
Válasz opponensi véleményre - doktori disszertáció

Véleményező: Dr. Gyulai Dávid
Cím: Ipar 4.0 és 5.0 megoldások fejlesztése ontológiák alapján - modellezés és optimalizálás - doktori
dolgozat
Szerző: Nagy László
Témavezető: Dr. Abonyi János és Dr. Ruppert Tamás

Tisztelt Dr. Gyulai Dávid!

Nagyon szépen köszönöm konstruktív és rendkívül hasznos kommentjeit a disszertáció kapcsán.
Alaposan átnéztem az összes megjegyzést és ezekre részletesen válaszolok jelen levélben.

Köszönettel:
Nagy László

2023. Május 31., Veszprém

A fejezettel kapcsolatos korábbi hiányérzetemet, miszerint nem került ismertetésre „vajon miért nem
elterjedt még mindig az ipari gyakorlatban (általános, mindennapi alkalmazás), az egyébként
technológiai szempontból érett, és tudományosan igazolt hatékonyságú megoldások használata” új
tartalmi elemek ismertetik. Ezt érdemesnek tartom a szóbeli vitán további rövid tárgyalásra.

Köszönöm a visszajelzést! A nyilvános doktori védésemre készülök extra diával, ahol visszatérhetünk
ennek a témának a megvitatására.
Illetve néhány további alkalmazási példát megemlítenék, ami bizonyítja, hogy az ipari elterjedés is
folyamatban van már. A Bosch-nál Data scientist projektek keretében adatmodellezésben
alkalmazzások az ontológiákat, valamint kimondottam termelő rendszerek esetén a ‘LIS: A
Knowledge Graph-based Line Information System’ rendszert dolgozták ki MES és ERP feladatok
ellátására ontológiák alapján. A Kuka Robotisc-nál ‘Semantic Data Management’-et alkalmaznak az
igen komplex és nagy számú robotkar pozíciók, mozgásminták és művelet módok modellezésére.
Továbbá személyes tapasztalatom a Siemens Energy-nél is találkoztam szemantikus technológiákkal,
amikor az ‘Energy Transmission’ üzletágban dolgoztam 2021-ben, komplex erősáramú hálózatok gráf
alapú modellezésére és optimalizálásra alkalmazzák.
Az I.1.1 ábra szemléletesen mutatja be az ontológiák illetve tudásgráfok irodalmának fejlődését: mi
lehet az oka annak, hogy előbbi mintha „stagnálna”? Az előnyök és hátrányok összehasonlítása jól
ismerteti a két terület közötti különbségeket, de számomra nem egyértelmű hogy ezek alapján ekkor
különbségnek kellene mutatkoznia.

Az ábra készítése során csak a Scopus adatai kerültek felhasználásra, ami okozhat torzítást, valamint
feltételezhetően a publikációk címében, és kulcsszavakban az ‘ontológiát’ egyre inkább a ‘tudás gráf’
kifejezés veszi át. Továbbá ami ezen ábrának nem része a ‘semantic technology’ kifejezés is gyakran
előfordul a korábbiak mellett.

Az ontológiák előnyeinél szerepel, hogy a SPARQL gyorsabb lekérdezéseket tesz lehetővé adott
esetekben, ez számomra némileg ellentmond a későbbi pontban megfogalmazott számítási
komplexitásoknak.

Alapvetően a SPARQL az RDF típusú adatok lekérdezésére lett tervezve, így ha az adatok RDF
formátumban vannak strukturálva, akkor a SPARQL hatékony választás lehet. Azonban a
lekérdezések bonyolultsága, az adatkészlet mérete, heterogenitása és a különböző technológiák által



alkalmazott optimalizálási technikák mind befolyásolhatják a teljesítményt. Tehár érdemes a
különböző adat lekérdezési technológiákat tesztelni és összehasonlítani a specifikus környezetben,
hogy meghatározható legyen az optimális.
Illetve ipari példaként megemlíteném az amerikai, big data elemzésére szakosodott Palantir vállalatot,
melynek egyik fő szoftver szolgáltatása a ‘Palantir Foundry’ egy ontológia alapú vállalatirányítási
rendszer ami többek között képes élő adat elemzésre, számos optimalizációs megoldást nyújt,
valamint machine learning és AI eszközök integrálásának köszönhetően a skálázhatóság is megoldott
komplex, és nagy mennyiségű adatok esetén is (https://www.palantir.com/platforms/foundry/).

A II.2 fejezet egy bonyolult korlátozás-rendszerrel (task-operator-equipment-skill) bíró sorkiegyenlítési
feladatra ad heurisztikus megoldást. A bemutatott új tudományos eredményeket a tesztek igazolják,
valamin az átolgozott változat tartalmaz egy érzékenységvizsgálati kísérletsorozatot. Az eredmények
alapján a megoldás érzékeny néhány paraméter megváltozására, a kérdésem, hogy ezeket az
eredményeket figyelembe véve a gyakorlatban mely megoldást javasolná megvalósításra, illetve mi
alapján lehet eldönteni hogy az alternatív megoldások melyike a legmegfelelőbb ipari környezetben?

A feladat megoldható paraméter optimalizálással, vagy egyszerűen az egyes faktorok súlyozásával,
amelyhez az adott ipari területet domain tudása adja az alapot. Így az alternatív megoldások közül az
adott termelési kritériumok mellett, az idő-, képzettség- és eszköz alapú célok (költségek) közötti
megfelelő egyensúlyt adó megoldást választanám. Továbbá, adott ipari környezettől függően
változhatnak az idő alapú cél mellett az eszköz- és a képzettség célok fontossága, melyet
befolyásolhatnak például a termelő folyamatok technológiai kötöttségei, erőforrások vagy
megmunkáló gépek limitációja.

A saját eredmények a korábbi változathoz képest hangsúlyosabban jelennek meg a fejezetben, a
megoldás skálázhatóságáról továbbra is kevés szó esik. Van erre vonatkozóan valamilyen
teszteredmény, esetleg tapasztalat?

A skálázhatóságát kifejezetten nem vizsgáltam, ugyanakkor a kidolgozott és továbbfejlesztett
szimulált hűtéses optimalizáció hatékonyságának köszönhetően nagyobb ipari problémákon is gond
nélkül alkalmazhatónak kell lennie. Az algoritmus komplexitása alapvetően nem változik, mivel a
kombinált célfüggvény az eredeti célok lineáris kombinációja (a részcélok egymásnak részben
ellentmondanak) így a keresési tér komplexitása sem változik. Ugyanakkor olyan eset előfordulhat,
hogy gyorsabb lesz az optimalizációs algoritmus eredményének konvergenciája, ha csak egy cél
kerül figyelembe vételre.

A II.3.1.2 ismerteti az algoritmus inicializálását, amely jellemzően valamilyen véletlen állapotból indul.
A doktorjelölt megemlíti, hogy célszerű lehet többször futtatni az algoritmust különböző,
véletlenszerűen generált kezdeti állapotokból. Ilyenkor, adott esetben különböző megoldáshoz jutva,
hogyan lehet aggregálni az eredményeket, és javaslatot tenni a végső megoldásra?

A többszöri futtatás csak az algoritmus hangolására vonatkozik, melyet minden hálózat esetén az
első alkalmazásnál kell megtenni, ekkor az eredmények csakis külön értelmezhetőek és a
legkedvezőbbek alapján választható ki a paraméter halmaz, melynek megoldása természetesen
kiváltható akár paraméter optimalizálással is. A kidolgozott algoritmus előnye, hogy az adott
hálózaton a kezdeti felparaméterezést követően már nagyságrenddel gyorsabban képes megtalálni a
közösségeket a hálózatban, ezáltal hatékonyan elemezhető az adott rendszer akár periodikusan, akár
online módon.

Az új táblázatos eredményeknél nem világos (II.3.2, II.3.3 táblázatok), hogy mit jelent a C (talán ez a
közösségek száma?), és miért van említve m a táblázat szövegében, ugyanis nincs használva. Talán
gépelési hiba?



Ehhez kapcsolódó kérdés, hogy amennyiban C –> m¸hogyan lehetséges hogy pl. a második teszt
esetén az érték (19) kívül esik a minimum és maximum által megadott (20-50) tartományon?

A ‘II.3.1.1 Cost function - Modularity’ fejezetben említésre kerül, hogy a ‘C’ az adjacencia mátrix
partícióinak száma. A II.3.2, II.3.3 táblázatok leírásának esetében sajnos gépelési hibát ejtettem, és
helyesen valóban ‘community number (C)’. Továbbá az ‘m(min)’ és ‘m(max)’ értékek node számban
kifejezve adják meg, hogy minimum, illetve maximum hány darab csomópont kerülhet egy
közösségbe a mesterséges generálás (LFR) során. Tehát például II.3.2-es táblázat esetén 1000
csomóponttal rendelkező hálózatban az adott csoportokban minimum 20, maximum 100 node
kerülhet (ezen tartományban véletlenszerűen), így 19, illetve 24 értékű a ‘C’ közösségek száma a
hálózatokban.

Jól értem, hogy a saját megoldás kevésbé érzékeny a paraméterek változása, a vizsgált egyéb
módszerekhez képest? Kérem tisztázni, hogy miért az adott módszereket vizsgálta, illeve valóban
ezek-e jelenleg a terület leghatékonyabb algoritmusai.

Köszönhetően annak, hogy a megfelelő hangolás mellett (gamma és resolution értékek) a bemutatott
algoritmus képes detektálni a megfelelő számú közösséget a hálózatban (II.3.5. ábra), az NMI és ARI
mutatószámok is magasabbak a többi módszeréhez képest. Az algoritmus implementálása Matlab
környezetben történt, így az összehasonlítás során toolbox-okban elérhető és hasonlóan modularitás
alapú közösség detektáló algoritmusokkal történt az összehasonlítás. Továbbá a jelenleg is
folyamatban lévő publikálás során a teljes algoritmust, a széleskörűbb tesztelés érdekében
implementáltam Python-ban, ahol az alábbi algoritmusokkal is összehasonlítom: ‘Greedy, Louvain,
Label propagation, Leiden modularity’. Ezen tesztek során is az eredmények hasonló tartományban
vannak, mint ahogy a disszertációban bemutatásra került.


