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1. Background and motivation

In the dissertation I have dealt with three problems related to the areas of
scheduling and bin packing. All three areas have many applications in practice,
including industry, economy or scheduling. In the solution of scheduling problem
(unrelated machine scheduling with precedence constraints) I have used a well-known
algorithm from the field of reinforcement learning as a basis for my solution to de-
termine the order of tasks. During the solution of bin packing problems I have used
so called pre-processing algorithms. Furthermore, I have dealt with a relatively new
area which is called bin covering with delivery (BCD for short). In this area, on the
one hand, I have solved benchmark problems with well-known algorithm from liter-
ature and compared the solutions with the results of a new, flexible algorithm I have
developed. All three considered problems are quite difficult, complex combinatorial
optimization tasks.

1.1. Basically in a scheduling problem tasks (jobs) and resources (machines) are
given. During a scheduling it is determined which task is executed by which machine
and when. The number of tasks is given. The resources are used to execute the tasks.
The goal is to assign these tasks to resources to optimize an objective function. In
the case I have examined the goal was to minimize the makespan. To solve the
scheduling problem an algorithm was developed motivated by Q-learning which I
have named Q-Learning Motivated algorithm, QLM for short. The algorithm
consists of two parts: a greedy scheduler and a procedure based on Q-Learning that
determines the order of tasks.

A detailed overview of scheduling can be found, for example, in [1]. The book
discusses theoretical models related to scheduling and various scheduling problems
in great detail. The field of scheduling has a very great literature, here I mention
two basic works by Ronald L. Graham |2, 3]. In these articles, he defined the famous
LS (List Scheduling) algorithm, which can be considered the first online scheduling
algorithm; and its ordered version, the LPT (Longest Processing Time) algorithm.

In the field of scheduling I have dealt with unrelated machine scheduling with
precedence constraints. For the solution the Q-Learning algorithm was used from
the field of reinforcement learning. To the best of my knowledge, there is no such
solution to the above-mentioned scheduling problem in the literature, however, there
are examples of the application of reinforcement learning in other areas of scheduling.
Orhean et al. [4] introduced a scheduling method for distributed cloud systems
based on reinforcement learning. The goal was to optimize the performance of a
system by resource scheduling. Aydin and Oztemel [5] developed an agent-based
scheduling method, in which the agent selects rules under various conditions, based
on which the scheduling takes place. An improved version of Q-learning was used
to train the agent. Stefan [6] applied the Q-learning algorithm to a permutation
flow shop problem, where the goal was to minimize the idle time of the machines.
In his dissertation, Stefan [7] gave a more detailed description of the algorithm,
which was designed to solve the flow shop type problem. The article |6] and the
dissertation 7] helped me to see the problem I have dealt with from the perspective
of reinforcement learning. Gabel and Riedmiller [8] also applied Q-learning, but they



applied it to a job shop type problem in which the Q-function was approximated
using a neural network. Shahrabi et al. [9] used reinforcement learning to improve a
procedure developed for a job shop type problem. More examples of the application
of reinforcement learning in scheduling can be found in [10-12]. In [13], for example,
a version of Q-learning combined with neural networks, called Deep Reinforcement
Learning, was used.

1.2. In the case of bin packing we want to pack items into bins so that the number
of used bins is minimal and the size of the items packed into the same bin don’t
exceed the capacity of the bin. This problem is NP-hard [14, 15]. The bin packing
problem was defined and started to be investigated at the beginning of the 70’s.
The so-called approximation algorithms were developed in this area. An algorithm
is called an approximation algorithm if it is not expected to necessarily provide an
optimal solution to a problem, but on the one hand it is fast (with polynomial time),
and on the other hand the solution it provides is guaranteed to be "not too far" from
the optimum value.

D. S. Johnson’s dissertation |16] on bin packing and Graham’s work |2| are among
the early works that started and formed the study of approximation algorithms and
set the direction for further research. In the area of bin packing, we distinguish
between online and offline cases. In the online case, the details of the data are not
known in advance, but in the offline case, they are.

In this area, I have dealt with a new kind of approach to bin packing problems.
The idea of this approach is that before solving bin packing problems, a so-called
pre-processing step is performed to simplify the problem to be solved. If there is a
bin packing problem to be solved optimally, it can be difficult. But this does not
mean that finding the optimal solution for every single input is difficult. In the new
approach, I have tried to determine the optimal solution for the given input by a
greedy algorithm; if this is successful, we are ready. If we choose another, more
complex algorithm. The essence of using the greedy algorithm is to optimally solve
as many inputs as possible within the given class with a simple algorithm. Hence,
the number of inputs decreases by the solved ones. To solve the inputs, I have
created two algorithms named REM WS and FU, whose effectiveness was tested
on known and freely accessible benchmarks (Schwerin and Falkenauer U).

1.3. Bin covering with delivery is a relatively new area. Similar to the bin packing
problem, in this case too the items are packed into bins but when they become
covered they are closed and delivered. The objective function is determined based
on the number of covered and delivered bins. That is, we receive money for each
delivered bin and the goal is to maximize profit. The problem was introduced first in
[17]. An offline version of this problem is covered in [18], and some related problems
are presented in [19].

In the online version of the BCD problem, the items are not known in advance
and arrive one after the other. The incoming item must be immediately packed into
a bin. The objective function changes depending on the number of open bins. The
more bins are open at the same time, the more the value of the objective function
decreases. The goal is to maximize the objective function, i.e., total profit. The



offline and online versions of the bin packing and bin covering problem are dealt
with, among others, in the review articles [14], [20] and [21].

During the research, I have implemented natural algorithms that are already
known from the literature (DNF, H(K) and SH(K)) and developed a new, flexible,
parametric algorithm I have named MMask. To test the algorithms, I have used
the previously applied Schwerin and Falkenauer U classes and a new problem class
which was created by me called Large Range (abbreviated: LR). I have defined three
profit functions: a slowly decreasing version, a quadratically decreasing version, and
a strongly decreasing version. I have made modifications to the problem classes: I
have broken the ordering, normalized the inputs and connected the problem classes
with the profit functions.

2. Methods and Tools
2.1. Scheduling
2.1.1. The scheduling problem

In the thesis, I have dealt with the unrelated machine scheduling with precedence
constraints problem, which can be given as follows:

R |prec|Cras- (1)

Here R,, is the set of machines (m unrelated machines), prec denotes that there
are precedence constraints between tasks and C,,. = maz(Cy,...,C,) means the
completion time of the latest activity in the system, which is minimized. The goal
is to minimize the makespan. One input of the problem

(T,M,G) (2)

can be described by an ordered triple, where T = {task, ..., task,} is the set of all
tasks, M = {my,..., my} is the set of machines and G = (V, E) is a graph, where
V' is a finite set of vertices, E C V x V is the set of edges. We write an edge of the
graph in the form (v;,v;) € E and has to fulfill the following constraints:

e directed graph, i.e., E C V x V is the set of ordered pairs formed by vertices,

e simple graph, i.e., (v;,v;) € E for i # j (loop-free) and (v;,v;) ¢ E (no
multiple edges) for Vi, j,

e union of disjoint paths and isolated points.

2.1.2. The proposed method

The algorithm can be divided into two components. One is a greedy algorithm
that schedules tasks in a given order. The other is the component supported by Q-
learning, which generates the permutation of the tasks. The goal is for the algorithm



to find a permutation according to which, when greedily scheduled, the makespan
is minimal. The algorithm tries to find the best order, but does not guarantee an
optimal solution. The greedy algorithm always assigns that machine to the next
task with which the makespan achieved so far increases the least while also taking
into account the precedence constraints.

In the first step, the QLM algorithm creates a random order among the tasks.
The order is random in the first step because the elements of the QQ table are zero,
so the selection probability is random. During the process, the values of the Q table
are continuously updated according to rule (3).

Qi11(Sr, Ap) = (1 — ) Qu(Sy, Ay) + (R + max Q4(Si11,a)), (3)

where S; and A; are the current state and the currently selected action. ay is
the learning rate, which controls the speed of learning, and ~, is the discount rate
determines the importance of future rewards. R; is the value of the reward received
in the current state S;, after selection of the action A,.

The strategy is initially exploratory, which means that the selection is random,
then as it starts to converge more and more towards the solution, the strategy
becomes more exploitative. The strategy used is called the Boltzmann discovery
strategy, which determines the probability of the next selected element, in our case,
task in the permutation, based on the calculated Q values. The algorithm performs
the greedy schedule based on the computed permutation and compares it with pre-
vious results. Based on the quality of the new result, it determines a reward Ry,
which is part of the update rule (3) and affects the change of Q values.

2.1.3. Results

In order to test the effectiveness of the developed algorithm, I have solved small
problem presented in the articles [22, 23], and also generated four problem classes
based on the parameters of the problems in the articles.

The machine times of the small problem were available, the optimal solution of
the problem was 13. The solution of the algorithm published in [22] was 15, and the
solution of the QLM algorithm I have developed was 13. For further testing of QLM,
I have chosen three of the 33 problems published in [22| and one of the problems
published in [23]. Keeping the numbering of the problems used in [22], #1, #2 and
#5 were selected. I have chosen a large problem, number #28 from [23]. Based on
this data, I have created four classes. n is the number of activities, m is the number
of machines, and NC denotes the number of precedence constraints.

e Class #1 - n=14, m=8és NC =5
o Class #2 —-n =28, m=Tés NC =8
o Class #3 - n =27, m=4¢és NC =1
e Class #4 - n =74, m =19 és NC' =10



I have shown that the QLM algorithm is capable of solving the scheduling prob-
lem presented in this chapter. The algorithm was specially developed for those
scheduling problems where the execution time of the activities depends on the ma-
chine, the execution cannot be preempted, and there may be precedence constraints
between the tasks. I haven’t find any publication on the subject of reinforcement
learning to solve the problem I have specified. The solution given in |22] and [23]
could have been a basis for comparison, but the details of the problems solved here
are not known. So basically, T have tested the QLM algorithm with problems gen-
erated by myself, and also solved the same problems with CPLEX. Based on the
results, it can be seen that QLM found the optimal solution in all cases where
CPLEX did. In the other cases, we do not know for sure that QLM found an opti-
mal solution because CPLEX could not confirm this. Based on this, it can be seen
that, limited to the investigated problems classes, the QLM algorithm is efficient and
competes with the CPLEX solver in solving the problems, since the results provided
by QLM are at least as good as the results provided by CPLEX, but QLM is much
faster than CPLEX.

2.2. Bin packing
2.2.1. The bin packing problem

In case of bin packing problem, items are packed into bins. Each item has a size
w; and each bin has a capacity C'. The packing is performed so that the total size
of the items packed into same bin does not exceed the capacity of the bin, and the
number of used bins is minimum. This problem is NP-hard.

2.2.2. The proposed method

The purpose of the pre-processing is to optimally solve as many of the instances
in the problem classes as possible with a simple algorithm. To solve the Schwerin
and the Falkenauer U benchmark classes, I have created two greedy algorithms
called REM SW and FU. The two algorithms were developed specifically for these
two classes. The REM SW algorithm selects the value of 0 < k& < 6 so that the &
largest items and the 6 — k smallest items are placed into one bin. After packing the
largest k items, fill the remaining space with the 6 — k items as best as possible. For
the latter, it uses the pathfinding slave algorithm. The FU algorithm works with
four slave algorithms that pack pairs, triplets, and quadrets by taking into account
a value r that is the lower bound of the remaining (reserve) space in the bin. In the
last step, the algorithm packs the remaining items with the FFD algorithm.

In the case of both classes, I have examined the characteristics of the instances
included in them and what advantages can be gained from them in terms of the
solution. Based on the discovered properties, all tasks of the Schwerin class and
91% of the tasks of the Falkenauer U class were solved optimally. Based on the
results, it can be seen that the pre-processing in the case of the investigated classes
helps.



2.2.3. Results

Limiting ourselves to the Schwerin and the Falkenauer U classes, it can be stated
that the developed algorithms achieved very good results. In the case of the Schwerin
class, all of the 200 tasks were optimally solved by the REM SW algorithm, i.e., the
ratio of optimal solutions is 100%. The FU algorithm also performed very well on
the tasks of the Falkenauer U class, as it provided an optimal solution for 73 of the
80 tasks, which represents a 91% ratio for optimal solutions.

The introduced greedy algorithms are fast, simple and find the optimal solution
in most cases.

The general applicability of the described algorithms (Rem SW and FU) is dif-
ferent. Schwerin algorithm takes advantage of the fact that the item sizes are very
close to each other and there are 5 or 6 items in each bin. However, the algorithm
can also be used in cases where the item sizes are still between 150 and 200, but the
bin capacity is not 1000, but for example 1200. Then 6 or 7 items will be packed
into each bin. (8 items can be packed into one bin if and only if each of them has a
size of 150, but the chance of this is very small.)

The FU algorithm can be good in general if the size of the items is between 0
and C. Tt packs pairs, threes and fours. To do this packing in such a way that the
items fill the bin well. And the rest are packed with FFD.

2.3. Bin covering
2.3.1. The bin covering problem

The bin covering problem is similar to the bin packing problem, but with a few
additions. Items arrive one by one. In order, the size of item . is w; > 0 and
we assume that an infinite number of bins with the same capacity C' are available.
Furthermore, a positive integer K > 0 is given, which specifies how many bins can
be open at the same time. It means that the packing algorithm can only open a
new bin if the number of open bins is less than K.

A bin is considered covered if the total size of the items packed into the bin is
at least equal to the capacity C. Also given an objective function G for which

G:{l,...,K} - R*. (4)

If 1 <k < K bins are open at a given time, and one of them becomes covered
and is delivered, then the realized profit is G(k). After each covered and delivered
bin the value of k decreases by one, but a new bin can be opened at any time if
and only if there are no more open bins than K. The function G is a monotonically
decreasing, positive-valued function. The goal is to maximize the profit we get after
the bins are covered and delivered.

2.3.2. The proposed method

During the investigation, I have implemented already existing algorithms (DNF,
H(K), SH(K)), and also created a new, parametric algorithm called MMask. To



test the algorithms, similar to the bin packing topic, I have used the Schwerin and
the Falkenauer U task classes, and in addition I have created a new problem class
called Large Range. As a first step, I have prepared the problems as follows:

Disordering. I have randomly mixed the items based on their sizes.

Falkenauer class normalization. I have changed the capacity of the bin to
C = 1000, so the size of each item had to be multiplied by %.

New problem class. I have created a new class where the item sizes are
from the interval [1,1000]. There are a total of 400 tasks in this class, each
with a maximum of 1000 items.

Profit functions. No profit function is specified for the original benchmarks.
Hence, I have created three functions:

o G1(k)=10,1-0,1 x k
o G2(k)=11—k
o G3(k) =10,05—0,05 x k>

Connection of item types and profit functions. Finally, problem classes
were combined with the three profit functions using the following notations:

e SiGu
o FiGu
e LRjGu

where i = 1,2, j = 1,2,3,4 és u = 1,2, 3.

I have implemented some algorithms which are already known from literature.
These are DNF, H(K) and SH(K). Each algorithm works in a very simple way:

e DINF': The next item is always packed into the currently open bin. If the bin

becomes covered, the algorithm closes it and opens a new one for the next
item. If there are no more items, the algorithm stops.

H(K): The items whose size falls in the interval I, = (&7, 1] are packed into

the bin of type k., where £ = 1,..., K — 1. The smallest items, i.e., those
whose size falls within the interval Ix = (0, +] ) are packed into the bin of
type K. If a bin becomes covered, the algorithm closes it. If no such bin is
open, it will open one of this type. If there are no more items, the algorithm
stops.

SH(K): If the following item can cover one or more bins, it is packed into the
bin with the lowest load. The algorithm then closes the bin. In other cases,
the SH(K) algorithm works as H(K) algorithm.



The newly developed algorithm called MMask has three parameters: K is a
positive integer defining the maximum number of open bins at the same time, « is a
K-dimensional nonnegative vector, and (3 is a positive integer. MMask is based on
an accept-reject policy. The algorithm accepts the packing of the next item if, after
packing, the load of the given bin falls within the acceptance range. Otherwise, it
will reject to pack the item.

e The accepting area in case of k' bin (1 < k < K): [0;C — o] U[C;C + f]

e The rejecting area in case of k' bin (1 <k < K): (C — a3; C) U (C + §;00)

MMask: If the next item can be packed into a bin that makes the bin covered in
the accepting area, then the current item will be packed into that bin. If there are
several such bins, then the bin is chosen with smallest load. If the next item can be
packed into a bin whose load falls within the acceptance area after packing, but will
not be covered, then the item will be packed into this bin. If there are more of this
kind of bin, the algorithm chooses one at random. If k < K, the algorithm opens a
new bin. The bin type is the smallest k£ value for which does not have an open bin,
and packs the item here. If k = K is satisfied, the current item is packed into the
bin with the smallest load. If the bin is covered, the algorithm closes it. If there are
no more items, the algorithm stops.

An algorithm based on local search is developed for setting the parameters of the
MMask. The neighborhood structure can be defined in a natural way between the
different MMask parameter settings. The neighbor of a specific parameter setting
is obtained by modifying one of the parameters K, «, 5. Let A be a small positive
constant, then parameters «; and 8 will be increased or decreased by the value of
A so that the new value remains positive and is smaller than the bin capacity. The
value of K also changes by 1 unit in a negative or positive direction. The direction
of change is random.

2.3.3. Results

Based on the results of the DNF, H(K) and SH(K) they gave the same results for
the S1 subclass. Although the K value increased, the profit did not increase (160).
This means that, in the case of S1, the algorithms behaved as DNF even with the
K > 1 setting. In the case of F1 and F4, the SH(K) algorithm achieved the highest
profit for K = 2,3,4,5 values. In the case of the LR1 and LR4 classes, the SH(K)
algorithm gave the best profit values with the K = 4 setting, in two cases it improved
the profit with the K = 5 setting compared to the K = 4 setting.

In addition to the manual setting of the parameters, the MMask algorithm did
not improve the profit for any task of S1, for F1 and F4 it improved the value of the
profit for all tasks, and for LR1 and LR4 task classes it also improved the results,
except for three cases.

Applying the parameter settings chosen by local search, for the tasks of F1 and
F4 classes, except for one case, the profit was improved everywhere compared to



the previous algorithms and the manual setting. For classes LR1 and LRA4, it also
improved the profit everywhere, except for three cases.

Based on the tests, it can be said that a "good parameter setting" can be found
with the help of the local search. Of course, even better settings could probably be
achieved with more advanced algorithms, but this is a future work option at this
time.

The local search can be used to find better parameter settings, i.e., it is capable of
automatic search of parameters in such a way that it achieves better results than the
results of previous algorithms and manually set parameters. This is a big help, as it
eliminates the manual setting of the parameters. Furthermore, the fusion of MMask
and local search as a parameter optimization procedure proved to be effective.

3. New scientific results

Thesis 1 [ have created a new algorithm to solve the problem of scheduling of un-
related machines with precedence constraints (R, |prec|Cpaz). The developed al-
gorithm determines the sequence of tasks using an algorithm based on Q-learning
known from the field of reinforcement learning, and then schedules the tasks in this
order with a greedy scheduler. For the comprehensive examination of the algorithm,
I have created four new benchmark classes. The problem classes are varied based on
their structure and difficulty.

1.1 I have compared the obtained results with the results provided by the CPLEX
solver. Based on the evaluation, it can be seen that the QLM algorithm I have
created finds the optimal solution in all the examined problem classes when CPLEX
does. In the other cases, QLM produced at least as good results as CPLEX. Limiting
ourselves to the problem classes, it can be stated that the QLM algorithm is efficient
and competes with the CPLEX solver in solving the problems, but it is much faster.

The corresponding publications are: |P1], [P4], [P5], [P6], [P7], [P8], [P9]

Thesis 2 I have dealt with the bin packing problem from a new perspective, from the
side of pre-processing. I have used the Schwerin and the Falkenauer U classes for
the research. I have created two algorithms called REM SW and FU. I have designed
the REM SW algorithm for Schwerin and the FU algorithm for solving the problems
of the Falkenauer U class.

2.1 In the case of both classes of problems, I have examined the characteristics of
the instances included in them and what advantages can be gained from them in
terms of the solution. Based on the discovered properties, all tasks of the Schwerin
class and 91% of the instances of the Falkenauer U class were solved optimally.

2.2 T have examined the algorithms not only according to how many instances of
the given class can be solved optimally, but also compared the my algorithms with
the HEA algorithm. The HEA algorithm is one of the most efficient (and one of
the newest) general metaheuristic algorithms for solving this and other benchmark
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classes. Comparing the REM SW algorithm with the HEA [24] algorithm, the
average running times for REM SW were much better. For Schwerin 1 it was 0.0038
(HEA - 0.34 seconds) seconds, while for Schwerin 2 it was 0.004 (HEA - 0.47 seconds)
seconds. The running time of the FU algorithm is also significantly shorter than the
running time of the HEA even for 80 problems of the Falkenauer U class.

The corresponding publication is: [P2]

Thesis 3 I have done detailed investigations related to problem called "bin covering
with delivery", as part of it I have used the Schwerin and the Falkenauer U classes,
and also created new benchmark class (LR). I have created a new, parametric algo-
rithm called MMask, which implements an accept-reject policy during the packing of
the items, and also automatically sets its parameters by local search.

3.1 The solvability of the benchmarks was partially investigated with naturally
occurring algorithms known from the literature (DNF, H(K), SH(K)). Based on the
evaluation of the results, I have found that these algorithms effectively solve the
elements of the problem classes in the vast majority of cases.

3.2 T have introduced MMask. Furthermore, I have found that with the right choice
of parameters, the MMask algorithm was able to achieve better results than the
previous results. To optimize the parameters, I have created a local search-based
heuristic that determined the parameter settings that achieve the best results. The
optimizer was able to find even better settings than manual settings.

The corresponding publication is: [P3]

4. Publications related to the thesis

The described results have been presented in journals, international conferences, and
conference proceedings. I list them below.

[P1 | Gy. Abraham, P. Auer, Gy. Désa, T. Dulai and A. Werner-Stark. A re-
inforcement learning motivated algorithm for process optimization. Periodica
Polytechnica Civil Engineering, 63(4):961 970, 2019. (IF: 1.34)

[P2 | Gy. Abraham, Gy. Désa, T. Dulai, Zs. Tuza and A. Werner-Stark. Effi-
cient Pre-Solve Algorithms for the Schwerin and the Falkenauer U Bin Pack-

ing Benchmark Problems for Getting Optimal Solutions with High Probability.
Mathematics, 9(13):1540, 2021. (IF: 2.592).

[P3 | Gy. Abraham, P. Auer, Gy. Désa, T. Dulai, Zs. Tuza and A. Werner-Stark.
The bin covering with delivery problem, extended investigations for the online
case. Central European Journal of Operations Research, pages 1-27, 2022.
(IF: 2.345)
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[P4 | A. Werner-Stark, T. Dulai and Gy. Abraham. Modeling of an agent system
to support the management of cooperating and rival resources for business
workflows. In 2014 4th International Conference On Simulation And Modeling
Methodologies, Technologies And Applications (SIMULTECH), pages 407-412.
IEEE, 2014.

[P5 | T. Dulai, A. Werner-Stark and Gy. Abraham. Support of Efficient re-
source allocation of technological processes by a heuristic solution and agent
technology. Data Envelopment Analysis and its Applications, page 153, 2016.

[P6 | T. Dulai, A. Werner-Stark and Gy. Abraham. Improvement of resource
allocation in workflows by stochastic method. In 10th International Conference
on Applied Informatics, 2017.

[P7 | Gy. Abraham, T. Dulai, A. Werner-Stark and Gy. Désa. Reinforcement
learning in process scheduling. In 13th Miklos Ivanyi International PhD DLA
Symposium - Abstract Book: Architectural, Engineering and Information Sci-
ences, pages 15-15, 2017.

[P8 | Gy. Abraham, T. Dulai, A. Werner-Stark and Gy. Doésa. Learning the
parameters of a reinforcement learning algorithm for process optimization. In
Veszprém Optimization Workshop, pages 11-11, 2019.

[P9 | Gy. Abraham, T. Dulai, A. Werner-Stark and Gy. Doésa. Parameter
optimization of g-learning motivated algorithm in process scheduling. In Pro-
ceedings of the Pannonian Conference on Advances in Information Technology,
pages 17-24, 2020.

The listed publications has received the following references until the date of sub-
mission of the thesis: [25], [26]

5. Further research and development opportunities

5.1. Regarding to the scheduling problem, in addition to the presented solutions,
the subject of further investigation may be in certain special cases (for example, the
case of m = 2 machines, or the case of only two types of execution time) whether
we could obtain better lower bounds and check how the QLM algorithm or some
modified version of it works in this case. Furthermore, it is worth to examine other
different structures, e.g., tree structure, how our method works. Of course, new
benchmark classes would be needed for this case.

5.2. Regarding to bin packing, I present some additional options that can be used
to improve the FU algorithm in the future. In the case of the Schwerin class, since
all the tasks were solved optimally, no further research is needed. However, in the
case of the Falkenauer U class, the rate was 91%, so there is place for further
investigation:
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1. Testing other parameters, which can be determined manually, based on expe-
rience, or automated with some search algorithm. We finally select the best
one from the results given by the different settings.

2. Introduction of additional parameters, e.g., we not only examine the existence
of large items, but also take into account their numbers.

What happens when the number of items increases is also an unanswered question
at the moment. Let’s assume that the capacity of the bin, i.e., the value of C' is a
fixed integer, so consequently the size of the items comes from the interval [1, C].
Then, according to Lenstra’s result [27], the problem can be solved in polynomial
time, where n is the number of objects and n can be arbitrarily large. Despite being
solvable in polynomial time, the number of steps of such algorithm would be very
large, since the exponent of n would be very large, and the coefficient of the O(.)
expression would also be large. For these reasons, such an algorithm may not be
usable in practice, perhaps after some kind of pre-processing.

Furthermore, this theorem does not take into account the fact that the size of the
items is randomly drawn from a given interval with a uniform distribution. Based
on these, we can make the following conjecture.

Congecture: Let 1 < a < b < C be fized integers, where C' is the size of the
bin. Let us assume that the sizes of the items are drawn randomly and uniformly
distributed from integers a,a+1,...,b. Then there exists an algorithm whose running
time can be estimated from above with a low-order polynomial and the coefficient of
the expression O(.) is small, and the probability of the optimal solution of the problem
approaches 1 when n — oo.

For example, an algorithm with a running time of 20n? and a probability of 0.9 to
find the optimal solution for n = 1000 can already be interesting. I have formulated
my previous expectation as a conjecture because we actually know little about what
can be done in such cases. This would require further investigations.

5.3. In the field of bin covering, I give some possibilities for further development of
the MMask algorithm.

e Some of the presented parameter settings were set manually. We may get
much better results with other settings.

e It has turned out that in the case of the LR class, the SH(4) algorithm is very
efficient in several cases. Based on this, the fusion of SH(4) and the MMask
algorithm should be considered (we run both algorithms separately and choose
the better result).

e In its 2nd step, the MMask algorithm could choose arbitrarily from the avail-
able suitable bins. It is possible that if it chooses a bin "smarter", then the
performance of MMask will be improved.
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e Another modification option for step 2 of the algorithm was the following. Let
B1, Bs, ..., B; be the bins the current items can be packed into. If ¢ = 1, then
it is clear in which bin the current item went, since only one bin is open. If, on
the other hand, ¢ > 1, the algorithm can choose from several bins. For each
corresponding bin, I have calculated the average size of the items in them,
denoted by x1,xs,...,2;, and the size of the current item by x. Then, for
each bin, T have computed the value of the expression (x — ;)% and chosen the
smallest one, which specified that it should be packed into the bin B;, where
1 <7 <t. Unfortunately, this strategy did not prove to be effective. In some
cases it improved the result, in other cases it made it worse, but overall the
procedure did not improve.
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