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A disszertáció kis időkésés hatását vizsgálja három különböző időkésleltetett rendszerosztály 

esetén. A disszertáció ennek megfelelően három részre tagolt, minden részhez egy-egy tézis 

tartozik, melyek mindegyike három altézisből áll. A fő eredményeket a fejezetek végén 

numerikus számpéldák szemléltetik. A tézisek az 5. fejezetben vannak megfogalmazva, és itt 

kapunk kitekintést a továbbfejlesztési lehetőségekről is. A disszertáció könnyen olvasható és 

könnyen követhető, a nyelvezete megfelelő. Az irodalmi áttekintés alapos, az 

irodalomjegyzékben 128 publikáció található. A magyar és az angol nyelvű tézisfüzet 

összhangban áll a disszertációval. 

 

A disszertáció három különböző időkésést tartalmazó rendszerosztály (folytonos idejű rendszer 

pontszerű és megoszló időkéséssel illetve diszkrét idejű rendszer végtelen időkéséssel) 

közönséges differenciálegyenletekkel való közelítésével foglalkozik rendszerelméleti és 

irányítástechnikai alkalmazásokkal. A fő cél azt megmutatni, hogy létezik egy közönséges 

differenciálegyenlet-rendszer, amelyik aszimptotikusan ekvivalens az eredeti késleltetett 

rendszerrel, feltéve, ha az időkésés eleget tesz bizonyos kicsinységi feltételnek. Ekvivalencia 

alatt azt értjük, hogy a két rendszer megoldása egymáshoz tart, és a késleltetett rendszer 

domináns (legnagyobb valós részű) gyökei megegyeznek a közelítő rendszer gyökeivel. Más 

közelítésekkel ellentétben, a közelítő rendszer állapotváltozójának hossza ugyanaz, mint az 

eredeti rendszer állapotváltozója.  

 

A bevezetés után a 2., 3. és a 4. fejezetekben folytonos, diszkrét és újra folytonos rendszerek 

vizsgálatát mutatja be a jelölt. Itt talán a 3. és a 4. fejezet sorrendjét meg lehetett volna cserélni, 

hogy a folytonos rendszerek vizsgálata egymás után következzen, de a jelenlegi sorrend is 

logikus, hiszen a diszkrét rendszerek végtelen sok időkéséssel egyfajta átmenetet teremtenek a 

megoszló időkésése rendszerekhez.  

 

Pontszerű időkésések esetén a kicsinységi feltételt a (2.1) egyenlet definiálja, a közelítő 

rendszer állapotmátrixát pedig a (2.3) implicit mátrixegyenlet adja. A jelölt iteratív módszereket 

adott meg az analitikus egyenletek megoldásának közelítésére és megmutatta, hogy az iterációs 

hiba exponenciálisan nullához tart. Megmutatta, hogy a közelítő rendszer sajátértékei 

megegyeznek az eredeti rendszer domináns sajátértékeivel és az iteráció során kapott 

sajátértékek exponenciálisan tartanak az eredeti sajátértékekhez. A közelítő módszert 

kiterjesztette korlátos inhomogén tagot tartalmazó rendszerekre is. Az eredményeket 

megfigyelhetőségre és detektálhatóságra is alkalmazta. Fontos gyakorlati eredmény, hogy a 

klasszikus állapotmegfigyelő tervezési módszerek továbbra is alkalmazhatóak maradnak a 

közelítő rendszer felhasználásával. 

Megjegyzés: A 2.3.12 tételben a (2.22) egyenlet akkor nem teljesül, ha a késleltetett 

rendszernek van n-nél több pozitív valós részű gyöke. Ezt az esetet valószínűleg a kicsinységi 

feltétel kizárja, de talán van erre egy szemléletes magyarázat is.  
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Diszkrét idejű végtelen sok időkésést tartalmazó rendszerek esetén a kicsinységi feltételt a (3.1) 

egyenlet definiálja. Ebben az esetben az aszimptotikus ekvivalenciát biztosító közelítő 

egyenletet a (3.7) adja. A rendszermátrixot ebben az esetben is egy implicit mátrixegyenlet (3.8) 

megoldása adja, amely megoldásra egy iteratív módszert is mutat a jelölt. Az eredményeket 

véges időkésést tartalmazó inhomogén egyenletekre is kiterjesztette. A kapott eredmények a 

folytonos idejű eredményeknek egyfajta analógiája.  

Megjegyzés: Ebben az esetben is felmerül a kérdés, hogy ha az eredeti rendszernek több, mint 

n db -nál nagyobb abszolút értékű gyöke van, akkor ezeket már nem adhatja meg a közelítő 

rendszer. Ebben az esetben is valószínűleg a kicsinységi feltétel kizárja ezt a lehetőséget.  

 

Folytonos idejű megoszló időkésést tartalmazó rendszerek esetén a kicsinységi feltételt a (4.1) 

egyenlet definiálja. Az aszimptotikus ekvivalenciát biztosító közelítő egyenletet a (4.2) adja és 

a rendszermátrixot a (4.3) implicit integrálegyenlet megoldásaként kapjuk. A megadott 

kicsinységi feltétel a Driver által megadott feltétel általánosítása. Megoszló időkésés esetén 

stabilizálhatósági feltételt is megadott a jelölt.  

 

Összességében a dolgozatot értékes munkának tartom, melyet érzésem szerint mérnöki 

feladatokban is gyakran lehet alkalmazni. Külön élvezetes volt a szakirodalmi áttekintést 

olvasni, különösképpen azt, hogy a jelölt munkája több, mint 50-60 éve született 

eredményekhez kapcsolódik és a kis időkéséses rendszerek elméletének alapjait megteremtő 

matematikusok (Ryabov, Kurzweil, Driver) munkáját általánosítja valamint egészíti ki. Itt még 

a jelölt figyelmébe ajánlom a lent megadott [1] és [2] publikációkat is Kurzweiltől és Drivertől. 

 

A disszertáció mind a három tézisét, és azoknak az alpontjait is elfogadom új 

eredménynek. Ezek alapján javaslom az értekezés doktori fokozat megadásának alapjául 

történő elfogadását.  

 

Néhány kérdés, amely a disszertáció olvasása közben felmerült bennem, és inkább további 

munkákra tett javaslat: 

 

Hogyan lehet a folytonos idejű eredményeket mintavételezéses rendszerekre alkalmazni, pl. 

digitális szabályozás (nullad-rendű tartó) esetén. Az időkésésre érvényes felső határ (pl. 0.278s 

az 1.1 ábrán) mintavételezéses szabályozás estén mekkora mintavételezési időre (Ts) 

alkalmazható.  

 

A fejezetek végén bemutatott numerikus példák nagyon tanulságosak, de mérnöki szempontból 

a paraméterek terében való vizsgálat hasznosabb lenne. Az eredményeket jól lehetne 

szemléltetni egyszerű, kevés paramétert tartalmazó egyenletek esetén. Például a pontszerű 

időkésés estén a Hayes-egyenlet lenne erre alkalmas: 𝑥̇(𝑡) = 𝑎𝑥(𝑡) + 𝑏𝑥(𝑡 − 𝜏). Az a és a b 

paraméterek síkján melyik tartományokban lehet a 𝜏 = 1 időkésést kicsinynek nevezni? 

Hogyan viszonyul ez a tartomány a stabil tartományokhoz? 

 

A pontszerű időkéséshez hasonlóan a megoszló időkésés esetén a Cushing-egyenlettel lehetne 

szemléltetni a paraméterek hatását: 𝑥̇(𝑡) = 𝑎𝑥(𝑡) + 𝑏 ∫ 𝑤(𝑠)𝑥(𝑡 + 𝑠)d𝑠
0

−𝜏
, pl. 𝑤(𝑠) ≡ 1 

mellett. Hasonlóan a pontszerű időkésés esetéhez, itt is felmerülhet a kérdés, hogy az a és a b 

paraméterek síkján melyik tartományokban lehet a 𝜏 = 1 időkésést kicsinynek nevezni és 

hogyan viszonyul ez a tartomány a stabil tartományokhoz? 

 

Diszkrét idejű esetben pedig a fenitek analógiájára a 𝑥[𝑘 + 1] = 𝑎𝑥[𝑘] + 𝑏𝑥[𝑘 − 𝑟] egyenletet 

lehetne vizsgálni, a legegyszerűbb esetben 𝑟 = 1 esetén, szintén az (𝑎, 𝑏) paramétersíkon. 
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A fenti három egyenleten elvégzett paramétervizsgálattal véleményem szerint mérnöki 

szempontból is látványosan szemléltetni lehetne a disszertáció eredményeinek lényegét. 

Szabályozási rendszerek esetén az a paraméter a nyitott rendszert jellemzi, a b pedig a 

visszacsatolást. Ez természetesen csak egy javaslat a PhD utáni további munkákra.  

 

Egy gyakorlati szempontból fontos általánosítási lehetőség az eredmények időben változó 

paraméterű rendszerekre való alkalmazása. Első körben periodikus együtthatójú egyenletekre 

lehetne általánosítani a folytonos pontszerű időkésést tartalmazórendszerekre kapott 

eredményeket. Ilyen egyenletekkel sok mérnöki problémát le lehet írni, pl. marási folyamatok 

során keletkező rezgéseket tipikusan periodikus együtthatójú késleltetett egyenletek írják le. A 

periodikus rendszerekre való általánosítás matematikai szempontból talán még kezelhető 

feladat. Általános időfüggő rendszerekre való általánosítás valószínűleg jóval bonyolultabb. Ez 

is csak a PhD utáni további munkára tett javaslat.  
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