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1. kérdés/megjegyzés: Hogyan lehetne figyelembe venni a targyak méreté-
nek eloszlasdra vonatkozo elGzetes informéaciot a 3. fejezetben ismertetett eljarasok
teljesitményének hangolésa érdekében, ha az eloszlas nem egyenletes?

1. kérdésre/megjegyzésre adott valasz: A bolognai egyetem operacio-
kutatassal kapcsolatos weboldalan (UNIBO, [1]) talalhato egy nagyon atfogo lada-
pakolési benchmark készlet, amely altalanosan elfogadott. A weboldal fenntarto6i
kozott van Silvano Martello professzor, aki az egyik legkompetensebb a gyakorlati
ladapakolasi feladatok megoldasaban [2-5]. A 9 benchmark osztalybol a Falkenauer
és a Schwerin két-két tovabbi, a Scholl pedig harom tovabbi halmazra bomlik, igy
Osszesen 13 kiilonbozé feladathalmazt kapunk. Az alabbiakban egy dsszefoglald tab-
lazatban (1. tablazat) ismertetem ezeket a benchmark osztalyokat. A tablazatban
az n jeloli a targyak szamat, a C' pedig a ladak kapacitasat.

Dolgozatomban a 13 osztalybol hdrom osztallyal foglalkoztam, ezek: Falkenau-
er U valamint Schwerin 1 és Schwerin 2. Ezen osztalyok esetében az inputokban
szerepld targyméretek egyenletes eloszlastak. Mas osztalyok is vannak, ahol a targy-
méretek egyenletes eloszlastiak. A benchmark osztalyokat a kovetkezs csoportokba
tudjuk sorolni:

e Az els6 csoportba azokat a benchmark osztalyokat sorolom, ahol a targymére-
tek egyenletes eloszlastiak. A 13 osztalybol 8 ilyen. Az ilyen feladatok megol-
dasara alkalmasak a kidolgozott algoritmusaim.

e A masodik csoportba a Falkenauer osztaly Falkenauer T alosztalyanak fel-
adatai tartoznak. Ezek az inputok a 3-particiés feladat mintajara késziiltek.
Ezek nehéz inputok, pakolasuk soran mar egy kis hiba (amikor 2 targyat ko-
z0s ladaba pakolunk, de optimalis esetben ezek nincsenek egy ladaban) esetén
is el6fordul, hogy nem érhetd el optimélis megoldas. Az altalam kidolgozott
algoritmusok ilyen feladatok megoldésira nem alkalmasak.

e A harmadik csoportba a Hard28 osztaly tartozik, ebben 28 darab input van.
Ezen osztaly feladatai is nagyon nehezek. Az ebbe a feladatosztalyba tartozo



Feladatosztaly Halmaz Felaflatok n C Eloszlas
szama
Falkenauer Falkenauer U 80 120, 250, 500 150 egyenletes
Falkenauer T 80 60, 120, 250 1000 | perfect packing
Scholl 1 720 50 100 egyenletes
Scholl Scholl 2 480 50 1000 egyenletes
Scholl 3 10 200 100000 egyenletes
Wascher - 17 [57, 239] 10000 ad-hoc
Sehwerin Schwerin 1 100 100 1000 egyenletes
Schwerin 2 100 120 1000 egyenletes
Hard28 - 28 160, 180, 200 | 1000 ad-hoc
Random - 3840 50, 100 50, 75 egyenletes
Al - 250 202 < 2500 ad-hoc
ANI - 250 201 < 2500 ad-hoc
GI - 240 1227 500000 egyenletes
Osszesen: 6195
1. tablazat. Benchmark feladatosztalyok tulajdonsigai

problémak 160, 180 vagy 200 targyat tartalmaznak. A lada mérete egységesen
1000. A targyak méretei az [1,800] intervallumbol keriilnek ki. A 28 darab
feladatban atlagosan a targyak 30%-nak a mérete nagyobb, mint a lada ka-
pacitasanak a fele. Tovabbé a paros és paratlan mérettel rendelkezé targyak
aranya atlagosan 50%-50% [6]. Mivel a targyméretek ezeknél az inputoknél
nagyon "ravasz" médon vannak Osszevilogatva, ezek a feladatok mohd mod-
szerrel nem megoldhatok, vagyis az altalam kidolgozott algoritmusok ilyen
feladatok megoldéasara sem alkalmasak.

e A negyedik csoportba az ad-hoc modon Gsszedllitott osztalyok tartoznak, az
ad-hoc eloszlassal generalt inputok nagyon "triikkkosek", megoldasuk nehéz.
Ezen feladatok esetében a targyak méretei meghatarozott matematikai szabé-
lyok szerint keriiltek generalasra, kiilonbozo feltételeket figyelembe véve. Ha
ezeket valamilyen moh¢ algoritmussal akarjuk megoldani, az els6 1épés annak
tesztelése lenne, hogy az algoritmusaim a jelenlegi allapotban hany inputot
képesek ezek koziil megoldani. A kdvetkez6 pedig, hogy az algoritmus miiko-
dését ezekhez az ad-hoc moédon generdlt inputok tulajdonsigaihoz igazitsuk.
Jelenleg vizsgalatok hianya miatt nem tudom, hogy az algoritmusok milyen
hatékonysaggal oldandk meg ezeket a feladatokat. Osszefoglalva: ad-hoc el-
oszlas esetén miikodhetnek az algoritmusaim vagy valamilyen més, de hasonlo
elven miikddg algoritmus, de ezt eddig semmilyen formaban nem teszteltem.

Az el6bbieket sszefoglalva, a 13 feladatosztaly koziil 8 feladatosztaly esetén algo-

ritmusaim vagy mas hasonlé mohoé algoritmus, alkalmas lehet a feladatok megoldéa-
sara. Vagyis, Osszesen 6195 db feladat koziil 5570 db olyan feladat van, amelyeknél a
targyméretek eloszlasa egyenletes, ezekre az altalam kifejlesztett algoritmusok (vagy
azokhoz hasonlok) alkalmasak lehetnek. Ez az ismertetett benchmark feladatok ko-
zel 90%-a.




Olyan benchmark osztallyal nem talalkoztam az irodalomban, amelyeknél a targy-
méretek valamilyen eloszlassal, de nem egyenletes eloszlassal (pl. normalis eloszlas)
lettek generalva. T6bbek kozott a kovetkezé cikkek is az el6bbi benchmark készletbél
vesznek példakat: [7], [8], [9], [10].

Abban az esetben, ha a targyak méretei valamilyen eloszlassal, de nem egyenletes
eloszlassal vannak generdlva, igy tovabbi vizsgdlatok elvégzése és tulajdonsdgok ke-
resése valna sziikségessé. Elsd 1épésként vizsgalni kell azt, hogy az algoritmusok jelen
allapotukban hany inputot tudnak optimalisan megoldani. Utadna ezek az inputok
kizarhatoak, és csak a maradék feladatokkal kell foglalkozni. Ha a feladatok karak-
terisztikdjaban vannak kiaknazhato tulajdonsagok, akkor az algoritmus miikodését
ehhez kell igazitani.

Mivel az UNIBO honlapon talalhaté benchmark készletbél indultam ki, ezért
mas eloszlasok vizsgalataval nem foglalkoztam, de a kérdésnek van létjogosultsiga.
Vizsgalata tovabbi kutatast igényelne.

Feltételezésem szerint algoritmusaim normaélis eloszlas esetén is hatékonyan mii-
kodnének, csak ott figyelni kellene arra, hogy ha a targyak méretei valamely [a, 0]
intervallumbol keriilnek ki, akkor a targy méretek zome az intervallum "kozepébdl"
szarmazik és csak kevés az egyik vagy masik szélérdl.



2. kérdés/megjegyzés: Milyen elméleti és/vagy szamitasos vizsgalatokat
javasolna, hogy tovabbi informaciokat nyerjen a 74. oldalon megfogalmazott 1. Sej-
téssel kapcsolatban?

2. kérdésre/megjegyzésre adott vilasz:
A nevezett sejtés a kovetkezs:

1. Sejtés. Legyenek 1 < a < b < C rigzitett egész szamok, ahol C a ldda mérete.
Tételezziik fel, hogy a tdargyak mérete véletlenszerien, eqyenletes eloszlds mellett az
a,a+1,...,b egészek kozil keriilnek ki. Ekkor létezik eqy olyan algoritmus, amelynek
futdsi ideje alacsony rendd polinommal felilrél becsiilhetd és az O(.) kifejezés egytitt-
hatdja is megfelelden kicsi, tovdbbd a feladat optimdlis megolddsdnak valdszinisége
1-hez kozelit midén n — oo.

A. Szamitassal kapcsolatos tovabbi lehetséges vizsgalatok:

A szamitasos modszer a Schwerin és a Falkenauer U feladatosztalyokon, a kidolgo-
zott algoritmusokkal elvégzett vizsgalatokat jelentik.

e A Schwerin feladatosztaly két halmazra bonthato: Schwerin 1 és Schwerin
2. Mindkét halmazban 100 darab feladat taldlhat6. A Schwerin 1 esetében
a targyak szama n = 100, a Schwerin 2 esetében pedig n = 120. A ladak
kapacitasa egységesen C' = 1000. A targyak méretei a [150,200] intervallumbol
keriilnek ki egyenletes eloszlassal. Vagyis itt a = 150 és b = 200.

e A Falkenauer U benchmark osztélyban 80 feladat taldlhato, amely tovabbi
négy alosztalyra bomlik, mindegyik alosztalyban 20 feladat van. Az aloszta-
lyokban a targyak szama n = 120, n = 250, n = 500 és n = 1000. A targyak
mérete (normalizalas utan) a [133,666] intervallumbol keriil ki egyenletes el-
oszlassal, a ladak kapacitasa C' = 1000. Vagyis itt a = 133 és b = 666.

Azt mindenképpen érdemes lenne tovabbi vizsgalatoknak alavetni, hogy az [a, 0]
intervallum szélesitése vagy sziikitése hogyan befolyasolja a feladat nehézségét. Ek-
kor tehat a feladatosztalyokhoz tartozo intervallumokat (amelyekbdl a targyak mére-
tei keriilnek ki) valtoztatjuk, azaz az also és fels6 hatarokat noveljiik vagy csokkent-
jik. Majd megvizsgaljuk, hogy egyes esetekben a kidolgozott algoritmusok miként
viselkednek. Feltételezhetd, hogy minnél sztikebb ez az intervallum, annal kénnyebb
hatékony algoritmust kidolgozni (amelyik nagy szazalékban optimélis megoldast ad).
Ezt a feltételezést aldtamasztjak az elvégzett vizsgalataink, hiszen a Schwerin benc-
hmarkok esetében sziik ez az intervallum, és minden feladatot optimalisan meg tud-
tunk oldani, viszont a Falkenauer U osztaly esetén az intervallum tagabb volt, és a
80-bol csak 72-t tudtuk optimélisan megoldani.

Természetesen a Falkenauer U osztalyra kidolgozott algoritmusomat lehetne fi-
nomitani, vagyis nagyobb futési id6 dran valosziniileg modosithaté tgy, hogy tobb
inputot oldjon meg optimélisan.

Nyilvanvaloéan az sem mindegy, hogy az [a,b] intervallum az [1,C] intervallum
melyik részén helyezkedik el. Legyen példaul a ladaméret C' = 1000, legyen tovabba



b—a = 99. Ez esetben [a,b] = [1,100] esetén kicsi targyak vannak. Ezekre valoszi-
niileg kidolgozhato hatékony algoritmus. Méasik végletként legyen [a, b] = [501, 600]
(vagy ennél is nagyobb targyak). Ez esetben nyilvanvaloan minden targy kiilon 14-
déaba keriil és a feladat trivialisan megoldhaté. Ha példaul [a, b] = [401, 500], akkor
minden laddaba pontosan két targy keriil. Ha [a, b] = [451, 550], akkor ismert, hogy az
FFD algoritmus optimalis megoldést ad. Roviden, més algoritmusra lehet sziikség
attol fiiggben, hogy az [a,b] intervallum hol helyezkedik el az [1, C] intervallumon
beliil. Tlyen és ehhez hasonl6 vizsgalatokat nem végeztiink, de ez lenne a tovabbi
szamitogépes kutatasok iranya.

B. Elméleti vizsgalatok:

Tudomasunk szerint kordabban még nem torténtek olyan elméleti vizsgalatok,
amelyek pontosan ezt a kérdést vizsgalnak, mint ami a sejtésben szerepel. Hasonld
vizsgalat tortént viszont, ezt az alabbiakban részletezziik.

1. Tétel: Tegyiik fel, hogy adott a ladapakoldsi feladat eqy inputja, ahol d kilénbozd
targyméret van, a kilonbozd méretekbdl a tdrgyak multiplicitdsa pedig by, bs, . .., by.
(A ldadaméret legyen tovibbra is C, a tdrgyak mérete [1,C] kozotti egész szdm.) Le-
gyen tovdbbd A a maximuma a C lddaméretnek és a legnagyobb multiplicitdsnak.
Ez esetben a lddapakoldsi feladat (optimdlisan) megoldhatd (log A2 lépésszdmi
algoritmussal.

A tétel bizonyitasa a [11, 12|-ben szerepel, és Klaus Jansen is hivatkozik a té-
telre a [13] el6adasaban. A tételben megfogalmazott allitas jelenleg a legerGsebb,
ami a ladapakolasi feladat optimalis megoldasaval kapcsolatos. Az idézett cikkek
elsG szerzéje Michel Goemans, az MIT professzora, Klaus Jansen is a téma kivalo
szakértGje.

Nagyjabol ennyit lehet tudni elméleti szempontbdl a sejtéssel kapcsolatban. Meg-
jegyzem, hogy a tételben szerepld lépésszam nem fiigg n-t6l, tehat a targyak szama-
tol, de a konstans nagyon nagy lehet, ha a C nagy. Vagyis praktikus szempontbol
ez a tétel nem igazan hasznélhato, mert a benne szereplé optimalis algoritmus a mi
algoritmusainkhoz képest nagyon lassu.

Példa: Tekintsiik a Schwerin osztalyt. Itt C' = 1000, igy A =~ 10, d ~ 50, mivel
nem ismerjiik a nagy ordobeli konstanst, vegyiik ugy, hogy O(d) ~ 100. Ekkor
2100 — (210)10 ~ 1030, vagyis a tételbeli konstans 10'°”, ami iszonytian nagy szam:
11000000000000000000000000000000

Ha ezt Gsszevetjiik azzal, hogy a vilagegyetemben levs Gsszes atom szama bizo-
nyos becslések szerint nagyjabol 10°° [14], mas forréds szerint 10%° [15], az 1. tételbeli
optimaélis algoritmus lépésszama meglehetGsen nagy.

Ehhez képest az algoritmusaim rendkiviil gyorsak, futasi idejiik kevesebb, mint
1 masodperc. Ennek természetesen ara van, mégpedig az, hogy nincs arra garancia,
hogy minden inputot optiméalisan megoldanak. Ezzel egyiitt a Schwerin osztélynak
mind a 200 feladatat, a Falkenauer U osztaly esetén pedig durvan 90%-at optima-
lisan tudtak megoldani.



3. kérdés/megjegyzés: Milyen megfontolasok alapjan hatarozta meg a 4.10.
tablazatban szereplé paraméterbeallitasokat?

3. kérdésre/megjegyzésre adott valasz:
Alabb mellékelem a 4.10. tablazatot.

Beallitas K ag, k=1,.... K 15}
Mo 1 [200] 200
M1 4 [100; 200; 300; 400| 200
M2 5 [100; 200; 300; 400; 500] 200
M3 2 [100; 100] 200
M4 3 [100; 100; 100] 200
M5 4 [100; 100; 100; 100] 200
Me6 4 [225; 225; 230; 230| 560
M7 4 [200; 200; 200; 200| 600
M8 4 [200; 200; 300; 400| 350

2. tablazat. MMask kézi paraméter-beéllitasai (4.10-es tablazat mésolata)

A paraméterek beallitasait tobbféleképpen kiprobaltam. Az egyes probék a kovet-
kez6k voltak:

e az a vektor komponensei egyenlGek, amit kisebb és nagyobb értékekre is meg-
vizsgaltam (M3, M4, M5 és M7 beallitasok),

e ha az el6bbi beallitési stratégiat nem taldltam elég hatékonynak, akkor lépcso-
zetes beéllitassal probalkoztam (M1 és M2), azaz az o komponensei egyenletes
mértékben névekednek,

e ahol egyik el6z6 beéllitds sem volt megfelelGen hatékony, tigy az el6bbi ket-
t6 kombinaciojat valasztottam (M6 és M8), vagyis pl. M6 esetén az elsé két
komponens egyenld, a harmadik és negyedik komponens is egyenld, de az el6-
z6eknél kicsivel nagyobb. Az M8 esetén pedig az els6 két komponens egyenld,
de inenntdl egyenletesen névekednek.

A fenti manuélis beallitasok valamelyike mindig segitett, igy részletesebb vizsgala-
tokat nem folytattam, mert az eredményekkel elégedett voltam. Természetesen a
paraméter beallitasokat lehetett volna tovabb finomitani.

A mésik oka annak, hogy megelégedtiink ezekkel a paraméter beéllitasokkal az
az, hogy tudtuk, hogy ezeket még tovabb fogjuk finomitani metaheurisztika alkalma-
zasaval. Vagyis a paraméterek a végss értékiiket egy két fazisu optimalizalas soran
kapjak meg. Els6 fazis egy durva optimalizalas (ezt végeztem kézzel), a masodik
fazis pedig az elsd fazis eredményének tovabb javitasa metaheurisztika altal.

Osszefoglalva a fenti paraméter beallitasokkal elégedett voltam, mert a céljaink-
nak megfelel§ volt.



4. kérdés/megjegyzés: A szomszédsagon alapulo keresés és a roviden fel-
vazolt genetikus algoritmus mellett még milyen lehet&ségeket 14t az MMask algo-
ritmus paramétereinek optimalizaldsara, javitasara? Hogyan kezelné az algoritmus
egész paramétereit olyan esetben, amikor magiban az optimalizdlasban folytonos
valtozok szerepelnek?

4. kérdésre/megjegyzésre adott valasz: Az MMask algoritmusnak
harom paramétere van, amelyek az alabbiak:

e K - az egy id6ben nyitott laddk maximalis szaAmat meghatarozé pozitiv egész
szam (K > 0),

e o - K-dimenzios nemnegativ vektor (0 < oy < C Vk-ra),
e [3 - egy pozitiv egész szam (8 > 0).

Az MMask mtikodésének alapja egy elfogado-elutasito politika. Az algoritmus
elfogadja a soron kovetkezs targy pakolasit, ha a pakolas utan az adott lada tol-
tottsége az elfogadd tartomanyba esik. Ellenkez6 esetben elutasitja a pakolast. Az
elfogado és elutasitoé intervallumok az aldbbiak szerint keriiltek meghatarozasra:

e Elfogado tartoméany a k. lada esetén (1 < k < K): [0;C — o] U [C;C + []
e Elutasité tartomany a k. lada esetén (1 <k < K): (C — ay; C) U (C + 3;00)

A paraméterek optimalizalasara az egyszertibb megoldasok koziil a grid search
és a random search eljarasokat lehetne kiprobalni. A g¢rid search ugy gondolom,
hogy kevésbé jarhato at, mert példaul C' = 1000 ladaméret mellett, ha az alpha
értékei a [100,600] intervallumbol keriilnek ki (azaz se nem tul kicsik, se nem til
nagyok), akkor is 500° eset van. Ezeken kiviil még meg lehet vizsgilni a variable
neighborhood search eljarast is, amelynek a lényege a szomszédsag szisztematikus
megvaltoztatésa. Itt kiprobalhato lenne az, hogy az « és [ értékeket az optimalizalas
soran elére meghatarozott stratégia mentén valtoztatjuk. Lehetne gy, hogy el6bb
egy részletes keresést inditunk, ahol 100-asaval valtozik az « és a [ is, és utana 10-es
léptékkel, végiil 1-es léptékkel.

Egy tovabbi megoldas lehet egy neuralis halo alkalmazasa a sziikséges paramé-
terek meghatarozasara. Konkrét gyakorlati feladatok esetében paraméterek megha-
tarozasara hasznaltak neurdlis halot példaul a |16, 17]-ben.

Az altalam vizsgalt esetben a neurélis hélé bemenete a felhasznalt 1adak sza-
ma, targyak szama (n) és a lada kapacitédsa (C'). ElsG lépésben, kézi beallitassal
generélni kell egy nagy teszthalmazt (pl. 1000 elemd halmaz), ahol szerepelnek a
paraméterek kézi beallitasai, az eredményiil kapott (felhasznélt) ladaszam, a targyak
szama és a lada kapacitasa. A halozat kimenete pedig a K, « és S paraméterek.
A halozat méretét tekintve egy bemeneti, két rejtett és egy kimeneti réteget tar-
talmazhatna (valoszintileg ez mar elegendd lenne, de ez nem keriilt kiprobalasra
eddig). A két rejtett réteggel rendelkezd halozat mar képes a bemenetnek barmilyen
fliggvényét reprezentilni megfelels rétegenkénti neuronszdmmal. Természetesen ha



mégsem elegendd, akkor innen indulva tovabb bévithetd a halézat. A rétegeken be-
lili neuronszam ugyancsak tesztekkel bedllithato. A neuronszidm névelése manualis
bévitést jelent. A halozat hiba visszaterjesztéssel mikodne.

Mivel a neuralis halo altal kimeneti értékként kapott K, o és 3 valos szamok,
ezeket egészekre kell kerekiteni. Valoszintinek tartom, hogy amikor az o komponen-
seit és [ értékét kerekitjiik (pl. lefelé), azzal nem kovetiink el nagy hibat. Ugyanis
ha feltételezziik, hogy példdul a ladaméret C' = 1000 (amint a vizsgalataimban volt),
akkor ha a valamelyik komponensére mondjuk 250 és 251 kdzotti szdmot ad az op-
timalizalas, akkor nagyjabol mindegy, hogy ezt lefelé¢ vagy folfelé kerekitjiik: ez nem
fogja lényegesen befolyasolni az MMask algoritmus hatékonyséagat.

Mas a helyzet a ladaszammal, vagyis a K értékével. K értéke ugyanis jellemzGen
kicsi. Ha példaul K értéke a neuralis haloval végzett optimalizalas végén példaul
K = 3,5, akkor ezt lefelé vagy felfelé kell majd kerekiteni, de itt nem tudhatjuk,
hogy melyik érték lehet igazan jo (K = 3 vagy K = 4). Ez esetben az algoritmus
validécidja soran mindkét értéket kiprobalnam.

1. abra. Alkalmasnak vélt neurélis halé modellje

Fontos megjegyezni, hogy a mi esetiinkben nem egy input van, hanem egy osztaly
tobb inputtal. Egy paraméter beallitassal kell végigfuttatni az osztalyban taldlhato
minden feladatra az algoritmusokat.



Szeretném megkoszénni dr. Szederkényi Gabor professzor trnak, hogy elvallalta
és elkészitette a birdlatot. A birdlatban megfogalmazott kérdések és észrevételek
nagyon hasznosak voltak szamomra.

Veszprém, 2023. januar 9.

Abraham Gyula
doktorandusz
Pannon Egyetem
Informatikai Tudomanyok Doktori Iskola
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