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1. kérdés/megjegyzés: Hogyan lehetne �gyelembe venni a tárgyak méreté-
nek eloszlására vonatkozó el®zetes információt a 3. fejezetben ismertetett eljárások
teljesítményének hangolása érdekében, ha az eloszlás nem egyenletes?

1. kérdésre/megjegyzésre adott válasz: A bolognai egyetem operáció-
kutatással kapcsolatos weboldalán (UNIBO, [1]) található egy nagyon átfogó láda-
pakolási benchmark készlet, amely általánosan elfogadott. A weboldal fenntartói
között van Silvano Martello professzor, aki az egyik legkompetensebb a gyakorlati
ládapakolási feladatok megoldásában [2�5]. A 9 benchmark osztályból a Falkenauer
és a Schwerin két-két további, a Scholl pedig három további halmazra bomlik, így
összesen 13 különböz® feladathalmazt kapunk. Az alábbiakban egy összefoglaló táb-
lázatban (1. táblázat) ismertetem ezeket a benchmark osztályokat. A táblázatban
az n jelöli a tárgyak számát, a C pedig a ládák kapacitását.

Dolgozatomban a 13 osztályból három osztállyal foglalkoztam, ezek: Falkenau-
er_U valamint Schwerin 1 és Schwerin 2. Ezen osztályok esetében az inputokban
szerepl® tárgyméretek egyenletes eloszlásúak. Más osztályok is vannak, ahol a tárgy-
méretek egyenletes eloszlásúak. A benchmark osztályokat a következ® csoportokba
tudjuk sorolni:

� Az els® csoportba azokat a benchmark osztályokat sorolom, ahol a tárgymére-
tek egyenletes eloszlásúak. A 13 osztályból 8 ilyen. Az ilyen feladatok megol-
dására alkalmasak a kidolgozott algoritmusaim.

� A második csoportba a Falkenauer osztály Falkenauer_T alosztályának fel-
adatai tartoznak. Ezek az inputok a 3-partíciós feladat mintájára készültek.
Ezek nehéz inputok, pakolásuk során már egy kis hiba (amikor 2 tárgyat kö-
zös ládába pakolunk, de optimális esetben ezek nincsenek egy ládában) esetén
is el®fordul, hogy nem érhet® el optimális megoldás. Az általam kidolgozott
algoritmusok ilyen feladatok megoldására nem alkalmasak.

� A harmadik csoportba a Hard28 osztály tartozik, ebben 28 darab input van.
Ezen osztály feladatai is nagyon nehezek. Az ebbe a feladatosztályba tartozó
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Feladatosztály Halmaz
Feladatok
száma

n C Eloszlás

Falkenauer
Falkenauer_U 80 120, 250, 500 150 egyenletes
Falkenauer_T 80 60, 120, 250 1000 perfect packing

Scholl
Scholl 1 720 50 100 egyenletes
Scholl 2 480 50 1000 egyenletes
Scholl 3 10 200 100000 egyenletes

Wascher - 17 [57, 239] 10000 ad-hoc

Schwerin
Schwerin 1 100 100 1000 egyenletes
Schwerin 2 100 120 1000 egyenletes

Hard28 - 28 160, 180, 200 1000 ad-hoc
Random - 3840 50, 100 50, 75 egyenletes

AI - 250 202 ≤ 2500 ad-hoc
ANI - 250 201 ≤ 2500 ad-hoc
GI - 240 1227 500000 egyenletes

Összesen: 6195

1. táblázat. Benchmark feladatosztályok tulajdonságai

problémák 160, 180 vagy 200 tárgyat tartalmaznak. A láda mérete egységesen
1000. A tárgyak méretei az [1, 800] intervallumból kerülnek ki. A 28 darab
feladatban átlagosan a tárgyak 30%-nak a mérete nagyobb, mint a láda ka-
pacitásának a fele. Továbbá a páros és páratlan mérettel rendelkez® tárgyak
aránya átlagosan 50%-50% [6]. Mivel a tárgyméretek ezeknél az inputoknál
nagyon "ravasz" módon vannak összeválogatva, ezek a feladatok mohó mód-
szerrel nem megoldhatók, vagyis az általam kidolgozott algoritmusok ilyen
feladatok megoldására sem alkalmasak.

� A negyedik csoportba az ad-hoc módon összeállított osztályok tartoznak, az
ad-hoc eloszlással generált inputok nagyon "trükkösek", megoldásuk nehéz.
Ezen feladatok esetében a tárgyak méretei meghatározott matematikai szabá-
lyok szerint kerültek generálásra, különböz® feltételeket �gyelembe véve. Ha
ezeket valamilyen mohó algoritmussal akarjuk megoldani, az els® lépés annak
tesztelése lenne, hogy az algoritmusaim a jelenlegi állapotban hány inputot
képesek ezek közül megoldani. A következ® pedig, hogy az algoritmus m¶kö-
dését ezekhez az ad-hoc módon generált inputok tulajdonságaihoz igazítsuk.
Jelenleg vizsgálatok hiánya miatt nem tudom, hogy az algoritmusok milyen
hatékonysággal oldanák meg ezeket a feladatokat. Összefoglalva: ad-hoc el-
oszlás esetén m¶ködhetnek az algoritmusaim vagy valamilyen más, de hasonló
elven m¶köd® algoritmus, de ezt eddig semmilyen formában nem teszteltem.

Az el®bbieket összefoglalva, a 13 feladatosztály közül 8 feladatosztály esetén algo-
ritmusaim vagy más hasonló mohó algoritmus, alkalmas lehet a feladatok megoldá-
sára. Vagyis, összesen 6195 db feladat közül 5570 db olyan feladat van, amelyeknél a
tárgyméretek eloszlása egyenletes, ezekre az általam kifejlesztett algoritmusok (vagy
azokhoz hasonlók) alkalmasak lehetnek. Ez az ismertetett benchmark feladatok kö-
zel 90%-a.
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Olyan benchmark osztállyal nem találkoztam az irodalomban, amelyeknél a tárgy-
méretek valamilyen eloszlással, de nem egyenletes eloszlással (pl. normális eloszlás)
lettek generálva. Többek között a következ® cikkek is az el®bbi benchmark készletb®l
vesznek példákat: [7], [8], [9], [10].

Abban az esetben, ha a tárgyak méretei valamilyen eloszlással, de nem egyenletes
eloszlással vannak generálva, úgy további vizsgálatok elvégzése és tulajdonságok ke-
resése válna szükségessé. Els® lépésként vizsgálni kell azt, hogy az algoritmusok jelen
állapotukban hány inputot tudnak optimálisan megoldani. Utána ezek az inputok
kizárhatóak, és csak a maradék feladatokkal kell foglalkozni. Ha a feladatok karak-
terisztikájában vannak kiaknázható tulajdonságok, akkor az algoritmus m¶ködését
ehhez kell igazítani.

Mivel az UNIBO honlapon található benchmark készletb®l indultam ki, ezért
más eloszlások vizsgálatával nem foglalkoztam, de a kérdésnek van létjogosultsága.
Vizsgálata további kutatást igényelne.

Feltételezésem szerint algoritmusaim normális eloszlás esetén is hatékonyan m¶-
ködnének, csak ott �gyelni kellene arra, hogy ha a tárgyak méretei valamely [a, b]
intervallumból kerülnek ki, akkor a tárgy méretek zöme az intervallum "közepéb®l"
származik és csak kevés az egyik vagy másik szélér®l.
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2. kérdés/megjegyzés: Milyen elméleti és/vagy számításos vizsgálatokat
javasolna, hogy további információkat nyerjen a 74. oldalon megfogalmazott 1. Sej-
téssel kapcsolatban?

2. kérdésre/megjegyzésre adott válasz:
A nevezett sejtés a következ®:

1. Sejtés. Legyenek 1 ≤ a < b ≤ C rögzített egész számok, ahol C a láda mérete.
Tételezzük fel, hogy a tárgyak mérete véletlenszer¶en, egyenletes eloszlás mellett az
a, a+1, . . . , b egészek közül kerülnek ki. Ekkor létezik egy olyan algoritmus, amelynek
futási ideje alacsony rend¶ polinommal felülr®l becsülhet® és az O(.) kifejezés együtt-
hatója is megfelel®en kicsi, továbbá a feladat optimális megoldásának valószín¶sége
1-hez közelít mid®n n → ∞.

A. Számítással kapcsolatos további lehetséges vizsgálatok:

A számításos módszer a Schwerin és a Falkenauer_U feladatosztályokon, a kidolgo-
zott algoritmusokkal elvégzett vizsgálatokat jelentik.

� A Schwerin feladatosztály két halmazra bontható: Schwerin 1 és Schwerin
2. Mindkét halmazban 100 darab feladat található. A Schwerin 1 esetében
a tárgyak száma n = 100, a Schwerin 2 esetében pedig n = 120. A ládák
kapacitása egységesen C = 1000. A tárgyak méretei a [150,200] intervallumból
kerülnek ki egyenletes eloszlással. Vagyis itt a = 150 és b = 200.

� A Falkenauer_U benchmark osztályban 80 feladat található, amely további
négy alosztályra bomlik, mindegyik alosztályban 20 feladat van. Az alosztá-
lyokban a tárgyak száma n = 120, n = 250, n = 500 és n = 1000. A tárgyak
mérete (normalizálás után) a [133, 666] intervallumból kerül ki egyenletes el-
oszlással, a ládák kapacitása C = 1000. Vagyis itt a = 133 és b = 666.

Azt mindenképpen érdemes lenne további vizsgálatoknak alávetni, hogy az [a, b]
intervallum szélesítése vagy sz¶kítése hogyan befolyásolja a feladat nehézségét. Ek-
kor tehát a feladatosztályokhoz tartozó intervallumokat (amelyekb®l a tárgyak mére-
tei kerülnek ki) változtatjuk, azaz az alsó és fels® határokat növeljük vagy csökkent-
jük. Majd megvizsgáljuk, hogy egyes esetekben a kidolgozott algoritmusok miként
viselkednek. Feltételezhet®, hogy minnél sz¶kebb ez az intervallum, annál könnyebb
hatékony algoritmust kidolgozni (amelyik nagy százalékban optimális megoldást ad).
Ezt a feltételezést alátámasztják az elvégzett vizsgálataink, hiszen a Schwerin benc-
hmarkok esetében sz¶k ez az intervallum, és minden feladatot optimálisan meg tud-
tunk oldani, viszont a Falkenauer_U osztály esetén az intervallum tágabb volt, és a
80-ból csak 72-t tudtuk optimálisan megoldani.

Természetesen a Falkenauer_U osztályra kidolgozott algoritmusomat lehetne �-
nomítani, vagyis nagyobb futási id® árán valószín¶leg módosítható úgy, hogy több
inputot oldjon meg optimálisan.

Nyilvánvalóan az sem mindegy, hogy az [a, b] intervallum az [1, C] intervallum
melyik részén helyezkedik el. Legyen például a ládaméret C = 1000, legyen továbbá
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b− a = 99. Ez esetben [a, b] = [1, 100] esetén kicsi tárgyak vannak. Ezekre valószí-
n¶leg kidolgozható hatékony algoritmus. Másik végletként legyen [a, b] = [501, 600]
(vagy ennél is nagyobb tárgyak). Ez esetben nyilvánvalóan minden tárgy külön lá-
dába kerül és a feladat triviálisan megoldható. Ha például [a, b] = [401, 500], akkor
minden ládába pontosan két tárgy kerül. Ha [a, b] = [451, 550], akkor ismert, hogy az
FFD algoritmus optimális megoldást ad. Röviden, más algoritmusra lehet szükség
attól függ®en, hogy az [a, b] intervallum hol helyezkedik el az [1, C] intervallumon
belül. Ilyen és ehhez hasonló vizsgálatokat nem végeztünk, de ez lenne a további
számítógépes kutatások iránya.

B. Elméleti vizsgálatok:

Tudomásunk szerint korábban még nem történtek olyan elméleti vizsgálatok,
amelyek pontosan ezt a kérdést vizsgálnák, mint ami a sejtésben szerepel. Hasonló
vizsgálat történt viszont, ezt az alábbiakban részletezzük.

1. Tétel: Tegyük fel, hogy adott a ládapakolási feladat egy inputja, ahol d különböz®
tárgyméret van, a különböz® méretekb®l a tárgyak multiplicitása pedig b1, b2, . . . , bd.
(A ládaméret legyen továbbra is C, a tárgyak mérete [1, C] közötti egész szám.) Le-
gyen továbbá ∆ a maximuma a C ládaméretnek és a legnagyobb multiplicitásnak.
Ez esetben a ládapakolási feladat (optimálisan) megoldható (log∆)2

O(d)
lépésszámú

algoritmussal.

A tétel bizonyítása a [11, 12]-ben szerepel, és Klaus Jansen is hivatkozik a té-
telre a [13] el®adásában. A tételben megfogalmazott állítás jelenleg a leger®sebb,
ami a ládapakolási feladat optimális megoldásával kapcsolatos. Az idézett cikkek
els® szerz®je Michel Goemans, az MIT professzora, Klaus Jansen is a téma kiváló
szakért®je.

Nagyjából ennyit lehet tudni elméleti szempontból a sejtéssel kapcsolatban. Meg-
jegyzem, hogy a tételben szerepl® lépésszám nem függ n-t®l, tehát a tárgyak számá-
tól, de a konstans nagyon nagy lehet, ha a C nagy. Vagyis praktikus szempontból
ez a tétel nem igazán használható, mert a benne szerepl® optimális algoritmus a mi
algoritmusainkhoz képest nagyon lassú.

Példa: Tekintsük a Schwerin osztályt. Itt C = 1000, így ∆ ≈ 10, d ≈ 50, mivel
nem ismerjük a nagy ordóbeli konstanst, vegyük úgy, hogy O(d) ≈ 100. Ekkor
2100 = (210)10 ≈ 1030, vagyis a tételbeli konstans 1010

30
, ami iszonyúan nagy szám:

101000000000000000000000000000000.
Ha ezt összevetjük azzal, hogy a világegyetemben lev® összes atom száma bizo-

nyos becslések szerint nagyjából 1050 [14], más forrás szerint 1080 [15], az 1. tételbeli
optimális algoritmus lépésszáma meglehet®sen nagy.

Ehhez képest az algoritmusaim rendkívül gyorsak, futási idejük kevesebb, mint
1 másodperc. Ennek természetesen ára van, mégpedig az, hogy nincs arra garancia,
hogy minden inputot optimálisan megoldanak. Ezzel együtt a Schwerin osztálynak
mind a 200 feladatát, a Falkenauer_U osztály esetén pedig durván 90%-át optimá-
lisan tudták megoldani.

5



3. kérdés/megjegyzés: Milyen megfontolások alapján határozta meg a 4.10.
táblázatban szerepl® paraméterbeállításokat?

3. kérdésre/megjegyzésre adott válasz:
Alább mellékelem a 4.10. táblázatot.

Beállítás K αk, k = 1, . . . , K β
M0 1 [200] 200
M1 4 [100; 200; 300; 400] 200
M2 5 [100; 200; 300; 400; 500] 200
M3 2 [100; 100] 200
M4 3 [100; 100; 100] 200
M5 4 [100; 100; 100; 100] 500
M6 4 [225; 225; 230; 230] 560
M7 4 [200; 200; 200; 200] 600
M8 4 [200; 200; 300; 400] 350

2. táblázat. MMask kézi paraméter-beállításai (4.10-es táblázat másolata)

A paraméterek beállításait többféleképpen kipróbáltam. Az egyes próbák a követ-
kez®k voltak:

� az α vektor komponensei egyenl®ek, amit kisebb és nagyobb értékekre is meg-
vizsgáltam (M3, M4, M5 és M7 beállítások),

� ha az el®bbi beállítási stratégiát nem találtam elég hatékonynak, akkor lépcs®-
zetes beállítással próbálkoztam (M1 és M2), azaz az α komponensei egyenletes
mértékben növekednek,

� ahol egyik el®z® beállítás sem volt megfelel®en hatékony, úgy az el®bbi ket-
t® kombinációját választottam (M6 és M8), vagyis pl. M6 esetén az els® két
komponens egyenl®, a harmadik és negyedik komponens is egyenl®, de az el®-
z®eknél kicsivel nagyobb. Az M8 esetén pedig az els® két komponens egyenl®,
de inennt®l egyenletesen növekednek.

A fenti manuális beállítások valamelyike mindig segített, így részletesebb vizsgála-
tokat nem folytattam, mert az eredményekkel elégedett voltam. Természetesen a
paraméter beállításokat lehetett volna tovább �nomítani.

A másik oka annak, hogy megelégedtünk ezekkel a paraméter beállításokkal az
az, hogy tudtuk, hogy ezeket még tovább fogjuk �nomítani metaheurisztika alkalma-
zásával. Vagyis a paraméterek a végs® értéküket egy két fázisú optimalizálás során
kapják meg. Els® fázis egy durva optimalizálás (ezt végeztem kézzel), a második
fázis pedig az els® fázis eredményének tovább javítása metaheurisztika által.

Összefoglalva a fenti paraméter beállításokkal elégedett voltam, mert a céljaink-
nak megfelel® volt.

6



4. kérdés/megjegyzés: A szomszédságon alapuló keresés és a röviden fel-
vázolt genetikus algoritmus mellett még milyen lehet®ségeket lát az MMask algo-
ritmus paramétereinek optimalizálására, javítására? Hogyan kezelné az algoritmus
egész paramétereit olyan esetben, amikor magában az optimalizálásban folytonos
változók szerepelnek?

4. kérdésre/megjegyzésre adott válasz: Az MMask algoritmusnak
három paramétere van, amelyek az alábbiak:

� K - az egy id®ben nyitott ládák maximális számát meghatározó pozitív egész
szám (K > 0),

� α - K-dimenziós nemnegatív vektor (0 ≤ αk ≤ C ∀k-ra),

� β - egy pozitív egész szám (β > 0).

Az MMask m¶ködésének alapja egy elfogadó-elutasító politika. Az algoritmus
elfogadja a soron következ® tárgy pakolását, ha a pakolás után az adott láda töl-
töttsége az elfogadó tartományba esik. Ellenkez® esetben elutasítja a pakolást. Az
elfogadó és elutasító intervallumok az alábbiak szerint kerültek meghatározásra:

� Elfogadó tartomány a k. láda esetén (1 ≤ k ≤ K): [0;C − αk] ∪ [C;C + β]

� Elutasító tartomány a k. láda esetén (1 ≤ k ≤ K): (C − αk;C) ∪ (C + β;∞)

A paraméterek optimalizálására az egyszer¶bb megoldások közül a grid search
és a random search eljárásokat lehetne kipróbálni. A grid search úgy gondolom,
hogy kevésbé járható út, mert például C = 1000 ládaméret mellett, ha az alpha
értékei a [100,600] intervallumból kerülnek ki (azaz se nem túl kicsik, se nem túl
nagyok), akkor is 5005 eset van. Ezeken kívül még meg lehet vizsgálni a variable
neighborhood search eljárást is, amelynek a lényege a szomszédság szisztematikus
megváltoztatása. Itt kipróbálható lenne az, hogy az α és β értékeket az optimalizálás
során el®re meghatározott stratégia mentén változtatjuk. Lehetne úgy, hogy el®bb
egy részletes keresést indítunk, ahol 100-asával változik az α és a β is, és utána 10-es
léptékkel, végül 1-es léptékkel.

Egy további megoldás lehet egy neurális háló alkalmazása a szükséges paramé-
terek meghatározására. Konkrét gyakorlati feladatok esetében paraméterek megha-
tározására használtak neurális hálót például a [16, 17]-ben.

Az általam vizsgált esetben a neurális háló bemenete a felhasznált ládák szá-
ma, tárgyak száma (n) és a láda kapacitása (C). Els® lépésben, kézi beállítással
generálni kell egy nagy teszthalmazt (pl. 1000 elem¶ halmaz), ahol szerepelnek a
paraméterek kézi beállításai, az eredményül kapott (felhasznált) ládaszám, a tárgyak
száma és a láda kapacitása. A hálózat kimenete pedig a K, α és β paraméterek.
A hálózat méretét tekintve egy bemeneti, két rejtett és egy kimeneti réteget tar-
talmazhatna (valószín¶leg ez már elegend® lenne, de ez nem került kipróbálásra
eddig). A két rejtett réteggel rendelkez® hálózat már képes a bemenetnek bármilyen
függvényét reprezentálni megfelel® rétegenkénti neuronszámmal. Természetesen ha
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mégsem elegend®, akkor innen indulva tovább b®víthet® a hálózat. A rétegeken be-
lüli neuronszám ugyancsak tesztekkel beállítható. A neuronszám növelése manuális
b®vítést jelent. A hálózat hiba visszaterjesztéssel m¶ködne.

Mivel a neurális háló által kimeneti értékként kapott K, α és β valós számok,
ezeket egészekre kell kerekíteni. Valószín¶nek tartom, hogy amikor az α komponen-
seit és β értékét kerekítjük (pl. lefelé), azzal nem követünk el nagy hibát. Ugyanis
ha feltételezzük, hogy például a ládaméret C = 1000 (amint a vizsgálataimban volt),
akkor ha α valamelyik komponensére mondjuk 250 és 251 közötti számot ad az op-
timalizálás, akkor nagyjából mindegy, hogy ezt lefelé vagy fölfelé kerekítjük: ez nem
fogja lényegesen befolyásolni az MMask algoritmus hatékonyságát.

Más a helyzet a ládaszámmal, vagyis a K értékével. K értéke ugyanis jellemz®en
kicsi. Ha például K értéke a neurális hálóval végzett optimalizálás végén például
K = 3, 5, akkor ezt lefelé vagy felfelé kell majd kerekíteni, de itt nem tudhatjuk,
hogy melyik érték lehet igazán jó (K = 3 vagy K = 4). Ez esetben az algoritmus
validációja során mindkét értéket kipróbálnám.

1. ábra. Alkalmasnak vélt neurális háló modellje

Fontos megjegyezni, hogy a mi esetünkben nem egy input van, hanem egy osztály
több inputtal. Egy paraméter beállítással kell végigfuttatni az osztályban található
minden feladatra az algoritmusokat.
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Szeretném megköszönni dr. Szederkényi Gábor professzor úrnak, hogy elvállalta
és elkészítette a bírálatot. A bírálatban megfogalmazott kérdések és észrevételek
nagyon hasznosak voltak számomra.

Veszprém, 2023. január 9.

..................................................
Ábrahám Gyula
doktorandusz

Pannon Egyetem
Informatikai Tudományok Doktori Iskola
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