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Szeretném megköszönni Dr. Insperger Tamásnak a beküldött dolgozat
alapján megfogalmazott észrevételeket, javaslatokat és hogy felhívta a figyel-
mem az értekezés témájához köthető publikációkra.

A válaszok kidolgozása során törekedtem arra, hogy a lehető legnagyobb
mértékben eleget tegyek a bírálatban szereplő észrevételeknek, javaslatoknak.

A bírálat során felmerült megjegyzésekre, észrevételekre és kérdésekre az
alábbi pontokban szeretnék választ adni. A válaszok hivatkoznak a disszer-
táció tételeire és egyenleteire.

1a: A 2.3.12 tételben a (2.22) egyenlet akkor nem teljesül, ha
a késleltetett rendszernek van n-nél több pozitív valós részű
gyöke. Ezt az esetet valószínűleg a kicsinységi feltétel kizárja,
de talán van erre egy szemléletes magyarázat is.

1b: Diszkrét esetben is felmerül a kérdés, hogy ha az eredeti rend-
szernek több, mint n db ν0-nál nagyobb abszolút értékű gyöke
van, akkor ezeket már nem adhatja meg a közelítő rendszer.
Ebben az esetben is valószínűleg a kicsinységi feltétel kizárja
ezt a lehetőséget.

V1a: A kicsinységi feltétel mellett az eredeti késleltetett rendszernek csak a
rendszer rendjével megegyező (azaz multiplicitással számolva pontosan
n) számú domináns sajátértéke lehet, melyek mind a ℜ(λ) > −ν0, pon-
tosabban az |λ| < ν0 tartományban helyezkednek el (2.3.9 Tétel). Ezen
sajátértékek megegyeznek a (2.3) egyenlet (2.4) feltételt kielégítő mát-
rixmegoldásának sajátértékeivel és a bemutatott eljárással előállított
közelítő rendszer a kicsinységi feltétel mellett minden esetben aszimp-
totikusan ekvivalens lesz az eredeti rendszerrel.
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Tehát a 2.3.9 Tétel következményeként minden esetben az eredeti kés-
leltetett rendszer összes nem domináns sajátértéke teljesíti a ℜ(λ) ≤
−ν0 feltételt, illetve ha az eredeti rendszernek n-nél több domináns
sajátértéke van, a kicsinységi feltétel nem teljesülhet.

Ezen észrevételeket a 2.3.10 Megjegyzés összegzi.

Az A0 = O esetben Arino és Pituk [1] cikkében található 2.2 Lemma
Rouché tételének felhasználásával egy másik lehetséges magyarázatot is
ad arra, hogy a kicsinységi feltétel mellett miért van éppen n domináns
sajátértéke az eredeti rendszernek.

V1b: Hasonlóan igazak a megfogalmazott állítások a diszkrét esetben a ki-
csinységi feltétel mellett. Az eredeti rendszernek n domináns sajátérté-
ke lehet. Ezek a |λ| ≥ ν0 tartományban vannak (3.3.8, 3.3.9 Tételek), és
megegyeznek a (3.8) egyenlet (3.20) feltételt kielégítő mátrixmegoldá-
sának sajátértékeivel. Ha az eredeti rendszernek n-nél több domináns
sajátértéke van, a kicsinységi feltétel nem teljesül. Ennek szemlélteté-
sére tekintsük az alábbi diszkrét egyenletet (x ∈ R):

∆x[k] = x[k + 1]− x[k] =
( 2

α
− 1

)
x[k]− 1

α2
x[k − 1].

A differenciaegyenlet z2 − 2
α
z + 1

α2 = 0 karakterisztikus egyenletének
megoldásai z1,2 = 1/α. Két azonos sajátértéke van, viszont x ∈ R,
ezért a közelítő rendszert x[k + 1] = βx[k] skaláris egyenlet alakjában
kellene keresni.

Ha a (3.66) feltételt tekintjük, akkor q = 1, ∥D∥ = |2/α− 1| és ∥A∥ =
1/α2. A ∥D∥ < 1 feltétel teljesül α > 1 esetén, viszont a második
feltételből származó
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egyenlőtlenségnek nincs megoldása.

2: Hogyan lehet a folytonos idejű eredményeket mintavételezé-
ses rendszerekre alkalmazni, pl. digitális szabályozás (nullad-
rendű tartó) esetén. Az időkésésre érvényes felső határ (pl.
0.278s az 1.1 ábrán) mintavételezéses szabályozás estén mek-
kora mintavételezési időre (Ts) alkalmazható.
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V2: Az 1.1-es ábrán feltűntetett rendszer egységnyi erősítéssel rendelkezik,
azaz ∥A∥ = ∥B∥ = 1, ekkor a maximális késleltetés ami mellett a ki-
csinységi feltétel teljesül τ = 0.278s. Az (1.12) rendszer nulladrendű
tartóval elvégzett diszkretizálása esetén az állapotmátrix Ad = eATs ,
a késleltetett állapotmátrix Bd =

∫ (k+1)Ts

kTs
eA(kTs+Ts+s)Bds = (Ad −

In)A
−1B, ha A invertálható [2]. A kicsinységi feltétel teljesüléséhez

szükséges mintavételezési periódus küszöbértéke a (3.66) egyenlet alap-
ján számolható.

3: Az eredményeket jól lehetne szemléltetni egyszerű, kevés pa-
ramétert tartalmazó egyenletek esetén. Például a pontszerű
időkésés estén a Hayes-egyenlet lenne erre alkalmas: ẋ(t) =
ax(t)+bx(t−τ) Az a és a b paraméterek síkján melyik tartomá-
nyokban lehet a τ = 1 időkésést kicsinynek nevezni? Hogyan
viszonyul ez a tartomány a stabil tartományokhoz?

V3: A Hayes-féle egyenlet kapcsán felmerült paraméter síkjával a Driver,
Sasser, Slater [3] cikkben találkozhatunk. Itt a kicsinységi feltételnek
két exponenciális görbe felel meg, a stabilitás határát pedig az a+b = 0
egyenes képezi.

4: A pontszerű időkéséshez hasonlóan a megoszló időkésés ese-
tén a Cushing-egyenlettel lehetne szemléltetni a paraméterek
hatását: ẋ(t) = ax(t) + b

∫ 0

−τ
w(s)x(t + s)ds, pl. w(s) ≡ 1 mellett.

Hasonlóan a pontszerű időkésés esetéhez, itt is felmerülhet a
kérdés, hogy az a és a b paraméterek síkján melyik tartomá-
nyokban lehet a τ = 1 időkésést kicsinynek nevezni és hogyan
viszonyul ez a tartomány a stabil tartományokhoz

V4: A Cushing-féle egyenlet stabilitási tartományának meghatározása össze-
tettebb feladat mint a Hayes-féle egyenlet elemzése az integrál miatt.
Több módszert dolgoztak ki a stabilitás feltérképezésére mint például
a Khasawneh tanulmányában [4]. A kicsinységi feltétel és a stabilitási
zóna vizsonát összhangba lehetne hozni az említett tanulmány (lásd [4,
(5) ábra]) illetve a disszertációs dolgozatban szereplő kicsinységi feltétel
(4.3.9 Megjegyzés) összevetésével ((i) ábra).

Az (i) ábra a kicsinységi határt szemlélteti a skaláris Cushing-féle egyen-
letre. Az ábra a 4.3.9 megjegyzésben szereplő egyszerűsített kicsiny-
ségi feltétel értelmezése alapján jött létre. Az a és b paramétereket a
[−1.5, 1.5] intervallumból választottam 1/1000 lépéssel.
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i. ábra. A vörös kereten belüli a és b paraméterekkel a rendszer eleget tesz a
kicsinységi feltételnek.

5: Diszkrét idejű esetben pedig a fenitek analógiájára az x[k+1] =
ax[x] + bx[k − r] egyenletet lehetne vizsgálni, a legegyszerűbb
esetben r = 1 esetén, szintén az (a, b) paramétersíkon.

V5: A diszkrét idejű eset tanulmányozását a Hayes-féle egyenlet elemzésé-
hez hasonlóan lehet elvégezni. A fent említett rendszerhez másodfokú
karakterisztikus egyenletet lehet rendelni. A kicsinységi feltétel pedig
egy a-ban másodfokú abszolút értékeket tartalmazó egyenlőtlenségnek
felel meg az (a, b) síkban.

ii. ábra. A zöld kereten belüli (a,b) értékekkel az eredeti rendszer stabil lesz.
A vörös kereten belüli rész eleget tesz a kicsinységi feltételnek.

A (ii) ábra a kicsinységi határt szemlélteti egységnyi eltolással ren-
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delkező skaláris késleltetett differenciaegyenletre. Az ábrán szereplő
stabilitási zónát a (3.70) karakterisztikus egyenletből származó gyökök
kiértékelésével, míg a kicsinységi tartományt a (3.66) egyszerűsített
kicsinységi feltétel értelmezése alapján határoztam meg. Az a és b pa-
ramétereket a [−4, 4] intervallumból választottam 1/1000 lépéssel.

6: Egy gyakorlati szempontból fontos általánosítási lehetőség az
eredmények időben változó paraméterű rendszerekre való al-
kalmazása. Első körben periodikus együtthatójú egyenletekre
lehetne általánosítani a folytonos pontszerű időkésést tartal-
mazórendszerekre kapott eredményeket. Ilyen egyenletekkel
sok mérnöki problémát le lehet írni, pl. marási folyamatok
során keletkező rezgéseket tipikusan periodikus együtthatójú
késleltetett egyenletek írják le. A periodikus rendszerekre va-
ló általánosítás matematikai szempontból talán még kezelhető
feladat. Általános időfüggő rendszerekre való általánosítás va-
lószínűleg jóval bonyolultabb. Ez is csak a PhD utáni további
munkára tett javaslat.

V6: Az eredmények kivitelezése nem-autonóm rendszerekre szerepel a jö-
vőbeli kutatási terveim között felhasználva az Arino, Győri és Pituk
[5] illetve Győri és Pituk [6] cikkek eredményeit, ahol a késleltetett
rendszerrel aszimptotikusan ekvivalens közönséges differenciálegyenlet-
rendszer rendszermátrixát egy sorfejtéssel adták meg. További terveim
ezen eredmények átemelése mérnöki területen felmerülő folyamatok kö-
zelítő leírására, elemzésére és szabályozására.
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