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1. A munka háttere, motivációja

Az értekezésben három problémával foglalkoztam az ütemezés és a ládapako-
lás területekhez kapcsolódóan. Mindhárom területnek számos alkalmazása van a
gyakorlatban, többek között az iparban, a gazdasági életben vagy éppen az opti-
malizálásban. Az ütemezési feladat (unrelated machine scheduling with precedence
constraints) megoldásában egy, a meger®sítéses tanulás területén ismert és népszer¶
algoritmust vettem alapul, amelyre építve a tevékenységek sorrendjét meghatározó
megoldást hoztam létre. A ládapakolási feladatok (bin packing) megoldása során
ún. el®feldolgozó algoritmusok segítségével igyekeztem megoldani benchmark fel-
adatokat. Továbbá egy viszonylag új területtel is foglalkoztam, amelynek ládafedés
szállítással (Bin Covering with Delivery, röviden BCD) a neve. Ezen a területen egy-
részt természetesen adódó algoritmusokkal oldottam meg a benchmark feladatokat és
hasonlítottam össze a megoldásokat az általam kidolgozott új, rugalmas algoritmus
eredményeivel. Mindhárom feladat meglehet®sen nehéz, bonyolult kombinatorikus
optimalizálási feladat. Megoldásuk során számítógépes módszereket alkalmaztam.

1.1. Általánosságban egy ütemezési probléma esetén adottak tevékenységek (mun-
kák) és er®források (a mi esetünkben gépek). Az ütemezés során azt határozzuk meg,
hogy melyik tevékenységet melyik gép mett®l meddig hajtja végre. A tevékenységek
vagy munkák az elvégzend® feladatok, ezeknek a száma változó. Az er®források pe-
dig olyan egységek, amelyek a tevékenységek végrehajtására szolgálnak. A cél pedig
az, hogy ezeket az er®forrásokat a tevékenységekhez rendeljük úgy, hogy valamely
célfüggvényt optimalizáljuk. Az általam vizsgált esetben a cél a teljes átfutási id®
minimalizálása volt. Az ütemezési feladatok megoldására egy, a Q tanulás által
motivált algoritmust fejlesztettem ki, amelyet Q-tanulás által motivált algorit-
musnak, röviden (az angol elnevezés után) QLM-nek neveztem el. Az algoritmus
két részb®l épül fel: egy mohó ütemez®b®l és a Q tanulást alkalmazó eljárásból,
amely a tevékenységek sorrendjét határozza meg.

Az ütemezésr®l részletes áttekintést például [1]-ben találunk. A könyv igen rész-
letesen tárgyalja az ütemezéshez kapcsolódó elméleti modelleket és a különböz® üte-
mezési problémákat. Az ütemezés területe igen b®séges irodalommal rendelkezik, e
helyütt Ronald L. Graham két alapvet® munkáját [2, 3] említem meg. Ezekben a
cikkekben de�niálta a híres LS (List Scheduling, lista szerinti ütemezés) algoritmust,
valamint ennek rendezett változatát, az LPT (Longest processing Time) algoritmust.

A kutatásom során vizsgált feladat a független gépek ütemezése megel®zési re-
lációk �gyelembe vételével. A megoldáshoz a meger®sítéses tanulás területér®l is-
mert eljárást, a Q-tanulást (Q-Learning) alkalmaztam. Az irodalomban tudomásom
szerint a fent megnevezett ütemezési problémára ilyen megoldás még nem létezik,
azonban az ütemezés egyéb területein van példa a meger®sítéses tanulás alkalma-
zására. Orhean és társai [4] egy, a meger®sítéses tanuláson alapuló, elosztott felh®
rendszerhez alkalmazható ütemez® eljárást mutattak be. A cél egy rendszer telje-
sítményének az optimalizálása volt az er®források ütemezésén keresztül. Aydin és
Öztemel [5] egy ágens alapú ütemezési módszert dolgoztak ki, amelyben az ágens
különböz® feltételek mentén szabályokat választ ki, amelyek alapján az ütemezés
végbemegy. Az ágens tanítására a Q-tanulás egy továbbfejlesztett változatát alkal-
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mazták. Stefán [6] a Q-tanulás algoritmusát alkalmazta egy permutációs �ow shop
problémára, ahol a cél a gépek üresjárati idejének a minimalizálása volt. Stefán a
disszertációjában [7] b®vebb leírást adott az algoritmusról, amely a �ow shop típusú
probléma megoldására készült. A cikk [6] és a disszertáció [7] az általam bemuta-
tott probléma meger®sítéses tanulás oldalról való megközelítésében segített. Gabel
és Riedmiller [8] szintén a Q-tanulást alkalmazták, viszont ®k egy job shop típusú
problémára, amelynél a Q-függvényt neurális háló segítségével közelítették. Shahra-
bi és társai [9] a meger®sítéses tanulást alkalmazták egy job shop típusú problémára
kifejlesztett eljárás továbbfejlesztéséhez. További példákat találunk a meger®sítéses
tanulás alkalmazására az ütemezés területén a [10�12] cikkekben. A [13]-ban pél-
dául a Q-tanulásnak a neurális hálózatokkal összekapcsolt változatát alkalmazták,
amelyet Deep Reinforcement Learning-nek hívnak.

1.2. A ládapakolási feladatok esetében tárgyakat szeretnénk ládákba pakolni úgy,
hogy a pakolt ládák száma minimális legyen és az egy ládába pakolt tárgyak mére-
te ne lépje át a láda kapacitását. A probléma NP-nehéz [14, 15]. A ládapakolási
problémát a hetvenes évek elején de�niálták és kezdték vizsgálni. Az ún. approxi-
mációs algoritmusokat ezen a területen fejlesztették ki. Olyan algoritmust nevezünk
approximációs algoritmusnak, amelyt®l nem várjuk el, hogy feltétlenül optimális
megoldást adjon egy feladatra, de egyrészt gyors (polinomiális idej¶), másrészt az
általa szolgáltatott megoldás garantáltan "nincs túl messze" az optimum értékt®l.

D.S. Johnson disszertációja [16] a ládapakolásról és Graham munkája [2] azokhoz
a korai munkákhoz tartoznak, amelyek elindították és formálták az approximációs
algoritmusok vizsgálatát és megszabták a további kutatások irányát. A ládapakolás
területén megkülönböztetünk online és o�ine eseteket. Online esetben a tárgyak
adatai el®re nem ismertek, o�ine esetben viszont igen.

Ezen a területen a ládapakolási feladatok egy új megközelítésével foglalkoztam.
Ennek lényege, hogy a ládapakolási problémák egy halmazának megoldása el®tt egy
ún. el®feldolgozást végzek el. Az új megközelítésben megpróbálom meghatározni az
adott feladathalmaz egy elemének az optimális megoldását egy mohó algoritmussal;
ha ez sikerült, a feladat megoldásával készen vagyunk. Ha viszont nem sikerült,
akkor más, összetettebb algoritmust választunk. A mohó algoritmus alkalmazásá-
nak lényege, hogy egyszer¶ algoritmussal az adott osztályon belül a lehet® legtöbb
feladatot optimálisan oldjuk meg. Így a megoldott feladatokkal már nem kell foglal-
kozni, azaz a problémák száma csökken. A feladatok megoldására két algoritmust
hoztam létre REM WS és FU néven, amelyek hatékonyságát ismert és szabadon
elérhet® benchmark feladatosztályokon teszteltem (Schwerin és Falkenauer_U).

1.3. A ládafedés szállítással egy viszonylag új terület. Hasonlóan a ládapakolási
problémához, ebben az esetben is tárgyakat pakolunk ládákba, amelyeket, ha fe-
detté válnak (vagyis a ládába pakolt tárgyak összmérete legalább akkora, mint a
láda kapacitása), lezárunk és elszállítunk. A célfüggvény meghatározása a fedett és
elszállított ládák száma alapján történik. Azaz, minden elszállított ládáért pénzt
kapunk és a cél az, hogy a pro�tot maximalizáljuk. A probléma els®ként a [17]-ben
lett bemutatva. A probléma o�ine változatával a [18] foglalkozik, továbbá néhány
kapcsolódó probléma a [19]-ben kerül bemutatásra.
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A BCD probléma online változatában a tárgyak el®re nem ismertek, és egyesével
érkeznek egymás után. Az éppen érkez® tárgyat azonnal be kell pakolni egy ládába.
A célfüggvény a nyitott ládák számának függvényében változik. Minél több láda
van nyitva egyszerre, a célfüggvény értéke annál jobban csökken. A cél az, hogy a
célfüggvényt, azaz a pro�tot maximalizáljuk. A ládapakolási és ládafedési probléma
o�ine és online változataival többek között a [14], a [20] és a [21] áttekint® cikkek
foglalkoznak.

A kutatás során már az irodalomból ismert természetes algoritmusokat imple-
mentáltam (DNF, H(K) és SH(K)), valamint kidolgoztam egy új, rugalmas, pa-
raméteres algoritmust, amelynek az MMask nevet adtam. Az algoritmusok teszte-
lésére a korábban már alkalmazott Schwerin és Falkenauer_U osztályokat, valamint
egy általam létrehozott Large Range (röviden: LR) nev¶ feladatosztályt használtam.
A nyereség-függvényekb®l hármat de�niáltam: egy lassan csökken®, egy négyzetesen
csökken® (emiatt el®ször kicsit, utána gyorsan csökken®) és egy meredeken csökken®
változatot. A feladatosztályokon módosításokat hajtottam végre: megbontottam a
rendezettséget, normalizálást hajtottam végre és összekapcsoltam a feladatosztályo-
kat a nyereségfüggvényekkel.

2. Módszerek és eszközök

2.1. Ütemezés

2.1.1. Az ütemezési probléma

A dolgozatban a független gépek ütemezése megel®zési relációk �gyelembe vételé-
vel (unrelated machine scheduling with precedence constraints) típusú problémával
foglalkoztam, amely az alábbiak szerint adható meg:

Rm|prec|Cmax (1)

Ahol az Rm a gépek halmaza (m darab független gép), prec jelöli azt, hogy az
egyes tevékenységek között megel®zési relációk vannak és Cmax = max(C1, . . . , Cn)
jelöli a legkés®bb befejez®d® tevékenység befejezési idejét a rendszerben, amit mini-
malizálunk. A cél pedig a teljes átfutási id® minimalizálása. A feladat egy inputja
a

⟨T ,M, G⟩ (2)

rendezett hármassal írható le, ahol T = {task1, . . . , taskn} az összes tevékenység
halmaza, M = {m1, . . . ,mm} az összes er®forrás halmaza és G = (V,E) egy gráf,
ahol V a csúcsok véges halmaza, E ⊆ V × V az élek halmaza. A gráf egy élét a
(vi, vj) ∈ E alakban írjuk és az alábbiakat követeljük meg:

� irányított gráf, azaz E ⊆ V ×V a csúcsokból alkotott rendezett párok halmaza,

� egyszer¶ gráf, azaz (vi, vj) ∈ E esetében i ̸= j (hurokélmentes) és (vj, vi) /∈ E
(nincs többszörös él) ∀i, j-re,
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� diszjunkt utak és izolált pontok uniója.

2.1.2. A javasolt módszer

Az eljárás két komponensre bontható fel. Az egyik egy mohó algoritmus, amely
az ütemezést végzi a tevékenységek egy megadott sorrendjében. A másik pedig
maga a Q-tanulással támogatott komponens, amelynek feladata a tevékenységek
egy sorrendjének, más szóval permutációjának az el®állítása. A cél az, hogy olyan
permutációt találjon az algoritmus, amely szerint mohón ütemezve az átfutási id®
minimális lesz. Az algoritmus megpróbálja megkeresni a legjobb sorrendet, de nem
garantálja az optimális megoldást. A mohó algoritmus m¶ködése a soron következ®
tevékenységhez mindig azt a gépet rendeli hozzá, amellyel az addig elért átfutási id®
a legkisebb mértékben növekszik, természetesen a megel®zési relációkat is �gyelembe
véve.

A QLM algoritmus az els® lépésben egy véletlenszer¶ sorrendet alakít ki a tevé-
kenységek között. A sorrend ekkor azért véletlen, mert a Q táblázat elemei nullák,
emiatt a kiválasztás válószín¶sége véletlenszer¶. A folyamat során a Q táblázat
értékei folyamatosan frissülnek az alábbi (3)-as szabály szerint.

Qt+1(St, At) = (1− αt)Qt(St, At) + αt(Rt + γt max
a

Qt(St+1, a)), (3)

ahol St és At az aktuális állapot ás az aktuálisan választott akció. Az αt a tanulási
ráta, amely a tanulás gyorsaságát befolyásolja, a γt pedig a diszkontráta, amely
azt szabályozza, hogy az algoritmus milyen mértékben veszi �gyelembe a jelenbeli
döntés alapján a jöv®beni állapotok értékeit. Az Rt az aktuális St állapotban, At

akció végrehajtása után kapott jutalom értéke.
A stratégia kezdetben felfedez®, ami azt jelenti, hogy a kiválasztás véletlenszer¶,

majd ahogy egyre jobban kezd konvergálni a megoldás felé, a stratégia fokozatosan
átvált egy olyan állapotra, ahol a meglév®, kiszámított adatokat igyekszik pontosí-
tani, azaz már új, addig ismeretlen lépéseket nem tesz. Az alkalmazott stratégiát
Boltzmann felfedezési stratégiának nevezzük, amely a kiszámított Q értékek alapján
határozza meg annak a valószín¶ségét, hogy mi legyen a következ® kiválasztott elem,
esetünkben tevékenység a permutációban. Az algoritmus a kialakított permutáció
alapján elvégzi a mohó ütemezést, és összehasonlítja a korábbi eredményekkel. Az
új eredmény min®sége alapján meghatároz egy Rt jutalmat, amely a (3)-as frissít®
szabály része és befolyásolja a Q értékek változását.

2.1.3. Eredmények

A kifejlesztett algoritmus hatékonyságának tesztelésére a [22, 23] cikkekben fog-
lalt kisméret¶ feladatot oldottam meg, továbbá ugyanezen cikkekben szerepl® fel-
adatok paraméterei alapján generáltam feladatosztályokat.

A kisméret¶ feladat gépi id® adatai rendelkezésre álltak, a feladat optimális meg-
oldása 13. A [22]-ben közölt algoritmus megoldása 15 lett, az általam fejlesztett
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QLM algoritmusé pedig 13. A QLM további teszteléséhez a [22]-ben közölt 33 prob-
lémából hármat választottam, a [23]-ban közölt feladatok közül pedig egyet. A fel-
adatok [22]-ben használt számozását megtartva a #1,#2 és #5 került kiválasztásra.
Ezek kis méret¶ feladatok. A [23]-b®l pedig egy nagy méret¶ feladatot választottam,
az eredeti számozás szerint a #28-at. Ezen adatok alapján négy osztályt hoztam
létre. Az n a tevékenységek, m a gépek és NC a megel®zési relációk száma.

� Class #1 → n = 14, m = 8 és NC = 5

� Class #2 → n = 28, m = 7 és NC = 8

� Class #3 → n = 27, m = 4 és NC = 1

� Class #4 → n = 74, m = 19 és NC = 10

Megmutattam, hogy a QLM eljárás alkalmas az ebben a fejezetben bemutatott
ütemezési probléma megoldására. Sikerült megmutatni, hogy a kifejlesztett eljárás
hatékony a felvetett ütemezési probléma megoldásában. Az algoritmus kifejezetten
azokra az ütemezési problémákra lett kifejlesztve, ahol a tevékenységek végrehaj-
tási ideje az er®forrástól függ, a végrehajtás nem megszakítható, továbbá az egyes
tevékenységek között megel®zési relációk lehetnek. Az általam megadott problé-
ma megoldásával a meger®sítéses tanulás témakörében nem találtam publikációt.
Összehasonlítási alap lehetett volna a [22]-ben és a [23]-ban közölt megoldás, de az
itt megoldott feladatok részletei nem ismertek. Így alapvet®en saját magam által
generált feladatokkal teszteltem a QLM algoritmust, továbbá ugyanezeket a felada-
tokat a CPLEX-szel is megoldottam. Az eredmények alapján látható, hogy a QLM
minden esetben, amikor a CPLEX is, megtalálta az optimális megoldást. A többi
esetben nem tudjuk biztosan, hogy a QLM optimális megoldást talált, ezt a CP-
LEX nem tudta meger®síteni. Ez alapján látható, hogy a kidolgozott feladatokra
szorítkozva, a QLM algoritmus hatékony és a feladatok megoldásában felveszi a ver-
senyt a CPLEX megoldójával, hiszen a QLM által adott eredmények legalább olyan
jók, mint a CPLEX által szolgáltatott eredmények, de a QLM a CPLEX-nél sokkal
gyorsabb.

2.2. Ládapakolás

2.2.1. A ládapakolási probléma

A ládapakolási feladatok esetében tárgyakat pakolunk ládákba. Minden tárgy ren-
delkezik egy wi mérettel, és minden láda egy C kapacitással. A pakolást úgy végez-
zük el, hogy a ládákba pakolt tárgyak összmérete ne lépje túl a láda kapacitását,
valamint minimális számú ládát használjunk fel. Ez a probléma NP-nehéz.

2.2.2. A javasolt módszer

Az el®feldolgozás célja az, hogy a feladatosztályokban szerepl® feladatok minél
nagyobb részét egyszer¶ algoritmussal optimálisan oldjam meg. A Schwerin és a
Falkenauer_U benchmark osztályok megoldására két mohó algoritmust hoztam létre
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REM SW és FU néven. A két algoritmus kifejezetten erre a két feladatosztályra
lett kifejlesztve. A REM SW algoritmus kiválasztja a 0 ≤ k ≤ 6 értékét úgy,
hogy a k legnagyobb tárgy és a 6 − k legkisebb tárgy egy ládába kerüljön. A k
legnagyobb tárgy pakolása után a fennmaradó helyet a 6 − k tárggyal a lehet®
legjobban betöltse. Ez utóbbihoz az útkeres® segédalgoritmust alkalmazza. Az
FU algoritmus négy segédalgoritmussal dolgozik, amelyek párokat, hármasokat és
négyeseket pakolnak úgy, hogy �gyelembe vesznek egy r értéket, amely a ládában
fennmaradó hely (tartalék) alsó korlátja. A fennmaradó tárgyakat az algoritmus az
utolsó lépésben az FFD algoritmussal pakolja.

Mindkét feladatosztály esetében megvizsgáltam, hogy milyen tulajdonságokkal
rendelkeznek a bennük foglalt feladatok, és a megoldás szempontjából ezekb®l mi-
lyen el®nyöket lehet kovácsolni. A felfedezett tulajdonságok alapján a Schwerin
osztály minden feladatát, a Falkenauer_U osztály feladatainak pedig 91%-át sike-
rült optimálisan megoldani. Az eredmények alapján látható, hogy az el®feldolgozás
a vizsgált feladatosztályok esetében valóban hatékonyan segítették az optimális meg-
oldás megtalálását.

2.2.3. Eredmények

A Schwerin és a Falkenauer_U osztályokra szorítkozva kijelenthet®, hogy a kidolgo-
zott algoritmusok nagyon jó eredményeket értek el. A Schwerin osztály esetében az
200 darab feladatból mindet optimálisan megoldotta a REM SW algoritmus, azaz az
optimális megoldások aránya 100%. Az FU algoritmus is nagyon szépen teljesített
a Falkenauer_U osztály feladatain, ugyanis a 80 darab feladatból 73 esetében adott
optimális megoldást, amely 91%-os arányt jelent az optimális megoldásokra nézve.

A bemutatott mohó eljárások gyorsak, egyszer¶ek és a legtöbb esetben megta-
lálják az optimális megoldást. Összetettebb algoritmus alkalmazása csak abban az
esetben indokolt, ha az egyszer¶bb módszerek nem adnak optimális vagy elfogadha-
tóan jó megoldást.

Az ismertetett algoritmusok (Rem SW és FU) általános alkalmazhatósága elté-
r®. A Schwerin algoritmusa kihasználja, hogy a tárgyméretek nagyon közel vannak
egymáshoz és minden ládában 5 vagy 6 db tárgy van. Viszont az algoritmus alkal-
mazható olyan esetben is, amikor továbbra is 150 és 200 között vannak a tárgymé-
retek, de a ládaméret nem 1000, hanem például 1200. Ekkor minden ládába 6 vagy
7 tárgy fog kerülni. (Csak akkor kerülhet 8 tárgy, ha ezek mindegyikének a mérete
150, ennek azonban nagyon kicsi az esélye.)

A Falkenauer algoritmusa általánosan is jó lehet, ha 0 és C között van a tárgyak
mérete. Párokat pakolunk, utána hármasokat, majd négyeseket. Ezeket úgy, hogy
jól megtöltik a ládát. A maradékot pedig FFD-vel.

2.3. Ládafedés

2.3.1. A ládafedési probléma

A ládafedési probléma hasonló a ládapakolási problémához, azonban tartalmaz né-
hány kiegészítést. A tárgyak egyenként érkeznek. Sorrendben az i. tárgy mérete
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wi > 0 és feltételezzük, hogy végtelen számú láda áll rendelkezésre ugyanazzal a C
kapacitással. Továbbá adott egy K > 0 pozitív egész szám, amely megadja, hogy
egyszerre hány láda lehet nyitva. Azaz, a pakolást végz® algoritmus csak akkor
nyithat új ládát, ha a nyitott ládák száma kevesebb, mint K.

Egy ládát fedettnek tekintünk, ha a ládába pakolt tárgyak összmérete legalább
a C kapacitással egyenl®. Adott továbbá egy G célfüggvény is, amelyre

G : {1, . . . , K} → R+. (4)

Ha adott id®pillanatban 1 ≤ k ≤ K darab láda van nyitva, és egy láda fedetté
válik és elszállításra kerül, akkor a realizált pro�t G(k). Minden fedetté vált és
elszállított láda után a k értéke eggyel csökken, de bármikor nyithatunk új ládát is,
feltéve, hogy nem lesz több nyitott láda, mint K. A G függvény monoton csökken®,
pozitív érték¶ függvény. A cél a pro�t maximalizálása, amelyet a lezárt és elszállított
ládák után kapunk.

2.3.2. A javasolt módszer

A vizsgálat során már létez®, természetesen adódó algoritmusokat implementáltam
(DNF, H(K), SH(K)), továbbá megalkottam egy új, paraméteres algoritmust MMask
néven. Az algoritmusok teszteléséhez, hasonlóan a ládapakolási témakörhöz, a Sch-
werin és a Falkenauer_U feladatosztályokat használtam fel, ezen kívül pedig létre-
hoztam egy új feladatosztályt is Large Range néven. Els® lépésként a feladatokat
el®készítettem az alábbiak szerint:

(a) Rendezettség megbontása. A tárgyakat méretük alapján véletlenszer¶en
összekevertem.

(b) Falkenauer osztály normalizálása. A láda kapacitását C = 1000-nek vet-
tem, emiatt minden tárgy méretét 1000

150
értékkel kellett megszorozni.

(c) Új feladatosztály. Létrehoztam egy új osztályt, ahol a tárgyak méretei az
[1, 1000] intervallumból valók. Ebben az osztályban összesen 400 darab feladat
található, mindegyik esetében a tárgyak száma legfeljebb 1000.

(d) Nyereségfüggvények. Az eredeti benchmarkok esetében nincs megadva nye-
reségfüggvény. Emiatt három függvényt hoztam létre:

� G1(k) = 10, 1− 0, 1× k

� G2(k) = 11− k

� G3(k) = 10, 05− 0, 05× k2

(e) Tárgytípusok és nyereségfüggvények összekapcsolása. Végezetül, a fel-
adatosztályokat kombináljuk a három nyereségfüggvénnyel az alábbi jelöléseket
alkalmazva:

� SiGu
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� FjGu

� LRjGu

ahol i = 1, 2, j = 1, 2, 3, 4 és u = 1, 2, 3.

Már ismert, természetesen adódó algoritmusok, amelyeket implementáltam a
DNF, H(K), SH(K). Mindegyik algoritmus m¶ködése nagyon egyszer¶:

� DNF: A következ® tárgy mindig az aktuálisan nyitott ládába kerül. Ha a láda
fedetté válik, akkor az algoritmus lezárja és nyit egy újat a következ® tárgyak
számára. Ha nincs több tárgy, az algoritmus megáll.

� H(K): Azok a tárgyak, amelyeknek a mérete az Ik =
(

1
k+1

, 1
k

]
intervallumba

esik, azokat a k. típusú ládába pakolja az algoritmus, ahol k = 1, . . . , K−1. A
legkisebb méret¶ tárgyak, azaz amelyek mérete az IK =

(
0, 1

K

]
intervallumba

esik, azok a K. típusú ládába kerülnek. Ha valamely láda fedetté válik, az
algoritmus lezárja. Ha nincs ilyen láda nyitva, akkor nyit egy ilyen típusút.
Ha nincs több elem, akkor az algoritmus megáll.

� SH(K): Ha a következ® tárgy képes lefedni egy vagy több ládát, akkor abba
a ládába kerül, amelynek a legalacsonyabb a töltöttsége. Ezután az algorit-
mus lezárja a ládát. Egyéb esetben az SH(K) algoritmus a H(K) algoritmus
szabálya szerint m¶ködik.

Az újonnan kifejlesztett algoritmus az MMask, amelynek három paramétere van:
K az egy id®ben nyitott ládák maximális számát meghatározó pozitív egész szám,
az α egy K-dimenziós nemnegatív vektor és β egy pozitív egész szám. Az MMask
m¶ködésének alapja egy elfogadó-elutasító politika. Az algoritmus elfogadja a soron
következ® tárgy pakolását, ha a pakolás után az adott láda töltöttsége az elfogadó
tartományba esik. Ellenkez® esetben elutasítja a pakolást.

� Elfogadó tartomány a k. láda esetén (1 ≤ k ≤ K): [0;C − αk] ∪ [C;C + β]

� Elutasító tartomány a k. láda esetén (1 ≤ k ≤ K): (C − αk;C) ∪ (C + β;∞)

MMask: Ha a következ® tárgy egy olyan ládába helyezhet®, ami ezáltal az elfogadó
tartományban fedetté válik, akkor az aktuális tárgyat ebbe a ládába kell pakolni.
Ha több ilyen láda is van, akkor ezek közül a legkisebb töltöttség¶be. Ezután az
algoritmus lezárja a ládát, majd vagy leáll (ha nincs több tárgy) vagy újraindul. Ha
a következ® tárgy egy olyan ládába helyezhet® el, aminek a töltöttsége az elfogadó
tartományba esik a pakolás után, de nem lesz fedett, akkor ebbe a ládába kell
pakolni. Ha több ilyen is van, az algoritmus véletlenszer¶en választ egyet. Ezután
vagy leáll (ha nincs több tárgy) vagy újraindul. Ha k < K, akkor az algoritmus
nyit egy új ládát. A láda típusa a legkisebb k érték, amelyikre nincs ilyen típusú
nyitott láda, és ide pakolja a tárgyat. Ezután vagy leáll (ha nincs több tárgy) vagy
újraindul. Ha k = K teljesül, akkor az aktuális tárgy a legkisebb töltöttség¶ ládába
kerül. Ha a láda fedett lesz, az algoritmus lezárja. Ha nincs több tárgy, az algoritmus
leáll, egyébként újraindul.
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Az MMask algoritmus paramétereinek beállításáért egy lokális keresésen alapuló
eljárás felel®s. A szomszédsági struktúra a különböz® MMask paraméter beállítások
között természetes módon de�niálható. Egy konkrét paraméter beállítás szomszéd-
ját úgy kapjuk meg, hogy a K, α, β paraméterek közül egyet módosítunk. Legyen
∆ egy kis pozitív konstans, ekkor minden αi, β paraméter a ∆ értékével lesz növelve
vagy csökkentve úgy, hogy az új érték pozitív marad és kisebb lesz, mint a ládamé-
ret. A K értéke is változik 1 egységgel negatív vagy pozitív irányba. A változás
iránya véletlenszer¶.

2.3.3. Eredmények

A természetesen adódó algoritmusok eredményei alapján az S1 alosztály esetében
mindegyik algoritmus (DNF, H(K) és SH(K)) ugyanazokat az eredményeket adta.
K értékét hiába növeltem, az elért pro�tot (160) nem tudtam növelni. Ez azt jelenti,
hogy a S1 esetében aK > 1 beállítás esetén is az algoritmusok DNF-ként viselkedtek.
Az F1 és F4 esetében az SH(K) algoritmus érte el a legmagasabb pro�tot K =
2, 3, 4, 5 értékekre. Az LR1 és LR4 osztályok esetében az SH(K) algoritmus K = 4
beállítása mellett adta a legjobb pro�t értékeket, két esetben K = 5 beállítással
javított a K = 4 beállításhoz képest.

Az MMask algoritmus a paraméterek manuális beállítása mellett az S1 esetében
egy feladatnál sem javított a pro�ton, az F1 és F4 esetében a vizsgált feladatok
mindegyikénél javított a pro�t értékén, az LR1 és LR4 feladatosztály esetében pedig
három esetet leszámítva ugyancsak javított az eredményeken.

A lokális kereséssel megválasztott paraméter beállításokat alkalmazva az F1 és
F4 osztályok feladatai esetében egy esetet kivéve mindenhol javított a korábbi algo-
ritmusokhoz és a manuális beállításhoz képest is. Az LR1 és LR4 osztályok esetében
három esetet leszámítva ugyancsak mindenhol javított.

A vizsgálatok alapján az mondható, hogy a lokális keresés segítségével egy "jó
paraméter-beállítás" megtalálható. Természetesen, fejlettebb eljárásokkal valószín¶-
leg még jobb beállításokat lehetne elérni, azonban ez egy jöv®beni továbbfejlesztési
lehet®ség jelenleg.

A jobb paraméter-beállítások megtalálásához jól alkalmazható a lokális keresés,
azaz képes megoldani a paraméterek automatikus keresését úgy, hogy a korábbi algo-
ritmusok és a manuálisan beállított paraméterek eredményeit®l jobb eredményeket
ér el. Ez nagy könnyebbség, hiszen a paraméterek kézi beállítását kiváltja. Továb-
bá, az MMask és a lokális keresés, mint paraméter optimalizáló fúziója hatékonynak
bizonyult.

3. Új tudományos eredmények

1. Tézis A független gépek ütemezése megel®zési relációkkal (Rm|prec|Cmax) feladat
megoldására létrehoztam egy új algoritmust. A kidolgozott algoritmus a meger®sítéses
tanulás területér®l ismert Q-tanuláson alapuló eljárással meghatározza a tevékenysé-
gek sorrendjét, majd egy mohó ütemez®vel ebben a sorrendben ütemezi a feladatokat.
Az algoritmus átfogó vizsgálatára négy új benchmark feladatosztályt hoztam létre. A
feladatosztályok a felépítésük és nehézségük alapján változatosak.
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1.1 A kapott eredményeket összehasonlítottam a CPLEX megoldó által szolgálta-
tott eredményekkel. A kiértékelés alapján látható, hogy az általam létrehozott QLM
algoritmus minden olyan esetben megtalálja az optimális megoldást a vizsgált fel-
adatosztályokban, amikor a CPLEX is. A többi esetben a QLM legalább olyan
jó eredményeket produkált mint a CPLEX. A feladatosztályokra szorítkozva kije-
lenthet®, hogy a QLM algoritmus hatékony és a feladatok megoldásában felveszi a
versenyt a CPLEX megoldóval, de annál sokkal gyorsabb.

A tézispontban felsorolt eredményeket alátámasztó publikációk: [P1], [P4], [P5],
[P6], [P7], [P8], [P9]

2. Tézis A ládapakolási problémát egy új szemszögb®l, az el®feldolgozás oldaláról
közelítettem meg. A vizsgálathoz a Schwerin és a Falkenauer_U osztályokat alkal-
maztam. Létrehoztam két algoritmust REM SW és FU néven. A REM SW algo-
ritmust a Schwerin, az FU algoritmust pedig a Falkenauer_U osztály feladatainak
megoldására terveztem.

2.1 Mindkét feladatosztály esetében megvizsgáltam, hogy milyen tulajdonságok-
kal rendelkeznek a bennük foglalt feladatok, és a megoldás szempontjából ezekb®l
milyen el®nyöket lehet kovácsolni. A felfedezett tulajdonságok alapján a Schwerin
osztály minden feladatát, a Falkenauer_U osztály feladatainak pedig 91%-át sikerült
optimálisan megoldani.

2.2 Az algoritmusokat nem csak aszerint vizsgáltam meg, hogy az adott feladat-
osztály hány elemére találnak optimális megoldást, hanem összehasonlítottam ®ket
a HEA algoritmussal. A HEA algoritmus az egyik leghatékonyabb (és az egyik
legújabb) általános metaheurisztikus algoritmus ezen és más benchmark feladatok
megoldására. A REM SW algoritmust összehasonlítva a HEA [24] algoritmussal, az
átlagos futási id®k a REM SW esetében sokkal jobbak voltak. A Schwerin 1 esetén
0,0038 (HEA - 0,34 másodperc) másodperc, míg a Schwerin 2 esetén 0,004 (HEA
- 0,47 másodperc) másodperc volt. Az FU algoritmus futási ideje a Falkenauer_U
osztály 80 feladata esetén is jelent®sen kisebb, mint a HEA futási ideje.

A tézispontban felsorolt eredményeket alátámasztó publikáció: [P2]

3. Tézis Részletes vizsgálatokat folytattam a "ládafedés szállítással" nev¶ feladat-
tal kapcsolatban, amelynek részeként a Schwerin és a Falkenauer_U osztályokat al-
kalmaztam, valamint új benchmark osztályokat (LR) is létrehoztam. Megalkottam
egy új, paraméteres algoritmust MMask néven, amely a ládák pakolása során egy
elfogadó-elutasító politikát folytat, továbbá a paramétereit lokális kereséssel automa-
tikusan beállítja.

3.1 A benchmark feladatok megoldhatóságát részben az irodalomból ismert, termé-
szetesen adódó algoritmusokkal (DNF, H(K), SH(K)) vizsgáltam. Az eredmények
kiértékelése alapján megállapítottam, hogy ezen algoritmusok az esetek dönt® több-
ségében hatékonyan oldják meg a feladatosztályok elemeit.

11



3.2 Továbbá, megállapítottam, hogy a paraméterek megfelel® megválasztásával az
MMask algoritmus a korábbiaknál jobb eredményeket tudott elérni. A paraméterek
optimalizálásához létrehoztam egy lokális keresés alapú heurisztikát, amely a legjobb
eredményeket elér® paraméter beállításokat határozta meg. Az optimalizáló még
jobb beállításokat tudott megtalálni, mint a manuális beállítások.

A tézispontban felsorolt eredményeket alátámasztó publikációk: [P3]

4. A tézispontokkal kapcsolatos publikációk

Az ismertetett eredményeim folyóiratokban, nemzetközi konferenciákon és konferen-
ciakiadványokban lettek bemutatva. Ezeket az alábbiakban sorolom fel.

[P1 ] Gy. Ábrahám, P. Auer, Gy. Dósa, T. Dulai and Á. Werner-Stark. A re-
inforcement learning motivated algorithm for process optimization. Periodica
Polytechnica Civil Engineering, 63(4):961 970, 2019. (IF: 1.34)

[P2 ] Gy. Ábrahám, Gy. Dósa, T. Dulai, Zs. Tuza and Á. Werner-Stark. E�ci-
ent Pre-Solve Algorithms for the Schwerin and the Falkenauer_U Bin Packing
Benchmark Problems for Getting Optimal Solutions with High Probability.
Mathematics, 9(13):1540, 2021. (IF: 2.592).

[P3 ]Gy. Ábrahám, P. Auer, Gy. Dósa, T. Dulai, Zs. Tuza and Á. Werner-Stark.
The bin covering with delivery problem, extended investigations for the online
case. Central European Journal of Operations Research, pages 1-27, 2022.
(IF: 2.345)

[P4 ] Á. Werner-Stark, T. Dulai andGy. Ábrahám. Modeling of an agent system
to support the management of cooperating and rival resources for business
work�ows. In 2014 4th International Conference On Simulation And Modeling
Methodologies, Technologies And Applications (SIMULTECH), pages 407-412.
IEEE, 2014.

[P5 ] T. Dulai, Á. Werner-Stark and Gy. Ábrahám. Support of E�cient re-
source allocation of technological processes by a heuristic solution and agent
technology. Data Envelopment Analysis and its Applications, page 153, 2016.

[P6 ] T. Dulai, Á. Werner-Stark and Gy. Ábrahám. Improvement of resource
allocation in work�ows by stochastic method. In 10th International Conference
on Applied Informatics, 2017.

[P7 ] Gy. Ábrahám, T. Dulai, Á. Werner-Stark and Gy. Dósa. Reinforcement
learning in process scheduling. In 13th Miklós Iványi International PhD DLA
Symposium - Abstract Book: Architectural, Engineering and Information Sci-
ences, pages 15-15, 2017.

[P8 ] Gy. Ábrahám, T. Dulai, Á. Werner-Stark and Gy. Dósa. Learning the
parameters of a reinforcement learning algorithm for process optimization. In
Veszprém Optimization Workshop, pages 11-11, 2019.
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[P9 ] Gy. Ábrahám, T. Dulai, Á. Werner-Stark and Gy. Dósa. Parameter
optimization of q-learning motivated algorithm in process scheduling. In Pro-
ceedings of the Pannonian Conference on Advances in Information Technology,
pages 17-24, 2020.

A felsorolt publikációk a dolgozat benyújtása napjáig a következ® hivatkozásokat
kapták: [25], [26]

5. További kutatási és továbbfejlesztési lehet®ségek

5.1. Az ütemezési problémára vonatkozóan, a bemutatott megoldásokon túl további
vizsgálat tárgya lehet, hogy bizonyos speciális esetekben (például m = 2 gép esete,
vagy csak kétfajta végrehajtási id® esete) nem kaphatnánk-e jobb alsó korlátokat il-
letve, hogy m¶ködik ezekben az esetekben a QLM algoritmus vagy ennek valamilyen
módosított változata. Továbbá meg lehet vizsgálni, hogy némileg más struktúrák
esetén pl. fa struktúra, hogyan m¶ködik a módszerünk. Természetesen ezekre is új
tesztfeladatokat kellene generálnunk.

5.2. A ládapakolásra vonatkozóan néhány további lehet®séget mutatok be, ame-
lyekkel a jöv®ben továbbfejleszthet® az FU algoritmus. A Schwerin osztály esetében,
mivel sikerült megoldani az összes feladatot optimálisan, így nincs szükség további
kutatásra. Azonban a Falkenauer_U osztály esetében az arány 91% volt, így itt van
helye további vizsgálatoknak:

1. Más paraméterek kipróbálása, amelyek meghatározása lehet manuális, tapasz-
talaton alapuló, vagy automatizált, valamilyen keres® algoritmussal. A külön-
böz® beállítások által adott eredmények közül végül kiválasztjuk a legjobbat.

2. További paraméterek bevezetése, pl. nem csak a nagy tárgyak meglétét vizs-
gáljuk, hanem azok darabszámát is �gyelembe vesszük.

Az is megválaszolatlan kérdés jelenleg, hogy mi történik, ha a tárgyak száma
növekszik. Tételezzük fel, hogy a láda kapacitása, azaz a C értéke egy rögzített
egész, így következésképpen a tárgyak mérete az [1, C] intervallumból kerül ki. Ek-
kor Lenstra eredménye szerint [27] a feladat polinomiális id®ben megoldható, ahol
n a tárgyak száma és n tetsz®legesen nagy lehet. A polinomiális id®ben való meg-
oldhatóság ellenére egy ilyen algoritmus lépéseinek száma nagyon nagy lenne, mivel
n kitev®je nagyon nagy, továbbá az O(.) kifejezés együtthatója is szintén nagy len-
ne. Ezen okok miatt egy ilyen algoritmus nem biztos, hogy használható lenne a
gyakorlatban, esetleg valamilyen el®sz¶rés után.

Továbbá, ez a tétel nem veszi �gyelembe azt a tényt, ha a tárgyak mérete vé-
letlenszer¶en kerül ki egy adott intervallumból egyenletes eloszlással. Ezek alapján
megfogalmazhatjuk a következ® sejtést.

Legyenek 1 ≤ a < b ≤ C rögzített egész számok, ahol C a láda mérete. Tételezzük
fel, hogy a tárgyak mérete véletlenszer¶en, egyenletes eloszlás mellett az a, a+1, . . . , b
egészek közül kerülnek ki. Ekkor létezik egy olyan algoritmus, amelynek futási ide-
je alacsony rend¶ polinommal felülr®l becsülhet® és az O(.) kifejezés együtthatója
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is megfelel®en kicsi, továbbá a feladat optimális megoldásának valószín¶sége 1-hez
közelít mid®n n → ∞.

Például, egy olyan algoritmus, amelynek futási ideje 20n4 és 0,9 valószín¶séggel
találja meg az optimális megoldást n = 1000 mellett, már érdekes lehet. Az el®bbi
várakozásomat azért fogalmaztam meg sejtésként, mert valójában keveset tudunk
arról, hogy ilyen esetekben mit lehet csinálni. Ehhez további vizsgálatokra lenne
szükség.

5.3. A ládafedés területén néhány, az MMask algoritmus továbbfejleszthet®ségére
vonatkozó lehet®séget fogalmazok meg.

� A bemutatott paraméter-beállítások egy része manuálisan került meghatáro-
zásra. El®fordulhat, hogy más beállításokkal sokkal jobb eredmények is elér-
het®k.

� Kiderült, hogy az LR osztály esetében az SH(4) algoritmus több esetben is
nagyon hatékony. Ez alapján megfontolandó az SH(4) és az MMask algorit-
mus fúziója (mindkét algoritmust külön-külön futtatjuk és a jobb eredményt
választjuk).

� Az MMask algoritmus a 2. lépésében tetsz®legesen választhatott a rendelke-
zésre álló, megfelel® ládák közül. Lehetséges, ha "okosabban" választ ládát,
akkor az MMask teljesítménye növelhet® lesz.

� Egy másik módosítási lehet®ség az algoritmus 2. lépésére vonatkozóan a követ-
kez® volt. Legyenek B1, B2, . . . , Bt azok a ládák, amelyekbe az aktuális tárgy
pakolható. Ha t = 1, akkor egyértelm¶, hogy melyik ládába került az aktuális
tárgy, mivel csak egy láda van nyitva. Ha viszont t > 1, akkor több láda
közül választhat az algoritmus. Minden megfelel® ládára kiszámítottam, hogy
mennyi a bennük lév® tárgyak méretének átlaga, ezeket jelölje x1, x2, . . . , xt,
az aktuális tárgy méretét pedig x. Ekkor minden láda esetében megadtam az
(x − xi)

2 kifejezés értékét, és a legkisebbet választottam, ami megadta, hogy
a Bi ládába kell pakolni, ahol 1 ≤ i ≤ t. Sajnos ez a választási stratégia
nem bizonyult hatékonynak. Néhány esetben javított az eredményen, máskor
rontott, de összességében nem lett jobb az eljárás.
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