalizálást követ®en a láda kapacitása 1000
és a tárgyak száma immáron a [133, 666] intervallumból kerül ki. Az ehhez a
témához kapcsolódó, korábbi publikációban [42] három osztály szerepelt, ahol
a tárgyak méretei egy szélesebb intervallumból kerültek ki. Emiatt létrehoz-
tam egy új osztályt, ahol a tárgyak méretei az [1, 1000] intervallumból valók.
Látható, hogy az intervallum maximuma megegyezik a láda kapacitásával. Az
osztályt LR-nek neveztem el, amely a Large Range rövidítése. Ebben az osz-
tályban összesen 400 darab feladat található, mindegyik esetében a tárgyak
száma legfeljebb 1000. Az egyik alosztálynak a neve LR4, ahol 100 darab
tárgy van. Ezután még három osztály lett kialakítva úgy, hogy csak az els®
120, 250 vagy 500 tárgyat tartottam meg. Ezek az alosztályok az LR1, LR2 és
LR3 neveket kapták. Az alábbiakban egy összefoglaló táblázat (4.1) látható
az alkalmazott osztályokról.

Osztály Feladatok száma Ládaméret Intervallum Tárgyak száma
S1 100 1000 [150;200] 100
S2 100 1000 [150;200] 120
F1 20 1000 [133;666] 120
F2 20 1000 [133;666] 250
F3 20 1000 [133;666] 500
F4 20 1000 [133;666] 1000
LR1 100 1000 [1;1000] 120
LR2 100 1000 [1;1000] 250
LR3 100 1000 [1;1000] 500
LR4 100 1000 [1;1000] 1000

4.1. táblázat. A feladatosztályok összefoglaló táblázata
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1 2 3 4 5 6
5

6

7

8

9

10

k

G
(k
)

G1(k) = 10.1− 0.1× k
G2(k) = 11− k

G3(k) = 10.05− 0.05× k2

4.1. ábra. Nyereségfüggvények

(d) Nyereségfüggvények. Az eredeti benchmarkok esetében nincs megadva
semmilyen nyereségfüggvény. Emiatt három függvényt hoztam létre, ame-
lyeket az alábbiakban szeretnék bemutatni. k = 1, 2, . . . esetén az alábbi
függvényeket alkalmaztam. A függvények gra�kus ábrázolása a 4.1 ábrán lát-
ható.

� G1(k) = 10, 1− 0, 1× k, azaz G1(1) = 10, G1(2) = 9, 9, G1(3) = 9, 8 és
így tovább. Látható, hogy egy nagyon lassan csökken® függvényr®l van
szó.

� G2(k) = 11 − k, azaz G2(1) = 10, G2(2) = 9, G2(3) = 8 és így tovább.
Látható, hogy ez a függvény k egységnyi növekedése esetén meredeken
csökken.

� G3(k) = 10, 05 − 0, 05 × k2, azaz G3(1) = 10, G3(2) = 9, 85, G3(3) =
9, 6 és így tovább. A függvény kezdetben lassan csökken, majd egyre
meredekebben. Ahogy a 4.1. ábrán is látható, a G1 és a G2 között
helyezkedik el a csökkenési ütemet vizsgálva.

Egy egyszer¶ gyakorlati példát az el®bb megadott különböz® nyereségfüggvé-
nyekre a következ®képpen tudunk megadni: Tekintsünk megint egy kisüzemet,
ahol valamilyen áru csomagolása folyik:

� G1 - egy precíz és gyors robot pakol

� G2 - egy ember pakol

� G3 - több ember pakol

Vagyis: Ha egy robot pakolja az árut, és feltételezzük, hogy maga a robot (a
mozgása) gyors, valamint gyors a reagálása is, tehát az információt gyorsan
tudja feldolgozni, akkor a robot számára nagyjából mindegy, hogy hány láda
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van kinyitva, több láda esetén csak kicsit romlik a robot teljesítménye. Ezt
fejezi ki a G1 nyereségfüggvény. Ellenkez® esetben egy ember (egy alkalmazott
van csak az adott helyen, aki a munkát végzi) pakol, neki (a 8 órás m¶szak
alatt) lényeges hogy mennyit kell járkálnia a megnyitott ládák között, és nem
is könnyen látja át, hogy mit hova tegyen, mert ezeket fejben kell kiszámolnia.
Az ® esetében tehát egy gyorsan csökken® haszonfüggvény alkalmazható, ezt
fejezi ki a G2 függvény. A G3 eset pedig a kett® között van, itt több ember
végzi a rakodást, kevés nyitott ládával még jól elboldogulnak, de egy bizonyos
ládaszámon túl már hasonlóan problémás lesz az eset az ® számunkra is mint
egy ember esetén. Ez tehát a G3 függvény esete.

(e) Tárgytípusok és a nyereségfüggvények összekapcsolása.

Végezetül, a feladatosztályokat kombináljuk a három nyereségfüggvénnyel az
alábbi jelöléseket alkalmazva:

� SiGu

� FjGu

� LRjGu

ahol i = 1, 2, j = 1, 2, 3, 4 és u = 1, 2, 3.

A következ® fejezetekben bemutatok néhány algoritmust, amelyeket a kutatá-
som során vizsgáltam. Els®ként az algoritmusok teljesítményét osztályonként
csak egy feladatpéldányon szemléltetem, de a 4.5. alfejezetben részletes vizs-
gálatok mentén mutatom be az algoritmusok hatékonyságát. Ez összesen 680
feladatot jelent és �gyelembe véve a három nyereségfüggvényt is, így összesen
3× 680 = 2040 esetre történnek a vizsgálatok.

Vegyük �gyelembe, hogy az ehhez a területhez tartozó el®zetes publikációban
[42] csak 6 darab alosztályt vettek �gyelembe, amelyek mindegyike 10 darab
feladatot tartalmazott.

4.2. Természetesen adódó online algoritmusok

Ebben a fejezetben néhány, természetesen adódó algoritmust mutatok be. Az algo-
ritmusok m¶ködése egyszer¶, alkalmazásuk kényelmes és könnyen implementálható-
ak.

4.2.1. Dual Next Fit algoritmus

A Dual Next Fit, vagy röviden DNF algoritmus m¶ködése rendkívül egyszer¶. Egy-
szerre csak egy ládát tart nyitva és a következ®képpen m¶ködik:

� A következ® tárgy mindig az aktuálisan nyitott ládába kerül. Ha a láda fedetté
válik, akkor az algoritmus lezárja és nyit egy újat a következ® tárgyak számára.
Ha nincs több tárgy, az algoritmus megáll.

81



A DNF algoritmus esetében mindig csak egyféleképpen lehet pakolni a következ®
tárgyat, hiszen egyszerre csak egy láda lehet nyitva. Az algoritmus az egyszer¶sége
ellenére is optimális, abban az esetben ha az elszállított ládákért kapott pro�t 0, ha
egynél több láda van nyitva.

1. Lemma. Tegyük fel, hogy G(k) = 0 minden 2 ≤ k ≤ K esetén. Ekkor a Dual
Next Fit algoritmus optimális.

Bizonyítás. Nyilvánvalóan nem érdemes kett® vagy több ládát nyitni. ■

Akkor is optimális az algoritmus, ha a tárgyak méretei megadott feltételeket
teljesítenek a következ® lemma alapján.

A következ® lemmák bizonyítása egyszer¶bb úgy, ha feltételezzük, hogy a láda-
méretek és a tárgyméretek normalizálva vannak úgy, hogy a ládamérettel elosztjuk
a tárgyméreteket és a ládaméretét C = 1-nek vesszük.

2. Lemma. Tegyük fel, hogy 1
k
≤ wi <

1
(k−1)

feltétel minden wi tárgyméretre igaz,
ahol k ≥ 2 és a ládaméret normalizálva van, azaz C = 1. Ekkor a Dual Next Fit
algoritmus optimális.

Bizonyítás. Minden fedett láda pontosan k tárgyat tartalmaz. Ezért a legjobb meg-
oldás, ha egyszerre csak egy láda van nyitva. ■

Természetesen egyáltalán nem biztos, hogy a tárgyak méretei megfelelnek a 2.
lemmában megfogalmazott feltételnek. Ezért általában néhány láda túl lesz pakolva,
azaz néhány fedett láda töltöttsége jóval meghaladhatja majd a láda kapacitását.

3. Lemma. A Dual Next Fit versenyképességi aránya legalább 1
2
tetsz®leges G nye-

reségfüggvény mellett.

Bizonyítás. Az állítás alapja az a tény, hogy G(k) egy nem növekv® függvény k
szerint. Továbbá, az egy ládába pakolt tárgyak összmérete nem lehet több, mint 2,
mivel minden tárgy mérete legfeljebb 1. ■

Vegyük �gyelembe, hogy az S1 és S2 típusú inputok nagyon hasonlóak ahhoz
az esethez, mint amikor a tárgyak méreteire igaz, hogy 1

k
≤ wi <

1
(k−1)

valamely k

esetében. A normalizálás miatt a Schwerin osztály tárgyméretei az
(
1
7
; 1
5

]
interval-

lumba esnek. Ez azt jelenti, hogy a DNF némileg túlpakolhatja a ládát: minden
fedett láda töltöttsége legfeljebb 6

5
. Legyen I egy feladatpéldány az S1 vagy S2 osz-

tályból. Tételezzük fel, hogy optimális megoldás esetén a fedett ládák száma C∗.
Ekkor az optimum értéke legfeljebb C∗ × G(1). Továbbá könny¶ belátni, hogy a
DNF legalább ⌊5

6
× C∗⌋ ládát nyit, továbbá G(1) pro�tot kap minden fedett láda

után, emiatt a következ® állításokat tehetjük:

1. Állítás. A Schwerin osztálynál DNF esetén a célfüggvény értéke legalább ⌊5
6
×

C∗(I)⌋, ahol C∗(I) az optimum értéke az I input esetén.

A fenti állítást általános formában is megfogalmazhatjuk az alábbiak szerint:

2. Állítás. Tegyük fel, hogy az összes tárgy mérete az
(

1
q
; 1
t

]
intervallumból kerül ki,

valamilyen q és t egészekre. Ekkor a DNF célfüggvény értéke legalább ⌊ t
(t+1)
×C∗(I)⌋.
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A DNF algoritmus ellen®rzése céljából számos teszt futtatása történt, viszont
mivel minden esetben egymáshoz nagyon hasonló eredményeket kaptunk osztályon
belül, így csak az S1Gu, F1Gu és LR1Gu (u = 1, 2, 3) osztályokat vesszük górcs®
alá, és ezekb®l is csak a legels® feladatot.

A tesztek során keletkez® megoldások alapján kiszámítottam a ládák átlagos töl-
töttségét (lefelé kerekítve), az elszállított (azaz fedett) ládák számát és a nyereség-
függvény értékét. Mivel a DNF egyszerre csak egy ládát tart nyitva és mindhárom
nyereségfüggvény értéke k = 1 esetén ugyanaz, ezért csak a G1 függvény értékét
jelenítettem meg (G2 és G3 értéke ugyanaz, mint a G1 értéke).

Osztály Ládaméret
Ládák átlagos
töltöttsége Ládák száma Összes haszon

(G1)
S1G1 1000 1072 16 160
F1G1 1000 1228 38 380
F4G1 1000 1236 322 3220
LR1G1 1000 1470 43 430
LR2G1 1000 1424 98 980
LR3G1 1000 1377 192 1920
LR4G1 1000 1359 365 3650

4.2. táblázat. A DNF algoritmus eredményei (1 feladat/osztály)

Emlékeztetek arra, hogy a Schwerin osztály esetében, a Schwerin_1 alosztály
feladatainál tudjuk, hogy a tárgyak összmérete több, mint a ládaméret 17-szerese,
de kevesebb, mint 18-szorosa. Emiatt nyilvánvaló, hogy 17-nél több ládát biztosan
nem lehet lefedni a tárgyakkal. Ezt már a korábbi publikációmban [100] tisztáztam
(hogy a tárgyakkal legfeljebb 17 láda fedhet®). Tehát ehhez hasonlítva az S1G1
osztály esetében a DNF 16 ládát fedett a tárgyakkal úgy, hogy egy nagyon egyszer¶
algoritmusról van szó. Ez egy nagyon jó eredmény. Az alosztály sok inputja esetén az
optimum érték valójában 17, mert amikor pakoljuk a tárgyakat (tehát nem a fedési,
hanem a pakolási feladat esetében) a [100] publikáció vizsgálatai során azt találtuk,
hogy a megfelel® pakolási algoritmusom majdnem 17 ládát pontosan megtölt és a
többi láda is majdnem tele van töltve a 17. ládáig és még vannak kicsi tárgyak a
18. ládában. Emiatt a 18. láda kicsi tárgyaival le tudjuk fedni azt a néhány ládát,
amelyik nem lett teljesen telepakolva.

Visszatérve a DNF algoritmushoz, ezen a ponton a 4.2. táblázat alapján még
nem eldönthet®, hogy a DNF a többi osztály esetében is ilyen hatékony-e.

Megfogalmazható egy további állítás az optimum és a DNF értékének összeha-
sonlításával. Legyen I egy feladatpéldány. A fedett ládák átlagos töltöttsége legyen
a, a ládák száma pedig n. Ekkor a tárgyak összmérete s = a × n plusz azon tár-
gyak összmérete, amelyek esetleg egy nem fedett ládában vannak. Figyelembe véve
ezeket a tárgyakat is s ≤ a× n+ C adódik, és emiatt az optimális megoldás értéke
legfeljebb

(
a×n
C

+ 1
)
×G(1). A tárgyak összmérete minden fedett ládában legalább

C, a nyereségfüggvény pedig nem növekv®. Továbbá, a DNF által adott megoldás
értéke n×G(1) mert a G függvény nem növekv®, ezért az alábbi állítás tehet®:

3. Állítás. DNF esetén a célfüggvény értéke nem lehet kisebb, mint 1
a
C
+ 1

n

× C∗(I).
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4.2.2. Dual Harmonic(K) algoritmus

Amennyiben a ládafedés során okosabban szeretnénk kihasználni a ládák kapaci-
tását, úgy érdemes egyszerre több ládát is nyitva tartani. Tekintsük a következ®
klasszikus algoritmust, amely a Harmonic(K) algoritmus, vagy röviden H(K), ahol
K ≥ 1 egy egész szám. Az algoritmus alapötlete, hogy egy ládába méretükben
hasonló tárgyak kerüljenek. Egyidej¶leg maximum K darab láda lehet nyitva. A
tárgyakat az algoritmus osztályozza a méretük alapján, és minden láda egy osztályt
reprezentál. Azok a tárgyak, amelyeknek a mérete az Ik =

(
1

k+1
, 1
k

]
intervallumba

esik, azokat a k. típusú ládába pakolja az algoritmus, ahol k = 1, . . . , K − 1. A
legkisebb méret¶ tárgyak, azaz amelyek mérete az IK =

(
0, 1

K

]
intervallumba esik,

azok a K. típusú ládába kerülnek. Az algoritmus az alábbiak szerint m¶ködik:

� Az algoritmus a következ® tárgyat a k. típusú ládába pakolja (k = 1, . . . , K),
ha létezik ilyen nyitott láda és a tárgy mérete az Ik intervallumba esik. Ha
a láda fedetté válik, az algoritmus lezárja. Ha nincs ilyen láda nyitva, akkor
nyit egy ilyen típusút. Ha nincs több elem, akkor az algoritmus megáll.

A H(K) algoritmus esetében is, hasonlóan a DNF-hez, megtörténtek a tesztfutta-
tások, K = 2, 3, 4, 5 esetekre. Az alkalmazott osztályok majdnem teljesen ugyanazok
voltak mint a DNF esetében. Viszont, mivel a H(K) esetében az algoritmus több
ládát is tarthat nyitva a futás során, így mindhárom nyereségfüggvény be lett vonva
a futtatásokba. Minden osztály esetében mindhárom nyereségfüggvény kiértékelés-
re került. Az eredményeket tartalmazó táblázatokban csak a nyereségfüggvények
értékei szerepelnek, továbbá a korábban a DNF esetében kiszámított nyereségfügg-
vény értékei is helyet kaptak az összehasonlíthatóság végett. Minden érték lefelé
kerekített. Minden sorban a legjobb értékeket színes háttérrel jelöltem.

Osztály DNF H(2) H(3) H(4) H(5)
S1G1 160 160 160 160 160
S1G2 160 160 160 160 160
S1G3 160 160 160 160 160
F1G1 380 397 385 382 368
F1G2 380 373 340 311 265
F1G3 380 395 381 373 349
F4G1 3220 3369 3314 3258 3214
F4G2 3220 3183 2905 2613 2358
F4G3 3220 3358 3276 3171 3064

4.3. táblázat. A H(K) algoritmus által szerzett pro�t az S és F osztályok esetében

2. Megjegyzés. A 4.3. táblázatban az eredmények közül az S1 osztálynál minden
esetben a pro�t értéke 160. Ez meglep® lehet. Viszont vegyük �gyelembe, hogy itt a
Schwerin_1 osztályról van szó, ahol a tárgyak mérete 150 és 200 között változik, a
ládaméret pedig 1000. Azaz minden tárgy K típusú ládába kerül, mivel csak egy láda
van használatban egyszerre. Ez akkor változhatna, ha K ≥ 6 lenne, azonban ekkor
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a nyereségfüggvény nagyon lecsökkenne és sok nyitott láda használata nem lenne
el®nyös.

Ennél érdekesebbek az F1 osztály eredményei mindhárom nyereségfüggvényt te-
kintve. Látható, hogy H(2) jobb eredményt ért el, mint a DNF a G1 és G3 esetében.
Az is látható, ahogy K értéke növekszik, úgy mindhárom nyereségfüggvény értéke
csökken. Azt mondhatjuk, ha a nyereségfüggvény lassan csökken (G1 csökken a
leglassabban, utána a G3), akkor el®nyös több ládát nyitva tartani, ugyanis így az
algoritmus nagyobb eséllyel tud "jó" pakolást csinálni.

A helyzet hasonló az F4 osztályok esetében is. Viszont itt sokkal több tárgy van
feladatonként, mint az el®z® osztályoknál. Emiatt van nagyobb különbség az értékek-
ben a DNF-hez hasonlítva.

Összefoglalva elmondható, hogy a H(K) algoritmus jobban vagy sokkal jobban
képes teljesíteni, mint a DNF abban az esetben ha K "nem túl nagy" és az elszállított
(lezárt) ládák függvényében számított nyereségfüggvény nem csökken "túl gyorsan".

Osztály DNF H(2) H(3) H(4) H(5)
LR1G1 430 437 423 420 407
LR1G2 430 415 362 332 298
LR1G3 430 436 417 407 387
LR2G1 980 953 935 918 911
LR2G2 980 900 802 724 653
LR2G3 980 951 922 890 862
LR3G1 1920 1877 1841 1806 1792
LR3G2 1920 1763 1582 1418 1273
LR3G3 1920 1870 1815 1751 1694
LR4G1 3650 3546 3507 3459 3428
LR4G2 3650 3333 3036 2738 2427
LR4G3 3650 3534 3461 3358 3250

4.4. táblázat. A H(K) algoritmus által szerzett pro�t az LR osztály esetében

Az LR1 alosztály esetében az eredmények hasonlóak a 4.3. táblázatban közöl-
tekhez. Az LR2, LR3 és LR4 esetében azonban más a helyzet. Továbbra is igaz az
a megállapítás, hogy ha a K értéke növekszik, akkor a H(K) eredményei romlanak.
Látható az is, hogy a H(K) az LR osztály esetében nem tudja megverni a DNF
algoritmust. Még H(2) is rosszabbul teljesít, akkor is, ha G1 értékét vesszük, amely
a leglassabban csökken® függvény a három közül. Az ok az lehet, hogy az LR osz-
tályban a tárgyak méret szerinti diverzitása nagy, mivel a [1, 1000] intervallumból
kerülnek ki, a ládaméret pedig 1000. Szóval, például a H(2) esetében feltételezhe-
t®en az történik, hogy "mindig" két ládát tart nyitva az algoritmus. Ezért G1(1)
értékét nem éri el, csak G1(2)-t, de az kevesebb, mint G1(1).

4.2.3. Smart Dual Harmonic(K) algoritmus

Ebben az alfejezetben a H(K) algoritmus egy továbbfejlesztését mutatom be, amivel
az eredeti eljárás "okosabbá" tehet®. Ezt az új algoritmust Smart Harmonic(K)-
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nak, vagy röviden SH(K)-nak nevezzük. Az algoritmus az alábbi egyszer¶ szabályok
mentén m¶ködik.

� Ha a következ® tárgy képes lefedni egy vagy több ládát, akkor abba a ládába
kerül, amelynek a legalacsonyabb a töltöttsége. Ezután az algoritmus lezárja
a ládát.

� Egyéb esetben az SH(K) algoritmus a H(K) algoritmus szabálya szerint m¶-
ködik.

Ahogy látható, az SH(K) algoritmus majdnem ugyanúgy m¶ködik, mint a H(K).
Az egyetlen különbség akkor van, ha az algoritmus a következ® tárgynak talál fedhet®
ládát. Ebb®l több is lehet, így mindig a legkisebb töltöttség¶be fogja pakolni. Ezzel
a lépéssel a nyitott ládák számát szeretnénk leszorítani, hogy a pro�t értéke minél
nagyobb legyen.

Osztály DNF SH(2) SH(3) SH(4) SH(5)
S1G1 160 160 160 160 160
S1G2 160 160 160 160 160
S1G3 160 160 160 160 160
F1G1 380 408 413 414 412
F1G2 380 394 393 360 341
F1G3 380 407 415 408 402
F4G1 3220 3359 3423 3431 3459
F4G2 3220 3264 3187 2997 2822
F4G3 3220 3354 3406 3386 3369

4.5. táblázat. A SH(K) algoritmus által szerzett pro�t az S és F osztályok esetében

A 4.5. táblázatban látható futási eredmények ebben az esetben is a nyereségfügg-
vény értékeit mutatják. Látható, hogy az S1 osztály esetében ugyanazt az eredményt
kaptuk, mint a H(K) algoritmus esetében. Itt az SH(K) algoritmus új lépése nem
hozott jobb eredményt. Ellenben az F1 osztály esetében az SH(K) sokkal jobb ered-
ményt ért el, mint a H(K). Az F1G1 esetében K = 4 értékig a nyereségfüggvény
értéke növekszik. A helyzet hasonló az F1G3 esetében, itt a maximumot a K = 3
érték esetében éri el a függvény. Az F4 osztály esetében is látható, hogy az SH(K)
algoritmus szigni�kánsan jobb, mint a DNF és szintén jobb, mint a H(K) algorit-
mus. A legnagyobb pro�tot az F4 osztályon belül az F4G1 esetében tudta elérni az
algoritmus K = 5 esetén.

A H(K) algoritmus esetében azt mutatták az eredmények, hogy a H(K) algorit-
mus nem tudott jobb teljesítményt nyújtani az LR2, LR3 és LR4 esetében, mint
a DNF algoritmus. Azonban az SH(K) algoritmus jobb eredményeket hozott még
a gyorsan csökken® G2 nyereségfüggvény esetében is. Az LR1 alosztálynál a leg-
nagyobb pro�tot a G1 függvény produkálta K = 4 esetén. Az LR2, LR3 és LR4
esetében hasonló a helyzet.

Összességében tehát elmondható, hogy az összes feladatot tekintve az SH(K)
algoritmus többségében jobb eredményeket ért el, mint a H(K) algoritmus.
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Osztály DNF SH(2) SH(3) SH(4) SH(5)
LR1G1 430 478 487 516 515
LR1G2 430 465 460 481 477
LR1G3 430 477 485 513 512
LR2G1 980 1047 1074 1132 1131
LR2G2 980 1021 1023 1060 1054
LR2G3 980 1045 1071 1126 1125
LR3G1 1920 2023 2088 2165 2160
LR3G2 1920 1963 1987 2035 1988
LR3G3 1920 2019 2082 2155 2145
LR4G1 3650 3798 3928 4029 4086
LR4G2 3650 3694 3732 3754 3693
LR4G3 3650 3792 3915 4007 4046

4.6. táblázat. Az SH(K) algoritmus által szerzett pro�t az LR osztály esetében

4.2.4. Az eredmények összefoglalása

Osztály DNF H(2) H(3) H(4) H(5) SH(2) SH(3) SH(4) SH(5) MAX
S1G1 160 160 160 160 160 160 160 160 160 160
S1G2 160 160 160 160 160 160 160 160 160 160
S1G3 160 160 160 160 160 160 160 160 160 160
F1G1 380 397 385 382 368 408 413 414 412 414
F1G2 380 373 340 311 265 394 393 360 341 394
F1G3 380 395 381 373 349 407 415 408 402 415
F4G1 3220 3369 3314 3258 3214 3359 3423 3431 3459 3459
F4G2 3220 3183 2905 2613 2358 3264 3187 2997 2822 3264
F4G3 3220 3358 3276 3171 3064 3354 3406 3386 3369 3406

4.7. táblázat. Összesített eredmények az S és F osztályok esetében

Ebben az alfejezetben összegy¶jtöttem az el®z®leg bemutatott algoritmusok ered-
ményeit, így könnyebben összehasonlíthatók. (Annak érdekében, hogy a táblázatok
beférjenek, a H(2) és H(3) oszlopokat elhagytam, a maximálisak soha nem ezekb®l
az oszlopokból kerültek ki, emiatt a maximum értékét ezeknek az oszlopoknak az
elhagyása nem érinti.) Minden sorban az adott alosztályokra vonatkozó, lefelé kere-
kített eredmények vannak megadva algoritmusonként. Az utolsó oszlopban az adott
sorban található maximum érték van megadva, azaz a legjobb eredmény az adott
alosztály esetében.

4.3. Egy új, rugalmas, paraméteres algoritmus: MMask

4.3.1. Az algoritmus bemutatása

Ebben az alfejezetben egy új algoritmuscsalád kerül de�niálásra, amely megfelel®en
�exibilis ahhoz, hogy versenyképes legyen a korábban bemutatott algoritmusokkal.
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Osztály DNF H(2) H(3) H(4) H(5) SH(2) SH(3) SH(4) SH(5) MAX
LR1G1 430 437 423 420 407 478 487 516 515 516
LR1G2 430 415 362 332 298 465 460 481 477 481
LR1G3 430 436 417 407 387 477 485.2 513 512 513
LR2G1 980 953 935 918 911 1047 1074 1132 1131 1132
LR2G2 980 900 802 724 653 1021 1023 1060 1054 1060
LR2G3 980 951 922 890 862 1045 1071 1126 1125 1126
LR3G1 1920 1877 1841 1806 1792 2023 2088 2165 2160 2165
LR3G2 1920 1763 1582 1418 1273 1963 1987 2035 1988 2035
LR3G3 1920 1870 1815 1751 1694 2019 2082 2155 2145 2155
LR4G1 3650 3546 3507 3459 3428 3798 3928 4029 4086 4086
LR4G2 3650 3333 3036 2738 2427 3694 3732 3754 3693 3754
LR4G3 3650 3534 3461 3358 3240 3792 3915 4007 4046 4046

4.8. táblázat. Összesített eredmények az LR osztály esetében

Az algoritmus m¶ködése különböz® paraméterek beállításától függ. Az algoritmust
Modi�ed Mask-nak, vagy röviden MMask algoritmusnak neveztem el. Els® verzi-
ója egy korábbi cikkben [42] már megjelent. A modi�ed kifejezés az algoritmus
továbbfejlesztése miatt eszközölt módosítások tényét jelöli.

Az MMask algoritmusnak három paramétere van, amelyek az alábbiak:

� K - az egy id®ben nyitott ládák maximális számát meghatározó pozitív egész
szám (K > 0),

� α - K-dimenziós nemnegatív vektor (0 ≤ αk ≤ C ∀k-ra),

� β - egy pozitív egész szám (β > 0).

Az MMask m¶ködésének alapja egy elfogadó-elutasító politika. Az algoritmus
elfogadja a soron következ® tárgy pakolását, ha a pakolás után az adott láda töl-
töttsége az elfogadó tartományba esik. Ellenkez® esetben elutasítja a pakolást. Az
elfogadó és elutasító intervallumok az alábbiak szerint kerültek meghatározásra:

� Elfogadó tartomány a k. láda esetén (1 ≤ k ≤ K): [0;C − αk] ∪ [C;C + β]

� Elutasító tartomány a k. láda esetén (1 ≤ k ≤ K): (C − αk;C) ∪ (C + β;∞)

Mint látható, nem csak az a célunk, hogy egy láda fedett legyen, hanem azt
szeretnénk, hogy a tárgyak összmérete csak "kicsivel" legyen több, mint a láda
mérete.

A tartományok megadásánál az α és β paraméterek a láda kapacitásának (C)
értékét módosítva állítják be az intervallumokat. A szakirodalomban a formális de�-
níciók jellemz®en C = 1 értéket használnak. Az általam vizsgált feladatok esetében
azonban a ládák kapacitása 1000 és a tárgyak méretei is arányosak ezzel a kapaci-
tással. A feladatok megoldása során az eredeti értékeket hagytam meg, felesleges
lett volna a láda kapacitását és ezzel együtt a tárgyak méretét a C = 1 értékhez
normálni.
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Az elfogadó és elutasító politikával a cél az, hogy megfelel® αk és β értékek
megválasztásával egyrészt elkerüljük azt a helyzetet, hogy egy éppen pakolt tárggyal
a láda nem lesz fedett, csak "majdnem". Ekkor a láda töltöttsége az (1− αk; 1)
intervallumba fog esni, tehát ez a pakolás elutasításra kerül. A "majdnem" fedett
ládák magukban hordozzák azt a veszélyt, hogy kés®bb fedetté válnak, viszont egy
nagy méret¶ tárggyal túlpakolt lesz a láda. Másrészt, azt is szeretnénk elkerülni,
hogy a láda túlpakolt legyen, ezért az algoritmus nem engedi a pakolás mértékét
1 + β érték fölé n®ni. Ezen stratégiák alkalmazásával azt reméljük, hogy a ládák
töltöttsége kiegyensúlyozott lesz, ezáltal pedig a pro�t is javulhat.

Ha több olyan láda van, amelyik az aktuális tárgy pakolásával elfogadottá válik,
hogy ezek közül hogyan válasszunk, ezzel a kérdéssel majd kés®bb részletesebben
foglalkozom (4.3.3. alfejezet).

Rendszerint az α vektor elemeit különböz®nek választjuk meg, amivel néhány
láda töltöttségét alacsony (ha C alatt van) szinten tudjuk tartani, másokét pedig
magasan. Ennek azért van jelent®sége, hogy a nagyobb méret¶ tárgyak az alacsony
töltöttség¶ ládákat, míg a kisebb tárgyak a jobban töltött ládákat töltsék meg. Ez
egyfajta egyensúlyt biztosít a tárgyak elhelyezésében. Az algoritmus a következ®k
szerint m¶ködik.

Algorithm 13: MMask(K, α, β) algoritmus
Input: L lista

1 Ha a következ® tárgy egy olyan ládába helyezhet®, ami ezáltal az elfogadó
tartományban fedetté válik, akkor az aktuális tárgyat ebbe a ládába kell
pakolni. Ha több ilyen láda is van, akkor ezek közül a legkisebb
töltöttség¶be. Ezután az algoritmus lezárja a ládát és az 5. lépésre ugrik.

2 Ha a következ® tárgy egy olyan ládába helyezhet® el, aminek a töltöttsége
az elfogadó tartományba esik a pakolás után, de nem lesz fedett, akkor
ebbe a ládába kell pakolni. Ha több ilyen is van, az algoritmus
véletlenszer¶en választ egyet. Ezután az 5. lépésre ugrik.

3 Ha k < K (ahol k az éppen nyitott ládák száma), akkor az algoritmus nyit
egy új ládát. A láda típusa a legkisebb k érték, amelyikre nincs ilyen
típusú nyitott láda, és ide pakolja a tárgyat. Ezután az 5. lépésre ugrik az
algoritmus.

4 Ha k = K teljesül, akkor az aktuális tárgy a legkisebb töltöttség¶ ládába
kerül. Ha a láda fedett lesz, az algoritmus lezárja.

5 Ha nincs több tárgy, az algoritmus leáll. Egyébként az 1. lépésre ugrik.

Megjegyzem, hogy az 1. lépés esetén a tárgy elfogadó tartományba kerül és a láda
fedetté válik, a 2. lépés esetén elfogadó tartományba kerül, de nem válik fedetté. A
következ® lépések esetén tehát a tárgy biztos, hogy nem elfogadó tartományba kerül.
Ha k < K, akkor a tárgy új ládába kerül (3. lépés). Ellenkez® esetben a 4. lépés
során már nem tudjuk növelni a ládák számát, és a tárgyat nem tudjuk elfogadó
tartományba pakolni. Mivel jobbat nem tehetünk (a tárgyat muszáj pakolni), a
legkisebb töltöttség¶ ládába tesszük. Lehet, hogy lefedi, lehet, hogy nem.

Az algoritmus megértéséhez tekintsünk egy egyszer¶ példát, amelynek a beállí-
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tásai a következ®k:

� K = 4

� C = 100

� α = [10, 20, 30, 40]

� β = 30

A tárgyak méretei a [10; 40] intervallumból kerülnek ki és legyenek a következ®k: 24,
35, 18, 22, 16, 29, 20, 17, 38, 14, 31, 28, 32. A tárgyak a felsorolás sorrendjében
érkeznek.

Az algoritmus indulásakor csak egy láda van nyitva, az alkalmazott paraméterek
pedig α1 = 10 és β = 30. Ezek alapján az elfogadó tartomány [0; 90]∪ [100; 130], az
elutasító tartomány pedig (90; 100)∪ (130;∞) az aktuálisan nyitott, egyetlen ládára
nézve. Az MMask az els® tárgyat (24) bepakolja a nyitott (és egyetlen) ládába. A
következ® tárgyat (35) szintén ide pakolja, így a láda töltöttsége 24 + 35 = 59 lesz.
A harmadik tárgy (18) még mindig pakolható ebbe a ládába, hiszen így a töltöttség
59 + 18 = 77 lesz. Viszont a negyedik tárgy (22) már nem pakolható ide, ugyanis
a pakolás után a láda töltöttsége 77 + 22 = 99 lenne, ami az elutasító tartományba
esik.

Emiatt a negyedik tárgynak (22) egy új ládát nyit az algoritmus. Az új láda
esetében α2 = 20 és β = 30, így az elfogadó tartomány [0; 80]∪[100; 130], az elutasító
tartomány pedig (80; 100) ∪ (130;∞). Immáron két nyitott láda van, az egyiknek
77, a másiknak 22 a töltöttsége. Az ötödik tárgy (16) nem pakolható az els® ládába,
mert 77+ 16 = 93, ami az els® láda elutasító tartományába esik. A második ládába
viszont pakolható, mivel 22 + 16 = 38 a második láda elfogadó tartományába esik.
Ebben a pillanatban az els® láda töltöttsége 77, a másodiké pedig 38.

A hatodik tárgy (29) elég nagy, így az els® ládába pakolható, aminek a töltöttsége
így 77 + 29 = 106 lesz és elszállítható. A láda zárása el®tt a nyereségfüggvényt
kiszámítja az algoritmus. Mivel két nyitott láda van, így k = 2, azaz G(2) pro�tot
kapunk a láda elszállítása után. A megmaradt láda töltöttsége 38 továbbra is.

A következ® három tárgy (20, 17, 38) pakolható a megmaradt nyitott ládába,
ugyanis 38 + 20 = 58, 58 + 17 = 75 és 75 + 38 = 113. Mind a három tárgy pakolása
után a láda töltöttsége az elfogadó tartományban volt. A láda elszállítása el®tt az
algoritmus kiszámítja a G(1) pro�tot, majd elszállítja a ládát. Most nincs egyetlen
nyitott láda sem.

Még hátra van négy tárgy (14, 31, 28, 32), amelyhez az algoritmus nyit egy
ládát. Mind a négy tárgy ebbe a ládába kerül, ugyanis 0 + 14 = 14, 14 + 31 = 45,
45+28 = 73 és 73+32 = 105. Azaz minden egyes tárgy pakolása után a töltöttségi
szintek elfogadó tartományban voltak. A láda fedetté vált, amiért G(1) pro�t jár.
Így összesen a szerzett pro�t 2G(1) +G(2).

Abban az esetben, ha ugyanerre a példára az MMask helyett a DNF algoritmust
alkalmaztam volna, akkor a megszerzett pro�t csak 2×G(1) lenne, valamint maradt
volna egy nyitott (azaz nem fedett) láda is, aminek a töltöttsége 14 + 31 + 28 = 73
lenne. Tehát ebben a helyzetben az MMask algoritmus sokkal jobb teljesítményt
nyújtott, mint a DNF nyújtott volna. Természetesen az algoritmusok teljesítménye
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er®sen függ a konkrét feladattól, az αk (k = 1, . . . , K) és a β paraméterek megvá-
lasztásától.

A vizsgálatok során az derült ki, hogy a K, αk és β paraméterek megfelel® meg-
választása esetén az MMask versenyképes a korábban bemutatott algoritmusokkal.

4.3.2. Az eredmények vizsgálata

Ebben az alfejezetben bemutatom, hogy a stratégiai paraméterek megfelel® beállí-
tása mellett milyen teljesítményre képes az algoritmus. Látható lesz, hogy a meg-
felel® értékek megválasztásával az MMask majdnem minden feladatosztály esetén
képes túlteljesíteni a korábbi algoritmusokat. (Ebben az alfejezetben ezeket az ese-
teket jelöltük zöld háttérrel.) Az M0-M8 paraméterbeállítások adatait nemsokára
megadom. Az algoritmus ugyanazokra a feladatosztályokra lett alkalmazva, mint
amelyekkel az el®z® algoritmusokat vizsgáltam. Ennek köszönhet®en az MMask és a
korábbi algoritmusok közül a legjobb teljesítményt nyújtó összehasonlíthatóvá vált
minden bemenet esetében.

Megjegyzem, hogy a paraméterek hangolása során érdemes lehet �gyelembe ven-
ni, hogy a tárgyak mérete milyen intervallumban van. Jelenleg ezzel a kérdéssel nem
foglalkoztam, kés®bbi kutatás tárgya lehet. Azt azonban megjegyzem, hogy a 4.4.
fejezetben foglalkozom a paraméterek optimalizálásával, és kiderül, hogy az opti-
malizáló algoritmus valójában implicit módon, "automatikusan" �gyelembe veszi a
tárgyméreteket az α és β értékek beállításánál.

Osztály Max M0 M1 M2 M3 M4 M5 M6 M7 M8
S1G1 160 160 136 134 158 158 158 136 136 136
S1G2 160 160 102 88 147 142 142 100 100 100
S1G3 160 160 130 127 158 157 157 130 130 130
F1G1 414 380 424 424 417 417 409 407 408 415
F1G2 394 380 374 373 395 395 401 389 391 379
F1G3 415 380 419 418 416 416 408 406 407 412
F4G1 3459 3220 3585 3603 3517 3569 3399 3503 3487 3496
F4G2 3264 3220 3182 3090 3319 3297 3307 3268 3280 3287
F4G3 3406 3220 3539 3531 3506 3547 3394 3482 3471 3480

4.9. táblázat. Összesített eredmények az S és F osztályok esetében

A korábbi legjobb eredményt a Max oszlop jelöli feladatosztályonként. A para-
méterek beállítása itt még kézzel történt, próbálkozás útján. A 4.9. táblázat az S
és F osztályokon végzett futtatások eredményét szemlélteti. A zölddel jelölt cellák
esetében az MMask felülmúlta a korábbi legjobb eredményt, a kék cellák esetében
pedig a korábbi legjobbal egyenl® az MMask eredménye. Az S1 osztály esetében
a korábbi legjobb eredményt a DNF állította el®, és minden korábbi algoritmus is
ugyanazt az eredményt adta, mint a DNF. Ez amiatt volt, mert a tárgyak méretei
egy nagyon sz¶k intervallumból kerültek ki. Ennek következménye, hogy jobb ered-
ményt itt nem lehetett elérni, ha az MMask legalább két ládát nyitott. Viszont, ha
K = 1 volt a beállítás (M0 paraméter beállítás), akkor ugyanazt az eredményt érte
el, mint a korábbi algoritmusok.
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Látható, hogy a paraméter-beállítások (M0-M8) nagyon változatosan képesek
befolyásolni az MMask teljesítményét. Van ahol az adott beállítás a vizsgált feladat-
osztályok több mint a felére jobb eredményt ért el, de volt olyan, ahol kevesebb, mint
a felénél ért el jobb eredményt. Ez teljesen természetes, hiszen a feladatosztályok
különböznek egymástól. Pontosan emiatt nem cél egy "univerzális" beállítás meg-
találása, amely minden feladatosztály esetében jobb eredményeket ad. A cél az volt,
hogy minden feladatosztályra találjak egy olyan beállítást, amely jobb eredményt
ad, mint a korábbi algoritmusok. A táblázatban foglalt osztályokra ez sikerült is.

Az alkalmazott beállítások (M0-M8) az alábbiak voltak.

Beállítás K αk, k = 1, . . . , K β
M0 1 [200] 200
M1 4 [100; 200; 300; 400] 200
M2 5 [100; 200; 300; 400; 500] 200
M3 2 [100; 100] 200
M4 3 [100; 100; 100] 200
M5 4 [100; 100; 100; 100] 500
M6 4 [225; 225; 230; 230] 560
M7 4 [200; 200; 200; 200] 600
M8 4 [200; 200; 300; 400] 350

4.10. táblázat. MMask kézi paraméter-beállításai

Az LR osztály esetében is elvégeztem a futtatásokat, ugyanazokat a paraméter-
beállításokat alkalmazva. Mivel az M0 beállítás a Schwerin osztályra lett kitalálva,
ami azt jelenti, hogy csak egy láda lehet nyitva egyszerre, ezért nem alkalmazható
a többi osztályra. Így nem került be az LR osztályon végzett futások eredményeit
tartalmazó táblázatba (4.11). Továbbá a futások alapján az M3 és M4 beállítások
sem voltak versenyképesek egyik LR alosztály esetében sem, így azok is kimaradtak
az eredmények közül.

Az eredményeket tartalmazó táblázatban látható, hogy az LR2G2, LR2G3 és
LR3G2 esetében nem volt jobb eredmény a korábbi legjobbnál. Vegyük �gyelembe,
hogy a témához kapcsolódó korábbi publikációban [42] az SH algoritmus teljesítmé-
nye nem volt vizsgálva a K = 4 és K = 5 esetekre, most viszont ez megtörtént.
Kiderült, hogy az SH(4) algoritmus teljesítménye néhány esetben sokkal jobb, mint
akkor, ha K ̸= 4 (4.5. és 4.6. táblázatok). Mivel most SH(4) teljesítménye is is-
mert, így az MMask-nak egy sokkal jobb eredményt kell felülmúlnia. Habár, a 4.11.
táblázatban a másik 9 feladat esetében sikerült jobb eredményeket elérni, ami az
alosztályok 75%-át jelenti.

4.3.3. Továbbfejlesztési lehet®ségek

Néhány, az MMask algoritmus továbbfejleszthet®ségére vonatkozó lehet®séget sze-
retnék itt megadni.

� A fent bemutatott paraméter-beállítások manuálisan kerültek meghatározásra.
El®fordulhat, hogy más beállításokkal sokkal jobb eredmények is elérhet®k.
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Osztály Max M1 M2 M5 M6 M7 M8
LR1G1 516 518 538 507 517 508 524
LR1G2 481 414 431 485 498 491 470
LR1G3 513 503 521 505 516 506 518
LR2G1 1132 1122 1146 1119 1122 1103 1131
LR2G2 1060 876 846 1022 1059 1046 962
LR2G3 1126 1086 1091 1108 1116 1098 1109
LR3G1 2165 2198 2232 2124 2127 2089 2189
LR3G2 2035 1730 1625 1980 2015 1991 1911
LR3G3 2155 2130 2119 2109 2117 2080 2156
LR4G1 4086 4194 4242 4032 4014 3968 4139
LR4G2 3754 3338 3186 3784 3786 3777 3681
LR4G3 4046 4073 4057 4008 3994 3953 4086

4.11. táblázat. Összesített eredmények az LR osztály esetében

� Kiderült, hogy az LR osztály esetében az SH(4) algoritmus több esetben is
nagyon hatékony a 4.6. táblázat alapján. Ez alapján megfontolandó az SH(4)
és az MMask algoritmus fúziója (mindkét algoritmust külön-külön futtatjuk
és a jobb eredményt választjuk).

� Az MMask algoritmus a 2. lépésében tetsz®legesen választhatott a rendelke-
zésre álló, megfelel® ládák közül. Lehetséges, ha "okosabban" választ ládát,
akkor az MMask teljesítménye növelhet® lesz.

� Egy másik módosítási lehet®ség az algoritmus 2. lépésére vonatkozóan a követ-
kez® volt. Legyenek B1, B2, . . . , Bt azok a ládák, amelyekbe az aktuális tárgy
pakolható. Ha t = 1, akkor egyértelm¶, hogy melyik ládába került az aktuális
tárgy, mivel csak egy láda van nyitva. Ha viszont t > 1, akkor több láda
közül választhat az algoritmus. Minden megfelel® ládára kiszámítottam, hogy
mennyi a bennük lév® tárgyak méretének átlaga, ezeket jelölje x1, x2, . . . , xt,
az aktuális tárgy méretét pedig x. Ekkor minden láda esetében megadtam az
(x − xi)

2 kifejezés értékét, és a legkisebbet választottam, ami megadta, hogy
a Bi ládába kell pakolni, ahol 1 ≤ i ≤ t. Sajnos ez a választási stratégia
nem bizonyult hatékonynak. Néhány esetben javított az eredményen, máskor
rontott, de összességében nem lett jobb az eljárás.

4.3.4. Összefoglalás

Az eredmények alapján az látható, hogy megfelel® paraméterek megválasztása ese-
tén az MMask igen hatékonyan m¶ködik, és a legtöbb esetben jobb eredményt ad,
mint a korábban vizsgált algoritmusok. Lehetséges, hogy azoknál az alosztályoknál,
ahol nem sikerült javítani a korábbi eredményeken, ott is van egy olyan paraméter-
beállítás, amivel sikerülhet jobb eredményt produkálni. A kérdés csupán az, hogy
milyen stratégia mentén kell a paramétereket megválasztani, hogy jobb eredménye-
ket érjen el az algoritmus a korábbiaknál. A következ® alfejezetben ezzel a kérdéssel
foglalkozom.
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4.4. Paraméter optimalizálás

A vizsgálatok során kiderült, hogy amennyiben az MMask algoritmus paraméterei
megfelel®en vannak megválasztva, akkor az MMask igen jó eredményeket tud elérni.
Ezért, a legtöbb problémaosztály választásakor (amelynek ismertek a paraméterei:
ládaméret, a tárgyak méretének eloszlása, a tárgyak száma és a G nyereségfügg-
vény), az MMask képes messze túlteljesíteni a korábban tárgyalt algoritmusokat
(DNF, H(K) és SH(K)). A nehézség viszont pont az MMask paramétereinek megvá-
lasztása. Az egyik megoldás a manuális választás, amikor egyszer¶en próbálgatjuk
a paramétereket és megvizsgáljuk, hogy az egyes beállításokkal milyen eredményt
kaptunk. Ez nyilvánvalóan nehézkes, lassú és nem biztos, hogy megtaláljuk azt a
paraméter-beállítást az adott feladatosztályhoz, ami legalább olyan eredményt ga-
rantál, mint a korábbi algoritmusok eredményei.

Ebben a fejezetben egy természetesen adódó eljárást mutatok be, amelynek fel-
adata a paraméterek automatizált keresése. Az ilyen optimalizálást hiperparaméter
optimalizálásnak nevezik. Az implementált eljárást EoA-nak neveztem el (ugyan-
ilyen néven szerepel a már korábban, a témához kapcsolódóan megjelent publikáci-
óban [42] is).

Ezzel a módszerrel szeretném az MMask algoritmus paramétereit optimalizálni.
Ez azt jelenti a gyakorlatban, hogy az optimalizáló eljárás a paraméter-beállításokat
vizsgálja, megváltoztatja és a kapott futási eredmények alapján képes különbsé-
get tenni az egyes beállítások jósága között. A hiperparaméterek optimalizálása
legtöbbször o�ine probléma, hiszen az optimalizálás el®re megadott (azaz ismert)
adathalmazokat alkalmazva történik.

A megoldás során szomszédsági struktúrát de�niálunk a paraméter-beállítások
között. Létezik hasonló algoritmus az irodalomban, például [101], amely a legjobb
paraméter-beállítást igyekszik megtalálni. A megoldásom kulcsa az, hogy létrehozok
egy �exibilis algoritmuscsaládot, ahol az algoritmusok között de�niálásra kerül egy
lehetséges szomszédsági struktúra. A megoldások el®állítására a lokális keresést
alkalmazom, ahol a meta-algoritmus néhány szabály betartása mellett lépked az
egyik algoritmusról a másikra azért, hogy a lehet® legjobb algoritmust megtalálja.
A lokális keresés megállási feltétele jelenleg 1000 iteráció. Vizsgáltam magasabb
iterációszámra is, azonban a tapasztalatok alapján 1000 iteráció felett már nem
javult a megoldás.

A szomszédsági struktúra a különböz® MMask algoritmusok között természe-
tes módon de�niálható. Egy konkrét MMask(K,α, β) algoritmus szomszédját úgy
kapjuk meg, hogy a K, α, β paraméterek közül egyet módosítunk. Legyen ∆ egy
kis pozitív konstans, ekkor minden αi, β paraméter a ∆ értékével lesz növelve vagy
csökkentve úgy, hogy az új érték pozitív marad és kisebb lesz, mint a ládaméret.
A K értéke is változik 1 egységgel negatív vagy pozitív irányba. (Egy másik le-
het®ség lehetne, hogy egyszerre több paramétert változtatunk. Ennek várhatóan
az lenne a hatása, hogy a keresés felgyorsul, viszont nagyobb eséllyel maradnának
felderítetlenül a keresési tér egyes részei.)

Az MMask algoritmusra a lokális keresést alkalmaztam a korábban bemutatott
feladatosztályokat felhasználva. A 4.12. táblázatban az F osztályra vonatkozóan
látható a korábbi algoritmusok (DNF, H(K), SH(K)) által elért eredmények közül a
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legjobb (MAX), az MMask által kiszámított legjobb eredmény (BMM, mint Best of
MMask rövidítése). A fennmaradó oszlopokban (O1-O5) pedig az MMask új verziói
által elért legjobb eredmények láthatók a paraméterek optimalizálása után, amely
lokális kereséssel valósult meg.

A 4.12. táblázatból láthatóan kimaradt az S osztály. Ennek oka, hogy koráb-
ban a DNF már megtalálta az optimális megoldást, amit nyilvánvalóan nem lehet
már javítani, így felesleges volna erre is futtatni az MMask algoritmust, kiegészítve
a paraméter optimalizálással. Azonban az F osztályra a fentebbi állítás már nem
igaz. Így els®ként erre a feladatosztályra próbáltam el®ször manuálisan megfelel®
paraméter-beállítást találni. Látható, hogy az MMask alapbeállításával (BMM osz-
lop) már sikerült felülmúlni a korábbi algoritmusok legjobb teljesítményét (MAX
oszlop) minden esetben. Az MMask kezdeti alapbeállítása a 4.10. táblázatban ol-
vasható.

Osztály MAX BMM O1 O2 O3 O4 O5
F1G1 414 424 436
F1G2 394 401
F1G3 415 419 427
F4G1 3459 3603 3625
F4G2 3287 3319 3331
F4G3 3406 3547 3553

4.12. táblázat. Az MMask optimalizált paramétereinek eredménye az F osztály
esetében

Az O1-O5 paraméter-beállítások az egyes problémákra külön-külön lettek meg-
határozva. Például az O1 az F1G1-re, az O2 az F1G3-ra és így tovább. Látható,
hogy az F1G2 probléma kivételével mindegyikre sikerült paraméter optimalizálás-
sal olyan beállításokat találni, amely a korábbi legjobb MMask eredményt (BMM
oszlop) is javították. A 4.13. táblázatban megadom az O1-O5 beállítások lokális
keresés által kapott pontos értékeit.

Beállítás K αk β
O1 4 [113,222,286,388] 175
O2 4 [94,221,316,410] 267
O3 5 [64,197,286,395,495] 199
O4 2 [100,101] 198
O5 3 [89,103,104] 218

4.13. táblázat. Az MMask paramétereinek lokális kereséssel való beállítása (O1-O5)

A következ®kben az LR osztályra szeretném bemutatni a hasonlóan elvégzett
vizsgálatot. Itt a paraméter-beállításokat O6-O14 jelöléssel láttam el, az eredmé-
nyek a 4.14. táblázatban láthatók. Az egyéb oszlopok jelölése ugyanaz, mint a
4.12. tábla esetében. Látható, hogy a BMM oszlopban olvasható érték a MAX
oszlop értékéhez viszonyítva az LR2G3 és LR3G2 esetében nem javult (ezt *-gal
jelöltem). Továbbá a BMM oszlop eredményét nem sikerült javítani semmilyen, a
lokális kereséssel optimalizált paraméter-beállítással sem az LR1G2 esetében (ezt **
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karakterekkel jelöltem). Minden más problémánál a BMM érték javult az optimali-
zált paraméterválasztással. A javulás 9 sort érintett a 12-b®l, azaz 75%-ban sikerült
javítani az eredményeken.

Osztály MAX BMM O6 O7 O8 O9 O10 O11 O12 O13 O14
LR1G1 516 538 539
LR1G2 481 498**
LR1G3 513 521 527
LR2G1 1132 1146 1158
LR2G2 1060 1059 1060
LR2G3 1126 1116*
LR3G1 2165 2232 2245
LR3G2 2035 2015*
LR3G3 2155 2156 2166
LR4G1 4086 4242 4257
LR4G2 3754 3786 3788
LR4G3 4046 4086 4087

4.14. táblázat. Az MMask optimalizált paramétereinek eredménye az LR osztály
esetében

A 4.15. táblázatban megadom az O6-O14 beállítások lokális keresés által kapott
paraméterek pontos értékeit.

Beállítás K αk β
O6 5 [106, 205, 292, 413, 490] 238
O7 5 [130, 204, 304, 393, 473] 238
O8 5 [128, 194, 308, 414, 481] 241
O9 4 [218, 197, 211, 185] 558
O10 5 [100, 205, 299, 402, 498] 214
O11 4 [220, 224, 320, 409] 373
O12 5 [102, 199, 302, 399, 498] 214
O13 4 [225, 220, 206, 214] 563
O14 4 [201, 199, 301, 400] 353

4.15. táblázat. Az MMask paramétereinek lokális kereséssel való beállítása (O6-
O14)

3. Megjegyzés. A fent bemutatott eredmények esetében az O1-O14 beállítások a lo-
kális kereséssel lettek el®állítva úgy, hogy a kiindulási beállítás a manuálisan megta-
lált legjobb volt minden esetben. Továbbá két alapbeállítást is alkalmaztam, amelyeket
BASIC_1 és BASIC_2-nek neveztem el, amelyek a következ®k voltak:

� BASIC_1: K ne legyen se túl kicsi, se túl nagy, azaz pl.: K = 4, αi = 200
∀i-re, ahol 1 ≤ i ≤ K, β = 200

� BASIC_2: K = 4, α = [100, 200, 300, 400], β = 200
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Az ok, amiért két kitüntetett alapbeállítást is alkalmaztam az, hogy a korábbi manu-
ális beállítások keresése során ez a két beállítás jó eredményeket hozott. Ellenben az
kiderült, hogy ha a lokális keresést egy korábbi manuális beállításból indítom vagy az
egyik alapbeállításból, az szigni�kánsan nem befolyásolja az optimalizáció végeredmé-
nyét.

A vizsgálatok alapján az mondható, hogy a lokális keresés segítségével egy "jó
paraméter-beállítás" megtalálható. Természetesen, fejlettebb eljárásokkal valószín¶-
leg még jobb beállításokat lehetne elérni, azonban ez egy jöv®beni továbbfejlesztési
lehet®ség jelenleg. A témához kapcsolódó korábbi publikációban [42] a paraméterek
beállítására a szimulált h¶tést alkalmazták a szerz®k, ami kicsit jobb eredményeket
mutatott, mint a lokális keresés.

A jobb paraméter-beállítások megtalálásához jól alkalmazható a lokális keresés,
azaz képes megoldani a paraméterek automatikus keresését úgy, hogy a korábbi
algoritmusok és a manuálisan beállított paraméterek eredményeit®l jobb eredmé-
nyeket ér el. Ez nagy könnyebbség, hiszen a paraméterek kézi beállítását kiváltja.
Továbbá, az MMask és a lokális keresés, mint paraméteroptimalizáló fúziója haté-
konynak bizonyult. A paraméter beállításokra vonatkozó további lehet®ségekkel a
4.6. alfejezetben foglalkozom.

4.5. Részletes vizsgálat

Ebben az alfejezetben részletesebb vizsgálatokat szeretnék bemutatni az SH(K) és
MMask algoritmusok összehasonlításában. Itt az MMask algoritmusnak már a loká-
lis kereséssel való kiegészített változatát tekintjük. A vizsgálatok során a korábban
már bemutatott feladatosztályokat alkalmaztam. Tekintsük az F1G1 osztályt. Vá-
lasszuk ki azt a korábbi algoritmust (DNF, H(K) és SH(K) közül), amely a legjobb
eredményt adta ezen az osztályon. A 4.7. táblázat alapján ez az SH(K) algoritmus
volt, K = 4 beállítással, azaz az SH(4). Az SH(4) eredménye 414 volt, a többi
algoritmusé rosszabb. Ezért a 4.16. táblázatban az SH(4) algoritmus eredményeit
hasonlítom össze az MMask eredményeivel az F1 osztályban található összes fel-
adatra nézve a G1 nyereségfüggvényt kiértékelve. Az MMask esetében az F1G1
osztályra vonatkozóan a lokális kereséssel megtalált legjobb beállítás az O1 volt a
4.12. táblázat alapján, így ezt a beállítást alkalmaztam itt is. Az O1 beállítással
futtatott MMask eredménye 436 volt.

Fontos hangsúlyozni, hogy ez az eredmény az F1 osztály legels® feladatára volt
csak érvényes, így az O1 beállítás csak erre a feladatra lett kiszámítva. A vizsgá-
lat tárgya az, hogy az F1G1 osztályban az els® feladatra optimalizált paraméter-
beállítás a többi feladat esetében milyen eredményt hoz az SH(4) algoritmussal
összehasonlítva. Az eredmények itt is lefelé vannak kerekítve.

A 4.16. táblázatban foglalt eredmények ígéretesek, ugyanis azt mutatják, hogy
egy feladat kivételével (Falkenauer_u120_19_G1) az MMask az optimalizált paraméter-
beállításokkal a 20 feladatból 19 feladat esetén jobb eredményeket ért el, mint az
SH(4) úgy, hogy az O1 paraméter-beállítások csak a legels® feladatra (Falkenau-
er_u120_00_G1) lettek optimalizálva. A Falkenauer_u120_19_G1 feladat ese-
tében az SH(4) kerekítés nélküli, eredeti értéke 423,1 volt, míg az MMask értéke
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Feladat példány SH(4) O1
Falkenauer_u120_00_G1 414 436
Falkenauer_u120_01_G1 394 434
Falkenauer_u120_02_G1 385 403
Falkenauer_u120_03_G1 404 432
Falkenauer_u120_04_G1 414 444
Falkenauer_u120_05_G1 403 425
Falkenauer_u120_06_G1 413 432
Falkenauer_u120_07_G1 405 435
Falkenauer_u120_08_G1 435 453
Falkenauer_u120_09_G1 384 406
Falkenauer_u120_10_G1 444 474
Falkenauer_u120_11_G1 402 442
Falkenauer_u120_12_G1 413 434
Falkenauer_u120_13_G1 413 423
Falkenauer_u120_14_G1 423 445
Falkenauer_u120_15_G1 404 431
Falkenauer_u120_16_G1 443 465
Falkenauer_u120_17_G1 444 466
Falkenauer_u120_18_G1 405 435
Falkenauer_u120_19_G1 423 422

4.16. táblázat. SH(4) és az MMask összehasonlítása O1 beállítás mellett az F1G1
osztályon

422,9. Látható, hogy a különbség csupán 0,2. Az eredmények összességében azt
mutatják, hogy a lokális kereséssel valóban tudunk olyan beállítást találni, ami jobb
eredményeket hoz, mint a korábbi algoritmusok. Megjegyzend®, hogy a feladatosz-
tályban szerepl® feladatok esetén ismeretes, hogy a tárgyak milyen intervallumból
kerülnek ki és az, hogy a generálásuk egyenletes eloszlás mellett történt. Mivel min-
den feladatban szerepl® tárgyméretek azonos módszerrel kerültek generálásra, így a
feladatok hasonlóságot mutatnak egymással.

Hasonló vizsgálatot végeztem az F1G2 és F1G3 osztályok esetében is. Itt a fel-
adatosztály ugyanaz, mint az el®z® esetben, viszont a nyereségfüggvények nem, azaz
a pro�t kiszámítására a G2 és G3 nyereségfüggvényeket alkalmaztam. Az eredmény
hasonló volt, azaz az MMask minden esetben jobb eredményt ért el, mint az SH(4).
Az alábbiakban egy összefoglaló táblázatot (4.17) ismertetek, amelyben az F1 és
F4 osztályok eredményét mutatom be mindhárom nyereségfüggvény esetében. A
táblázatban a feladatosztályok esetében a legjobb, legrosszabb és az átlagos ered-
mények kerültek megadásra. Minden feladatosztály esetében az MMask alkalmazása
el®tti algoritmusok közül (DNF, H(K), SH(K)) az SH algoritmus volt a legjobb, va-
lamilyen K beállítása mellett. Az MMask esetében pedig a legjobbnak bizonyult
paraméter-beállítást adtam meg.

4. Megállapítás. Az MMask minden esetben jobb eredményeket ért el, mint az SH
algoritmus. Ez alapján kijelenthet®, hogy a lokális keresés alapú optimalizáló eljárás
hatékony.
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Osztály SH MMask
K legrosszabb átlag legjobb beállítás legrosszabb átlag legjobb

F1G1 4 384 413 444 O1 403 437 474
F1G2 2 367 394 431 BASIC_1 386 406 440
F1G3 3 383 411 444 BASIC_1 404 433 464
F4G1 5 3372 3460 3555 O3 3552 3623 3715
F4G2 2 3215 3301 3403 O4 3272 3334 3479
F4G3 3 3381 3443 3528 BASIC_1 3528 3587 3678

4.17. táblázat. Az SH és az MMask összehasonlítása az F1 és F4 osztályokon

5. Megállapítás. Az MMask még jobb eredményeket érne el, ha az adott feladatosz-
tály esetében nem csak az els® feladatra, hanem mindegyikre, külön-külön elvégeznénk
a paraméterek beállítását. Viszont ebben az esetben az algoritmust nem hívhatnánk
online algoritmusnak. Emiatt az aranyközépút az lehet, hogy egy feladatosztály ese-
tében nem egy feladatra és nem is az összesre, hanem csak néhányra alkalmazzuk a
paraméterek optimalizálását. Például, ha van 20 feladat egy osztályban, akkor 5 fel-
adaton elvégezzük a paraméter-beállítást, majd a maradék 15 feladaton alkalmazzuk.

Az F osztály vizsgálata után következzen az LR osztály vizsgálata is, amelynek
eredményei a 4.18. táblázatban láthatók. Zölddel van jelölve az a néhány eset, ahol
MMask nem javított.

Osztály SH MMask
K legrosszabb átlag legjobb beállítás legrosszabb átlag legjobb

LR1G1 4 465 510 548 O6 460 530 565
LR1G2 4 428 481 530 M6 430 480 525
LR1G3 4 462 507 546 O7 447 508 545
LR2G1 4 993 1061 1132 O8 1021 1110 1158
LR2G2 4 930 999 1061 O9 945 999 1061
LR2G3 4 988 1056 1126 M6 1009 1065 1120
LR3G1 4 1997 2099 2186 O10 2106 2202 2295
LR3G2 4 1868 1964 2061 M6 1884 1977 2095
LR3G3 4 1988 2088 2176 O11 2050 2142 2232
LR4G1 5 3934 4069 4196 O12 4095 4259 4386
LR4G2 4 3569 3743 3872 O13 3684 3795 3912
LR4G3 5 3525 3703 3850 O14 3989 4120 4262

4.18. táblázat. Az SH és az MMask összehasonlítása az LR osztályon

Ebben az esetben az MMask már nem volt jobb minden esetben. A táblázatban
zölddel jelöltem azokat az eredményeket, ahol az SH algoritmus jobban teljesített. A
4.17. és a 4.18. táblázatokban foglalt eredményekhez két fontos konklúzió tartozik.

6. Megállapítás. Csak néhány esetben volt jobb az SH, mint az MMask. Ezekben
az esetekben ráadásul az MMask nem sokkal maradt el az SH eredményeit®l. Ennek
oka lehet a nem megfelel® paraméter-beállítás, vagy az SH algoritmus azon tulajdon-
sága, hogy az azonos méret¶ tárgyakat igyekszik egy ládába pakolni. Ráadásul az LR
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osztályban a tárgyak méreteit tekintve nagy a diverzitás. Valószín¶leg a paraméterek
további javításával az SH algoritmus ezen el®nye elt¶nne.

7. Megállapítás. Az LR1 osztály esetében a 9 értékb®l 5 érték esetében teljesített
rosszabbul az MMask, mint az SH. Az LR2 esetében csak egy ilyen érték látható, az
LR3 és LR4 esetében pedig az MMask volt a jobb minden tekintetben. Ez azt jelenti,
hogy ha az adott feladatnál a tárgyak mérete minél nagyobb, az annál jobb az MMask
algoritmus teljesítményére nézve.

4.6. További lehet®ségek

Ebben az alfejezetben néhány további lehet®séget említek meg, amely a téma jöv®-
beni folytatása is lehet. Els®ként a MMask algoritmusra vonatkozó továbbfejlesztési
lehet®ségeket adom meg:

� Az alkalmazott paraméter optimalizálási eljárás, a lokális keresés egy könnyen
implementálható megoldás. Helyette alkalmazható lenne más eljárás is, példá-
ul a szimulált h¶tés vagy tabukeresés. Az általam alkalmazott lokális keresés
megállási feltétele jelenleg 1000 iteráció, mert azt tapasztaltam, hogy ennyi
elegend® a lokális maximum eléréséhez.

� A szomszédságon alapuló keresés kiváltására más optimalizáló algoritmus tesz-
telése is érdekes lehet, például genetikus algoritmus alkalmazása. Genetikus
Algoritmus (GA) esetén adott egy populáció, ebben a feladat megengedett
megoldásai az egyedek. Valamilyen szelekciós szabályt alkalmazunk bizonyos
egyedek kiválasztására, és a kiválasztott egyedeken valamilyen m¶veleteket
(operációkat) alkalmazunk, ezek lényegében a mutáció (mutation) és a keresz-
tezés (crossover). Ezek után feltöltünk az új egyedekkel egy új populációt, és
valamely populáció után megállunk. A vizsgált feladatunk esetén a mutáció
operátor minden gond nélkül alkalmazható. Ez ugyanis a kiválasztott megen-
gedett megoldás (egyed) kis mérték¶ megváltoztatását jelenti, épp úgy, mint
az általunk alkalmazott lokális keresés esetén. Fejlett genetikus algoritmusok-
nál egyébként gyakran el®fordul, hogy mutáció helyett lokális keresést alkal-
maznak. A keresztezés m¶veletét vizsgáljuk meg részletesebben, hogy a fel-
adatunkra (az MMask algoritmus paraméterei optimalizálására) hogyan lehet
alkalmazni. Csak akkor alkalmazunk keresztezést, ha a kiválasztott mindkét
egyed esetén a megengedett ládák számát meghatározó K paraméter ugyanaz
(legyen például K=4). Legyenek tehát a kiválasztott egyedek a következ®k:

� (K = 4, α11, α12, α13, α14, β11)

� (K = 4, α21, α22, α23, α24, β21)

A gyerek egyed (o�spring) esetén is természetesen K = 4 lesz. Az alfa és
béta értékek között pedig alkalmazhatjuk azt a szabályt, hogy egyesével vá-
lasztunk az els® illetve a második egyedb®l, a szokásos módon: Egy véletlen
számot generálunk 0 és 1 között. Ha ez 0.5-nél kisebb, akkor az els® vektorból
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választjuk a megfelel® értéket, egyébként pedig a másodikból. Az alfa érté-
kek választása történhet másképpen is, választunk egy véletlen számot 1 és 4
között (és kerekítjük). Legyen például 2. Akkor az els® kett® alfát az els® vek-
torból választjuk, a maradék kett®t pedig a másik vektorból. Összefoglalva,
úgy gondolom hogy a paraméter optimalizálás lehetséges GA alkalmazásával
is. Továbbá a lokális keres® helyettesíthet® lenne tabukereséssel vagy szimulált
h¶téssel. Mindezekre kés®bb, további kutatás során kerülhet sor.

� A vizsgálatok során kiderült, hogy az SH(K) algoritmus K = 4 esetében igen
hatékony volt számos feladatra az LR osztályból (4.6. táblázat). Ez alapján
érdekes lehet az SH(4) és az MMask algoritmusok valamilyen fúziója. Egy
egyszer¶ lehet®ség lenne az, hogy mindkét algoritmust futtatjuk és a jobb
eredményt adót választjuk.

� Az MMask algoritmus a 2. lépésben az aktuális tárgyat véletlenszer¶en pa-
kolja valamelyik megfelel® ládába. Lehetséges, hogy ha ebben a lépésben a
ládát nem véletlenszer¶en választja az algoritmus, hanem valamilyen szabály-
rendszer alapján, akkor azzal növelhet® lesz az MMask teljesítménye. Két
módosítást próbáltam ki ezzel kapcsolatban:

1. Az aktuális tárgyat a megfelel® ládák közül a legnagyobb töltöttség¶be
pakolta az algoritmus. Ennek a logikája az lenne, hogy ezáltal a megenge-
dett ládatartományon belül változatosabb lesz a ládák szintje (növekszik a
maximális és minimális ládaszint közötti különbség). Ett®l a módosítástól
azt vártam, hogy az algoritmus rugalmasabb lesz, jobban tudja kezelni
a következ® tárgy pakolását: ha kicsi a mérete, olyan ládába tesszük,
amelyik eléggé meg van már töltve, ha pedig nagy a mérete, olyan ládába
tesszük, amelynek kisebb a szintje. Tehát, ha változatosabb a ládák szint-
je, attól azt reméltem, hogy az algoritmus hatékonysága javul. Viszont
a tapasztalat azt mutatta, hogy ez a módosítás semmilyen szigni�káns
javulást nem mutatott. Néhány bemenetre kicsit jobb eredményt ért el,
más bemenetek esetében viszont rontott.

2. Legyenek B1, B2, . . . , Bt azok a ládák, amelyekbe pakolható tárgy a 2.
lépésben. Ha t = 1, akkor pontosan egy ilyen megfelel® láda van és
ebbe kerül az aktuális tárgy. Ha t > 1, akkor az algoritmus kiszámolja
a B1, B2, . . . , Bt ládák mindegyikére a bennük lév® tárgyak átlagméretét,
amelyek rendre legyenek x1, x2, . . . , xt. Az aktuális tárgyat abba a ládába
pakolja az algoritmus, amely ládának az átlagtöltöttsége a "legközelebb
van" a tárgy xméretéhez, azaz amely láda esetében az (x−xi)

2 a legkisebb
1 ≤ i ≤ t esetén. Sajnos ez a módosítás sem javított szigni�kánsan az
eredményeken. Néhány feladat esetében kicsit jobb, mások esetében kicsit
rosszabb eredményt számolt.

A bemutatott algoritmusok és eredmények a vizsgálat els® szakaszát jelentették.
Természetesen lehetnek további opciók is a továbbfejlesztésre és a további vizsgá-
latokra vonatkozóan. Ezenkívül számos kérdés felmerül még, amely ugyancsak a
vizsgálatok kiterjeszthet®ségére vonatkozik.
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� Az eredeti feladatosztályokban szerepl® problémák tárgysorrendjét megváltoz-
tattam, ami azt jelenti, hogy az eredeti csökken® sorrendet véletlenszer¶ sor-
rendre alakítottam át. Mi történik, ha más sorrendet választok? A rendezetlen
sorrend maradna, viszont nem véletlenszer¶en, hanem más szabály szerint ala-
kítanám ki azt. Vajon ugyanazok az eredmények születnének, mint most?

� Mi történne, ha az eredeti csökken® sorrendet növekv® sorrendé alakítanám?

A korábban bemutatott algoritmusokon kívül egy ötödik verzió is implementá-
lásra került, amelyet DN-nel jelöltem, ugyanis ez az algoritmus a DNF algoritmus
párjának is tekinthet®. Megadott K érték esetén az algoritmus minden esetben k
ládát tart nyitva, és k = K. Az eredeti DNF algoritmus is így m¶ködött, viszont
ott a K értéke minden esetben 1 volt, azaz egy láda lehetett csak nyitva egyszerre.
A DN algoritmus esetében a cél pedig az, hogy K > 1 esetekre vizsgáljuk meg az
eredményeket. Megjegyzem, hogy mivel mindig több láda van nyitva, ez az algorit-
mus változat biztosan nem lehet hatékony abban az esetben, ha a haszonfüggvény
gyorsan csökken®, de azt nem lehetett tudni el®re, hogy talán más esetben hatékony
lehet-e. Az algoritmus minden tárgyat a nyitott ládák közül abba pakol, amelynek
a legkisebb a töltöttsége.

Az algoritmus tesztelése megtörtént K = 2, 3, 4, 5 értékekre. Az eredményeket
összehasonlítottam a korábbi algoritmusok (DNF, H(K), SH(K)) eredményei közül
a legjobbal. Az eredmények a 4.19. és a 4.20. táblázatokban láthatók. A K értékek
alatt a DN algoritmus futási eredményei láthatók, a MAX oszlopban pedig az el®z®
algoritmusok eredményei közül a legjobb, mellette pedig a DN algoritmus legjobb
eredménye.

Osztály K MAX
2 3 4 5 el®z® DN

S1G1 148 137 135 124 160 148
S1G2 135 112 98 78 160 135
S1G3 147 134 129 114 160 147
F1G1 366 352 349 336 414 366
F1G2 333 288 252 210 394 333
F1G3 364 345 333 308 415 364
F4G1 3187 3145 3103 3071 3459 3187
F4G2 2898 2568 2240 1920 3264 2898
F4G3 3171 3081 2960 2816 3406 3171

4.19. táblázat. A DN algoritmus eredményei az S és F osztályokra

A táblázatokban foglalt eredmények alapján látható, hogy a DN algoritmus a
DNF, H(K) és SH(K) legjobb eredményeit sem tudta javítani, ebb®l pedig az kö-
vetkezik, hogy az MMask eredményeit®l is messze elmarad. A gyenge teljesítmény
oka az lehet, hogy az algoritmus feleslegesen tart nyitva sok ládát (pl. K = 4 esetén
mindig négyet) és emiatt a nyereségfüggvény értéke minden fedett láda után ugyan-
az. Azaz, ha pl. K = 4, akkor az algoritmus mindig négy ládát tart nyitva és egy
fedett ládáért mindig G(4) pro�tot kap. Ebb®l könnyen belátható, hogy a pro�t
értéke konstanssá válik, azaz nem tud tovább növekedni (bár csökkenni sem).
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Osztály K MAX
2 3 4 5 el®z® DN

LR1G1 425 411 397 384 516 425
LR1G2 387 336 287 240 481 387
LR1G3 423 403 379 352 513 423
LR2G1 970 950 931 912 1132 970
LR2G2 882 776 672 570 1060 882
LR2G3 965 931 888 835 1126 965
LR3G1 1900 1871 1843 1814 2165 1900
LR3G2 1728 1528 1330 1134 2035 1728
LR3G3 1891 1833 1757 1663 2155 1891
LR4G1 3613 3567 3521 3475 4086 3613
LR4G2 3285 2912 2541 2172 3754 3285
LR4G3 3595 3494 3357 3185 4046 3595

4.20. táblázat. A DN algoritmus eredményei az LR osztályra
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5. fejezet

Összefoglalás

Az alábbiakban egy összefoglalást kívánok adni az elvégzett munkáról és az új tudo-
mányos hozzájárulásokról. A dolgozatban alapvet®en három területtel foglalkoztam,
amelyek az ütemezés, a ládapakolás és a ládafedés szállítással voltak. Mindhárom
terület NP-nehéz.

Az ütemezés területén a független gépek ütemezése megel®zési relációkkal típusú
feladatokat igyekeztem megoldani meger®sítéses tanulás támogatásával. A megoldás
célja az er®források munkákhoz való rendelése úgy, hogy �gyelembe vesszük a meg-
el®zési relációkat és igyekszünk a teljes átfutási id®t (makespan) minimalizálni. A
megel®zési relációk leírása irányított és egyszer¶ gráf segítségével történt, ahol a gráf
diszjunkt utak és izolált pontok uniója. A megel®zési reláció két tevékenység között
azt adja meg, hogy a tevékenységek végrehajtása milyen sorrendben történhet meg.
A megel®zési relációk miatt a tevékenységek sorrendje fontos, befolyásolja a teljes
átfutási id®t. Az általam kifejlesztett megoldás két f® komponensre bontható fel: a
tevékenységek sorrendjét meghatározó eljárás és a mohó módon ütemez® algoritmus.
A sorrend meghatározását a meger®sítéses tanulás területén ismert Q-tanulással va-
lósítottam meg. A kidolgozott algoritmus neve Q-Learning Motivated Algo-
rithm (QLM). A kidolgozott algoritmus tesztelésére négy feladatosztályt hoztam
létre (Class #1, Class #2, Class #3 és Class #4), amelyek közül a Class #1 és
Class #2 könny¶nek tekinthet®k, a Class #3 közepesen nehéz, a Class #4 pedig
extrém nehéz. Az algoritmus teljesítményét az LB1, LB2 alsó korlátokkal mértem,
továbbá megadtam ezek maximumát az LB = max{LB1, LB2} segítségével. A
QLM minden esetben megtalálta az optimális megoldást, amikor a CPLEX is. Bi-
zonyos esetekben a CPLEX-nél jobb vagy lényegesen jobb megoldást adott a QLM,
a többi esetben pedig az optimálishoz közeli megoldás született, azaz közel volt az
LB értékéhez. Ezen a területen az alábbi tudományos hozzájárulások valósultak
meg:

1. Az Rm|prec|Cmax feladat megoldására létrehoztam egy meger®sítéses tanulás
által támogatott algoritmust (QLM).

2. Az algoritmus vizsgálatára létrehoztam új feladatosztályokat.

3. A QLM algoritmus futását összehasonlítottam az irodalomban lev®, valamint
a CPLEX megoldó által szolgáltatott eredményekkel. Az eredmények alapján
a QLM algoritmus a vizsgált feladatosztályokon belül hatékonyan m¶ködik.
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A ládapakolási feladat esetében tárgyakat pakolunk ládákba úgy, hogy az egy lá-
dába pakolt tárgyak összmérete ne lépje túl a láda kapacitását és a felhasznált ládák
száma minimális legyen. A problémát új megközelítésben vizsgáltam, amely sze-
rint egy adott feladatosztályba tartozó inputok közül a lehet® legtöbbet igyekszünk
megoldani optimálisan mohó algoritmusokkal. A cél a lehet® legtöbb input optimá-
lis megoldása. Mivel a ládapakolás NP-nehéz, ezért nem elvárható, hogy az összes
feladat esetén megkapjuk az optimális megoldást. Feladat-osztályoknak a Schwe-
rin és a Falkenauer_U osztályokat választottam. Mindkét feladatosztály esetében
az optimális megoldások az irodalomból már ismertek, azonban az algoritmusaim
futásához nem szükséges az optimumértékek el®zetes ismerete. A Schwerin és a
Falkenauer_U feladat-osztályokban található inputok megoldására két algoritmust
készítettem: a Schwerin osztályhoz a REM SW, a Falkenauer_U osztályhoz az
FU algoritmust. Mindkét algoritmus a feladatosztályok különböz® tulajdonságait
kihasználva oldja meg az ott található inputokat. A REM SW algoritmus a Schwerin
feladatosztály mind a 200 darab feladatát, míg az FU algoritmus a Falkenauer_U
osztály 80 feladatából 73-at oldott meg optimálisan. Ezen a területen az alábbi
tudományos hozzájárulások valósultak meg:

1. Megvizsgáltam, hogy a Schwerin és a Falkenauer_U osztályok milyen, a meg-
oldás szempontjából kihasználható tulajdonságokkal rendelkeznek.

2. Mohó algoritmusokat hoztam létre a Schwerin és a Falkenauer_U osztályok
számára.

3. A REM SW algoritmus a Schwerin osztály mind a 200 feladatát optimálisan
megoldotta.

4. Az FU algoritmus a Falkenauer_U feladatosztály 80 inputjából 73 darabot
(91%) optimálisan megoldott.

A ládafedés szállítással egy viszonylag új terület. Mint a ládapakolás esetében,
itt is tárgyakat pakolunk ládákba. Azonban itt ahelyett, hogy az egy ládába pakolt
tárgyak összmérete ne lépje túl a láda kapacitását, az a feltétel van, hogy a tárgyak
összmérete legalább akkora kell hogy legyen, mint a láda kapacitása. Egy ládát fe-
dettnek tekintünk, ha a benne lev® tárgyak összmérete legalább a láda kapacitásával
egyenl®. Minden elszállított (azaz fedetté vált) láda után pro�tot realizálunk el®-
re meghatározott célfüggvény alapján. A cél a pro�t maximalizálása. A megoldás
során számon tartunk egy K > 0 pozitív egész számot, amely megadja, hogy hány
láda lehet nyitva egyszerre. A kutatás során már az irodalomból ismert természetes
algoritmusokat implementáltam (DNF, H(K) és SH(K)), valamint kidolgoztam
egy új, rugalmas, paraméteres algoritmust is, amelynek az MMask nevet adtam.
Az algoritmusok tesztelésére a korábban már alkalmazott Schwerin és Falkenau-
er_U osztályokat, valamint egy általam létrehozott Large Range (röviden: LR) ne-
v¶ feladatosztályt használtam. A nyereség-függvényekb®l hármat de�niáltam: egy
lassan csökken®, egy el®ször lassan, majd négyzetesen csökken® és egy meredeken
csökken® változatot. A feladat-osztályokon módosításokat hajtottam végre: meg-
bontottam a rendezettséget, normalizálást hajtottam végre és összekapcsoltam a
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feladat-osztályokat a nyereség-függvényekkel. Az MMask algoritmus három para-
méterrel dolgozik: K - az egyszerre nyitva tartható ládák maximális száma, α -
K-dimenziós vektor, β - pozitív egész szám. Az α és β paraméterek az algoritmus
elfogadó-elutasító politikájában kerültek felhasználásra. Az MMask algoritmus pa-
ramétereinek beállítása kezdetben kézzel, próbálgatással történt. Majd kés®bb ez
automatizálásra került a lokális kereséssel. Az eredmények alapján az látható, hogy
már a manuális paraméter-beállítás mellett is az MMask az esetek dönt® többségében
javított a természetesen adódó algoritmusok által elért addigi legjobb eredményeken,
a lokális kereséssel optimalizált paraméter-beállítás pedig ezen az esetek többségé-
ben még tovább javított. Ezen a területen az alábbi tudományos hozzájárulások
valósultak meg:

1. Részletes vizsgálatokat folytattam a területen, és ennek érdekében létrehoztam
egy új benchmark feladatosztályt Large Range (LR) néven.

2. Az irodalomban már létez® algoritmusokat implementáltam a feladatra (DNF,
H(K), SH(K)). Az implementált algoritmusokra részletes vizsgálatokat végez-
tem, és megállapítottam, hogy hatékonyan oldják meg a vizsgált feladatosztály
elemeit.

3. Egy új MMask-nak nevezett algoritmust dolgoztam ki (amely a korábbi Mask
javított változata). Megállapítottam, hogy a paraméterek megfelel® beállítá-
sával az MMask algoritmus a korábbiaknál is jobb eredményeket szolgáltat.

4. A paraméterek optimalizálására létrehoztam egy lokális keresés alapú metahe-
urisztikát, amely a legjobb eredményeket elér® beállításokat hozta létre. Rész-
letesen megvizsgáltam a további javítási lehet®ségeket.
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Függelékek

I



A. függelék

Gépi id®k a QLM algoritmus
feladataihoz

A.1. Az els®ként generált, alap feladatokhoz tartozó
gépi id®k és megel®zési relációk

m1 m2 m3 m4 m5 m6 m7 m8

task1 2 10 4 9 1 4 1 10
task2 2 6 9 2 6 7 3 5
task3 7 9 6 2 8 1 5 4
task4 6 10 8 3 8 5 4 3
task5 6 8 7 7 10 5 10 6
task6 3 5 2 1 10 9 1 3
task7 2 7 1 5 10 9 2 9
task8 2 8 6 10 8 6 2 7
task9 9 4 1 3 8 6 5 9
task10 8 1 8 7 9 5 5 6
task11 1 1 4 4 8 2 5 8
task12 5 8 3 3 5 7 10 10
task13 3 3 2 3 10 10 3 2
task14 2 7 3 3 2 7 5 6

A.1. táblázat. A #1 számú feladat gépi id® táblázata

task4 → task11 → task12
task1 → task3 → task7
task0 → task5

A.2. táblázat. A #1 számú feladat megel®zési relációi
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m1 m2 m3 m4 m5 m6 m7

task1 6 3 4 9 2 8 10
task2 9 6 7 4 10 8 3
task3 9 10 1 1 3 6 5
task4 1 1 4 1 6 4 3
task5 10 7 5 3 2 8 6
task6 7 4 10 4 10 8 7
task7 4 7 10 3 10 7 3
task8 8 7 9 2 2 5 5
task9 5 6 9 2 6 6 4
task10 6 1 4 7 8 8 6
task11 2 3 3 7 10 6 2
task12 2 9 8 4 4 5 8
task13 6 4 2 6 9 6 2
task14 10 10 6 3 10 4 7
task15 1 1 9 2 4 6 7
task16 9 7 8 9 6 3 9
task17 9 6 4 6 6 2 8
task18 5 10 5 8 4 5 2
task19 10 9 8 2 2 5 5
task20 1 10 9 6 10 5 4
task21 8 10 4 8 3 4 3
task22 5 1 8 5 9 7 6
task23 6 3 3 8 6 7 3
task24 6 2 1 7 3 5 10
task25 7 10 6 2 5 4 2
task26 5 7 6 6 10 5 10
task27 8 9 9 2 2 6 2
task28 4 10 7 4 9 5 6

A.3. táblázat. A #2 számú feladat gépi id® táblázata

task1 → task5 → task27
task2 → task8 → task13 → task20
task4 → task10
task12 → task18 → task19

A.4. táblázat. A #2 számú feladat megel®zési relációi
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m1 m2 m3 m4

task1 7 2 2 8
task2 7 5 2 6
task3 10 1 4 5
task4 4 1 8 7
task5 1 5 7 9
task6 8 3 7 2
task7 5 6 3 2
task8 3 4 7 1
task9 3 8 10 6
task10 3 10 8 7
task11 9 1 8 1
task12 2 7 3 3
task13 6 4 8 6
task14 9 6 3 1
task15 8 10 7 9
task16 7 7 5 7
task17 10 6 7 1
task18 4 2 6 8
task19 5 5 5 5
task20 1 5 4 8
task21 9 6 5 5
task22 6 3 5 6
task23 3 6 5 10
task24 6 6 9 9
task25 10 3 1 2
task26 7 10 10 6
task27 1 10 1 1

A.5. táblázat. A #5 számú feladat gépi id® táblázata

task10 → task26

A.6. táblázat. A #5 számú feladat megel®zési relációja
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A.7. táblázat. A #28 számú feladat gépi id® táblázata (els® részlet)
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A.8. táblázat. A #28 számú feladat gépi id® táblázata (második részlet)
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A.9. táblázat. A #28 számú feladat gépi id® táblázata (harmadik részlet)
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task2 → task30 → task33 → task34
task10 → task12 → task17
task60 → task65 → task66
task67 → task68 → task69
task7 → task9

A.10. táblázat. A #28 számú feladat megel®zési relációi
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A.2. A b®vített feladatokhoz tartozó gépi id®k és
megel®zési relációk összefoglaló táblázatai

A b®vített feladatok esetében osztályonként tíz feladatról van szó, azaz összesen
negyven darabról. Nyilván mindegyikhez tartozik egy gépi id® táblázat és megel®zési
relációk. Ezen táblázatok teljes terjedelm¶ közlése nem célszer¶ helyhiány miatt.

A feladatosztályokra vonatkozó összefoglaló táblázatban megadom a gépi id®k
generálásának módját, az alkalmazott diszkrét intervallumot és a megel®zési reláci-
ókat.
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A.11. táblázat. A Class #1 osztály feladatainak gépi id® adatai és megel®zési relációi
(els® részlet)
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A.12. táblázat. A Class #1 osztály feladatainak gépi id® adatai és megel®zési relációi
(második részlet)
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Class #1 osztály megel®zési relációi (összevont diszjunkt utak
formájában)

1. feladat:

task5 → task12 → task13
task2 → task4 → task8
task1 → task6

2. feladat:

task4 → task14
task2 → task3 → task8
task10 → task11
task1 → task9

3. feladat:

task11 → task13
task7 → task9
task1 → task4 → task5

4. feladat:

task2 → task10 → task11 → task12 → task7
task4 → task3

5. feladat:

task5 → task6 → task7 → task8 → task9 → task10

6. feladat:

task3 → task5
task9 → task7
task4 → task6 → task8
task13 → task14

7. feladat:

task1 → task3 → task5 → task7 → task9 → task11

8. feladat:

task2 → task4 → task6 → task8 → task10 → task12
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9. feladat:

task4 → task3
task8 → task12
task1 → task5 → task6
task7 → task10

10. feladat:

task1 → task4 → task7 → task10 → task13 → task14
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A.13. táblázat. A Class #2 osztály feladatainak gépi id® adatai és megel®zési relációi
(els® részlet)
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A.14. táblázat. A Class #2 osztály feladatainak gépi id® adatai és megel®zési relációi
(második részlet)
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Class #2 osztály megel®zési relációi (összevont diszjunkt utak
formájában)

1. feladat:

task2 → task6 → task28
task3 → task9 → task14 → task20
task5 → task11
task13 → task19 → task20

2. feladat:

task1 → task4
task8 → task23
task10 → task11 → task14
task19 → task27
task24 → task26
task15 → task17
task2 → task3

3. feladat:

task2 → task5
task9 → task24
task11 → task12 → task15
task20 → task1
task25 → task27
task16 → task18
task3 → task4

4. feladat:

task4 → task10
task3 → task11
task27 → task5 → task15
task8 → task12
task24 → task26
task22 → task21
task18 → task19
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5. feladat:

task12 → task14 → task15
task22 → task24
task23 → task25
task8 → task10 → task11
task18 → task19
task13 → task17

6. feladat:

task2 → task1
task3 → task21
task14 → task24
task5 → task8 → task10 → task11
task23 → task27
task12 → task16

7. feladat:

task13 → task3
task4 → task10
task14 → task24
task7 → task9
task5 → task11
task18 → task8
task20 → task21
task22 → task16

8. feladat:

task11 → task8
task24 → task7
task5 → task6
task7 → task9 → task19
task10 → task22
task18 → task16
task20 → task21
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9. feladat:

task7 → task3
task22 → task26
task4 → task1 → task2 → task10
task15 → task24
task17 → task19
task18 → task25

10. feladat:

task10 → task4
task11 → task13
task6 → task7 → task8 → task27
task14 → task19 → task21
task1 → task23
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A.15. táblázat. A Class #3 osztály feladatainak gépi id® adatai és megel®zési relációi
(els® részlet)
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A.16. táblázat. A Class #3 osztály feladatainak gépi id® adatai és megel®zési relációi
(második részlet)
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Class #3 osztály megel®zési relációi (összevont diszjunkt utak
formájában)

1. feladat:

task10 → task4

2. feladat:

task11 → task8

3. feladat:

task24 → task15

4. feladat:

task27 → task12

5. feladat:

task8 → task24

6. feladat:

task15 → task26

7. feladat:

task1 → task27

8. feladat:

task8 → task18

9. feladat:

task14 → task19

10. feladat:

task21 → task2
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A.17. táblázat. A Class #4 osztály feladatainak gépi id® adatai és megel®zési relációi
(els® részlet)
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A.18. táblázat. A Class #4 osztály feladatainak gépi id® adatai és megel®zési relációi
(második részlet)
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Class #4 osztály megel®zési relációi (összevont diszjunkt utak
formájában)

1. feladat:

task3 → task31 → task34 → task35
task11 → task13 → task18
task61 → task66 → task67
task68 → task69 → task70
task8 → task10

2. feladat:

task1 → task13
task5 → task9 → task10
task14 → task27
task71 → task34
task33 → task37
task57 → task48
task3 → task35
task45 → task60
task8 → task32

3. feladat:

task4 → task5 → task9 → task23
task15 → task8
task72 → task70
task37 → task44
task12 → task41
task58 → task26
task11 → task12 → task20

4. feladat:

task21 → task34 → task35 → task36
task13 → task15
task17 → task19
task22 → task23
task67 → task64
task62 → task26
task18 → task12 → task56
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5. feladat:

task2 → task3 → task4 → task5
task6 → task7
task59 → task60 → task61
task18 → task12 → task56 → task57 → task58

6. feladat:

task34 → task35 → task24
task58 → task59
task68 → task70
task69 → task4 → task5 → task10
task71 → task72
task3 → task6
task18 → task62

7. feladat:

task24 → task25 → task14
task48 → task49
task58 → task59 → task60
task61 → task62
task2 → task7
task4 → task11
task5 → task6
task19 → task63

8. feladat:

task1 → task2 → task3 → task49
task4 → task59 → task68 → task71
task12 → task66 → task70
task5 → task6
task19 → task63

9. feladat:

task71 → task72 → task73 → task74
task31 → task6 → task12
task45 → task46 → task47
task15 → task24
task60 → task61
task19 → task63
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10. feladat:

task11 → task12 → task23 → task24
task4 → task5 → task6
task71 → task73
task47 → task51
task52 → task68
task10 → task21
task42 → task14
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B. függelék

Futási id®k a QLM algoritmus
feladataihoz

B.1. Az els®ként generált, alap feladatokhoz tartozó
futási id®k

Feladat
Futási id®k futásonként (mp)

Átlag (mp)1 2 3 4 5 6 7 8 9 10
#1 0,15 0,29 0,43 0,58 0,73 0,90 0,71 0,28 0,44 0,59 0,51
#2 0,91 0,85 0,66 0,46 0,32 0,20 0,62 0,97 0,81 0,59 0,64
#5 0,47 0,85 0,11 0,38 0,70 0,92 0,55 0,21 0,96 0,13 0,53
#28 0,84 0,87 0,55 0,67 0,92 0,14 0,26 0,45 0,89 0,28 0,59

B.1. táblázat. Az alap feladatokhoz tartozó futási id®k

B.2. A Class #1, Class #2, Class #3 és Class #4
feladatosztályokhoz tartozó futási id®k

Feladat-
osztály

Futási id®k futásonként (mp)
Átlag (mp)1 2 3 4 5 6 7 8 9 10

Class #1

0,16 0,29 0,44 0,59 0,71 0,83 0,95 0,84 0,21 0,33 0,54
0,13 0,25 0,37 0,49 0,61 0,73 0,85 0,97 0,94 0,21 0,55
0,13 0,25 0,38 0,50 0,63 0,75 0,88 0,12 0,14 0,26 0,40
0,14 0,27 0,39 0,52 0,65 0,78 0,91 0,39 0,17 0,27 0,45

B.2. táblázat. A Class #1 feladatokhoz tartozó futási id®k
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Feladat-
osztály

Futási id®k futásonként (mp)
Átlag (mp)1 2 3 4 5 6 7 8 9 10

Class #2

0,71 0,41 0,10 0,81 0,50 0,22 0,94 0,65 0,34 0,42 0,51
0,73 0,48 0,20 0,93 0,65 0,04 0,12 0,83 0,53 0,24 0,47
0,73 0,47 0,21 0,55 0,77 0,48 0,21 0,94 0,64 0,37 0,54
0,74 0,47 0,20 0,97 0,71 0,45 0,22 0,92 0,63 0,33 0,56

B.3. táblázat. A Class #2 feladatokhoz tartozó futási id®k

Feladat-
osztály

Futási id®k futásonként (mp)
Átlag (mp)1 2 3 4 5 6 7 8 9 10

Class #3

0,73 0,45 0,18 1,00 0,72 0,45 0,22 0,96 0,67 0,38 0,58
0,76 0,53 0,26 0,98 0,70 0,41 0,15 0,99 0,79 0,51 0,61
0,86 0,64 0,37 0,11 0,84 0,64 0,37 0,89 0,80 0,54 0,61
0,73 0,48 0,23 0,98 0,74 0,48 0,29 0,83 0,82 0,57 0,62

B.4. táblázat. A Class #3 feladatokhoz tartozó futási id®k

Feladat-
osztály

Futási id®k futásonként (mp)
Átlag (mp)1 2 3 4 5 6 7 8 9 10

Class #4

0,74 0,25 0,49 0,94 0,67 0,32 0,81 0,99 0,76 0,39 0,64
0,49 0,79 0,15 0,25 0,40 0,65 0,17 0,56 0,35 0,35 0,42
0,44 0,17 0,40 0,59 0,89 0,53 0,25 0,67 0,17 0,66 0,48
0,67 0,48 0,52 0,98 0,53 0,90 0,46 0,90 0,31 0,41 0,62

B.5. táblázat. A Class #4 feladatokhoz tartozó futási id®k
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C. függelék

A CPLEXsz-el megoldott eredeti
optimalizálási feladat modellje és a
GAMS kód

C.1. Az eredeti modell

Min Cmax = max
j∈J

FTj (C.1)

s. t.

m∑
v=1

UB∑
r=1

xjvr = 1,∀j ∈ J (C.2)

n∑
j=1

xjvr ≤ 1,∀r ∈ R, ∀v ∈M (C.3)

n∑
i=1

xivr −
n∑

j=1

xj,v,r−1 ≤ 0,

∀v ∈M, ∀r ∈ {2, . . . , UB}
(C.4)

FTj − FTi + L(2− xjvr − xi,v,r−1) ≥ pjv,

∀i, j ∈ J, i ̸= j,∀v ∈M, ∀r ∈ {2, . . . , UB}
(C.5)

FTj ≥
UB∑
r=1

pjvxjvr,∀j ∈ J,∀v ∈M (C.6)

FTj − FTi ≥
m∑
v=1

UB∑
r=1

pjvxjvr,∀i ∈ Pj

xjvr ∈ {0, 1}, FTj ≥ 0,∀j ∈ J,∀v ∈M,∀r ∈ R

(C.7)
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J munkák halmaza, J = {1, . . . , n}
M gépek halmaza, M = {1, . . . ,m}

UB
azon pozíciók maximális száma minden gépen, ahová a feladatok kerülnek,
UB = n−m+ 1

R pozíciók halmaza, R = {1, . . . , UB}
pjv a j. munka végrehajtási ideje a v gépen
Pj a j. munkát közvetlenül megel®z® munkák halmaza
L egy nagy pozitív szám

xjvr
1 az értéke, ha a j. munka az r. pozícióban került
feldolgozásra a v. gépen, különben 0

FTj a j. munka befejezési ideje

C.1. táblázat. A modell paraméterei

(C.1) A célfüggvény, a teljes átfutási id®t minimalizáljuk, amely nem lehet kisebb
mint bármely munka befejezésének ideje.

(C.2) Minden munka esetén, a munkát pontosan egy gép fogja végrehajtani, és ezen
a gépen a munka az r-edik pozícióba fog kerülni, valamely r-re.

(C.3) Minden v munka és r pozíció esetén, ide legfeljebb egy munka ütemezhet®.

(C.4) Az r-edik pozícióba csak akkor teszünk munkát, ha az r− 1-edik pozícióban is
van munka, egyébként nem (emiatt a munkák folyamatosan lesznek ütemezve a
gépeken, tehát pl. olyan nem fordulhat el®, hogy van munka az 1. pozícióban,
aztán a 2-ban nincs, de utána a 3-ban meg megint van).

(C.5) Ha valamely v gép esetén valamely j munka közvetlenül az i munka utáni po-
zícióban van, akkor a j-edik munka befejezési ideje legalább akkora mint az
el®tte lev® (tehát az i munka) befejezési ideje, plusz a j-edik munka megmun-
kálási ideje azon a gépen.

(C.6) A j-edik munka befejezési ideje legalább akkora mint a v-edik gépen a j-edik
munka végrehajtási ideje, ha a munka erre a gépre van ütemezve.

(C.7) A j-edik munka befejezési ideje legalább akkora mint bármely azt közvetlenül
megel®z® munka befejezési ideje, plusz a j-edik munka megmunkálási ideje.
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C.2. GAMS kód

C.1. ábra. Az alapfeladatok közül az #1 feladathoz használt GAMS kód (els® részlet)
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C.2. ábra. Az alapfeladatok közül az #1 feladathoz használt GAMS kód (második
részlet)
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C.3. Statisztika

Az #1 alapfeladat statisztikai adatai:

� Feltételek száma: 1625

� Változók száma: 239

� Bináris változók száma: 224

C.3. ábra. Modellstatisztika
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A #2 alapfeladat statisztikai adatai:

� Feltételek száma: 21491

� Változók száma: 1009

� Bináris változók száma: 980

C.4. ábra. Modellstatisztika
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A #5 alapfeladat statisztikai adatai:

� Feltételek száma: 17060

� Változók száma: 784

� Bináris változók száma: 756

C.5. ábra. Modellstatisztika
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A #28 alapfeladat statisztikai adatai:

� Feltételek száma: 412282

� Változók száma: 7105

� Bináris változók száma: 7030

C.6. ábra. Modellstatisztika
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D. függelék

Az FU algoritmus
paraméter-beállításai az algoritmus
különböz® verzióiban

D.1. Az FU algoritmus paraméter-beállításai a v1
változat esetén

r10 r11 r12 r13 r14 r15 rb20 rb21 rb22 rb23 rb24 rb25
U120 0 0 0 0 0 0 0 70 70 70 70 70
U250 0 0 0 0 0 0 0 70 70 70 70 70
U500 0 0 0 0 0 0 0 70 70 70 70 70
U1000 0 0 0 0 0 0 0 70 70 70 70 70

D.1. táblázat. A Falkenauer_U osztály paraméter-beállítása

rn20 rn21 rn22 rn23 rn24 rn25 r30 r31 r32
U120 0 0 0 0 0 0 0 0 0
U250 0 0 0 0 0 0 0 0 0
U500 0 0 0 0 0 0 0 0 0
U1000 0 0 0 0 0 0 0 0 0

D.2. táblázat. A Falkenauer_U osztály paraméter-beállítása

XXXVI



D.2. Az FU algoritmus paraméter-beállításai a v2
változat esetén

r10 r11 r12 r13 r14 r15 rb20 rb21 rb22 rb23 rb24 rb25
U120 0 5 10 15 20 25 0 5 10 15 20 25
U250 0 5 10 15 20 25 0 5 10 15 20 25
U500 0 10 20 30 40 50 0 15 20 30 35 40
U1000 0 5 15 25 35 0 0 15 20 25 30 35

D.3. táblázat. A Falkenauer_U osztály paraméter-beállítása

rn20 rn21 rn22 rn23 rn24 rn25 r30 r31 r32
U120 0 5 15 30 30 30 0 0 0
U250 0 10 20 30 40 50 0 0 0
U500 0 5 10 25 35 45 0 0 0
U1000 0 20 30 40 50 60 0 0 0

D.4. táblázat. A Falkenauer_U osztály paraméter-beállítása
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