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1. A munka hattere, motivacidja

Az értekezésben harom problémaval foglalkoztam az iitemezés és a ladapako-
las teriiletekhez kapcsolodoan. Mindharom teriiletnek szamos alkalmazéisa van a
gyakorlatban, tobbek kozott az iparban, a gazdaséigi életben vagy éppen az opti-
malizélasban. Az iitemezési feladat (unrelated machine scheduling with precedence
constraints) megoldasaban egy, a megerssitéses tanuléas teriiletén ismert és népszert
algoritmust vettem alapul, amelyre épitve a tevékenységek sorrendjét meghatérozo
megoldast hoztam létre. A ladapakolasi feladatok (bin packing) megoldéasa soran
un. el6feldolgozo algoritmusok segitségével igyekeztem megoldani benchmark fel-
adatokat. Tovabba egy viszonylag 1j teriilettel is foglalkoztam, amelynek ladafedés
szallitassal (Bin Covering with Delivery, roviden BCD) a neve. Ezen a teriileten egy-
részt természetesen adodo algoritmusokkal oldottam meg a benchmark feladatokat és
hasonlitottam 6ssze a megoldasokat az altalam kidolgozott 1j, rugalmas algoritmus
eredményeivel. Mindharom feladat meglehetGsen nehéz, bonyolult kombinatorikus
optimalizaléasi feladat. Megoldasuk soran szamitogépes modszereket alkalmaztam.

1.1. Altalanossagban egy iitemezési probléma esetén adottak tevékenységek (mun-
kék) és eréforrasok (a mi esetiinkben gépek). Az iitemezés soran azt hatarozzuk meg,
hogy melyik tevékenységet melyik gép mettdl meddig hajtja végre. A tevékenységek
vagy munkék az elvégzendd feladatok, ezeknek a szama valtozo. Az eréforrasok pe-
dig olyan egységek, amelyek a tevékenységek végrehajtasara szolgalnak. A cél pedig
az, hogy ezeket az erGforrasokat a tevékenységekhez rendeljiik tgy, hogy valamely
célfiiggvényt optimalizaljuk. Az altalam vizsgalt esetben a cél a teljes atfutasi id6
minimalizilasa volt. Az iitemezési feladatok megoldisara egy, a Q tanulas altal
motivalt algoritmust fejlesztettem ki, amelyet Q-tanulas altal motivalt algorit-
musnak, roviden (az angol elnevezés utan) QLM-nek neveztem el. Az algoritmus
két részbdl épiil fel: egy moho iitemezGbdl és a Q tanuldst alkalmazo eljarasbol,
amely a tevékenységek sorrendjét hatdrozza meg.

Az iitemezésrdl részletes attekintést példaul [1]-ben talalunk. A konyv igen rész-
letesen targyalja az iitemezéshez kapcsolodo elméleti modelleket és a kiilonbozé iite-
mezési problémakat. Az iitemezés teriilete igen bdséges irodalommal rendelkezik, e
helyiitt Ronald L. Graham két alapvet6 munkajat [2, 3] emlitem meg. Ezekben a
cikkekben definialta a hires LS (List Scheduling, lista szerinti itemezés) algoritmust,
valamint ennek rendezett valtozatat, az LPT (Longest processing Time) algoritmust.

A kutatasom soran vizsgalt feladat a fliggetlen gépek {itemezése megel6zési re-
laciok figyelembe vételével. A megoldashoz a megerdsitéses tanuléds teriiletérdl is-
mert eljarast, a Q-tanulast (@Q-Learning) alkalmaztam. Az irodalomban tudoméasom
szerint a fent megnevezett iitemezési problémara ilyen megoldas még nem létezik,
azonban az iitemezés egyéb teriiletein van példa a megerdsitéses tanulas alkalma-
zésara. Orhean és tarsai [4] egy, a megerdsitéses tanulason alapulo, elosztott felhd
rendszerhez alkalmazhaté {litemez6 eljarast mutattak be. A cél egy rendszer telje-
sitményének az optimalizalasa volt az erdforrasok iitemezésén keresztiil. Aydin és
Oztemel [5] egy 4gens alapt iitemezési modszert dolgoztak ki, amelyben az 4dgens
kiilonbozs feltételek mentén szabalyokat valaszt ki, amelyek alapjan az iitemezés
végbemegy. Az agens tanitisira a (Q-tanulas egy tovabbfejlesztett valtozatat alkal-



maztak. Stefan [6] a Q-tanulas algoritmusét alkalmazta egy permutacios flow shop
problémara, ahol a cél a gépek iiresjarati idejének a minimalizdlasa volt. Stefan a
disszertaciojaban [7] bévebb leirast adott az algoritmusrol, amely a flow shop tipust
probléma megoldasara késziilt. A cikk [6] és a disszertacio |7] az altalam bemuta-
tott probléma megerGsitéses tanulas oldalrol valo megkozelitésében segitett. Gabel
és Riedmiller [8] szintén a Q-tanulast alkalmaztak, viszont 6k egy job shop tipusa
problémara, amelynél a Q-fliggvényt neuralis hélo segitségével kozelitették. Shahra-
bi és tarsai [9] a megerdGsitéses tanulast alkalmaztak egy job shop tipust probléméra
kifejlesztett eljaras tovabbfejlesztéséhez. Tovabbi példakat taldlunk a megerGsitéses
tanulés alkalmazasara az titemezés teriiletén a [10-12| cikkekben. A [13]|-ban pél-
daul a Q-tanuldsnak a neurdlis halozatokkal Osszekapcsolt valtozatat alkalmaztak,
amelyet Deep Reinforcement Learning-nek hivnak.

1.2. A ladapakolasi feladatok esetében targyakat szeretnénk ladakba pakolni gy,
hogy a pakolt ladak szama minimalis legyen és az egy ladéba pakolt targyak mére-
te ne lépje at a lada kapacitasat. A probléma NP-nehéz [14, 15]. A ladapakolasi
problémat a hetvenes évek elején definialtak és kezdték vizsgalni. Az Gn. approxi-
mécios algoritmusokat ezen a teriileten fejlesztették ki. Olyan algoritmust neveziink
approximaciés algoritmusnak, amelytél nem varjuk el, hogy feltétleniil optimalis
megoldast adjon egy feladatra, de egyrészt gyors (polinomialis idejii), méasrészt az
altala szolgaltatott megoldas garantaltan "nincs til messze" az optimum értéktdl.

D.S. Johnson disszertacioja [16] a ladapakolasrol és Graham munkaja |2] azokhoz
a korai munkakhoz tartoznak, amelyek elinditottak és formaltak az approximacios
algoritmusok vizsgalatat és megszabtak a tovabbi kutatasok irdnyat. A ladapakolas
teriiletén megkiilonboztetiink online és offline eseteket. Online esetben a targyak
adatai elére nem ismertek, offline esetben viszont igen.

Ezen a teriileten a lddapakolasi feladatok egy 1j megkozelitésével foglalkoztam.
Ennek lényege, hogy a ladapakolasi problémak egy halmazanak megoldasa elGtt egy
un. el6feldolgozast végzek el. Az 1j megkozelitésben megprobalom meghatirozni az
adott feladathalmaz egy elemének az optimalis megoldasat egy moho algoritmussal;
ha ez sikeriilt, a feladat megoldasaval készen vagyunk. Ha viszont nem sikeriilt,
akkor mas, Osszetettebb algoritmust valasztunk. A mohé algoritmus alkalmazasa-
nak lényege, hogy egyszeri algoritmussal az adott osztalyon beliil a leheté legtobb
feladatot optimalisan oldjuk meg. Igy a megoldott feladatokkal mar nem kell foglal-
kozni, azaz a problémak szama csokken. A feladatok megoldasara két algoritmust
hoztam létre REM WS és FU néven, amelyek hatékonysagat ismert és szabadon
elérhets benchmark feladatosztalyokon teszteltem (Schwerin és Falkenauer U).

1.3. A ladafedés szallitassal egy viszonylag 4j teriilet. Hasonléan a ladapakolési
problémahoz, ebben az esetben is targyakat pakolunk ladakba, amelyeket, ha fe-
detté valnak (vagyis a ladaba pakolt targyak Osszmérete legalabb akkora, mint a
lada kapacitéasa), lezarunk és elszallitunk. A célfiiggvény meghatarozasa a fedett és
elszallitott ladéak szama alapjan torténik. Azaz, minden elszallitott ladaért pénzt
kapunk és a cél az, hogy a profitot maximalizaljuk. A probléma elséként a |17|-ben
lett bemutatva. A probléma offline valtozataval a [18] foglalkozik, tovabba néhany
kapcsolodd probléma a [19]-ben keriil bemutatésra.



A BCD probléma online valtozataban a targyak el6re nem ismertek, és egyesével
érkeznek egymas utan. Az éppen érkezd targyat azonnal be kell pakolni egy ladaba.
A célfiiggvény a nyitott ladak szamanak fiiggvényében valtozik. Minél tébb lada
van nyitva egyszerre, a célfiiggvény értéke annal jobban csokken. A cél az, hogy a
célfiiggvényt, azaz a profitot maximalizaljuk. A ladapakolési és ladafedési probléma
offline és online véltozataival tobbek kozott a [14], a [20] és a [21] attekintd cikkek
foglalkoznak.

A kutatds sordn mar az irodalombél ismert természetes algoritmusokat imple-
mentaltam (DNF, H(K) és SH(K)), valamint kidolgoztam egy 1j, rugalmas, pa-
raméteres algoritmust, amelynek az MMask nevet adtam. Az algoritmusok teszte-
lésére a korabban mar alkalmazott Schwerin és Falkenauer U osztélyokat, valamint
egy altalam létrehozott Large Range (roviden: LR) nevi feladatosztalyt hasznéaltam.
A nyereség-fiiggvényekbdl harmat definidltam: egy lassan csokkend, egy négyzetesen
csokkend (emiatt elGszor kicsit, utana gyorsan csokkend) és egy meredeken csokkend
valtozatot. A feladatosztalyokon modositasokat hajtottam végre: megbontottam a
rendezettséget, normalizalast hajtottam végre és Osszekapcsoltam a feladatosztalyo-
kat a nyereségfiiggvényekkel.

2. Modszerek és eszkozok

2.1. Utemezés

2.1.1. Az iitemezési probléma

A dolgozatban a fiiggetlen gépek {itemezése megelGzési relaciok figyelembe vételé-
vel (unrelated machine scheduling with precedence constraints) tipustt probléméval
foglalkoztam, amely az alabbiak szerint adhatd meg:

R |prec|Cras (1)

Ahol az R, a gépek halmaza (m darab fiiggetlen gép), prec jeloli azt, hogy az
egyes tevékenységek kozott megelézési relaciok vannak és Cop = mazx(Ch, ..., Cp)
jeloli a legkés6bb befejezddd tevékenység befejezési idejét a rendszerben, amit mini-
malizdlunk. A cél pedig a teljes atfutasi id6 minimalizaldsa. A feladat egy inputja
a

(T, M, G) (2)
rendezett harmassal irhato le, ahol T = {task,..., task,} az Osszes tevékenység
halmaza, M = {my,...,m,,} az Gsszes er6forras halmaza és G = (V, E) egy graf,

ahol V' a csiicsok véges halmaza, E C V x V az élek halmaza. A graf egy élét a
(v;,v;) € E alakban irjuk és az alabbiakat koveteljiik meg:

e iranyitott graf, azaz £ C V xV a csticsokbo6l alkotott rendezett parok halmaza,

o egyszerd graf, azaz (v;,v;) € E esetében i # j (hurokélmentes) és (vj,v;) ¢ E
(nincs tobbszords él) Vi, j-re,



e diszjunkt utak és izolalt pontok unidja.

2.1.2. A javasolt mébdszer

Az eljaras két komponensre bonthato fel. Az egyik egy mohdé algoritmus, amely
az iltemezést végzi a tevékenységek egy megadott sorrendjében. A masik pedig
maga a (Q-tanuldssal tdmogatott komponens, amelynek feladata a tevékenységek
permutéciot talaljon az algoritmus, amely szerint mohon {itemezve az atfutasi id6
minimalis lesz. Az algoritmus megprébélja megkeresni a legjobb sorrendet, de nem
garantalja az optimalis megoldast. A moho algoritmus miikddése a soron kivetkezs
tevékenységhez mindig azt a gépet rendeli hozza, amellyel az addig elért atfutasi idé
a legkisebb mértékben novekszik, természetesen a megel6zési relaciokat is figyelembe
véve.

A QLM algoritmus az els6 1épésben egy véletlenszeri sorrendet alakit ki a tevé-
kenységek kozott. A sorrend ekkor azért véletlen, mert a () tablazat elemei nullak,
emiatt a kivalasztas valoszintsége véletlenszeri. A folyamat soran a Q tablazat
értékei folyamatosan frissiilnek az alabbi (3)-as szabély szerint.

QtJrl(St; At) = (1 - at)Qt(Sta At) + at(Rt + Mt mgx Qt(StJrla a)), (3)

ahol S; és A; az aktualis allapot as az aktualisan valasztott akcid. Az oy a tanulasi
rata, amely a tanulds gyorsasagat befolyasolja, a v; pedig a diszkontrata, amely
azt szabalyozza, hogy az algoritmus milyen mértékben veszi figyelembe a jelenbeli
dontés alapjan a jovébeni allapotok értékeit. Az R; az aktualis S; allapotban, A,
akcio végrehajtdsa utan kapott jutalom értéke.

A stratégia kezdetben felfedezs, ami azt jelenti, hogy a kivalasztéas véletlenszert,
majd ahogy egyre jobban kezd konvergalni a megoldas felé, a stratégia fokozatosan
atvalt egy olyan allapotra, ahol a meglévs, kiszamitott adatokat igyekszik pontosi-
tani, azaz méar 0j, addig ismeretlen lépéseket nem tesz. Az alkalmazott stratégiat
Boltzmann felfedezési stratégianak nevezziik, amely a kiszamitott Q értékek alapjan
hatarozza meg annak a valoszintiségét, hogy mi legyen a kévetkezd kivalasztott elem,
esetiinkben tevékenység a permutacioban. Az algoritmus a kialakitott permutacio
alapjan elvégzi a moho {itemezést, és Gsszehasonlitja a korabbi eredményekkel. Az
1j eredmény mindsége alapjan meghataroz egy R, jutalmat, amely a (3)-as frissits
szabaly része és befolyasolja a Q értékek valtozasat.

2.1.3. Eredmények

A kifejlesztett algoritmus hatékonysaganak tesztelésére a |22, 23| cikkekben fog-
lalt kisméretii feladatot oldottam meg, tovibba ugyanezen cikkekben szerepld fel-
adatok paraméterei alapjan generaltam feladatosztalyokat.

A kisméretii feladat gépi id6 adatai rendelkezésre alltak, a feladat optimalis meg-
oldasa 13. A [22]-ben kozolt algoritmus megoldasa 15 lett, az altalam fejlesztett



QLM algoritmusé pedig 13. A QLM tovabbi teszteléséhez a [22|-ben kozolt 33 prob-
leméabol harmat valasztottam, a [23]-ban kozolt feladatok koziil pedig egyet. A fel-
adatok [22]-ben hasznalt szaimozasat megtartva a #1, #2 és #5 keriilt kivalasztésra.
Ezek kis méretii feladatok. A [23|-bél pedig egy nagy méretii feladatot valasztottam,
az eredeti szdmozas szerint a #28-at. Ezen adatok alapjan négy osztalyt hoztam
létre. Az n a tevékenységek, m a gépek és NC' a megeldzési relaciok szama.

Class #1 - n=14, m=8é NC =5

Class #2 - n =28, m=Tés NC =8

Class #3 > n =27, m=4és NC =1

Class #4 - n =74, m =19 és NC' =10

Megmutattam, hogy a QLM eljaras alkalmas az ebben a fejezethen bemutatott
iitemezési probléma megoldasara. Sikeriilt megmutatni, hogy a kifejlesztett eljaras
hatékony a felvetett iitemezési probléma megoldasaban. Az algoritmus kifejezetten
azokra az iitemezési problémakra lett kifejlesztve, ahol a tevékenységek végrehaj-
tasi ideje az erdforrastol fiigg, a végrehajtas nem megszakithato, tovabba az egyes
tevékenységek kozott megelézési relaciok lehetnek. Az altalam megadott problé-
ma megoldasaval a megerGsitéses tanulas témakorében nem taldltam publikaciot.
Osszehasonlitési alap lehetett volna a [22]-ben és a [23]-ban kozolt megoldas, de az
itt megoldott feladatok részletei nem ismertek. Igy alapvetSen sajat magam altal
generélt feladatokkal teszteltem a QLM algoritmust, tovabbé ugyanezeket a felada-
tokat a CPLEX-szel is megoldottam. Az eredmények alapjan lathatd, hogy a QLM
minden esetben, amikor a CPLEX is, megtalalta az optimélis megoldast. A tobbi
esetben nem tudjuk biztosan, hogy a QLM optimalis megoldast talalt, ezt a CP-
LEX nem tudta megerGsiteni. Ez alapjan lathato, hogy a kidolgozott feladatokra
szoritkozva, a QLM algoritmus hatékony és a feladatok megoldasidban felveszi a ver-
senyt a CPLEX megoldé6jéval, hiszen a QLM altal adott eredmények legalabb olyan
jok, mint a CPLEX 4&ltal szolgaltatott eredmények, de a QLM a CPLEX-nél sokkal
gyorsabb.

2.2. Ladapakolas
2.2.1. A ladapakolasi probléma

A ladapakolasi feladatok esetében targyakat pakolunk ladakba. Minden targy ren-
delkezik egy w; mérettel, és minden lada egy C kapacitassal. A pakolast ugy végez-
ziik el, hogy a ladékba pakolt targyak Osszmérete ne lépje til a lada kapacitasat,
valamint minimélis szdmu ladat hasznaljunk fel. Ez a probléma NP-nehéz.

2.2.2. A javasolt mébdszer
Az el6feldolgozas célja az, hogy a feladatosztalyokban szerepls feladatok minél

nagyobb részét egyszeri algoritmussal optimalisan oldjam meg. A Schwerin és a
Falkenauer U benchmark osztalyok megoldésara két moho algoritmust hoztam létre



REM SW és FU néven. A két algoritmus kifejezetten erre a két feladatosztalyra
lett kifejlesztve. A REM SW algoritmus kivalasztja a 0 < k£ < 6 értékét gy,
hogy a k legnagyobb targy és a 6 — k legkisebb targy egy ladaba keriiljon. A k
legnagyobb targy pakolasa utdan a fennmaradéd helyet a 6 — k£ targgyal a lehets
legjobban betdltse. Ez utobbihoz az tutkeresé segédalgoritmust alkalmazza. Az
FU algoritmus négy segédalgoritmussal dolgozik, amelyek parokat, harmasokat és
négyeseket pakolnak gy, hogy figyelembe vesznek egy r értéket, amely a ladaban
fennmaradé hely (tartalék) also korlatja. A fennmarado targyakat az algoritmus az
utolso lépésben az FFD algoritmussal pakolja.

Mindkét feladatosztily esetében megvizsgaltam, hogy milyen tulajdonsigokkal
rendelkeznek a benniik foglalt feladatok, és a megoldas szempontjabol ezekbdl mi-
lyen el6nyoket lehet kovacsolni. A felfedezett tulajdonsigok alapjan a Schwerin
osztaly minden feladatéat, a Falkenauer U osztaly feladatainak pedig 91%-at sike-
riilt optimalisan megoldani. Az eredmények alapjan lathato, hogy az el6feldolgozas
a vizsgalt feladatosztalyok esetében valoban hatékonyan segitették az optimélis meg-
oldas megtalalasat.

2.2.3. Eredmények

A Schwerin és a Falkenauer U osztalyokra szoritkozva kijelenthets, hogy a kidolgo-
zott algoritmusok nagyon jo eredményeket értek el. A Schwerin osztédly esetében az
200 darab feladatbo6l mindet optiméalisan megoldotta a REM SW algoritmus, azaz az
optimalis megoldasok aranya 100%. Az FU algoritmus is nagyon szépen teljesitett
a Falkenauer U osztaly feladatain, ugyanis a 80 darab feladatbol 73 esetében adott
optimalis megoldast, amely 91%-os aranyt jelent az optimalis megoldasokra nézve.

A bemutatott moho eljarasok gyorsak, egyszertiek és a legtobb esetben megta-
laljak az optimalis megoldast. Osszetettebb algoritmus alkalmazéasa csak abban az
esetben indokolt, ha az egyszeriibb modszerek nem adnak optimélis vagy elfogadha-
téan jo megoldast.

Az ismertetett algoritmusok (Rem SW és FU) altalanos alkalmazhatosaga elté-
r6. A Schwerin algoritmusa kihasznélja, hogy a targyméretek nagyon kozel vannak
egymashoz és minden lddaban 5 vagy 6 db targy van. Viszont az algoritmus alkal-
mazhato olyan esetben is, amikor tovabbra is 150 és 200 kozott vannak a targymé-
retek, de a ladaméret nem 1000, hanem példaul 1200. Ekkor minden ladaba 6 vagy
7 targy fog keriilni. (Csak akkor keriilhet 8 targy, ha ezek mindegyikének a mérete
150, ennek azonban nagyon kicsi az esélye.)

A Falkenauer algoritmusa altalanosan is j6 lehet, ha 0 és C' kdzdtt van a targyak
mérete. Parokat pakolunk, utana hirmasokat, majd négyeseket. Ezeket tgy, hogy
jol megtoltik a ladat. A maradékot pedig FFD-vel.

2.3. Ladafedés
2.3.1. A ladafedési probléma

A ladafedési probléma hasonl6 a ladapakoléasi problémahoz, azonban tartalmaz né-
hany kiegészitést. A targyak egyenként érkeznek. Sorrendben az ¢. tdrgy mérete



w; > 0 és feltételezziik, hogy végtelen szamu lada all rendelkezésre ugyanazzal a C'
kapacitassal. Tovabba adott egy K > 0 pozitiv egész szam, amely megadja, hogy
egyszerre hany lada lehet nyitva. Azaz, a pakolast végzé algoritmus csak akkor
nyithat uj ladat, ha a nyitott ladak szama kevesebb, mint K.

Egy ladat fedettnek tekintiink, ha a ladaba pakolt targyak Osszmérete legalabb
a C' kapacitassal egyenld. Adott tovabba egy G célfiiggvény is, amelyre

G:{l,....K} = R". (4)

Ha adott idgpillanatban 1 < k < K darab lada van nyitva, és egy lada fedetté
valik és elszéllitasra keriil, akkor a realizalt profit G(k). Minden fedetté valt és
elszallitott lada utan a k értéke eggyel csokken, de barmikor nyithatunk aj 1ladat is,
feltéve, hogy nem lesz tobb nyitott lada, mint K. A G fiiggvény monoton csokkend,
pozitiv értékd fliggvény. A cél a profit maximalizalasa, amelyet a lezart és elszallitott
ladak utan kapunk.

2.3.2. A javasolt médszer

A vizsgalat soran mar létezd, természetesen adodo algoritmusokat implementaltam
(DNF, H(K), SH(K)), tovabba megalkottam egy 1j, paraméteres algoritmust MMask
néven. Az algoritmusok teszteléséhez, hasonloan a ladapakolasi témakorhoz, a Sch-
werin és a Falkenauer U feladatosztalyokat hasznaltam fel, ezen kiviil pedig létre-
hoztam egy 1j feladatosztalyt is Large Range néven. ElsG lépésként a feladatokat
elkészitettem az alabbiak szerint:

(a) Rendezettség megbontasa. A targyakat méretiik alapjan véletlenszertien
Osszekevertem.

(b) Falkenauer osztaly normalizalasa. A lada kapacitasat C' = 1000-nek vet-

tem, emiatt minden targy méretét % értékkel kellett megszorozni.

(c) Uj feladatosztaly. Létrehoztam egy 1j osztalyt, ahol a targyak méretei az
[1,1000] intervallumbol valok. Ebben az osztélyban 6sszesen 400 darab feladat
talalhato, mindegyik esetében a targyak szama legfeljebb 1000.

(d) Nyereségfiiggvények. Az eredeti benchmarkok esetében nincs megadva nye-
reségfiiggvény. Emiatt harom fiiggvényt hoztam létre:

o Gl1(k)=10,1—-0,1x k
o G2(k)=11—k
o G3(k) = 10,05 — 0,05 x k?
(e) Targytipusok és nyereségfiiggvények Gsszekapcsolasa. Végezetiil, a fel-

adatosztalyokat kombinaljuk a harom nyereségfiiggvénnyel az aldbbi jeldléseket
alkalmazva:

o SiGu



o FiGu
o LRjGu

ahol i =1,2,j=1,2,3,4ésu=1,2,3.

Mar ismert, természetesen adodé algoritmusok, amelyeket implementaltam a
DNF, H(K), SH(K). Mindegyik algoritmus miikodése nagyon egyszer:

e DNF: A kovetkezs targy mindig az aktualisan nyitott ladaba kertiil. Ha a lada
fedetté valik, akkor az algoritmus lezarja és nyit egy djat a kovetkezd targyak
szamara. Ha nincs tobb targy, az algoritmus megall.

e H(K): Azok a targyak, amelyeknek a mérete az [, = (k—il, ﬂ intervallumba
esik, azokat a k. tipusi ladaba pakolja az algoritmus, ahol k =1,... K —1. A
legkisebb méret targyak, azaz amelyek mérete az I = (0, %] intervallumba

esik, azok a K. tipusu ladaba keriilnek. Ha valamely lada fedetté valik, az

algoritmus lezarja. Ha nincs ilyen lada nyitva, akkor nyit egy ilyen tipust.

Ha nincs tobb elem, akkor az algoritmus megall.

e SH(K): Ha a kovetkezs targy képes lefedni egy vagy tobb ladat, akkor abba
a ladaba keriil, amelynek a legalacsonyabb a toltottsége. Ezutan az algorit-
mus lezarja a ladat. Egyéb esetben az SH(K) algoritmus a H(K) algoritmus
szabalya szerint miikodik.

Az tjonnan kifejlesztett algoritmus az MMask, amelynek harom paramétere van:
K az egy id6ben nyitott ladak maximalis szamat meghatarozé pozitiv egész szam,
az « egy K-dimenziés nemnegativ vektor és 5 egy pozitiv egész szam. Az MMask
mikodésének alapja egy elfogado-elutasito politika. Az algoritmus elfogadja a soron
kovetkezd targy pakolasat, ha a pakolas utan az adott lada toltottsége az elfogado
tartoméanyba esik. Ellenkezd esetben elutasitja a pakolast.

e Elfogado tartoméany a k. lada esetén (1 < k < K): [0;C — o] U [C;C + []
e Elutasité tartomany a k. lada esetén (1 <k < K): (C — ay; C) U (C + 3; 00)

MMask: Ha a kovetkezs targy egy olyan ladaba helyezhets, ami ezaltal az elfogado
tartomanyban fedetté valik, akkor az aktualis targyat ebbe a ladaba kell pakolni.
Ha tobb ilyen lada is van, akkor ezek koziil a legkisebb toltottségiibe. Ezutan az
algoritmus lezarja a ladat, majd vagy leall (ha nincs tobb targy) vagy djraindul. Ha
a kovetkezs targy egy olyan ladaba helyezhetd el, aminek a toltottsége az elfogado
tartomanyba esik a pakolas utan, de nem lesz fedett, akkor ebbe a ladaba kell
pakolni. Ha tobb ilyen is van, az algoritmus véletlenszertien valaszt egyet. Ezutan
vagy leall (ha nincs tobb targy) vagy ujraindul. Ha k < K, akkor az algoritmus
nyit egy 1j ladat. A lada tipusa a legkisebb k érték, amelyikre nincs ilyen tipusu
nyitott lada, és ide pakolja a targyat. Ezutan vagy ledll (ha nincs tébb targy) vagy
ujraindul. Ha k = K teljesiil, akkor az aktudlis targy a legkisebb toltottségt ladaba
keriil. Ha a lada fedett lesz, az algoritmus lezarja. Ha nincs tobb targy, az algoritmus
leall, egyébként ujraindul.



Az MMask algoritmus paramétereinek beallitasaért egy lokélis keresésen alapulo
eljarés felelds. A szomszédsagi struktira a kiilonb6z6 MMask paraméter beallitasok
kozott természetes modon definidlhato. Egy konkrét paraméter beallitas szomszéd-
jat ugy kapjuk meg, hogy a K, «, [ paraméterek koziil egyet modositunk. Legyen
A egy kis pozitiv konstans, ekkor minden «;, § paraméter a A értékével lesz névelve
vagy csOkkentve tgy, hogy az 0j érték pozitiv marad és kisebb lesz, mint a lddamé-
ret. A K értéke is valtozik 1 egységgel negativ vagy pozitiv irdnyba. A véltozas
irdnya véletlenszert.

2.3.3. Eredmények

A természetesen adodo algoritmusok eredményei alapjan az S1 alosztaly esetében
mindegyik algoritmus (DNF, H(K) és SH(K)) ugyanazokat az eredményeket adta.
K értékét hiaba noveltem, az elért profitot (160) nem tudtam névelni. Ez azt jelenti,
hogy a S1 esetében a K > 1 beallitas esetén is az algoritmusok DNF-ként viselkedtek.
Az F1 és F4 esetében az SH(K) algoritmus érte el a legmagasabb profitot K =
2,3,4,5 értékekre. Az LR1 és LR4 osztéalyok esetében az SH(K) algoritmus K = 4
beallitasa mellett adta a legjobb profit értékeket, két esetben K = 5 bedllitéssal
javitott a K = 4 beéllitishoz képest.

Az MMask algoritmus a paraméterek manuélis beallitdsa mellett az S1 esetében
egy feladatnal sem javitott a profiton, az F1 és F4 esetében a vizsgalt feladatok
mindegyikénél javitott a profit értékén, az LR1 és LR4 feladatosztaly esetében pedig
harom esetet leszamitva ugyancsak javitott az eredményeken.

A lokalis kereséssel megvélasztott paraméter beallitasokat alkalmazva az F1 és
F4 osztalyok feladatai esetében egy esetet kivéve mindenhol javitott a korabbi algo-
ritmusokhoz és a manuélis beallitashoz képest is. Az LR1 és LR4 osztalyok esetében
harom esetet leszamitva ugyancsak mindenhol javitott.

A vizsgalatok alapjan az mondhat6, hogy a lokalis keresés segitségével egy "jo
paraméter-beallitas" megtaldlhato. Természetesen, fejlettebb eljarasokkal valészint-
leg még jobb bedllitdsokat lehetne elérni, azonban ez egy jovébeni tovabbfejlesztési
lehetGség jelenleg.

A jobb paraméter-beéllitasok megtalalasahoz jol alkalmazhato a lokélis keresés,
azaz képes megoldani a paraméterek automatikus keresését gy, hogy a korabbi algo-
ritmusok és a manualisan beallitott paraméterek eredményeit6l jobb eredményeket
ér el. Ez nagy kénnyebbség, hiszen a paraméterek kézi beallitasat kivaltja. Tovab-
ba, az MMask és a lokalis keresés, mint paraméter optimalizalo fuzidja hatékonynak
bizonyult.

3. Uj tudoméanyos eredmények

1. Tézis A fiiggetlen gépek iitemezése megeldzési relaciokkal (R, |prec|Cha:) feladat
megolddsdra létrehoztam eqy ij algoritmust. A kidolgozott algoritmus a megerdsitéses
tanulds teriletérdl ismert Q-tanuldson alapulo eljardssal meghatdrozza a tevékenysé-
gek sorrendjét, majd eqy mohd iitemezdvel ebben a sorrendben iitemezi a feladatokat.
Az algoritmus dtfogo vizsgdlatdra négy uj benchmark feladatosztdlyt hoztam létre. A
feladatosztdlyok a felépitésiik és nehézségiik alapjdn vdltozatosak.
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1.1 A kapott eredményeket Gsszehasonlitottam a CPLEX megold6 altal szolgélta-
tott eredményekkel. A kiértékelés alapjan lathato, hogy az dltalam 1étrehozott QLM
algoritmus minden olyan esetben megtalalja az optimalis megoldast a vizsgalt fel-
adatosztalyokban, amikor a CPLEX is. A t&bbi esetben a QLM legalabb olyan
jo eredményeket produkalt mint a CPLEX. A feladatosztalyokra szoritkozva kije-
lenthetd, hogy a QLM algoritmus hatékony és a feladatok megoldasaban felveszi a
versenyt a CPLEX megoldéval, de annal sokkal gyorsabb.

A tézispontban felsorolt eredményeket alatamaszto publikaciok: [P1], [P4], [P5],
[Pe], [P7], [P8], [P9]

2. Tézis A lddapakoldsi problémdt eqy 1j szemszogbdl, az eldfeldolgozds oldaldrdl
kézelitettem meg. A wvizsgdlathoz a Schwerin és a Falkenauer U osztalyokat alkal-
maztam. Létrehoztam két algoritmust REM SW és FU néven. A REM SW algo-
ritmust a Schwerin, az FU algoritmust pedig a Falkenauer U osztdly feladatainak
megolddsdra terveztem.

2.1 Mindkét feladatosztaly esetében megvizsgaltam, hogy milyen tulajdonsagok-
kal rendelkeznek a benniik foglalt feladatok, és a megoldas szempontjabol ezekbgl
milyen el6nyoket lehet kovacsolni. A felfedezett tulajdonsagok alapjan a Schwerin
osztaly minden feladatat, a Falkenauer U osztaly feladatainak pedig 91%-at sikeriilt
optimélisan megoldani.

2.2 Az algoritmusokat nem csak aszerint vizsgaltam meg, hogy az adott feladat-
osztaly hany elemére taldlnak optimélis megoldast, hanem 6sszehasonlitottam Gket
a HEA algoritmussal. A HEA algoritmus az egyik leghatékonyabb (és az egyik
legijabb) altalanos metaheurisztikus algoritmus ezen és mas benchmark feladatok
megoldasara. A REM SW algoritmust 6sszehasonlitva a HEA [24] algoritmussal, az
atlagos futéasi id6k a REM SW esetében sokkal jobbak voltak. A Schwerin 1 esetén
0,0038 (HEA - 0,34 masodperc) masodperc, mig a Schwerin 2 esetén 0,004 (HEA
- 0,47 méasodperc) masodperc volt. Az FU algoritmus futasi ideje a Falkenauer U
osztaly 80 feladata esetén is jelentGsen kisebb, mint a HEA futasi ideje.

A tézispontban felsorolt eredményeket alatamasztod publikacio: [P2]

3. Tézis Részletes vizsgdalatokat folytattam a "lddafedés szallitassal” nevi feladat-
tal kapcsolatban, amelynek részeként a Schwerin és a Falkenauer U osztdlyokat al-
kalmaztam, valamint ij benchmark osztdlyokat (LR) is lélrehoztam. Megalkottam
eqy 1j, paraméteres algoritmust MMask néven, amely a ldddk pakoldsa sordn egy
elfogado-elutasito politikdt folytat, tovdbbd a paramétereit lokdlis kereséssel automa-
tikusan bedllitja.

3.1 A benchmark feladatok megoldhatosagat részben az irodalombol ismert, termé-
szetesen ad6do algoritmusokkal (DNF, H(K), SH(K)) vizsgaltam. Az eredmények
kiértékelése alapjan megallapitottam, hogy ezen algoritmusok az esetek dontd t6bb-
ségében hatékonyan oldjak meg a feladatosztalyok elemeit.
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3.2 Tovabba, megallapitottam, hogy a paraméterek megfelel§ megvalasztasaval az
MMask algoritmus a kordbbiaknal jobb eredményeket tudott elérni. A paraméterek
optimalizaldsdhoz létrehoztam egy lokalis keresés alapt heurisztikat, amely a legjobb
eredményeket elér§ paraméter beallitasokat hatarozta meg. Az optimalizal6 még
jobb beéallitasokat tudott megtalalni, mint a manudlis beallitasok.

A tézispontban felsorolt eredményeket aldtamaszté publikaciok: [P3]

4. A tézispontokkal kapcsolatos publikacidk

Az ismertetett eredményeim folydiratokban, nemzetkozi konferenciakon és konferen-
ciakiadvanyokban lettek bemutatva. Ezeket az alabbiakban sorolom fel.

P1

[P2

[P3

[P4

[P5

[P6

[P7

[PS

| Gy. Abraham, P. Auer, Gy. Dosa, T. Dulai and A. Werner-Stark. A re-
inforcement learning motivated algorithm for process optimization. Periodica
Polytechnica Civil Engineering, 63(4):961 970, 2019. (IF: 1.34)

| Gy. Abraham, Gy. Dosa, T. Dulai, Zs. Tuza and A. Werner-Stark. Effici-
ent Pre-Solve Algorithms for the Schwerin and the Falkenauer U Bin Packing
Benchmark Problems for Getting Optimal Solutions with High Probability.
Mathematics, 9(13):1540, 2021. (IF: 2.592).

| Gy- Abraham, P. Auer, Gy. Désa, T. Dulai, Zs. Tuza and A. Werner-Stark.
The bin covering with delivery problem, extended investigations for the online
case. Central European Journal of Operations Research, pages 1-27, 2022.
(IF: 2.345)

| A. Werner-Stark, T. Dulai and Gy. Abraham. Modeling of an agent system
to support the management of cooperating and rival resources for business
workflows. In 2014 4th International Conference On Simulation And Modeling
Methodologies, Technologies And Applications (SIMULTECH), pages 407-412.
IEEE, 2014.

| T. Dulai, A. Werner-Stark and Gy. Abraham. Support of Efficient re-
source allocation of technological processes by a heuristic solution and agent
technology. Data Envelopment Analysis and its Applications, page 153, 2016.

] T. Dulai, A. Werner-Stark and Gy. Abraham. Improvement of resource
allocation in workflows by stochastic method. In 10th International Conference
on Applied Informatics, 2017.

| Gy. Abraham, T. Dulai, A. Werner-Stark and Gy. Désa. Reinforcement
learning in process scheduling. In 13th Miklos Ivanyi International PhD DLA
Symposium - Abstract Book: Architectural, Engineering and Information Sci-
ences, pages 15-15, 2017.

| Gy Abraham, T. Dulai, A. Werner-Stark and Gy. Désa. Learning the
parameters of a reinforcement learning algorithm for process optimization. In
Veszprém Optimization Workshop, pages 11-11, 2019.
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[P9 | Gy. Abraham, T. Dulai, A. Werner-Stark and Gy. Désa. Parameter
optimization of g-learning motivated algorithm in process scheduling. In Pro-
ceedings of the Pannonian Conference on Advances in Information Technology,
pages 17-24, 2020.

A felsorolt publikaciok a dolgozat benytujtasa napjaig a kovetkezd hivatkozasokat
kaptak: [25], [26]

5. Tovabbi kutatasi és tovabbfejlesztési lehetdségek

5.1. Az iitemezési problémara vonatkozban, a bemutatott megoldasokon tul tovabbi
vizsgalat targya lehet, hogy bizonyos speciélis esetekben (példaul m = 2 gép esete,
vagy csak kétfajta veégrehajtasi id6 esete) nem kaphatnank-e jobb also korlatokat il-
letve, hogy miikodik ezekben az esetekben a QLM algoritmus vagy ennek valamilyen
modositott valtozata. Tovabba meg lehet vizsgalni, hogy némileg mas struktiarak
esetén pl. fa struktira, hogyan miikodik a modszeriink. Természetesen ezekre is 1j
tesztfeladatokat kellene generalnunk.

5.2. A ladapakolasra vonatkozoan néhany tovabbi lehet&séget mutatok be, ame-
lyekkel a jovGben tovabbfejleszthets az FU algoritmus. A Schwerin osztély esetében,
mivel sikeriilt megoldani az Osszes feladatot optimalisan, igy nincs sziikség tovabbi
kutatasra. Azonban a Falkenauer U osztaly esetében az arany 91% volt, igy itt van
helye tovabbi vizsgilatoknak:

1. Mas paraméterek kiprobaldsa, amelyek meghatarozasa lehet manudlis, tapasz-
talaton alapulo, vagy automatizalt, valamilyen keresd algoritmussal. A kiilon-
b6z bedllitasok altal adott eredmények koziil végiil kivalasztjuk a legjobbat.

2. Tovabbi paraméterek bevezetése, pl. nem csak a nagy targyak meglétét vizs-
galjuk, hanem azok darabszamat is figyelembe vessziik.

Az is megvalaszolatlan kérdés jelenleg, hogy mi torténik, ha a targyak szama
novekszik. Tételezziik fel, hogy a lada kapacitésa, azaz a C' értéke egy rogzitett
egész, igy kovetkezésképpen a targyak mérete az [1, C| intervallumbol keriil ki. Ek-
kor Lenstra eredménye szerint [27] a feladat polinomialis idben megoldhato, ahol
n a targyak szama és n tetszélegesen nagy lehet. A polinomidlis id6ben valé meg-
oldhatosag ellenére egy ilyen algoritmus lépéseinek szama nagyon nagy lenne, mivel
n kitevGje nagyon nagy, tovabba az O(.) kifejezés egyiitthatdja is szintén nagy len-
ne. Ezen okok miatt egy ilyen algoritmus nem biztos, hogy hasznalhat6 lenne a
gyakorlatban, esetleg valamilyen el6sz{irés utan.

Tovabbé, ez a tétel nem veszi figyelembe azt a tényt, ha a targyak mérete vé-
letlenszertien keriil ki egy adott intervallumbol egyenletes eloszlassal. Ezek alapjan
megfogalmazhatjuk a kdvetkezs sejtést.

Legyenek 1 < a < b < C rigzitett egész szamok, ahol C' a ldda mérete. Tételezziik
fel, hogy a tdrgyak mérete véletlenszerden, eqyenletes eloszldas mellett az a,a+1,...,b
egészek kozil kerilnek ki. Ekkor létezik egy olyan algoritmus, amelynek futdsi ide-
je alacsony rendd polinommal felilrdl becsiilhetd és az O(.) kifejezés egyiitthatdja
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18 megfelelden kicsi, tovdabbd a feladat optimdlis megolddsdnak valdszinisége 1-hez
kézelit midén n — oo.

Példaul, egy olyan algoritmus, amelynek futasi ideje 20n* és 0,9 valészintiséggel
talalja meg az optimalis megoldast n = 1000 mellett, mar érdekes lehet. Az elbbi
varakozasomat azért fogalmaztam meg sejtésként, mert valojaban keveset tudunk
arrol, hogy ilyen esetekben mit lehet csinalni. Ehhez tovabbi vizsgalatokra lenne
sziikség.

5.3. A ladafedés teriiletén néhany, az MMask algoritmus tovabbfejleszthet&ségére
vonatkoz6 lehetséget fogalmazok meg.

e A bemutatott paraméter-beallitasok egy része manualisan keriilt meghataro-
zasra. El6fordulhat, hogy mas beéllitasokkal sokkal jobb eredmények is elér-
hetsk.

e Kideriilt, hogy az LR osztaly esetében az SH(4) algoritmus t6bb esetben is
nagyon hatékony. Ez alapjan megfontolando az SH(4) és az MMask algorit-
mus fizioja (mindkét algoritmust kiilon-kiilon futtatjuk és a jobb eredményt
valasztjuk).

e Az MMask algoritmus a 2. lépésében tetszGlegesen véalaszthatott a rendelke-
zésre 4ll6, megfelels ladak koziil. Lehetséges, ha "okosabban" valaszt ladat,
akkor az MMask teljesitménye névelhetd lesz.

e Fgy masik modositasi lehetség az algoritmus 2. 1épésére vonatkozoan a kévet-
kez6 volt. Legyenek By, B, ..., B; azok a ladak, amelyekbe az aktualis targy
pakolhatd. Ha t = 1, akkor egyértelmi, hogy melyik ladaba keriilt az aktuélis
targy, mivel csak egy lada van nyitva. Ha viszont ¢ > 1, akkor tébb lada
koziil valaszthat az algoritmus. Minden megfelel§ ladéra kiszamitottam, hogy
mennyi a benniik 16v6 targyak méretének atlaga, ezeket jeldlje xi, o, ..., x4,
az aktualis targy méretét pedig x. Ekkor minden lada esetében megadtam az
(x — x;)? kifejezés értékét, és a legkisebbet vilasztottam, ami megadta, hogy
a B; ladaba kell pakolni, ahol 1 < ¢ < ¢. Sajnos ez a valasztasi stratégia
nem bizonyult hatékonynak. Néhany esetben javitott az eredményen, méskor
rontott, de Gsszességében nem lett jobb az eljaras.
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